SemaDecl.cpp revision 219077
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName, bool HasTrailingDot,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    if (!HasTrailingDot)
197      T = Context.getObjCInterfaceType(IDecl);
198  }
199
200  if (T.isNull()) {
201    // If it's not plausibly a type, suppress diagnostics.
202    Result.suppressDiagnostics();
203    return ParsedType();
204  }
205  return ParsedType::make(T);
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   ParsedType &SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = ParsedType();
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
286                       Name, ParsedType(), true, TemplateResult,
287                       MemberOfUnknownSpecialization) == TNK_Type_template) {
288      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
289      Diag(IILoc, diag::err_template_missing_args) << TplName;
290      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
291        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
292          << TplDecl->getTemplateParameters()->getSourceRange();
293      }
294      return true;
295    }
296  }
297
298  // FIXME: Should we move the logic that tries to recover from a missing tag
299  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
300
301  if (!SS || (!SS->isSet() && !SS->isInvalid()))
302    Diag(IILoc, diag::err_unknown_typename) << &II;
303  else if (DeclContext *DC = computeDeclContext(*SS, false))
304    Diag(IILoc, diag::err_typename_nested_not_found)
305      << &II << DC << SS->getRange();
306  else if (isDependentScopeSpecifier(*SS)) {
307    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
308      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
309      << SourceRange(SS->getRange().getBegin(), IILoc)
310      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
311    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
312  } else {
313    assert(SS && SS->isInvalid() &&
314           "Invalid scope specifier has already been diagnosed");
315  }
316
317  return true;
318}
319
320// Determines the context to return to after temporarily entering a
321// context.  This depends in an unnecessarily complicated way on the
322// exact ordering of callbacks from the parser.
323DeclContext *Sema::getContainingDC(DeclContext *DC) {
324
325  // Functions defined inline within classes aren't parsed until we've
326  // finished parsing the top-level class, so the top-level class is
327  // the context we'll need to return to.
328  if (isa<FunctionDecl>(DC)) {
329    DC = DC->getLexicalParent();
330
331    // A function not defined within a class will always return to its
332    // lexical context.
333    if (!isa<CXXRecordDecl>(DC))
334      return DC;
335
336    // A C++ inline method/friend is parsed *after* the topmost class
337    // it was declared in is fully parsed ("complete");  the topmost
338    // class is the context we need to return to.
339    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
340      DC = RD;
341
342    // Return the declaration context of the topmost class the inline method is
343    // declared in.
344    return DC;
345  }
346
347  // ObjCMethodDecls are parsed (for some reason) outside the context
348  // of the class.
349  if (isa<ObjCMethodDecl>(DC))
350    return DC->getLexicalParent()->getLexicalParent();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366  assert(CurContext && "Popped translation unit!");
367}
368
369/// EnterDeclaratorContext - Used when we must lookup names in the context
370/// of a declarator's nested name specifier.
371///
372void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
373  // C++0x [basic.lookup.unqual]p13:
374  //   A name used in the definition of a static data member of class
375  //   X (after the qualified-id of the static member) is looked up as
376  //   if the name was used in a member function of X.
377  // C++0x [basic.lookup.unqual]p14:
378  //   If a variable member of a namespace is defined outside of the
379  //   scope of its namespace then any name used in the definition of
380  //   the variable member (after the declarator-id) is looked up as
381  //   if the definition of the variable member occurred in its
382  //   namespace.
383  // Both of these imply that we should push a scope whose context
384  // is the semantic context of the declaration.  We can't use
385  // PushDeclContext here because that context is not necessarily
386  // lexically contained in the current context.  Fortunately,
387  // the containing scope should have the appropriate information.
388
389  assert(!S->getEntity() && "scope already has entity");
390
391#ifndef NDEBUG
392  Scope *Ancestor = S->getParent();
393  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
394  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
395#endif
396
397  CurContext = DC;
398  S->setEntity(DC);
399}
400
401void Sema::ExitDeclaratorContext(Scope *S) {
402  assert(S->getEntity() == CurContext && "Context imbalance!");
403
404  // Switch back to the lexical context.  The safety of this is
405  // enforced by an assert in EnterDeclaratorContext.
406  Scope *Ancestor = S->getParent();
407  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
408  CurContext = (DeclContext*) Ancestor->getEntity();
409
410  // We don't need to do anything with the scope, which is going to
411  // disappear.
412}
413
414/// \brief Determine whether we allow overloading of the function
415/// PrevDecl with another declaration.
416///
417/// This routine determines whether overloading is possible, not
418/// whether some new function is actually an overload. It will return
419/// true in C++ (where we can always provide overloads) or, as an
420/// extension, in C when the previous function is already an
421/// overloaded function declaration or has the "overloadable"
422/// attribute.
423static bool AllowOverloadingOfFunction(LookupResult &Previous,
424                                       ASTContext &Context) {
425  if (Context.getLangOptions().CPlusPlus)
426    return true;
427
428  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
429    return true;
430
431  return (Previous.getResultKind() == LookupResult::Found
432          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
433}
434
435/// Add this decl to the scope shadowed decl chains.
436void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
437  // Move up the scope chain until we find the nearest enclosing
438  // non-transparent context. The declaration will be introduced into this
439  // scope.
440  while (S->getEntity() &&
441         ((DeclContext *)S->getEntity())->isTransparentContext())
442    S = S->getParent();
443
444  // Add scoped declarations into their context, so that they can be
445  // found later. Declarations without a context won't be inserted
446  // into any context.
447  if (AddToContext)
448    CurContext->addDecl(D);
449
450  // Out-of-line definitions shouldn't be pushed into scope in C++.
451  // Out-of-line variable and function definitions shouldn't even in C.
452  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
453      D->isOutOfLine())
454    return;
455
456  // Template instantiations should also not be pushed into scope.
457  if (isa<FunctionDecl>(D) &&
458      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
459    return;
460
461  // If this replaces anything in the current scope,
462  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
463                               IEnd = IdResolver.end();
464  for (; I != IEnd; ++I) {
465    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
466      S->RemoveDecl(*I);
467      IdResolver.RemoveDecl(*I);
468
469      // Should only need to replace one decl.
470      break;
471    }
472  }
473
474  S->AddDecl(D);
475  IdResolver.AddDecl(D);
476}
477
478bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
479  return IdResolver.isDeclInScope(D, Ctx, Context, S);
480}
481
482Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
483  DeclContext *TargetDC = DC->getPrimaryContext();
484  do {
485    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
486      if (ScopeDC->getPrimaryContext() == TargetDC)
487        return S;
488  } while ((S = S->getParent()));
489
490  return 0;
491}
492
493static bool isOutOfScopePreviousDeclaration(NamedDecl *,
494                                            DeclContext*,
495                                            ASTContext&);
496
497/// Filters out lookup results that don't fall within the given scope
498/// as determined by isDeclInScope.
499static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
500                                 DeclContext *Ctx, Scope *S,
501                                 bool ConsiderLinkage) {
502  LookupResult::Filter F = R.makeFilter();
503  while (F.hasNext()) {
504    NamedDecl *D = F.next();
505
506    if (SemaRef.isDeclInScope(D, Ctx, S))
507      continue;
508
509    if (ConsiderLinkage &&
510        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
511      continue;
512
513    F.erase();
514  }
515
516  F.done();
517}
518
519static bool isUsingDecl(NamedDecl *D) {
520  return isa<UsingShadowDecl>(D) ||
521         isa<UnresolvedUsingTypenameDecl>(D) ||
522         isa<UnresolvedUsingValueDecl>(D);
523}
524
525/// Removes using shadow declarations from the lookup results.
526static void RemoveUsingDecls(LookupResult &R) {
527  LookupResult::Filter F = R.makeFilter();
528  while (F.hasNext())
529    if (isUsingDecl(F.next()))
530      F.erase();
531
532  F.done();
533}
534
535/// \brief Check for this common pattern:
536/// @code
537/// class S {
538///   S(const S&); // DO NOT IMPLEMENT
539///   void operator=(const S&); // DO NOT IMPLEMENT
540/// };
541/// @endcode
542static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
543  // FIXME: Should check for private access too but access is set after we get
544  // the decl here.
545  if (D->isThisDeclarationADefinition())
546    return false;
547
548  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
549    return CD->isCopyConstructor();
550  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
551    return Method->isCopyAssignmentOperator();
552  return false;
553}
554
555bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
556  assert(D);
557
558  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
559    return false;
560
561  // Ignore class templates.
562  if (D->getDeclContext()->isDependentContext() ||
563      D->getLexicalDeclContext()->isDependentContext())
564    return false;
565
566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
567    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
568      return false;
569
570    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
571      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
572        return false;
573    } else {
574      // 'static inline' functions are used in headers; don't warn.
575      if (FD->getStorageClass() == SC_Static &&
576          FD->isInlineSpecified())
577        return false;
578    }
579
580    if (FD->isThisDeclarationADefinition() &&
581        Context.DeclMustBeEmitted(FD))
582      return false;
583
584  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
585    if (!VD->isFileVarDecl() ||
586        VD->getType().isConstant(Context) ||
587        Context.DeclMustBeEmitted(VD))
588      return false;
589
590    if (VD->isStaticDataMember() &&
591        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
592      return false;
593
594  } else {
595    return false;
596  }
597
598  // Only warn for unused decls internal to the translation unit.
599  if (D->getLinkage() == ExternalLinkage)
600    return false;
601
602  return true;
603}
604
605void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
606  if (!D)
607    return;
608
609  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
610    const FunctionDecl *First = FD->getFirstDeclaration();
611    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
612      return; // First should already be in the vector.
613  }
614
615  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
616    const VarDecl *First = VD->getFirstDeclaration();
617    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
618      return; // First should already be in the vector.
619  }
620
621   if (ShouldWarnIfUnusedFileScopedDecl(D))
622     UnusedFileScopedDecls.push_back(D);
623 }
624
625static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
626  if (D->isInvalidDecl())
627    return false;
628
629  if (D->isUsed() || D->hasAttr<UnusedAttr>())
630    return false;
631
632  if (isa<LabelDecl>(D))
633    return true;
634
635  // White-list anything that isn't a local variable.
636  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
637      !D->getDeclContext()->isFunctionOrMethod())
638    return false;
639
640  // Types of valid local variables should be complete, so this should succeed.
641  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
642
643    // White-list anything with an __attribute__((unused)) type.
644    QualType Ty = VD->getType();
645
646    // Only look at the outermost level of typedef.
647    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
648      if (TT->getDecl()->hasAttr<UnusedAttr>())
649        return false;
650    }
651
652    // If we failed to complete the type for some reason, or if the type is
653    // dependent, don't diagnose the variable.
654    if (Ty->isIncompleteType() || Ty->isDependentType())
655      return false;
656
657    if (const TagType *TT = Ty->getAs<TagType>()) {
658      const TagDecl *Tag = TT->getDecl();
659      if (Tag->hasAttr<UnusedAttr>())
660        return false;
661
662      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
663        // FIXME: Checking for the presence of a user-declared constructor
664        // isn't completely accurate; we'd prefer to check that the initializer
665        // has no side effects.
666        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
667          return false;
668      }
669    }
670
671    // TODO: __attribute__((unused)) templates?
672  }
673
674  return true;
675}
676
677/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
678/// unless they are marked attr(unused).
679void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
680  if (!ShouldDiagnoseUnusedDecl(D))
681    return;
682
683  unsigned DiagID;
684  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
685    DiagID = diag::warn_unused_exception_param;
686  else if (isa<LabelDecl>(D))
687    DiagID = diag::warn_unused_label;
688  else
689    DiagID = diag::warn_unused_variable;
690
691  Diag(D->getLocation(), DiagID) << D->getDeclName();
692}
693
694static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
695  // Verify that we have no forward references left.  If so, there was a goto
696  // or address of a label taken, but no definition of it.  Label fwd
697  // definitions are indicated with a null substmt.
698  if (L->getStmt() == 0)
699    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
700}
701
702void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
703  if (S->decl_empty()) return;
704  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
705         "Scope shouldn't contain decls!");
706
707  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
708       I != E; ++I) {
709    Decl *TmpD = (*I);
710    assert(TmpD && "This decl didn't get pushed??");
711
712    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
713    NamedDecl *D = cast<NamedDecl>(TmpD);
714
715    if (!D->getDeclName()) continue;
716
717    // Diagnose unused variables in this scope.
718    if (!S->hasErrorOccurred())
719      DiagnoseUnusedDecl(D);
720
721    // If this was a forward reference to a label, verify it was defined.
722    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
723      CheckPoppedLabel(LD, *this);
724
725    // Remove this name from our lexical scope.
726    IdResolver.RemoveDecl(D);
727  }
728}
729
730/// \brief Look for an Objective-C class in the translation unit.
731///
732/// \param Id The name of the Objective-C class we're looking for. If
733/// typo-correction fixes this name, the Id will be updated
734/// to the fixed name.
735///
736/// \param IdLoc The location of the name in the translation unit.
737///
738/// \param TypoCorrection If true, this routine will attempt typo correction
739/// if there is no class with the given name.
740///
741/// \returns The declaration of the named Objective-C class, or NULL if the
742/// class could not be found.
743ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
744                                              SourceLocation IdLoc,
745                                              bool TypoCorrection) {
746  // The third "scope" argument is 0 since we aren't enabling lazy built-in
747  // creation from this context.
748  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
749
750  if (!IDecl && TypoCorrection) {
751    // Perform typo correction at the given location, but only if we
752    // find an Objective-C class name.
753    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
754    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
755        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
756      Diag(IdLoc, diag::err_undef_interface_suggest)
757        << Id << IDecl->getDeclName()
758        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
759      Diag(IDecl->getLocation(), diag::note_previous_decl)
760        << IDecl->getDeclName();
761
762      Id = IDecl->getIdentifier();
763    }
764  }
765
766  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
767}
768
769/// getNonFieldDeclScope - Retrieves the innermost scope, starting
770/// from S, where a non-field would be declared. This routine copes
771/// with the difference between C and C++ scoping rules in structs and
772/// unions. For example, the following code is well-formed in C but
773/// ill-formed in C++:
774/// @code
775/// struct S6 {
776///   enum { BAR } e;
777/// };
778///
779/// void test_S6() {
780///   struct S6 a;
781///   a.e = BAR;
782/// }
783/// @endcode
784/// For the declaration of BAR, this routine will return a different
785/// scope. The scope S will be the scope of the unnamed enumeration
786/// within S6. In C++, this routine will return the scope associated
787/// with S6, because the enumeration's scope is a transparent
788/// context but structures can contain non-field names. In C, this
789/// routine will return the translation unit scope, since the
790/// enumeration's scope is a transparent context and structures cannot
791/// contain non-field names.
792Scope *Sema::getNonFieldDeclScope(Scope *S) {
793  while (((S->getFlags() & Scope::DeclScope) == 0) ||
794         (S->getEntity() &&
795          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
796         (S->isClassScope() && !getLangOptions().CPlusPlus))
797    S = S->getParent();
798  return S;
799}
800
801/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
802/// file scope.  lazily create a decl for it. ForRedeclaration is true
803/// if we're creating this built-in in anticipation of redeclaring the
804/// built-in.
805NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
806                                     Scope *S, bool ForRedeclaration,
807                                     SourceLocation Loc) {
808  Builtin::ID BID = (Builtin::ID)bid;
809
810  ASTContext::GetBuiltinTypeError Error;
811  QualType R = Context.GetBuiltinType(BID, Error);
812  switch (Error) {
813  case ASTContext::GE_None:
814    // Okay
815    break;
816
817  case ASTContext::GE_Missing_stdio:
818    if (ForRedeclaration)
819      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
820        << Context.BuiltinInfo.GetName(BID);
821    return 0;
822
823  case ASTContext::GE_Missing_setjmp:
824    if (ForRedeclaration)
825      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
826        << Context.BuiltinInfo.GetName(BID);
827    return 0;
828  }
829
830  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
831    Diag(Loc, diag::ext_implicit_lib_function_decl)
832      << Context.BuiltinInfo.GetName(BID)
833      << R;
834    if (Context.BuiltinInfo.getHeaderName(BID) &&
835        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
836          != Diagnostic::Ignored)
837      Diag(Loc, diag::note_please_include_header)
838        << Context.BuiltinInfo.getHeaderName(BID)
839        << Context.BuiltinInfo.GetName(BID);
840  }
841
842  FunctionDecl *New = FunctionDecl::Create(Context,
843                                           Context.getTranslationUnitDecl(),
844                                           Loc, II, R, /*TInfo=*/0,
845                                           SC_Extern,
846                                           SC_None, false,
847                                           /*hasPrototype=*/true);
848  New->setImplicit();
849
850  // Create Decl objects for each parameter, adding them to the
851  // FunctionDecl.
852  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
853    llvm::SmallVector<ParmVarDecl*, 16> Params;
854    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
855      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
856                                           FT->getArgType(i), /*TInfo=*/0,
857                                           SC_None, SC_None, 0));
858    New->setParams(Params.data(), Params.size());
859  }
860
861  AddKnownFunctionAttributes(New);
862
863  // TUScope is the translation-unit scope to insert this function into.
864  // FIXME: This is hideous. We need to teach PushOnScopeChains to
865  // relate Scopes to DeclContexts, and probably eliminate CurContext
866  // entirely, but we're not there yet.
867  DeclContext *SavedContext = CurContext;
868  CurContext = Context.getTranslationUnitDecl();
869  PushOnScopeChains(New, TUScope);
870  CurContext = SavedContext;
871  return New;
872}
873
874/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
875/// same name and scope as a previous declaration 'Old'.  Figure out
876/// how to resolve this situation, merging decls or emitting
877/// diagnostics as appropriate. If there was an error, set New to be invalid.
878///
879void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
880  // If the new decl is known invalid already, don't bother doing any
881  // merging checks.
882  if (New->isInvalidDecl()) return;
883
884  // Allow multiple definitions for ObjC built-in typedefs.
885  // FIXME: Verify the underlying types are equivalent!
886  if (getLangOptions().ObjC1) {
887    const IdentifierInfo *TypeID = New->getIdentifier();
888    switch (TypeID->getLength()) {
889    default: break;
890    case 2:
891      if (!TypeID->isStr("id"))
892        break;
893      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
894      // Install the built-in type for 'id', ignoring the current definition.
895      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
896      return;
897    case 5:
898      if (!TypeID->isStr("Class"))
899        break;
900      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
901      // Install the built-in type for 'Class', ignoring the current definition.
902      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
903      return;
904    case 3:
905      if (!TypeID->isStr("SEL"))
906        break;
907      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
908      // Install the built-in type for 'SEL', ignoring the current definition.
909      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
910      return;
911    case 8:
912      if (!TypeID->isStr("Protocol"))
913        break;
914      Context.setObjCProtoType(New->getUnderlyingType());
915      return;
916    }
917    // Fall through - the typedef name was not a builtin type.
918  }
919
920  // Verify the old decl was also a type.
921  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
922  if (!Old) {
923    Diag(New->getLocation(), diag::err_redefinition_different_kind)
924      << New->getDeclName();
925
926    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
927    if (OldD->getLocation().isValid())
928      Diag(OldD->getLocation(), diag::note_previous_definition);
929
930    return New->setInvalidDecl();
931  }
932
933  // If the old declaration is invalid, just give up here.
934  if (Old->isInvalidDecl())
935    return New->setInvalidDecl();
936
937  // Determine the "old" type we'll use for checking and diagnostics.
938  QualType OldType;
939  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
940    OldType = OldTypedef->getUnderlyingType();
941  else
942    OldType = Context.getTypeDeclType(Old);
943
944  // If the typedef types are not identical, reject them in all languages and
945  // with any extensions enabled.
946
947  if (OldType != New->getUnderlyingType() &&
948      Context.getCanonicalType(OldType) !=
949      Context.getCanonicalType(New->getUnderlyingType())) {
950    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
951      << New->getUnderlyingType() << OldType;
952    if (Old->getLocation().isValid())
953      Diag(Old->getLocation(), diag::note_previous_definition);
954    return New->setInvalidDecl();
955  }
956
957  // The types match.  Link up the redeclaration chain if the old
958  // declaration was a typedef.
959  // FIXME: this is a potential source of wierdness if the type
960  // spellings don't match exactly.
961  if (isa<TypedefDecl>(Old))
962    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
963
964  if (getLangOptions().Microsoft)
965    return;
966
967  if (getLangOptions().CPlusPlus) {
968    // C++ [dcl.typedef]p2:
969    //   In a given non-class scope, a typedef specifier can be used to
970    //   redefine the name of any type declared in that scope to refer
971    //   to the type to which it already refers.
972    if (!isa<CXXRecordDecl>(CurContext))
973      return;
974
975    // C++0x [dcl.typedef]p4:
976    //   In a given class scope, a typedef specifier can be used to redefine
977    //   any class-name declared in that scope that is not also a typedef-name
978    //   to refer to the type to which it already refers.
979    //
980    // This wording came in via DR424, which was a correction to the
981    // wording in DR56, which accidentally banned code like:
982    //
983    //   struct S {
984    //     typedef struct A { } A;
985    //   };
986    //
987    // in the C++03 standard. We implement the C++0x semantics, which
988    // allow the above but disallow
989    //
990    //   struct S {
991    //     typedef int I;
992    //     typedef int I;
993    //   };
994    //
995    // since that was the intent of DR56.
996    if (!isa<TypedefDecl >(Old))
997      return;
998
999    Diag(New->getLocation(), diag::err_redefinition)
1000      << New->getDeclName();
1001    Diag(Old->getLocation(), diag::note_previous_definition);
1002    return New->setInvalidDecl();
1003  }
1004
1005  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1006  // is normally mapped to an error, but can be controlled with
1007  // -Wtypedef-redefinition.  If either the original or the redefinition is
1008  // in a system header, don't emit this for compatibility with GCC.
1009  if (getDiagnostics().getSuppressSystemWarnings() &&
1010      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1011       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1012    return;
1013
1014  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1015    << New->getDeclName();
1016  Diag(Old->getLocation(), diag::note_previous_definition);
1017  return;
1018}
1019
1020/// DeclhasAttr - returns true if decl Declaration already has the target
1021/// attribute.
1022static bool
1023DeclHasAttr(const Decl *D, const Attr *A) {
1024  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1025  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1026    if ((*i)->getKind() == A->getKind()) {
1027      // FIXME: Don't hardcode this check
1028      if (OA && isa<OwnershipAttr>(*i))
1029        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1030      return true;
1031    }
1032
1033  return false;
1034}
1035
1036/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1037static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1038  if (!Old->hasAttrs())
1039    return;
1040  // Ensure that any moving of objects within the allocated map is done before
1041  // we process them.
1042  if (!New->hasAttrs())
1043    New->setAttrs(AttrVec());
1044  for (specific_attr_iterator<InheritableAttr>
1045       i = Old->specific_attr_begin<InheritableAttr>(),
1046       e = Old->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1047    if (!DeclHasAttr(New, *i)) {
1048      InheritableAttr *NewAttr = cast<InheritableAttr>((*i)->clone(C));
1049      NewAttr->setInherited(true);
1050      New->addAttr(NewAttr);
1051    }
1052  }
1053}
1054
1055namespace {
1056
1057/// Used in MergeFunctionDecl to keep track of function parameters in
1058/// C.
1059struct GNUCompatibleParamWarning {
1060  ParmVarDecl *OldParm;
1061  ParmVarDecl *NewParm;
1062  QualType PromotedType;
1063};
1064
1065}
1066
1067/// getSpecialMember - get the special member enum for a method.
1068Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1069  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1070    if (Ctor->isCopyConstructor())
1071      return Sema::CXXCopyConstructor;
1072
1073    return Sema::CXXConstructor;
1074  }
1075
1076  if (isa<CXXDestructorDecl>(MD))
1077    return Sema::CXXDestructor;
1078
1079  assert(MD->isCopyAssignmentOperator() &&
1080         "Must have copy assignment operator");
1081  return Sema::CXXCopyAssignment;
1082}
1083
1084/// canRedefineFunction - checks if a function can be redefined. Currently,
1085/// only extern inline functions can be redefined, and even then only in
1086/// GNU89 mode.
1087static bool canRedefineFunction(const FunctionDecl *FD,
1088                                const LangOptions& LangOpts) {
1089  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1090          FD->isInlineSpecified() &&
1091          FD->getStorageClass() == SC_Extern);
1092}
1093
1094/// MergeFunctionDecl - We just parsed a function 'New' from
1095/// declarator D which has the same name and scope as a previous
1096/// declaration 'Old'.  Figure out how to resolve this situation,
1097/// merging decls or emitting diagnostics as appropriate.
1098///
1099/// In C++, New and Old must be declarations that are not
1100/// overloaded. Use IsOverload to determine whether New and Old are
1101/// overloaded, and to select the Old declaration that New should be
1102/// merged with.
1103///
1104/// Returns true if there was an error, false otherwise.
1105bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1106  // Verify the old decl was also a function.
1107  FunctionDecl *Old = 0;
1108  if (FunctionTemplateDecl *OldFunctionTemplate
1109        = dyn_cast<FunctionTemplateDecl>(OldD))
1110    Old = OldFunctionTemplate->getTemplatedDecl();
1111  else
1112    Old = dyn_cast<FunctionDecl>(OldD);
1113  if (!Old) {
1114    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1115      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1116      Diag(Shadow->getTargetDecl()->getLocation(),
1117           diag::note_using_decl_target);
1118      Diag(Shadow->getUsingDecl()->getLocation(),
1119           diag::note_using_decl) << 0;
1120      return true;
1121    }
1122
1123    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1124      << New->getDeclName();
1125    Diag(OldD->getLocation(), diag::note_previous_definition);
1126    return true;
1127  }
1128
1129  // Determine whether the previous declaration was a definition,
1130  // implicit declaration, or a declaration.
1131  diag::kind PrevDiag;
1132  if (Old->isThisDeclarationADefinition())
1133    PrevDiag = diag::note_previous_definition;
1134  else if (Old->isImplicit())
1135    PrevDiag = diag::note_previous_implicit_declaration;
1136  else
1137    PrevDiag = diag::note_previous_declaration;
1138
1139  QualType OldQType = Context.getCanonicalType(Old->getType());
1140  QualType NewQType = Context.getCanonicalType(New->getType());
1141
1142  // Don't complain about this if we're in GNU89 mode and the old function
1143  // is an extern inline function.
1144  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1145      New->getStorageClass() == SC_Static &&
1146      Old->getStorageClass() != SC_Static &&
1147      !canRedefineFunction(Old, getLangOptions())) {
1148    Diag(New->getLocation(), diag::err_static_non_static)
1149      << New;
1150    Diag(Old->getLocation(), PrevDiag);
1151    return true;
1152  }
1153
1154  // If a function is first declared with a calling convention, but is
1155  // later declared or defined without one, the second decl assumes the
1156  // calling convention of the first.
1157  //
1158  // For the new decl, we have to look at the NON-canonical type to tell the
1159  // difference between a function that really doesn't have a calling
1160  // convention and one that is declared cdecl. That's because in
1161  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1162  // because it is the default calling convention.
1163  //
1164  // Note also that we DO NOT return at this point, because we still have
1165  // other tests to run.
1166  const FunctionType *OldType = cast<FunctionType>(OldQType);
1167  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1168  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1169  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1170  bool RequiresAdjustment = false;
1171  if (OldTypeInfo.getCC() != CC_Default &&
1172      NewTypeInfo.getCC() == CC_Default) {
1173    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1174    RequiresAdjustment = true;
1175  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1176                                     NewTypeInfo.getCC())) {
1177    // Calling conventions really aren't compatible, so complain.
1178    Diag(New->getLocation(), diag::err_cconv_change)
1179      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1180      << (OldTypeInfo.getCC() == CC_Default)
1181      << (OldTypeInfo.getCC() == CC_Default ? "" :
1182          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1183    Diag(Old->getLocation(), diag::note_previous_declaration);
1184    return true;
1185  }
1186
1187  // FIXME: diagnose the other way around?
1188  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1189    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1190    RequiresAdjustment = true;
1191  }
1192
1193  // Merge regparm attribute.
1194  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1195    if (NewTypeInfo.getRegParm()) {
1196      Diag(New->getLocation(), diag::err_regparm_mismatch)
1197        << NewType->getRegParmType()
1198        << OldType->getRegParmType();
1199      Diag(Old->getLocation(), diag::note_previous_declaration);
1200      return true;
1201    }
1202
1203    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1204    RequiresAdjustment = true;
1205  }
1206
1207  if (RequiresAdjustment) {
1208    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1209    New->setType(QualType(NewType, 0));
1210    NewQType = Context.getCanonicalType(New->getType());
1211  }
1212
1213  if (getLangOptions().CPlusPlus) {
1214    // (C++98 13.1p2):
1215    //   Certain function declarations cannot be overloaded:
1216    //     -- Function declarations that differ only in the return type
1217    //        cannot be overloaded.
1218    QualType OldReturnType = OldType->getResultType();
1219    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1220    QualType ResQT;
1221    if (OldReturnType != NewReturnType) {
1222      if (NewReturnType->isObjCObjectPointerType()
1223          && OldReturnType->isObjCObjectPointerType())
1224        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1225      if (ResQT.isNull()) {
1226        if (New->isCXXClassMember() && New->isOutOfLine())
1227          Diag(New->getLocation(),
1228               diag::err_member_def_does_not_match_ret_type) << New;
1229        else
1230          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1231        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1232        return true;
1233      }
1234      else
1235        NewQType = ResQT;
1236    }
1237
1238    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1239    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1240    if (OldMethod && NewMethod) {
1241      // Preserve triviality.
1242      NewMethod->setTrivial(OldMethod->isTrivial());
1243
1244      bool isFriend = NewMethod->getFriendObjectKind();
1245
1246      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1247        //    -- Member function declarations with the same name and the
1248        //       same parameter types cannot be overloaded if any of them
1249        //       is a static member function declaration.
1250        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1251          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1252          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1253          return true;
1254        }
1255
1256        // C++ [class.mem]p1:
1257        //   [...] A member shall not be declared twice in the
1258        //   member-specification, except that a nested class or member
1259        //   class template can be declared and then later defined.
1260        unsigned NewDiag;
1261        if (isa<CXXConstructorDecl>(OldMethod))
1262          NewDiag = diag::err_constructor_redeclared;
1263        else if (isa<CXXDestructorDecl>(NewMethod))
1264          NewDiag = diag::err_destructor_redeclared;
1265        else if (isa<CXXConversionDecl>(NewMethod))
1266          NewDiag = diag::err_conv_function_redeclared;
1267        else
1268          NewDiag = diag::err_member_redeclared;
1269
1270        Diag(New->getLocation(), NewDiag);
1271        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1272
1273      // Complain if this is an explicit declaration of a special
1274      // member that was initially declared implicitly.
1275      //
1276      // As an exception, it's okay to befriend such methods in order
1277      // to permit the implicit constructor/destructor/operator calls.
1278      } else if (OldMethod->isImplicit()) {
1279        if (isFriend) {
1280          NewMethod->setImplicit();
1281        } else {
1282          Diag(NewMethod->getLocation(),
1283               diag::err_definition_of_implicitly_declared_member)
1284            << New << getSpecialMember(OldMethod);
1285          return true;
1286        }
1287      }
1288    }
1289
1290    // (C++98 8.3.5p3):
1291    //   All declarations for a function shall agree exactly in both the
1292    //   return type and the parameter-type-list.
1293    // We also want to respect all the extended bits except noreturn.
1294
1295    // noreturn should now match unless the old type info didn't have it.
1296    QualType OldQTypeForComparison = OldQType;
1297    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1298      assert(OldQType == QualType(OldType, 0));
1299      const FunctionType *OldTypeForComparison
1300        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1301      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1302      assert(OldQTypeForComparison.isCanonical());
1303    }
1304
1305    if (OldQTypeForComparison == NewQType)
1306      return MergeCompatibleFunctionDecls(New, Old);
1307
1308    // Fall through for conflicting redeclarations and redefinitions.
1309  }
1310
1311  // C: Function types need to be compatible, not identical. This handles
1312  // duplicate function decls like "void f(int); void f(enum X);" properly.
1313  if (!getLangOptions().CPlusPlus &&
1314      Context.typesAreCompatible(OldQType, NewQType)) {
1315    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1316    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1317    const FunctionProtoType *OldProto = 0;
1318    if (isa<FunctionNoProtoType>(NewFuncType) &&
1319        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1320      // The old declaration provided a function prototype, but the
1321      // new declaration does not. Merge in the prototype.
1322      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1323      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1324                                                 OldProto->arg_type_end());
1325      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1326                                         ParamTypes.data(), ParamTypes.size(),
1327                                         OldProto->getExtProtoInfo());
1328      New->setType(NewQType);
1329      New->setHasInheritedPrototype();
1330
1331      // Synthesize a parameter for each argument type.
1332      llvm::SmallVector<ParmVarDecl*, 16> Params;
1333      for (FunctionProtoType::arg_type_iterator
1334             ParamType = OldProto->arg_type_begin(),
1335             ParamEnd = OldProto->arg_type_end();
1336           ParamType != ParamEnd; ++ParamType) {
1337        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1338                                                 SourceLocation(), 0,
1339                                                 *ParamType, /*TInfo=*/0,
1340                                                 SC_None, SC_None,
1341                                                 0);
1342        Param->setImplicit();
1343        Params.push_back(Param);
1344      }
1345
1346      New->setParams(Params.data(), Params.size());
1347    }
1348
1349    return MergeCompatibleFunctionDecls(New, Old);
1350  }
1351
1352  // GNU C permits a K&R definition to follow a prototype declaration
1353  // if the declared types of the parameters in the K&R definition
1354  // match the types in the prototype declaration, even when the
1355  // promoted types of the parameters from the K&R definition differ
1356  // from the types in the prototype. GCC then keeps the types from
1357  // the prototype.
1358  //
1359  // If a variadic prototype is followed by a non-variadic K&R definition,
1360  // the K&R definition becomes variadic.  This is sort of an edge case, but
1361  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1362  // C99 6.9.1p8.
1363  if (!getLangOptions().CPlusPlus &&
1364      Old->hasPrototype() && !New->hasPrototype() &&
1365      New->getType()->getAs<FunctionProtoType>() &&
1366      Old->getNumParams() == New->getNumParams()) {
1367    llvm::SmallVector<QualType, 16> ArgTypes;
1368    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1369    const FunctionProtoType *OldProto
1370      = Old->getType()->getAs<FunctionProtoType>();
1371    const FunctionProtoType *NewProto
1372      = New->getType()->getAs<FunctionProtoType>();
1373
1374    // Determine whether this is the GNU C extension.
1375    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1376                                               NewProto->getResultType());
1377    bool LooseCompatible = !MergedReturn.isNull();
1378    for (unsigned Idx = 0, End = Old->getNumParams();
1379         LooseCompatible && Idx != End; ++Idx) {
1380      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1381      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1382      if (Context.typesAreCompatible(OldParm->getType(),
1383                                     NewProto->getArgType(Idx))) {
1384        ArgTypes.push_back(NewParm->getType());
1385      } else if (Context.typesAreCompatible(OldParm->getType(),
1386                                            NewParm->getType(),
1387                                            /*CompareUnqualified=*/true)) {
1388        GNUCompatibleParamWarning Warn
1389          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1390        Warnings.push_back(Warn);
1391        ArgTypes.push_back(NewParm->getType());
1392      } else
1393        LooseCompatible = false;
1394    }
1395
1396    if (LooseCompatible) {
1397      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1398        Diag(Warnings[Warn].NewParm->getLocation(),
1399             diag::ext_param_promoted_not_compatible_with_prototype)
1400          << Warnings[Warn].PromotedType
1401          << Warnings[Warn].OldParm->getType();
1402        if (Warnings[Warn].OldParm->getLocation().isValid())
1403          Diag(Warnings[Warn].OldParm->getLocation(),
1404               diag::note_previous_declaration);
1405      }
1406
1407      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1408                                           ArgTypes.size(),
1409                                           OldProto->getExtProtoInfo()));
1410      return MergeCompatibleFunctionDecls(New, Old);
1411    }
1412
1413    // Fall through to diagnose conflicting types.
1414  }
1415
1416  // A function that has already been declared has been redeclared or defined
1417  // with a different type- show appropriate diagnostic
1418  if (unsigned BuiltinID = Old->getBuiltinID()) {
1419    // The user has declared a builtin function with an incompatible
1420    // signature.
1421    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1422      // The function the user is redeclaring is a library-defined
1423      // function like 'malloc' or 'printf'. Warn about the
1424      // redeclaration, then pretend that we don't know about this
1425      // library built-in.
1426      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1427      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1428        << Old << Old->getType();
1429      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1430      Old->setInvalidDecl();
1431      return false;
1432    }
1433
1434    PrevDiag = diag::note_previous_builtin_declaration;
1435  }
1436
1437  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1438  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1439  return true;
1440}
1441
1442/// \brief Completes the merge of two function declarations that are
1443/// known to be compatible.
1444///
1445/// This routine handles the merging of attributes and other
1446/// properties of function declarations form the old declaration to
1447/// the new declaration, once we know that New is in fact a
1448/// redeclaration of Old.
1449///
1450/// \returns false
1451bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1452  // Merge the attributes
1453  MergeDeclAttributes(New, Old, Context);
1454
1455  // Merge the storage class.
1456  if (Old->getStorageClass() != SC_Extern &&
1457      Old->getStorageClass() != SC_None)
1458    New->setStorageClass(Old->getStorageClass());
1459
1460  // Merge "pure" flag.
1461  if (Old->isPure())
1462    New->setPure();
1463
1464  // Merge the "deleted" flag.
1465  if (Old->isDeleted())
1466    New->setDeleted();
1467
1468  if (getLangOptions().CPlusPlus)
1469    return MergeCXXFunctionDecl(New, Old);
1470
1471  return false;
1472}
1473
1474/// MergeVarDecl - We parsed a variable 'New' which has the same name and scope
1475/// as a previous declaration 'Old'.  Figure out how to merge their types,
1476/// emitting diagnostics as appropriate.
1477///
1478/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1479/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1480/// check them before the initializer is attached.
1481///
1482void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1483  if (New->isInvalidDecl() || Old->isInvalidDecl())
1484    return;
1485
1486  QualType MergedT;
1487  if (getLangOptions().CPlusPlus) {
1488    AutoType *AT = New->getType()->getContainedAutoType();
1489    if (AT && !AT->isDeduced()) {
1490      // We don't know what the new type is until the initializer is attached.
1491      return;
1492    } else if (Context.hasSameType(New->getType(), Old->getType()))
1493      return;
1494    // C++ [basic.link]p10:
1495    //   [...] the types specified by all declarations referring to a given
1496    //   object or function shall be identical, except that declarations for an
1497    //   array object can specify array types that differ by the presence or
1498    //   absence of a major array bound (8.3.4).
1499    else if (Old->getType()->isIncompleteArrayType() &&
1500             New->getType()->isArrayType()) {
1501      CanQual<ArrayType> OldArray
1502        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1503      CanQual<ArrayType> NewArray
1504        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1505      if (OldArray->getElementType() == NewArray->getElementType())
1506        MergedT = New->getType();
1507    } else if (Old->getType()->isArrayType() &&
1508             New->getType()->isIncompleteArrayType()) {
1509      CanQual<ArrayType> OldArray
1510        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1511      CanQual<ArrayType> NewArray
1512        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1513      if (OldArray->getElementType() == NewArray->getElementType())
1514        MergedT = Old->getType();
1515    } else if (New->getType()->isObjCObjectPointerType()
1516               && Old->getType()->isObjCObjectPointerType()) {
1517        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1518                                                        Old->getType());
1519    }
1520  } else {
1521    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1522  }
1523  if (MergedT.isNull()) {
1524    Diag(New->getLocation(), diag::err_redefinition_different_type)
1525      << New->getDeclName();
1526    Diag(Old->getLocation(), diag::note_previous_definition);
1527    return New->setInvalidDecl();
1528  }
1529  New->setType(MergedT);
1530}
1531
1532/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1533/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1534/// situation, merging decls or emitting diagnostics as appropriate.
1535///
1536/// Tentative definition rules (C99 6.9.2p2) are checked by
1537/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1538/// definitions here, since the initializer hasn't been attached.
1539///
1540void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1541  // If the new decl is already invalid, don't do any other checking.
1542  if (New->isInvalidDecl())
1543    return;
1544
1545  // Verify the old decl was also a variable.
1546  VarDecl *Old = 0;
1547  if (!Previous.isSingleResult() ||
1548      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1549    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1550      << New->getDeclName();
1551    Diag(Previous.getRepresentativeDecl()->getLocation(),
1552         diag::note_previous_definition);
1553    return New->setInvalidDecl();
1554  }
1555
1556  // C++ [class.mem]p1:
1557  //   A member shall not be declared twice in the member-specification [...]
1558  //
1559  // Here, we need only consider static data members.
1560  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1561    Diag(New->getLocation(), diag::err_duplicate_member)
1562      << New->getIdentifier();
1563    Diag(Old->getLocation(), diag::note_previous_declaration);
1564    New->setInvalidDecl();
1565  }
1566
1567  MergeDeclAttributes(New, Old, Context);
1568
1569  // Merge the types.
1570  MergeVarDeclTypes(New, Old);
1571  if (New->isInvalidDecl())
1572    return;
1573
1574  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1575  if (New->getStorageClass() == SC_Static &&
1576      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1577    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1578    Diag(Old->getLocation(), diag::note_previous_definition);
1579    return New->setInvalidDecl();
1580  }
1581  // C99 6.2.2p4:
1582  //   For an identifier declared with the storage-class specifier
1583  //   extern in a scope in which a prior declaration of that
1584  //   identifier is visible,23) if the prior declaration specifies
1585  //   internal or external linkage, the linkage of the identifier at
1586  //   the later declaration is the same as the linkage specified at
1587  //   the prior declaration. If no prior declaration is visible, or
1588  //   if the prior declaration specifies no linkage, then the
1589  //   identifier has external linkage.
1590  if (New->hasExternalStorage() && Old->hasLinkage())
1591    /* Okay */;
1592  else if (New->getStorageClass() != SC_Static &&
1593           Old->getStorageClass() == SC_Static) {
1594    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1595    Diag(Old->getLocation(), diag::note_previous_definition);
1596    return New->setInvalidDecl();
1597  }
1598
1599  // Check if extern is followed by non-extern and vice-versa.
1600  if (New->hasExternalStorage() &&
1601      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1602    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1603    Diag(Old->getLocation(), diag::note_previous_definition);
1604    return New->setInvalidDecl();
1605  }
1606  if (Old->hasExternalStorage() &&
1607      !New->hasLinkage() && New->isLocalVarDecl()) {
1608    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1609    Diag(Old->getLocation(), diag::note_previous_definition);
1610    return New->setInvalidDecl();
1611  }
1612
1613  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1614
1615  // FIXME: The test for external storage here seems wrong? We still
1616  // need to check for mismatches.
1617  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1618      // Don't complain about out-of-line definitions of static members.
1619      !(Old->getLexicalDeclContext()->isRecord() &&
1620        !New->getLexicalDeclContext()->isRecord())) {
1621    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1622    Diag(Old->getLocation(), diag::note_previous_definition);
1623    return New->setInvalidDecl();
1624  }
1625
1626  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1627    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1628    Diag(Old->getLocation(), diag::note_previous_definition);
1629  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1630    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1631    Diag(Old->getLocation(), diag::note_previous_definition);
1632  }
1633
1634  // C++ doesn't have tentative definitions, so go right ahead and check here.
1635  const VarDecl *Def;
1636  if (getLangOptions().CPlusPlus &&
1637      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1638      (Def = Old->getDefinition())) {
1639    Diag(New->getLocation(), diag::err_redefinition)
1640      << New->getDeclName();
1641    Diag(Def->getLocation(), diag::note_previous_definition);
1642    New->setInvalidDecl();
1643    return;
1644  }
1645  // c99 6.2.2 P4.
1646  // For an identifier declared with the storage-class specifier extern in a
1647  // scope in which a prior declaration of that identifier is visible, if
1648  // the prior declaration specifies internal or external linkage, the linkage
1649  // of the identifier at the later declaration is the same as the linkage
1650  // specified at the prior declaration.
1651  // FIXME. revisit this code.
1652  if (New->hasExternalStorage() &&
1653      Old->getLinkage() == InternalLinkage &&
1654      New->getDeclContext() == Old->getDeclContext())
1655    New->setStorageClass(Old->getStorageClass());
1656
1657  // Keep a chain of previous declarations.
1658  New->setPreviousDeclaration(Old);
1659
1660  // Inherit access appropriately.
1661  New->setAccess(Old->getAccess());
1662}
1663
1664/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1665/// no declarator (e.g. "struct foo;") is parsed.
1666Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1667                                            DeclSpec &DS) {
1668  // FIXME: Error on inline/virtual/explicit
1669  // FIXME: Warn on useless __thread
1670  // FIXME: Warn on useless const/volatile
1671  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1672  // FIXME: Warn on useless attributes
1673  Decl *TagD = 0;
1674  TagDecl *Tag = 0;
1675  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1676      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1677      DS.getTypeSpecType() == DeclSpec::TST_union ||
1678      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1679    TagD = DS.getRepAsDecl();
1680
1681    if (!TagD) // We probably had an error
1682      return 0;
1683
1684    // Note that the above type specs guarantee that the
1685    // type rep is a Decl, whereas in many of the others
1686    // it's a Type.
1687    Tag = dyn_cast<TagDecl>(TagD);
1688  }
1689
1690  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1691    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1692    // or incomplete types shall not be restrict-qualified."
1693    if (TypeQuals & DeclSpec::TQ_restrict)
1694      Diag(DS.getRestrictSpecLoc(),
1695           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1696           << DS.getSourceRange();
1697  }
1698
1699  if (DS.isFriendSpecified()) {
1700    // If we're dealing with a decl but not a TagDecl, assume that
1701    // whatever routines created it handled the friendship aspect.
1702    if (TagD && !Tag)
1703      return 0;
1704    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1705  }
1706
1707  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1708    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1709
1710    if (!Record->getDeclName() && Record->isDefinition() &&
1711        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1712      if (getLangOptions().CPlusPlus ||
1713          Record->getDeclContext()->isRecord())
1714        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1715
1716      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1717        << DS.getSourceRange();
1718    }
1719  }
1720
1721  // Check for Microsoft C extension: anonymous struct.
1722  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1723      CurContext->isRecord() &&
1724      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1725    // Handle 2 kinds of anonymous struct:
1726    //   struct STRUCT;
1727    // and
1728    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1729    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1730    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1731        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1732         DS.getRepAsType().get()->isStructureType())) {
1733      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1734        << DS.getSourceRange();
1735      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1736    }
1737  }
1738
1739  if (getLangOptions().CPlusPlus &&
1740      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1741    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1742      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1743          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1744        Diag(Enum->getLocation(), diag::ext_no_declarators)
1745          << DS.getSourceRange();
1746
1747  if (!DS.isMissingDeclaratorOk() &&
1748      DS.getTypeSpecType() != DeclSpec::TST_error) {
1749    // Warn about typedefs of enums without names, since this is an
1750    // extension in both Microsoft and GNU.
1751    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1752        Tag && isa<EnumDecl>(Tag)) {
1753      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1754        << DS.getSourceRange();
1755      return Tag;
1756    }
1757
1758    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1759      << DS.getSourceRange();
1760  }
1761
1762  return TagD;
1763}
1764
1765/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1766/// builds a statement for it and returns it so it is evaluated.
1767StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1768  StmtResult R;
1769  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1770    Expr *Exp = DS.getRepAsExpr();
1771    QualType Ty = Exp->getType();
1772    if (Ty->isPointerType()) {
1773      do
1774        Ty = Ty->getAs<PointerType>()->getPointeeType();
1775      while (Ty->isPointerType());
1776    }
1777    if (Ty->isVariableArrayType()) {
1778      R = ActOnExprStmt(MakeFullExpr(Exp));
1779    }
1780  }
1781  return R;
1782}
1783
1784/// We are trying to inject an anonymous member into the given scope;
1785/// check if there's an existing declaration that can't be overloaded.
1786///
1787/// \return true if this is a forbidden redeclaration
1788static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1789                                         Scope *S,
1790                                         DeclContext *Owner,
1791                                         DeclarationName Name,
1792                                         SourceLocation NameLoc,
1793                                         unsigned diagnostic) {
1794  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1795                 Sema::ForRedeclaration);
1796  if (!SemaRef.LookupName(R, S)) return false;
1797
1798  if (R.getAsSingle<TagDecl>())
1799    return false;
1800
1801  // Pick a representative declaration.
1802  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1803  assert(PrevDecl && "Expected a non-null Decl");
1804
1805  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1806    return false;
1807
1808  SemaRef.Diag(NameLoc, diagnostic) << Name;
1809  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1810
1811  return true;
1812}
1813
1814/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1815/// anonymous struct or union AnonRecord into the owning context Owner
1816/// and scope S. This routine will be invoked just after we realize
1817/// that an unnamed union or struct is actually an anonymous union or
1818/// struct, e.g.,
1819///
1820/// @code
1821/// union {
1822///   int i;
1823///   float f;
1824/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1825///    // f into the surrounding scope.x
1826/// @endcode
1827///
1828/// This routine is recursive, injecting the names of nested anonymous
1829/// structs/unions into the owning context and scope as well.
1830static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1831                                                DeclContext *Owner,
1832                                                RecordDecl *AnonRecord,
1833                                                AccessSpecifier AS,
1834                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1835                                                      bool MSAnonStruct) {
1836  unsigned diagKind
1837    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1838                            : diag::err_anonymous_struct_member_redecl;
1839
1840  bool Invalid = false;
1841
1842  // Look every FieldDecl and IndirectFieldDecl with a name.
1843  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1844                               DEnd = AnonRecord->decls_end();
1845       D != DEnd; ++D) {
1846    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1847        cast<NamedDecl>(*D)->getDeclName()) {
1848      ValueDecl *VD = cast<ValueDecl>(*D);
1849      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1850                                       VD->getLocation(), diagKind)) {
1851        // C++ [class.union]p2:
1852        //   The names of the members of an anonymous union shall be
1853        //   distinct from the names of any other entity in the
1854        //   scope in which the anonymous union is declared.
1855        Invalid = true;
1856      } else {
1857        // C++ [class.union]p2:
1858        //   For the purpose of name lookup, after the anonymous union
1859        //   definition, the members of the anonymous union are
1860        //   considered to have been defined in the scope in which the
1861        //   anonymous union is declared.
1862        unsigned OldChainingSize = Chaining.size();
1863        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1864          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1865               PE = IF->chain_end(); PI != PE; ++PI)
1866            Chaining.push_back(*PI);
1867        else
1868          Chaining.push_back(VD);
1869
1870        assert(Chaining.size() >= 2);
1871        NamedDecl **NamedChain =
1872          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1873        for (unsigned i = 0; i < Chaining.size(); i++)
1874          NamedChain[i] = Chaining[i];
1875
1876        IndirectFieldDecl* IndirectField =
1877          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1878                                    VD->getIdentifier(), VD->getType(),
1879                                    NamedChain, Chaining.size());
1880
1881        IndirectField->setAccess(AS);
1882        IndirectField->setImplicit();
1883        SemaRef.PushOnScopeChains(IndirectField, S);
1884
1885        // That includes picking up the appropriate access specifier.
1886        if (AS != AS_none) IndirectField->setAccess(AS);
1887
1888        Chaining.resize(OldChainingSize);
1889      }
1890    }
1891  }
1892
1893  return Invalid;
1894}
1895
1896/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1897/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1898/// illegal input values are mapped to SC_None.
1899static StorageClass
1900StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1901  switch (StorageClassSpec) {
1902  case DeclSpec::SCS_unspecified:    return SC_None;
1903  case DeclSpec::SCS_extern:         return SC_Extern;
1904  case DeclSpec::SCS_static:         return SC_Static;
1905  case DeclSpec::SCS_auto:           return SC_Auto;
1906  case DeclSpec::SCS_register:       return SC_Register;
1907  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1908    // Illegal SCSs map to None: error reporting is up to the caller.
1909  case DeclSpec::SCS_mutable:        // Fall through.
1910  case DeclSpec::SCS_typedef:        return SC_None;
1911  }
1912  llvm_unreachable("unknown storage class specifier");
1913}
1914
1915/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1916/// a StorageClass. Any error reporting is up to the caller:
1917/// illegal input values are mapped to SC_None.
1918static StorageClass
1919StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1920  switch (StorageClassSpec) {
1921  case DeclSpec::SCS_unspecified:    return SC_None;
1922  case DeclSpec::SCS_extern:         return SC_Extern;
1923  case DeclSpec::SCS_static:         return SC_Static;
1924  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1925    // Illegal SCSs map to None: error reporting is up to the caller.
1926  case DeclSpec::SCS_auto:           // Fall through.
1927  case DeclSpec::SCS_mutable:        // Fall through.
1928  case DeclSpec::SCS_register:       // Fall through.
1929  case DeclSpec::SCS_typedef:        return SC_None;
1930  }
1931  llvm_unreachable("unknown storage class specifier");
1932}
1933
1934/// BuildAnonymousStructOrUnion - Handle the declaration of an
1935/// anonymous structure or union. Anonymous unions are a C++ feature
1936/// (C++ [class.union]) and a GNU C extension; anonymous structures
1937/// are a GNU C and GNU C++ extension.
1938Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1939                                             AccessSpecifier AS,
1940                                             RecordDecl *Record) {
1941  DeclContext *Owner = Record->getDeclContext();
1942
1943  // Diagnose whether this anonymous struct/union is an extension.
1944  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1945    Diag(Record->getLocation(), diag::ext_anonymous_union);
1946  else if (!Record->isUnion())
1947    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1948
1949  // C and C++ require different kinds of checks for anonymous
1950  // structs/unions.
1951  bool Invalid = false;
1952  if (getLangOptions().CPlusPlus) {
1953    const char* PrevSpec = 0;
1954    unsigned DiagID;
1955    // C++ [class.union]p3:
1956    //   Anonymous unions declared in a named namespace or in the
1957    //   global namespace shall be declared static.
1958    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1959        (isa<TranslationUnitDecl>(Owner) ||
1960         (isa<NamespaceDecl>(Owner) &&
1961          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1962      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1963      Invalid = true;
1964
1965      // Recover by adding 'static'.
1966      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1967                             PrevSpec, DiagID, getLangOptions());
1968    }
1969    // C++ [class.union]p3:
1970    //   A storage class is not allowed in a declaration of an
1971    //   anonymous union in a class scope.
1972    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1973             isa<RecordDecl>(Owner)) {
1974      Diag(DS.getStorageClassSpecLoc(),
1975           diag::err_anonymous_union_with_storage_spec);
1976      Invalid = true;
1977
1978      // Recover by removing the storage specifier.
1979      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1980                             PrevSpec, DiagID, getLangOptions());
1981    }
1982
1983    // C++ [class.union]p2:
1984    //   The member-specification of an anonymous union shall only
1985    //   define non-static data members. [Note: nested types and
1986    //   functions cannot be declared within an anonymous union. ]
1987    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1988                                 MemEnd = Record->decls_end();
1989         Mem != MemEnd; ++Mem) {
1990      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1991        // C++ [class.union]p3:
1992        //   An anonymous union shall not have private or protected
1993        //   members (clause 11).
1994        assert(FD->getAccess() != AS_none);
1995        if (FD->getAccess() != AS_public) {
1996          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1997            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1998          Invalid = true;
1999        }
2000
2001        if (CheckNontrivialField(FD))
2002          Invalid = true;
2003      } else if ((*Mem)->isImplicit()) {
2004        // Any implicit members are fine.
2005      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2006        // This is a type that showed up in an
2007        // elaborated-type-specifier inside the anonymous struct or
2008        // union, but which actually declares a type outside of the
2009        // anonymous struct or union. It's okay.
2010      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2011        if (!MemRecord->isAnonymousStructOrUnion() &&
2012            MemRecord->getDeclName()) {
2013          // Visual C++ allows type definition in anonymous struct or union.
2014          if (getLangOptions().Microsoft)
2015            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2016              << (int)Record->isUnion();
2017          else {
2018            // This is a nested type declaration.
2019            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2020              << (int)Record->isUnion();
2021            Invalid = true;
2022          }
2023        }
2024      } else if (isa<AccessSpecDecl>(*Mem)) {
2025        // Any access specifier is fine.
2026      } else {
2027        // We have something that isn't a non-static data
2028        // member. Complain about it.
2029        unsigned DK = diag::err_anonymous_record_bad_member;
2030        if (isa<TypeDecl>(*Mem))
2031          DK = diag::err_anonymous_record_with_type;
2032        else if (isa<FunctionDecl>(*Mem))
2033          DK = diag::err_anonymous_record_with_function;
2034        else if (isa<VarDecl>(*Mem))
2035          DK = diag::err_anonymous_record_with_static;
2036
2037        // Visual C++ allows type definition in anonymous struct or union.
2038        if (getLangOptions().Microsoft &&
2039            DK == diag::err_anonymous_record_with_type)
2040          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2041            << (int)Record->isUnion();
2042        else {
2043          Diag((*Mem)->getLocation(), DK)
2044              << (int)Record->isUnion();
2045          Invalid = true;
2046        }
2047      }
2048    }
2049  }
2050
2051  if (!Record->isUnion() && !Owner->isRecord()) {
2052    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2053      << (int)getLangOptions().CPlusPlus;
2054    Invalid = true;
2055  }
2056
2057  // Mock up a declarator.
2058  Declarator Dc(DS, Declarator::TypeNameContext);
2059  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2060  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2061
2062  // Create a declaration for this anonymous struct/union.
2063  NamedDecl *Anon = 0;
2064  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2065    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2066                             /*IdentifierInfo=*/0,
2067                             Context.getTypeDeclType(Record),
2068                             TInfo,
2069                             /*BitWidth=*/0, /*Mutable=*/false);
2070    Anon->setAccess(AS);
2071    if (getLangOptions().CPlusPlus)
2072      FieldCollector->Add(cast<FieldDecl>(Anon));
2073  } else {
2074    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2075    assert(SCSpec != DeclSpec::SCS_typedef &&
2076           "Parser allowed 'typedef' as storage class VarDecl.");
2077    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2078    if (SCSpec == DeclSpec::SCS_mutable) {
2079      // mutable can only appear on non-static class members, so it's always
2080      // an error here
2081      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2082      Invalid = true;
2083      SC = SC_None;
2084    }
2085    SCSpec = DS.getStorageClassSpecAsWritten();
2086    VarDecl::StorageClass SCAsWritten
2087      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2088
2089    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2090                           /*IdentifierInfo=*/0,
2091                           Context.getTypeDeclType(Record),
2092                           TInfo, SC, SCAsWritten);
2093  }
2094  Anon->setImplicit();
2095
2096  // Add the anonymous struct/union object to the current
2097  // context. We'll be referencing this object when we refer to one of
2098  // its members.
2099  Owner->addDecl(Anon);
2100
2101  // Inject the members of the anonymous struct/union into the owning
2102  // context and into the identifier resolver chain for name lookup
2103  // purposes.
2104  llvm::SmallVector<NamedDecl*, 2> Chain;
2105  Chain.push_back(Anon);
2106
2107  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2108                                          Chain, false))
2109    Invalid = true;
2110
2111  // Mark this as an anonymous struct/union type. Note that we do not
2112  // do this until after we have already checked and injected the
2113  // members of this anonymous struct/union type, because otherwise
2114  // the members could be injected twice: once by DeclContext when it
2115  // builds its lookup table, and once by
2116  // InjectAnonymousStructOrUnionMembers.
2117  Record->setAnonymousStructOrUnion(true);
2118
2119  if (Invalid)
2120    Anon->setInvalidDecl();
2121
2122  return Anon;
2123}
2124
2125/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2126/// Microsoft C anonymous structure.
2127/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2128/// Example:
2129///
2130/// struct A { int a; };
2131/// struct B { struct A; int b; };
2132///
2133/// void foo() {
2134///   B var;
2135///   var.a = 3;
2136/// }
2137///
2138Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2139                                           RecordDecl *Record) {
2140
2141  // If there is no Record, get the record via the typedef.
2142  if (!Record)
2143    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2144
2145  // Mock up a declarator.
2146  Declarator Dc(DS, Declarator::TypeNameContext);
2147  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2148  assert(TInfo && "couldn't build declarator info for anonymous struct");
2149
2150  // Create a declaration for this anonymous struct.
2151  NamedDecl* Anon = FieldDecl::Create(Context,
2152                             cast<RecordDecl>(CurContext),
2153                             DS.getSourceRange().getBegin(),
2154                             /*IdentifierInfo=*/0,
2155                             Context.getTypeDeclType(Record),
2156                             TInfo,
2157                             /*BitWidth=*/0, /*Mutable=*/false);
2158  Anon->setImplicit();
2159
2160  // Add the anonymous struct object to the current context.
2161  CurContext->addDecl(Anon);
2162
2163  // Inject the members of the anonymous struct into the current
2164  // context and into the identifier resolver chain for name lookup
2165  // purposes.
2166  llvm::SmallVector<NamedDecl*, 2> Chain;
2167  Chain.push_back(Anon);
2168
2169  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2170                                          Record->getDefinition(),
2171                                          AS_none, Chain, true))
2172    Anon->setInvalidDecl();
2173
2174  return Anon;
2175}
2176
2177/// GetNameForDeclarator - Determine the full declaration name for the
2178/// given Declarator.
2179DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2180  return GetNameFromUnqualifiedId(D.getName());
2181}
2182
2183/// \brief Retrieves the declaration name from a parsed unqualified-id.
2184DeclarationNameInfo
2185Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2186  DeclarationNameInfo NameInfo;
2187  NameInfo.setLoc(Name.StartLocation);
2188
2189  switch (Name.getKind()) {
2190
2191  case UnqualifiedId::IK_Identifier:
2192    NameInfo.setName(Name.Identifier);
2193    NameInfo.setLoc(Name.StartLocation);
2194    return NameInfo;
2195
2196  case UnqualifiedId::IK_OperatorFunctionId:
2197    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2198                                           Name.OperatorFunctionId.Operator));
2199    NameInfo.setLoc(Name.StartLocation);
2200    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2201      = Name.OperatorFunctionId.SymbolLocations[0];
2202    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2203      = Name.EndLocation.getRawEncoding();
2204    return NameInfo;
2205
2206  case UnqualifiedId::IK_LiteralOperatorId:
2207    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2208                                                           Name.Identifier));
2209    NameInfo.setLoc(Name.StartLocation);
2210    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2211    return NameInfo;
2212
2213  case UnqualifiedId::IK_ConversionFunctionId: {
2214    TypeSourceInfo *TInfo;
2215    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2216    if (Ty.isNull())
2217      return DeclarationNameInfo();
2218    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2219                                               Context.getCanonicalType(Ty)));
2220    NameInfo.setLoc(Name.StartLocation);
2221    NameInfo.setNamedTypeInfo(TInfo);
2222    return NameInfo;
2223  }
2224
2225  case UnqualifiedId::IK_ConstructorName: {
2226    TypeSourceInfo *TInfo;
2227    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2228    if (Ty.isNull())
2229      return DeclarationNameInfo();
2230    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2231                                              Context.getCanonicalType(Ty)));
2232    NameInfo.setLoc(Name.StartLocation);
2233    NameInfo.setNamedTypeInfo(TInfo);
2234    return NameInfo;
2235  }
2236
2237  case UnqualifiedId::IK_ConstructorTemplateId: {
2238    // In well-formed code, we can only have a constructor
2239    // template-id that refers to the current context, so go there
2240    // to find the actual type being constructed.
2241    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2242    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2243      return DeclarationNameInfo();
2244
2245    // Determine the type of the class being constructed.
2246    QualType CurClassType = Context.getTypeDeclType(CurClass);
2247
2248    // FIXME: Check two things: that the template-id names the same type as
2249    // CurClassType, and that the template-id does not occur when the name
2250    // was qualified.
2251
2252    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2253                                    Context.getCanonicalType(CurClassType)));
2254    NameInfo.setLoc(Name.StartLocation);
2255    // FIXME: should we retrieve TypeSourceInfo?
2256    NameInfo.setNamedTypeInfo(0);
2257    return NameInfo;
2258  }
2259
2260  case UnqualifiedId::IK_DestructorName: {
2261    TypeSourceInfo *TInfo;
2262    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2263    if (Ty.isNull())
2264      return DeclarationNameInfo();
2265    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2266                                              Context.getCanonicalType(Ty)));
2267    NameInfo.setLoc(Name.StartLocation);
2268    NameInfo.setNamedTypeInfo(TInfo);
2269    return NameInfo;
2270  }
2271
2272  case UnqualifiedId::IK_TemplateId: {
2273    TemplateName TName = Name.TemplateId->Template.get();
2274    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2275    return Context.getNameForTemplate(TName, TNameLoc);
2276  }
2277
2278  } // switch (Name.getKind())
2279
2280  assert(false && "Unknown name kind");
2281  return DeclarationNameInfo();
2282}
2283
2284/// isNearlyMatchingFunction - Determine whether the C++ functions
2285/// Declaration and Definition are "nearly" matching. This heuristic
2286/// is used to improve diagnostics in the case where an out-of-line
2287/// function definition doesn't match any declaration within
2288/// the class or namespace.
2289static bool isNearlyMatchingFunction(ASTContext &Context,
2290                                     FunctionDecl *Declaration,
2291                                     FunctionDecl *Definition) {
2292  if (Declaration->param_size() != Definition->param_size())
2293    return false;
2294  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2295    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2296    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2297
2298    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2299                                        DefParamTy.getNonReferenceType()))
2300      return false;
2301  }
2302
2303  return true;
2304}
2305
2306/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2307/// declarator needs to be rebuilt in the current instantiation.
2308/// Any bits of declarator which appear before the name are valid for
2309/// consideration here.  That's specifically the type in the decl spec
2310/// and the base type in any member-pointer chunks.
2311static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2312                                                    DeclarationName Name) {
2313  // The types we specifically need to rebuild are:
2314  //   - typenames, typeofs, and decltypes
2315  //   - types which will become injected class names
2316  // Of course, we also need to rebuild any type referencing such a
2317  // type.  It's safest to just say "dependent", but we call out a
2318  // few cases here.
2319
2320  DeclSpec &DS = D.getMutableDeclSpec();
2321  switch (DS.getTypeSpecType()) {
2322  case DeclSpec::TST_typename:
2323  case DeclSpec::TST_typeofType:
2324  case DeclSpec::TST_decltype: {
2325    // Grab the type from the parser.
2326    TypeSourceInfo *TSI = 0;
2327    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2328    if (T.isNull() || !T->isDependentType()) break;
2329
2330    // Make sure there's a type source info.  This isn't really much
2331    // of a waste; most dependent types should have type source info
2332    // attached already.
2333    if (!TSI)
2334      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2335
2336    // Rebuild the type in the current instantiation.
2337    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2338    if (!TSI) return true;
2339
2340    // Store the new type back in the decl spec.
2341    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2342    DS.UpdateTypeRep(LocType);
2343    break;
2344  }
2345
2346  case DeclSpec::TST_typeofExpr: {
2347    Expr *E = DS.getRepAsExpr();
2348    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2349    if (Result.isInvalid()) return true;
2350    DS.UpdateExprRep(Result.get());
2351    break;
2352  }
2353
2354  default:
2355    // Nothing to do for these decl specs.
2356    break;
2357  }
2358
2359  // It doesn't matter what order we do this in.
2360  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2361    DeclaratorChunk &Chunk = D.getTypeObject(I);
2362
2363    // The only type information in the declarator which can come
2364    // before the declaration name is the base type of a member
2365    // pointer.
2366    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2367      continue;
2368
2369    // Rebuild the scope specifier in-place.
2370    CXXScopeSpec &SS = Chunk.Mem.Scope();
2371    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2372      return true;
2373  }
2374
2375  return false;
2376}
2377
2378Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2379  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2380}
2381
2382Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2383                             MultiTemplateParamsArg TemplateParamLists,
2384                             bool IsFunctionDefinition) {
2385  // TODO: consider using NameInfo for diagnostic.
2386  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2387  DeclarationName Name = NameInfo.getName();
2388
2389  // All of these full declarators require an identifier.  If it doesn't have
2390  // one, the ParsedFreeStandingDeclSpec action should be used.
2391  if (!Name) {
2392    if (!D.isInvalidType())  // Reject this if we think it is valid.
2393      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2394           diag::err_declarator_need_ident)
2395        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2396    return 0;
2397  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2398    return 0;
2399
2400  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2401  // we find one that is.
2402  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2403         (S->getFlags() & Scope::TemplateParamScope) != 0)
2404    S = S->getParent();
2405
2406  DeclContext *DC = CurContext;
2407  if (D.getCXXScopeSpec().isInvalid())
2408    D.setInvalidType();
2409  else if (D.getCXXScopeSpec().isSet()) {
2410    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2411                                        UPPC_DeclarationQualifier))
2412      return 0;
2413
2414    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2415    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2416    if (!DC) {
2417      // If we could not compute the declaration context, it's because the
2418      // declaration context is dependent but does not refer to a class,
2419      // class template, or class template partial specialization. Complain
2420      // and return early, to avoid the coming semantic disaster.
2421      Diag(D.getIdentifierLoc(),
2422           diag::err_template_qualified_declarator_no_match)
2423        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2424        << D.getCXXScopeSpec().getRange();
2425      return 0;
2426    }
2427
2428    bool IsDependentContext = DC->isDependentContext();
2429
2430    if (!IsDependentContext &&
2431        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2432      return 0;
2433
2434    if (isa<CXXRecordDecl>(DC)) {
2435      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2436        Diag(D.getIdentifierLoc(),
2437             diag::err_member_def_undefined_record)
2438          << Name << DC << D.getCXXScopeSpec().getRange();
2439        D.setInvalidType();
2440      } else if (isa<CXXRecordDecl>(CurContext) &&
2441                 !D.getDeclSpec().isFriendSpecified()) {
2442        // The user provided a superfluous scope specifier inside a class
2443        // definition:
2444        //
2445        // class X {
2446        //   void X::f();
2447        // };
2448        if (CurContext->Equals(DC))
2449          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2450            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2451        else
2452          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2453            << Name << D.getCXXScopeSpec().getRange();
2454
2455        // Pretend that this qualifier was not here.
2456        D.getCXXScopeSpec().clear();
2457      }
2458    }
2459
2460    // Check whether we need to rebuild the type of the given
2461    // declaration in the current instantiation.
2462    if (EnteringContext && IsDependentContext &&
2463        TemplateParamLists.size() != 0) {
2464      ContextRAII SavedContext(*this, DC);
2465      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2466        D.setInvalidType();
2467    }
2468  }
2469
2470  // C++ [class.mem]p13:
2471  //   If T is the name of a class, then each of the following shall have a
2472  //   name different from T:
2473  //     - every static data member of class T;
2474  //     - every member function of class T
2475  //     - every member of class T that is itself a type;
2476  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2477    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2478      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2479        << Name;
2480
2481      // If this is a typedef, we'll end up spewing multiple diagnostics.
2482      // Just return early; it's safer.
2483      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2484        return 0;
2485    }
2486
2487  NamedDecl *New;
2488
2489  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2490  QualType R = TInfo->getType();
2491
2492  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2493                                      UPPC_DeclarationType))
2494    D.setInvalidType();
2495
2496  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2497                        ForRedeclaration);
2498
2499  // See if this is a redefinition of a variable in the same scope.
2500  if (!D.getCXXScopeSpec().isSet()) {
2501    bool IsLinkageLookup = false;
2502
2503    // If the declaration we're planning to build will be a function
2504    // or object with linkage, then look for another declaration with
2505    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2506    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2507      /* Do nothing*/;
2508    else if (R->isFunctionType()) {
2509      if (CurContext->isFunctionOrMethod() ||
2510          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2511        IsLinkageLookup = true;
2512    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2513      IsLinkageLookup = true;
2514    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2515             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2516      IsLinkageLookup = true;
2517
2518    if (IsLinkageLookup)
2519      Previous.clear(LookupRedeclarationWithLinkage);
2520
2521    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2522  } else { // Something like "int foo::x;"
2523    LookupQualifiedName(Previous, DC);
2524
2525    // Don't consider using declarations as previous declarations for
2526    // out-of-line members.
2527    RemoveUsingDecls(Previous);
2528
2529    // C++ 7.3.1.2p2:
2530    // Members (including explicit specializations of templates) of a named
2531    // namespace can also be defined outside that namespace by explicit
2532    // qualification of the name being defined, provided that the entity being
2533    // defined was already declared in the namespace and the definition appears
2534    // after the point of declaration in a namespace that encloses the
2535    // declarations namespace.
2536    //
2537    // Note that we only check the context at this point. We don't yet
2538    // have enough information to make sure that PrevDecl is actually
2539    // the declaration we want to match. For example, given:
2540    //
2541    //   class X {
2542    //     void f();
2543    //     void f(float);
2544    //   };
2545    //
2546    //   void X::f(int) { } // ill-formed
2547    //
2548    // In this case, PrevDecl will point to the overload set
2549    // containing the two f's declared in X, but neither of them
2550    // matches.
2551
2552    // First check whether we named the global scope.
2553    if (isa<TranslationUnitDecl>(DC)) {
2554      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2555        << Name << D.getCXXScopeSpec().getRange();
2556    } else {
2557      DeclContext *Cur = CurContext;
2558      while (isa<LinkageSpecDecl>(Cur))
2559        Cur = Cur->getParent();
2560      if (!Cur->Encloses(DC)) {
2561        // The qualifying scope doesn't enclose the original declaration.
2562        // Emit diagnostic based on current scope.
2563        SourceLocation L = D.getIdentifierLoc();
2564        SourceRange R = D.getCXXScopeSpec().getRange();
2565        if (isa<FunctionDecl>(Cur))
2566          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2567        else
2568          Diag(L, diag::err_invalid_declarator_scope)
2569            << Name << cast<NamedDecl>(DC) << R;
2570        D.setInvalidType();
2571      }
2572    }
2573  }
2574
2575  if (Previous.isSingleResult() &&
2576      Previous.getFoundDecl()->isTemplateParameter()) {
2577    // Maybe we will complain about the shadowed template parameter.
2578    if (!D.isInvalidType())
2579      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2580                                          Previous.getFoundDecl()))
2581        D.setInvalidType();
2582
2583    // Just pretend that we didn't see the previous declaration.
2584    Previous.clear();
2585  }
2586
2587  // In C++, the previous declaration we find might be a tag type
2588  // (class or enum). In this case, the new declaration will hide the
2589  // tag type. Note that this does does not apply if we're declaring a
2590  // typedef (C++ [dcl.typedef]p4).
2591  if (Previous.isSingleTagDecl() &&
2592      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2593    Previous.clear();
2594
2595  bool Redeclaration = false;
2596  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2597    if (TemplateParamLists.size()) {
2598      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2599      return 0;
2600    }
2601
2602    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2603  } else if (R->isFunctionType()) {
2604    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2605                                  move(TemplateParamLists),
2606                                  IsFunctionDefinition, Redeclaration);
2607  } else {
2608    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2609                                  move(TemplateParamLists),
2610                                  Redeclaration);
2611  }
2612
2613  if (New == 0)
2614    return 0;
2615
2616  // If this has an identifier and is not an invalid redeclaration or
2617  // function template specialization, add it to the scope stack.
2618  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2619    PushOnScopeChains(New, S);
2620
2621  return New;
2622}
2623
2624/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2625/// types into constant array types in certain situations which would otherwise
2626/// be errors (for GCC compatibility).
2627static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2628                                                    ASTContext &Context,
2629                                                    bool &SizeIsNegative,
2630                                                    llvm::APSInt &Oversized) {
2631  // This method tries to turn a variable array into a constant
2632  // array even when the size isn't an ICE.  This is necessary
2633  // for compatibility with code that depends on gcc's buggy
2634  // constant expression folding, like struct {char x[(int)(char*)2];}
2635  SizeIsNegative = false;
2636  Oversized = 0;
2637
2638  if (T->isDependentType())
2639    return QualType();
2640
2641  QualifierCollector Qs;
2642  const Type *Ty = Qs.strip(T);
2643
2644  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2645    QualType Pointee = PTy->getPointeeType();
2646    QualType FixedType =
2647        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2648                                            Oversized);
2649    if (FixedType.isNull()) return FixedType;
2650    FixedType = Context.getPointerType(FixedType);
2651    return Qs.apply(Context, FixedType);
2652  }
2653  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2654    QualType Inner = PTy->getInnerType();
2655    QualType FixedType =
2656        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2657                                            Oversized);
2658    if (FixedType.isNull()) return FixedType;
2659    FixedType = Context.getParenType(FixedType);
2660    return Qs.apply(Context, FixedType);
2661  }
2662
2663  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2664  if (!VLATy)
2665    return QualType();
2666  // FIXME: We should probably handle this case
2667  if (VLATy->getElementType()->isVariablyModifiedType())
2668    return QualType();
2669
2670  Expr::EvalResult EvalResult;
2671  if (!VLATy->getSizeExpr() ||
2672      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2673      !EvalResult.Val.isInt())
2674    return QualType();
2675
2676  // Check whether the array size is negative.
2677  llvm::APSInt &Res = EvalResult.Val.getInt();
2678  if (Res.isSigned() && Res.isNegative()) {
2679    SizeIsNegative = true;
2680    return QualType();
2681  }
2682
2683  // Check whether the array is too large to be addressed.
2684  unsigned ActiveSizeBits
2685    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2686                                              Res);
2687  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2688    Oversized = Res;
2689    return QualType();
2690  }
2691
2692  return Context.getConstantArrayType(VLATy->getElementType(),
2693                                      Res, ArrayType::Normal, 0);
2694}
2695
2696/// \brief Register the given locally-scoped external C declaration so
2697/// that it can be found later for redeclarations
2698void
2699Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2700                                       const LookupResult &Previous,
2701                                       Scope *S) {
2702  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2703         "Decl is not a locally-scoped decl!");
2704  // Note that we have a locally-scoped external with this name.
2705  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2706
2707  if (!Previous.isSingleResult())
2708    return;
2709
2710  NamedDecl *PrevDecl = Previous.getFoundDecl();
2711
2712  // If there was a previous declaration of this variable, it may be
2713  // in our identifier chain. Update the identifier chain with the new
2714  // declaration.
2715  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2716    // The previous declaration was found on the identifer resolver
2717    // chain, so remove it from its scope.
2718    while (S && !S->isDeclScope(PrevDecl))
2719      S = S->getParent();
2720
2721    if (S)
2722      S->RemoveDecl(PrevDecl);
2723  }
2724}
2725
2726/// \brief Diagnose function specifiers on a declaration of an identifier that
2727/// does not identify a function.
2728void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2729  // FIXME: We should probably indicate the identifier in question to avoid
2730  // confusion for constructs like "inline int a(), b;"
2731  if (D.getDeclSpec().isInlineSpecified())
2732    Diag(D.getDeclSpec().getInlineSpecLoc(),
2733         diag::err_inline_non_function);
2734
2735  if (D.getDeclSpec().isVirtualSpecified())
2736    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2737         diag::err_virtual_non_function);
2738
2739  if (D.getDeclSpec().isExplicitSpecified())
2740    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2741         diag::err_explicit_non_function);
2742}
2743
2744NamedDecl*
2745Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2746                             QualType R,  TypeSourceInfo *TInfo,
2747                             LookupResult &Previous, bool &Redeclaration) {
2748  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2749  if (D.getCXXScopeSpec().isSet()) {
2750    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2751      << D.getCXXScopeSpec().getRange();
2752    D.setInvalidType();
2753    // Pretend we didn't see the scope specifier.
2754    DC = CurContext;
2755    Previous.clear();
2756  }
2757
2758  if (getLangOptions().CPlusPlus) {
2759    // Check that there are no default arguments (C++ only).
2760    CheckExtraCXXDefaultArguments(D);
2761  }
2762
2763  DiagnoseFunctionSpecifiers(D);
2764
2765  if (D.getDeclSpec().isThreadSpecified())
2766    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2767
2768  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2769    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2770      << D.getName().getSourceRange();
2771    return 0;
2772  }
2773
2774  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2775  if (!NewTD) return 0;
2776
2777  // Handle attributes prior to checking for duplicates in MergeVarDecl
2778  ProcessDeclAttributes(S, NewTD, D);
2779
2780  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2781  // then it shall have block scope.
2782  // Note that variably modified types must be fixed before merging the decl so
2783  // that redeclarations will match.
2784  QualType T = NewTD->getUnderlyingType();
2785  if (T->isVariablyModifiedType()) {
2786    getCurFunction()->setHasBranchProtectedScope();
2787
2788    if (S->getFnParent() == 0) {
2789      bool SizeIsNegative;
2790      llvm::APSInt Oversized;
2791      QualType FixedTy =
2792          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2793                                              Oversized);
2794      if (!FixedTy.isNull()) {
2795        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2796        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2797      } else {
2798        if (SizeIsNegative)
2799          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2800        else if (T->isVariableArrayType())
2801          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2802        else if (Oversized.getBoolValue())
2803          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2804            << Oversized.toString(10);
2805        else
2806          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2807        NewTD->setInvalidDecl();
2808      }
2809    }
2810  }
2811
2812  // Merge the decl with the existing one if appropriate. If the decl is
2813  // in an outer scope, it isn't the same thing.
2814  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2815  if (!Previous.empty()) {
2816    Redeclaration = true;
2817    MergeTypeDefDecl(NewTD, Previous);
2818  }
2819
2820  // If this is the C FILE type, notify the AST context.
2821  if (IdentifierInfo *II = NewTD->getIdentifier())
2822    if (!NewTD->isInvalidDecl() &&
2823        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2824      if (II->isStr("FILE"))
2825        Context.setFILEDecl(NewTD);
2826      else if (II->isStr("jmp_buf"))
2827        Context.setjmp_bufDecl(NewTD);
2828      else if (II->isStr("sigjmp_buf"))
2829        Context.setsigjmp_bufDecl(NewTD);
2830      else if (II->isStr("__builtin_va_list"))
2831        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2832    }
2833
2834  return NewTD;
2835}
2836
2837/// \brief Determines whether the given declaration is an out-of-scope
2838/// previous declaration.
2839///
2840/// This routine should be invoked when name lookup has found a
2841/// previous declaration (PrevDecl) that is not in the scope where a
2842/// new declaration by the same name is being introduced. If the new
2843/// declaration occurs in a local scope, previous declarations with
2844/// linkage may still be considered previous declarations (C99
2845/// 6.2.2p4-5, C++ [basic.link]p6).
2846///
2847/// \param PrevDecl the previous declaration found by name
2848/// lookup
2849///
2850/// \param DC the context in which the new declaration is being
2851/// declared.
2852///
2853/// \returns true if PrevDecl is an out-of-scope previous declaration
2854/// for a new delcaration with the same name.
2855static bool
2856isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2857                                ASTContext &Context) {
2858  if (!PrevDecl)
2859    return false;
2860
2861  if (!PrevDecl->hasLinkage())
2862    return false;
2863
2864  if (Context.getLangOptions().CPlusPlus) {
2865    // C++ [basic.link]p6:
2866    //   If there is a visible declaration of an entity with linkage
2867    //   having the same name and type, ignoring entities declared
2868    //   outside the innermost enclosing namespace scope, the block
2869    //   scope declaration declares that same entity and receives the
2870    //   linkage of the previous declaration.
2871    DeclContext *OuterContext = DC->getRedeclContext();
2872    if (!OuterContext->isFunctionOrMethod())
2873      // This rule only applies to block-scope declarations.
2874      return false;
2875
2876    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2877    if (PrevOuterContext->isRecord())
2878      // We found a member function: ignore it.
2879      return false;
2880
2881    // Find the innermost enclosing namespace for the new and
2882    // previous declarations.
2883    OuterContext = OuterContext->getEnclosingNamespaceContext();
2884    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2885
2886    // The previous declaration is in a different namespace, so it
2887    // isn't the same function.
2888    if (!OuterContext->Equals(PrevOuterContext))
2889      return false;
2890  }
2891
2892  return true;
2893}
2894
2895static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2896  CXXScopeSpec &SS = D.getCXXScopeSpec();
2897  if (!SS.isSet()) return;
2898  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
2899}
2900
2901NamedDecl*
2902Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2903                              QualType R, TypeSourceInfo *TInfo,
2904                              LookupResult &Previous,
2905                              MultiTemplateParamsArg TemplateParamLists,
2906                              bool &Redeclaration) {
2907  DeclarationName Name = GetNameForDeclarator(D).getName();
2908
2909  // Check that there are no default arguments (C++ only).
2910  if (getLangOptions().CPlusPlus)
2911    CheckExtraCXXDefaultArguments(D);
2912
2913  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2914  assert(SCSpec != DeclSpec::SCS_typedef &&
2915         "Parser allowed 'typedef' as storage class VarDecl.");
2916  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2917  if (SCSpec == DeclSpec::SCS_mutable) {
2918    // mutable can only appear on non-static class members, so it's always
2919    // an error here
2920    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2921    D.setInvalidType();
2922    SC = SC_None;
2923  }
2924  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2925  VarDecl::StorageClass SCAsWritten
2926    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2927
2928  IdentifierInfo *II = Name.getAsIdentifierInfo();
2929  if (!II) {
2930    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2931      << Name.getAsString();
2932    return 0;
2933  }
2934
2935  DiagnoseFunctionSpecifiers(D);
2936
2937  if (!DC->isRecord() && S->getFnParent() == 0) {
2938    // C99 6.9p2: The storage-class specifiers auto and register shall not
2939    // appear in the declaration specifiers in an external declaration.
2940    if (SC == SC_Auto || SC == SC_Register) {
2941
2942      // If this is a register variable with an asm label specified, then this
2943      // is a GNU extension.
2944      if (SC == SC_Register && D.getAsmLabel())
2945        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2946      else
2947        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2948      D.setInvalidType();
2949    }
2950  }
2951
2952  bool isExplicitSpecialization = false;
2953  VarDecl *NewVD;
2954  if (!getLangOptions().CPlusPlus) {
2955      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2956                              II, R, TInfo, SC, SCAsWritten);
2957
2958    if (D.isInvalidType())
2959      NewVD->setInvalidDecl();
2960  } else {
2961    if (DC->isRecord() && !CurContext->isRecord()) {
2962      // This is an out-of-line definition of a static data member.
2963      if (SC == SC_Static) {
2964        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2965             diag::err_static_out_of_line)
2966          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2967      } else if (SC == SC_None)
2968        SC = SC_Static;
2969    }
2970    if (SC == SC_Static) {
2971      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2972        if (RD->isLocalClass())
2973          Diag(D.getIdentifierLoc(),
2974               diag::err_static_data_member_not_allowed_in_local_class)
2975            << Name << RD->getDeclName();
2976
2977        // C++ [class.union]p1: If a union contains a static data member,
2978        // the program is ill-formed.
2979        //
2980        // We also disallow static data members in anonymous structs.
2981        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2982          Diag(D.getIdentifierLoc(),
2983               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2984            << Name << RD->isUnion();
2985      }
2986    }
2987
2988    // Match up the template parameter lists with the scope specifier, then
2989    // determine whether we have a template or a template specialization.
2990    isExplicitSpecialization = false;
2991    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2992    bool Invalid = false;
2993    if (TemplateParameterList *TemplateParams
2994        = MatchTemplateParametersToScopeSpecifier(
2995                                                  D.getDeclSpec().getSourceRange().getBegin(),
2996                                                  D.getCXXScopeSpec(),
2997                                                  TemplateParamLists.get(),
2998                                                  TemplateParamLists.size(),
2999                                                  /*never a friend*/ false,
3000                                                  isExplicitSpecialization,
3001                                                  Invalid)) {
3002      // All but one template parameter lists have been matching.
3003      --NumMatchedTemplateParamLists;
3004
3005      if (TemplateParams->size() > 0) {
3006        // There is no such thing as a variable template.
3007        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3008          << II
3009          << SourceRange(TemplateParams->getTemplateLoc(),
3010                         TemplateParams->getRAngleLoc());
3011        return 0;
3012      } else {
3013        // There is an extraneous 'template<>' for this variable. Complain
3014        // about it, but allow the declaration of the variable.
3015        Diag(TemplateParams->getTemplateLoc(),
3016             diag::err_template_variable_noparams)
3017          << II
3018          << SourceRange(TemplateParams->getTemplateLoc(),
3019                         TemplateParams->getRAngleLoc());
3020
3021        isExplicitSpecialization = true;
3022      }
3023    }
3024
3025    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
3026                            II, R, TInfo, SC, SCAsWritten);
3027
3028    // If this decl has an auto type in need of deduction, make a note of the
3029    // Decl so we can diagnose uses of it in its own initializer.
3030    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3031        R->getContainedAutoType())
3032      ParsingInitForAutoVars.insert(NewVD);
3033
3034    if (D.isInvalidType() || Invalid)
3035      NewVD->setInvalidDecl();
3036
3037    SetNestedNameSpecifier(NewVD, D);
3038
3039    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3040      NewVD->setTemplateParameterListsInfo(Context,
3041                                           NumMatchedTemplateParamLists,
3042                                           TemplateParamLists.release());
3043    }
3044  }
3045
3046  if (D.getDeclSpec().isThreadSpecified()) {
3047    if (NewVD->hasLocalStorage())
3048      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3049    else if (!Context.Target.isTLSSupported())
3050      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3051    else
3052      NewVD->setThreadSpecified(true);
3053  }
3054
3055  // Set the lexical context. If the declarator has a C++ scope specifier, the
3056  // lexical context will be different from the semantic context.
3057  NewVD->setLexicalDeclContext(CurContext);
3058
3059  // Handle attributes prior to checking for duplicates in MergeVarDecl
3060  ProcessDeclAttributes(S, NewVD, D);
3061
3062  // Handle GNU asm-label extension (encoded as an attribute).
3063  if (Expr *E = (Expr*)D.getAsmLabel()) {
3064    // The parser guarantees this is a string.
3065    StringLiteral *SE = cast<StringLiteral>(E);
3066    llvm::StringRef Label = SE->getString();
3067    if (S->getFnParent() != 0) {
3068      switch (SC) {
3069      case SC_None:
3070      case SC_Auto:
3071        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3072        break;
3073      case SC_Register:
3074        if (!Context.Target.isValidGCCRegisterName(Label))
3075          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3076        break;
3077      case SC_Static:
3078      case SC_Extern:
3079      case SC_PrivateExtern:
3080        break;
3081      }
3082    }
3083
3084    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3085                                                Context, Label));
3086  }
3087
3088  // Diagnose shadowed variables before filtering for scope.
3089  if (!D.getCXXScopeSpec().isSet())
3090    CheckShadow(S, NewVD, Previous);
3091
3092  // Don't consider existing declarations that are in a different
3093  // scope and are out-of-semantic-context declarations (if the new
3094  // declaration has linkage).
3095  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
3096
3097  if (!getLangOptions().CPlusPlus)
3098    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3099  else {
3100    // Merge the decl with the existing one if appropriate.
3101    if (!Previous.empty()) {
3102      if (Previous.isSingleResult() &&
3103          isa<FieldDecl>(Previous.getFoundDecl()) &&
3104          D.getCXXScopeSpec().isSet()) {
3105        // The user tried to define a non-static data member
3106        // out-of-line (C++ [dcl.meaning]p1).
3107        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3108          << D.getCXXScopeSpec().getRange();
3109        Previous.clear();
3110        NewVD->setInvalidDecl();
3111      }
3112    } else if (D.getCXXScopeSpec().isSet()) {
3113      // No previous declaration in the qualifying scope.
3114      Diag(D.getIdentifierLoc(), diag::err_no_member)
3115        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3116        << D.getCXXScopeSpec().getRange();
3117      NewVD->setInvalidDecl();
3118    }
3119
3120    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3121
3122    // This is an explicit specialization of a static data member. Check it.
3123    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3124        CheckMemberSpecialization(NewVD, Previous))
3125      NewVD->setInvalidDecl();
3126  }
3127
3128  // attributes declared post-definition are currently ignored
3129  // FIXME: This should be handled in attribute merging, not
3130  // here.
3131  if (Previous.isSingleResult()) {
3132    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3133    if (Def && (Def = Def->getDefinition()) &&
3134        Def != NewVD && D.hasAttributes()) {
3135      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3136      Diag(Def->getLocation(), diag::note_previous_definition);
3137    }
3138  }
3139
3140  // If this is a locally-scoped extern C variable, update the map of
3141  // such variables.
3142  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3143      !NewVD->isInvalidDecl())
3144    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3145
3146  // If there's a #pragma GCC visibility in scope, and this isn't a class
3147  // member, set the visibility of this variable.
3148  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3149    AddPushedVisibilityAttribute(NewVD);
3150
3151  MarkUnusedFileScopedDecl(NewVD);
3152
3153  return NewVD;
3154}
3155
3156/// \brief Diagnose variable or built-in function shadowing.  Implements
3157/// -Wshadow.
3158///
3159/// This method is called whenever a VarDecl is added to a "useful"
3160/// scope.
3161///
3162/// \param S the scope in which the shadowing name is being declared
3163/// \param R the lookup of the name
3164///
3165void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3166  // Return if warning is ignored.
3167  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3168        Diagnostic::Ignored)
3169    return;
3170
3171  // Don't diagnose declarations at file scope.
3172  DeclContext *NewDC = D->getDeclContext();
3173  if (NewDC->isFileContext())
3174    return;
3175
3176  // Only diagnose if we're shadowing an unambiguous field or variable.
3177  if (R.getResultKind() != LookupResult::Found)
3178    return;
3179
3180  NamedDecl* ShadowedDecl = R.getFoundDecl();
3181  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3182    return;
3183
3184  // Fields are not shadowed by variables in C++ static methods.
3185  if (isa<FieldDecl>(ShadowedDecl))
3186    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3187      if (MD->isStatic())
3188        return;
3189
3190  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3191    if (shadowedVar->isExternC()) {
3192      // Don't warn for this case:
3193      //
3194      // @code
3195      // extern int bob;
3196      // void f() {
3197      //   extern int bob;
3198      // }
3199      // @endcode
3200      if (D->isExternC())
3201        return;
3202
3203      // For shadowing external vars, make sure that we point to the global
3204      // declaration, not a locally scoped extern declaration.
3205      for (VarDecl::redecl_iterator
3206             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3207           I != E; ++I)
3208        if (I->isFileVarDecl()) {
3209          ShadowedDecl = *I;
3210          break;
3211        }
3212    }
3213
3214  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3215
3216  // Only warn about certain kinds of shadowing for class members.
3217  if (NewDC && NewDC->isRecord()) {
3218    // In particular, don't warn about shadowing non-class members.
3219    if (!OldDC->isRecord())
3220      return;
3221
3222    // TODO: should we warn about static data members shadowing
3223    // static data members from base classes?
3224
3225    // TODO: don't diagnose for inaccessible shadowed members.
3226    // This is hard to do perfectly because we might friend the
3227    // shadowing context, but that's just a false negative.
3228  }
3229
3230  // Determine what kind of declaration we're shadowing.
3231  unsigned Kind;
3232  if (isa<RecordDecl>(OldDC)) {
3233    if (isa<FieldDecl>(ShadowedDecl))
3234      Kind = 3; // field
3235    else
3236      Kind = 2; // static data member
3237  } else if (OldDC->isFileContext())
3238    Kind = 1; // global
3239  else
3240    Kind = 0; // local
3241
3242  DeclarationName Name = R.getLookupName();
3243
3244  // Emit warning and note.
3245  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3246  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3247}
3248
3249/// \brief Check -Wshadow without the advantage of a previous lookup.
3250void Sema::CheckShadow(Scope *S, VarDecl *D) {
3251  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3252        Diagnostic::Ignored)
3253    return;
3254
3255  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3256                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3257  LookupName(R, S);
3258  CheckShadow(S, D, R);
3259}
3260
3261/// \brief Perform semantic checking on a newly-created variable
3262/// declaration.
3263///
3264/// This routine performs all of the type-checking required for a
3265/// variable declaration once it has been built. It is used both to
3266/// check variables after they have been parsed and their declarators
3267/// have been translated into a declaration, and to check variables
3268/// that have been instantiated from a template.
3269///
3270/// Sets NewVD->isInvalidDecl() if an error was encountered.
3271void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3272                                    LookupResult &Previous,
3273                                    bool &Redeclaration) {
3274  // If the decl is already known invalid, don't check it.
3275  if (NewVD->isInvalidDecl())
3276    return;
3277
3278  QualType T = NewVD->getType();
3279
3280  if (T->isObjCObjectType()) {
3281    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3282    return NewVD->setInvalidDecl();
3283  }
3284
3285  // Emit an error if an address space was applied to decl with local storage.
3286  // This includes arrays of objects with address space qualifiers, but not
3287  // automatic variables that point to other address spaces.
3288  // ISO/IEC TR 18037 S5.1.2
3289  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3290    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3291    return NewVD->setInvalidDecl();
3292  }
3293
3294  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3295      && !NewVD->hasAttr<BlocksAttr>())
3296    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3297
3298  bool isVM = T->isVariablyModifiedType();
3299  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3300      NewVD->hasAttr<BlocksAttr>())
3301    getCurFunction()->setHasBranchProtectedScope();
3302
3303  if ((isVM && NewVD->hasLinkage()) ||
3304      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3305    bool SizeIsNegative;
3306    llvm::APSInt Oversized;
3307    QualType FixedTy =
3308        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3309                                            Oversized);
3310
3311    if (FixedTy.isNull() && T->isVariableArrayType()) {
3312      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3313      // FIXME: This won't give the correct result for
3314      // int a[10][n];
3315      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3316
3317      if (NewVD->isFileVarDecl())
3318        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3319        << SizeRange;
3320      else if (NewVD->getStorageClass() == SC_Static)
3321        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3322        << SizeRange;
3323      else
3324        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3325        << SizeRange;
3326      return NewVD->setInvalidDecl();
3327    }
3328
3329    if (FixedTy.isNull()) {
3330      if (NewVD->isFileVarDecl())
3331        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3332      else
3333        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3334      return NewVD->setInvalidDecl();
3335    }
3336
3337    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3338    NewVD->setType(FixedTy);
3339  }
3340
3341  if (Previous.empty() && NewVD->isExternC()) {
3342    // Since we did not find anything by this name and we're declaring
3343    // an extern "C" variable, look for a non-visible extern "C"
3344    // declaration with the same name.
3345    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3346      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3347    if (Pos != LocallyScopedExternalDecls.end())
3348      Previous.addDecl(Pos->second);
3349  }
3350
3351  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3352    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3353      << T;
3354    return NewVD->setInvalidDecl();
3355  }
3356
3357  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3358    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3359    return NewVD->setInvalidDecl();
3360  }
3361
3362  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3363    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3364    return NewVD->setInvalidDecl();
3365  }
3366
3367  // Function pointers and references cannot have qualified function type, only
3368  // function pointer-to-members can do that.
3369  QualType Pointee;
3370  unsigned PtrOrRef = 0;
3371  if (const PointerType *Ptr = T->getAs<PointerType>())
3372    Pointee = Ptr->getPointeeType();
3373  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3374    Pointee = Ref->getPointeeType();
3375    PtrOrRef = 1;
3376  }
3377  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3378      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3379    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3380        << PtrOrRef;
3381    return NewVD->setInvalidDecl();
3382  }
3383
3384  if (!Previous.empty()) {
3385    Redeclaration = true;
3386    MergeVarDecl(NewVD, Previous);
3387  }
3388}
3389
3390/// \brief Data used with FindOverriddenMethod
3391struct FindOverriddenMethodData {
3392  Sema *S;
3393  CXXMethodDecl *Method;
3394};
3395
3396/// \brief Member lookup function that determines whether a given C++
3397/// method overrides a method in a base class, to be used with
3398/// CXXRecordDecl::lookupInBases().
3399static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3400                                 CXXBasePath &Path,
3401                                 void *UserData) {
3402  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3403
3404  FindOverriddenMethodData *Data
3405    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3406
3407  DeclarationName Name = Data->Method->getDeclName();
3408
3409  // FIXME: Do we care about other names here too?
3410  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3411    // We really want to find the base class destructor here.
3412    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3413    CanQualType CT = Data->S->Context.getCanonicalType(T);
3414
3415    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3416  }
3417
3418  for (Path.Decls = BaseRecord->lookup(Name);
3419       Path.Decls.first != Path.Decls.second;
3420       ++Path.Decls.first) {
3421    NamedDecl *D = *Path.Decls.first;
3422    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3423      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3424        return true;
3425    }
3426  }
3427
3428  return false;
3429}
3430
3431/// AddOverriddenMethods - See if a method overrides any in the base classes,
3432/// and if so, check that it's a valid override and remember it.
3433bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3434  // Look for virtual methods in base classes that this method might override.
3435  CXXBasePaths Paths;
3436  FindOverriddenMethodData Data;
3437  Data.Method = MD;
3438  Data.S = this;
3439  bool AddedAny = false;
3440  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3441    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3442         E = Paths.found_decls_end(); I != E; ++I) {
3443      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3444        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3445            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3446            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3447          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3448          AddedAny = true;
3449        }
3450      }
3451    }
3452  }
3453
3454  return AddedAny;
3455}
3456
3457static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3458  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3459                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3460  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3461  assert(!Prev.isAmbiguous() &&
3462         "Cannot have an ambiguity in previous-declaration lookup");
3463  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3464       Func != FuncEnd; ++Func) {
3465    if (isa<FunctionDecl>(*Func) &&
3466        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3467      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3468  }
3469}
3470
3471NamedDecl*
3472Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3473                              QualType R, TypeSourceInfo *TInfo,
3474                              LookupResult &Previous,
3475                              MultiTemplateParamsArg TemplateParamLists,
3476                              bool IsFunctionDefinition, bool &Redeclaration) {
3477  assert(R.getTypePtr()->isFunctionType());
3478
3479  // TODO: consider using NameInfo for diagnostic.
3480  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3481  DeclarationName Name = NameInfo.getName();
3482  FunctionDecl::StorageClass SC = SC_None;
3483  switch (D.getDeclSpec().getStorageClassSpec()) {
3484  default: assert(0 && "Unknown storage class!");
3485  case DeclSpec::SCS_auto:
3486  case DeclSpec::SCS_register:
3487  case DeclSpec::SCS_mutable:
3488    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3489         diag::err_typecheck_sclass_func);
3490    D.setInvalidType();
3491    break;
3492  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3493  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3494  case DeclSpec::SCS_static: {
3495    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3496      // C99 6.7.1p5:
3497      //   The declaration of an identifier for a function that has
3498      //   block scope shall have no explicit storage-class specifier
3499      //   other than extern
3500      // See also (C++ [dcl.stc]p4).
3501      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3502           diag::err_static_block_func);
3503      SC = SC_None;
3504    } else
3505      SC = SC_Static;
3506    break;
3507  }
3508  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3509  }
3510
3511  if (D.getDeclSpec().isThreadSpecified())
3512    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3513
3514  // Do not allow returning a objc interface by-value.
3515  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3516    Diag(D.getIdentifierLoc(),
3517         diag::err_object_cannot_be_passed_returned_by_value) << 0
3518    << R->getAs<FunctionType>()->getResultType();
3519    D.setInvalidType();
3520  }
3521
3522  FunctionDecl *NewFD;
3523  bool isInline = D.getDeclSpec().isInlineSpecified();
3524  bool isFriend = false;
3525  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3526  FunctionDecl::StorageClass SCAsWritten
3527    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3528  FunctionTemplateDecl *FunctionTemplate = 0;
3529  bool isExplicitSpecialization = false;
3530  bool isFunctionTemplateSpecialization = false;
3531  unsigned NumMatchedTemplateParamLists = 0;
3532
3533  if (!getLangOptions().CPlusPlus) {
3534    // Determine whether the function was written with a
3535    // prototype. This true when:
3536    //   - there is a prototype in the declarator, or
3537    //   - the type R of the function is some kind of typedef or other reference
3538    //     to a type name (which eventually refers to a function type).
3539    bool HasPrototype =
3540    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3541    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3542
3543    NewFD = FunctionDecl::Create(Context, DC,
3544                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3545                                 HasPrototype);
3546    if (D.isInvalidType())
3547      NewFD->setInvalidDecl();
3548
3549    // Set the lexical context.
3550    NewFD->setLexicalDeclContext(CurContext);
3551    // Filter out previous declarations that don't match the scope.
3552    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3553  } else {
3554    isFriend = D.getDeclSpec().isFriendSpecified();
3555    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3556    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3557    bool isVirtualOkay = false;
3558
3559    // Check that the return type is not an abstract class type.
3560    // For record types, this is done by the AbstractClassUsageDiagnoser once
3561    // the class has been completely parsed.
3562    if (!DC->isRecord() &&
3563      RequireNonAbstractType(D.getIdentifierLoc(),
3564                             R->getAs<FunctionType>()->getResultType(),
3565                             diag::err_abstract_type_in_decl,
3566                             AbstractReturnType))
3567      D.setInvalidType();
3568
3569
3570    if (isFriend) {
3571      // C++ [class.friend]p5
3572      //   A function can be defined in a friend declaration of a
3573      //   class . . . . Such a function is implicitly inline.
3574      isInline |= IsFunctionDefinition;
3575    }
3576
3577    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3578      // This is a C++ constructor declaration.
3579      assert(DC->isRecord() &&
3580             "Constructors can only be declared in a member context");
3581
3582      R = CheckConstructorDeclarator(D, R, SC);
3583
3584      // Create the new declaration
3585      NewFD = CXXConstructorDecl::Create(Context,
3586                                         cast<CXXRecordDecl>(DC),
3587                                         NameInfo, R, TInfo,
3588                                         isExplicit, isInline,
3589                                         /*isImplicitlyDeclared=*/false);
3590    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3591      // This is a C++ destructor declaration.
3592      if (DC->isRecord()) {
3593        R = CheckDestructorDeclarator(D, R, SC);
3594
3595        NewFD = CXXDestructorDecl::Create(Context,
3596                                          cast<CXXRecordDecl>(DC),
3597                                          NameInfo, R, TInfo,
3598                                          isInline,
3599                                          /*isImplicitlyDeclared=*/false);
3600        isVirtualOkay = true;
3601      } else {
3602        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3603
3604        // Create a FunctionDecl to satisfy the function definition parsing
3605        // code path.
3606        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3607                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3608                                     /*hasPrototype=*/true);
3609        D.setInvalidType();
3610      }
3611    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3612      if (!DC->isRecord()) {
3613        Diag(D.getIdentifierLoc(),
3614             diag::err_conv_function_not_member);
3615        return 0;
3616      }
3617
3618      CheckConversionDeclarator(D, R, SC);
3619      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3620                                        NameInfo, R, TInfo,
3621                                        isInline, isExplicit);
3622
3623      isVirtualOkay = true;
3624    } else if (DC->isRecord()) {
3625      // If the of the function is the same as the name of the record, then this
3626      // must be an invalid constructor that has a return type.
3627      // (The parser checks for a return type and makes the declarator a
3628      // constructor if it has no return type).
3629      // must have an invalid constructor that has a return type
3630      if (Name.getAsIdentifierInfo() &&
3631          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3632        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3633          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3634          << SourceRange(D.getIdentifierLoc());
3635        return 0;
3636      }
3637
3638      bool isStatic = SC == SC_Static;
3639
3640      // [class.free]p1:
3641      // Any allocation function for a class T is a static member
3642      // (even if not explicitly declared static).
3643      if (Name.getCXXOverloadedOperator() == OO_New ||
3644          Name.getCXXOverloadedOperator() == OO_Array_New)
3645        isStatic = true;
3646
3647      // [class.free]p6 Any deallocation function for a class X is a static member
3648      // (even if not explicitly declared static).
3649      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3650          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3651        isStatic = true;
3652
3653      // This is a C++ method declaration.
3654      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3655                                    NameInfo, R, TInfo,
3656                                    isStatic, SCAsWritten, isInline);
3657
3658      isVirtualOkay = !isStatic;
3659    } else {
3660      // Determine whether the function was written with a
3661      // prototype. This true when:
3662      //   - we're in C++ (where every function has a prototype),
3663      NewFD = FunctionDecl::Create(Context, DC,
3664                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3665                                   true/*HasPrototype*/);
3666    }
3667    SetNestedNameSpecifier(NewFD, D);
3668    isExplicitSpecialization = false;
3669    isFunctionTemplateSpecialization = false;
3670    NumMatchedTemplateParamLists = TemplateParamLists.size();
3671    if (D.isInvalidType())
3672      NewFD->setInvalidDecl();
3673
3674    // Set the lexical context. If the declarator has a C++
3675    // scope specifier, or is the object of a friend declaration, the
3676    // lexical context will be different from the semantic context.
3677    NewFD->setLexicalDeclContext(CurContext);
3678
3679    // Match up the template parameter lists with the scope specifier, then
3680    // determine whether we have a template or a template specialization.
3681    bool Invalid = false;
3682    if (TemplateParameterList *TemplateParams
3683        = MatchTemplateParametersToScopeSpecifier(
3684                                  D.getDeclSpec().getSourceRange().getBegin(),
3685                                  D.getCXXScopeSpec(),
3686                                  TemplateParamLists.get(),
3687                                  TemplateParamLists.size(),
3688                                  isFriend,
3689                                  isExplicitSpecialization,
3690                                  Invalid)) {
3691          // All but one template parameter lists have been matching.
3692          --NumMatchedTemplateParamLists;
3693
3694          if (TemplateParams->size() > 0) {
3695            // This is a function template
3696
3697            // Check that we can declare a template here.
3698            if (CheckTemplateDeclScope(S, TemplateParams))
3699              return 0;
3700
3701            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3702                                                      NewFD->getLocation(),
3703                                                      Name, TemplateParams,
3704                                                      NewFD);
3705            FunctionTemplate->setLexicalDeclContext(CurContext);
3706            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3707          } else {
3708            // This is a function template specialization.
3709            isFunctionTemplateSpecialization = true;
3710
3711            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3712            if (isFriend && isFunctionTemplateSpecialization) {
3713              // We want to remove the "template<>", found here.
3714              SourceRange RemoveRange = TemplateParams->getSourceRange();
3715
3716              // If we remove the template<> and the name is not a
3717              // template-id, we're actually silently creating a problem:
3718              // the friend declaration will refer to an untemplated decl,
3719              // and clearly the user wants a template specialization.  So
3720              // we need to insert '<>' after the name.
3721              SourceLocation InsertLoc;
3722              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3723                InsertLoc = D.getName().getSourceRange().getEnd();
3724                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3725              }
3726
3727              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3728              << Name << RemoveRange
3729              << FixItHint::CreateRemoval(RemoveRange)
3730              << FixItHint::CreateInsertion(InsertLoc, "<>");
3731            }
3732          }
3733        }
3734
3735    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3736      NewFD->setTemplateParameterListsInfo(Context,
3737                                           NumMatchedTemplateParamLists,
3738                                           TemplateParamLists.release());
3739    }
3740
3741    if (Invalid) {
3742      NewFD->setInvalidDecl();
3743      if (FunctionTemplate)
3744        FunctionTemplate->setInvalidDecl();
3745    }
3746
3747    // C++ [dcl.fct.spec]p5:
3748    //   The virtual specifier shall only be used in declarations of
3749    //   nonstatic class member functions that appear within a
3750    //   member-specification of a class declaration; see 10.3.
3751    //
3752    if (isVirtual && !NewFD->isInvalidDecl()) {
3753      if (!isVirtualOkay) {
3754        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3755             diag::err_virtual_non_function);
3756      } else if (!CurContext->isRecord()) {
3757        // 'virtual' was specified outside of the class.
3758        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3759             diag::err_virtual_out_of_class)
3760          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3761      } else if (NewFD->getDescribedFunctionTemplate()) {
3762        // C++ [temp.mem]p3:
3763        //  A member function template shall not be virtual.
3764        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3765             diag::err_virtual_member_function_template)
3766          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3767      } else {
3768        // Okay: Add virtual to the method.
3769        NewFD->setVirtualAsWritten(true);
3770      }
3771    }
3772
3773    // C++ [dcl.fct.spec]p3:
3774    //  The inline specifier shall not appear on a block scope function declaration.
3775    if (isInline && !NewFD->isInvalidDecl()) {
3776      if (CurContext->isFunctionOrMethod()) {
3777        // 'inline' is not allowed on block scope function declaration.
3778        Diag(D.getDeclSpec().getInlineSpecLoc(),
3779             diag::err_inline_declaration_block_scope) << Name
3780          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3781      }
3782    }
3783
3784    // C++ [dcl.fct.spec]p6:
3785    //  The explicit specifier shall be used only in the declaration of a
3786    //  constructor or conversion function within its class definition; see 12.3.1
3787    //  and 12.3.2.
3788    if (isExplicit && !NewFD->isInvalidDecl()) {
3789      if (!CurContext->isRecord()) {
3790        // 'explicit' was specified outside of the class.
3791        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3792             diag::err_explicit_out_of_class)
3793          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3794      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3795                 !isa<CXXConversionDecl>(NewFD)) {
3796        // 'explicit' was specified on a function that wasn't a constructor
3797        // or conversion function.
3798        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3799             diag::err_explicit_non_ctor_or_conv_function)
3800          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3801      }
3802    }
3803
3804    // Filter out previous declarations that don't match the scope.
3805    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3806
3807    if (isFriend) {
3808      // For now, claim that the objects have no previous declaration.
3809      if (FunctionTemplate) {
3810        FunctionTemplate->setObjectOfFriendDecl(false);
3811        FunctionTemplate->setAccess(AS_public);
3812      }
3813      NewFD->setObjectOfFriendDecl(false);
3814      NewFD->setAccess(AS_public);
3815    }
3816
3817    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3818      // A method is implicitly inline if it's defined in its class
3819      // definition.
3820      NewFD->setImplicitlyInline();
3821    }
3822
3823    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3824        !CurContext->isRecord()) {
3825      // C++ [class.static]p1:
3826      //   A data or function member of a class may be declared static
3827      //   in a class definition, in which case it is a static member of
3828      //   the class.
3829
3830      // Complain about the 'static' specifier if it's on an out-of-line
3831      // member function definition.
3832      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3833           diag::err_static_out_of_line)
3834        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3835    }
3836  }
3837
3838  // Handle GNU asm-label extension (encoded as an attribute).
3839  if (Expr *E = (Expr*) D.getAsmLabel()) {
3840    // The parser guarantees this is a string.
3841    StringLiteral *SE = cast<StringLiteral>(E);
3842    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3843                                                SE->getString()));
3844  }
3845
3846  // Copy the parameter declarations from the declarator D to the function
3847  // declaration NewFD, if they are available.  First scavenge them into Params.
3848  llvm::SmallVector<ParmVarDecl*, 16> Params;
3849  if (D.isFunctionDeclarator()) {
3850    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3851
3852    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3853    // function that takes no arguments, not a function that takes a
3854    // single void argument.
3855    // We let through "const void" here because Sema::GetTypeForDeclarator
3856    // already checks for that case.
3857    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3858        FTI.ArgInfo[0].Param &&
3859        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3860      // Empty arg list, don't push any params.
3861      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3862
3863      // In C++, the empty parameter-type-list must be spelled "void"; a
3864      // typedef of void is not permitted.
3865      if (getLangOptions().CPlusPlus &&
3866          Param->getType().getUnqualifiedType() != Context.VoidTy)
3867        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3868    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3869      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3870        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3871        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3872        Param->setDeclContext(NewFD);
3873        Params.push_back(Param);
3874
3875        if (Param->isInvalidDecl())
3876          NewFD->setInvalidDecl();
3877      }
3878    }
3879
3880  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3881    // When we're declaring a function with a typedef, typeof, etc as in the
3882    // following example, we'll need to synthesize (unnamed)
3883    // parameters for use in the declaration.
3884    //
3885    // @code
3886    // typedef void fn(int);
3887    // fn f;
3888    // @endcode
3889
3890    // Synthesize a parameter for each argument type.
3891    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3892         AE = FT->arg_type_end(); AI != AE; ++AI) {
3893      ParmVarDecl *Param =
3894        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3895      Params.push_back(Param);
3896    }
3897  } else {
3898    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3899           "Should not need args for typedef of non-prototype fn");
3900  }
3901  // Finally, we know we have the right number of parameters, install them.
3902  NewFD->setParams(Params.data(), Params.size());
3903
3904  // Process the non-inheritable attributes on this declaration.
3905  ProcessDeclAttributes(S, NewFD, D,
3906                        /*NonInheritable=*/true, /*Inheritable=*/false);
3907
3908  if (!getLangOptions().CPlusPlus) {
3909    // Perform semantic checking on the function declaration.
3910    bool isExplctSpecialization=false;
3911    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3912                             Redeclaration);
3913    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3914            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3915           "previous declaration set still overloaded");
3916  } else {
3917    // If the declarator is a template-id, translate the parser's template
3918    // argument list into our AST format.
3919    bool HasExplicitTemplateArgs = false;
3920    TemplateArgumentListInfo TemplateArgs;
3921    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3922      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3923      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3924      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3925      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3926                                         TemplateId->getTemplateArgs(),
3927                                         TemplateId->NumArgs);
3928      translateTemplateArguments(TemplateArgsPtr,
3929                                 TemplateArgs);
3930      TemplateArgsPtr.release();
3931
3932      HasExplicitTemplateArgs = true;
3933
3934      if (FunctionTemplate) {
3935        // Function template with explicit template arguments.
3936        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
3937          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
3938
3939        HasExplicitTemplateArgs = false;
3940      } else if (!isFunctionTemplateSpecialization &&
3941                 !D.getDeclSpec().isFriendSpecified()) {
3942        // We have encountered something that the user meant to be a
3943        // specialization (because it has explicitly-specified template
3944        // arguments) but that was not introduced with a "template<>" (or had
3945        // too few of them).
3946        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3947          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3948          << FixItHint::CreateInsertion(
3949                                        D.getDeclSpec().getSourceRange().getBegin(),
3950                                                  "template<> ");
3951        isFunctionTemplateSpecialization = true;
3952      } else {
3953        // "friend void foo<>(int);" is an implicit specialization decl.
3954        isFunctionTemplateSpecialization = true;
3955      }
3956    } else if (isFriend && isFunctionTemplateSpecialization) {
3957      // This combination is only possible in a recovery case;  the user
3958      // wrote something like:
3959      //   template <> friend void foo(int);
3960      // which we're recovering from as if the user had written:
3961      //   friend void foo<>(int);
3962      // Go ahead and fake up a template id.
3963      HasExplicitTemplateArgs = true;
3964        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3965      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3966    }
3967
3968    // If it's a friend (and only if it's a friend), it's possible
3969    // that either the specialized function type or the specialized
3970    // template is dependent, and therefore matching will fail.  In
3971    // this case, don't check the specialization yet.
3972    if (isFunctionTemplateSpecialization && isFriend &&
3973        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3974      assert(HasExplicitTemplateArgs &&
3975             "friend function specialization without template args");
3976      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3977                                                       Previous))
3978        NewFD->setInvalidDecl();
3979    } else if (isFunctionTemplateSpecialization) {
3980      if (CheckFunctionTemplateSpecialization(NewFD,
3981                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3982                                              Previous))
3983        NewFD->setInvalidDecl();
3984    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3985      if (CheckMemberSpecialization(NewFD, Previous))
3986          NewFD->setInvalidDecl();
3987    }
3988
3989    // Perform semantic checking on the function declaration.
3990    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3991                             Redeclaration);
3992
3993    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3994            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3995           "previous declaration set still overloaded");
3996
3997    NamedDecl *PrincipalDecl = (FunctionTemplate
3998                                ? cast<NamedDecl>(FunctionTemplate)
3999                                : NewFD);
4000
4001    if (isFriend && Redeclaration) {
4002      AccessSpecifier Access = AS_public;
4003      if (!NewFD->isInvalidDecl())
4004        Access = NewFD->getPreviousDeclaration()->getAccess();
4005
4006      NewFD->setAccess(Access);
4007      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4008
4009      PrincipalDecl->setObjectOfFriendDecl(true);
4010    }
4011
4012    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4013        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4014      PrincipalDecl->setNonMemberOperator();
4015
4016    // If we have a function template, check the template parameter
4017    // list. This will check and merge default template arguments.
4018    if (FunctionTemplate) {
4019      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4020      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4021                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4022                            D.getDeclSpec().isFriendSpecified()
4023                              ? (IsFunctionDefinition
4024                                   ? TPC_FriendFunctionTemplateDefinition
4025                                   : TPC_FriendFunctionTemplate)
4026                              : (D.getCXXScopeSpec().isSet() &&
4027                                 DC && DC->isRecord() &&
4028                                 DC->isDependentContext())
4029                                  ? TPC_ClassTemplateMember
4030                                  : TPC_FunctionTemplate);
4031    }
4032
4033    if (NewFD->isInvalidDecl()) {
4034      // Ignore all the rest of this.
4035    } else if (!Redeclaration) {
4036      // Fake up an access specifier if it's supposed to be a class member.
4037      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4038        NewFD->setAccess(AS_public);
4039
4040      // Qualified decls generally require a previous declaration.
4041      if (D.getCXXScopeSpec().isSet()) {
4042        // ...with the major exception of templated-scope or
4043        // dependent-scope friend declarations.
4044
4045        // TODO: we currently also suppress this check in dependent
4046        // contexts because (1) the parameter depth will be off when
4047        // matching friend templates and (2) we might actually be
4048        // selecting a friend based on a dependent factor.  But there
4049        // are situations where these conditions don't apply and we
4050        // can actually do this check immediately.
4051        if (isFriend &&
4052            (NumMatchedTemplateParamLists ||
4053             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4054             CurContext->isDependentContext())) {
4055              // ignore these
4056            } else {
4057              // The user tried to provide an out-of-line definition for a
4058              // function that is a member of a class or namespace, but there
4059              // was no such member function declared (C++ [class.mfct]p2,
4060              // C++ [namespace.memdef]p2). For example:
4061              //
4062              // class X {
4063              //   void f() const;
4064              // };
4065              //
4066              // void X::f() { } // ill-formed
4067              //
4068              // Complain about this problem, and attempt to suggest close
4069              // matches (e.g., those that differ only in cv-qualifiers and
4070              // whether the parameter types are references).
4071              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4072              << Name << DC << D.getCXXScopeSpec().getRange();
4073              NewFD->setInvalidDecl();
4074
4075              DiagnoseInvalidRedeclaration(*this, NewFD);
4076            }
4077
4078        // Unqualified local friend declarations are required to resolve
4079        // to something.
4080        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4081          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4082          NewFD->setInvalidDecl();
4083          DiagnoseInvalidRedeclaration(*this, NewFD);
4084        }
4085
4086    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4087               !isFriend && !isFunctionTemplateSpecialization &&
4088               !isExplicitSpecialization) {
4089      // An out-of-line member function declaration must also be a
4090      // definition (C++ [dcl.meaning]p1).
4091      // Note that this is not the case for explicit specializations of
4092      // function templates or member functions of class templates, per
4093      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4094      // for compatibility with old SWIG code which likes to generate them.
4095      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4096        << D.getCXXScopeSpec().getRange();
4097    }
4098  }
4099
4100
4101  // Handle attributes. We need to have merged decls when handling attributes
4102  // (for example to check for conflicts, etc).
4103  // FIXME: This needs to happen before we merge declarations. Then,
4104  // let attribute merging cope with attribute conflicts.
4105  ProcessDeclAttributes(S, NewFD, D,
4106                        /*NonInheritable=*/false, /*Inheritable=*/true);
4107
4108  // attributes declared post-definition are currently ignored
4109  // FIXME: This should happen during attribute merging
4110  if (Redeclaration && Previous.isSingleResult()) {
4111    const FunctionDecl *Def;
4112    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4113    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4114      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4115      Diag(Def->getLocation(), diag::note_previous_definition);
4116    }
4117  }
4118
4119  AddKnownFunctionAttributes(NewFD);
4120
4121  if (NewFD->hasAttr<OverloadableAttr>() &&
4122      !NewFD->getType()->getAs<FunctionProtoType>()) {
4123    Diag(NewFD->getLocation(),
4124         diag::err_attribute_overloadable_no_prototype)
4125      << NewFD;
4126
4127    // Turn this into a variadic function with no parameters.
4128    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4129    FunctionProtoType::ExtProtoInfo EPI;
4130    EPI.Variadic = true;
4131    EPI.ExtInfo = FT->getExtInfo();
4132
4133    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4134    NewFD->setType(R);
4135  }
4136
4137  // If there's a #pragma GCC visibility in scope, and this isn't a class
4138  // member, set the visibility of this function.
4139  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4140    AddPushedVisibilityAttribute(NewFD);
4141
4142  // If this is a locally-scoped extern C function, update the
4143  // map of such names.
4144  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4145      && !NewFD->isInvalidDecl())
4146    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4147
4148  // Set this FunctionDecl's range up to the right paren.
4149  NewFD->setLocEnd(D.getSourceRange().getEnd());
4150
4151  if (getLangOptions().CPlusPlus) {
4152    if (FunctionTemplate) {
4153      if (NewFD->isInvalidDecl())
4154        FunctionTemplate->setInvalidDecl();
4155      return FunctionTemplate;
4156    }
4157  }
4158
4159  MarkUnusedFileScopedDecl(NewFD);
4160
4161  if (getLangOptions().CUDA)
4162    if (IdentifierInfo *II = NewFD->getIdentifier())
4163      if (!NewFD->isInvalidDecl() &&
4164          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4165        if (II->isStr("cudaConfigureCall")) {
4166          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4167            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4168
4169          Context.setcudaConfigureCallDecl(NewFD);
4170        }
4171      }
4172
4173  return NewFD;
4174}
4175
4176/// \brief Perform semantic checking of a new function declaration.
4177///
4178/// Performs semantic analysis of the new function declaration
4179/// NewFD. This routine performs all semantic checking that does not
4180/// require the actual declarator involved in the declaration, and is
4181/// used both for the declaration of functions as they are parsed
4182/// (called via ActOnDeclarator) and for the declaration of functions
4183/// that have been instantiated via C++ template instantiation (called
4184/// via InstantiateDecl).
4185///
4186/// \param IsExplicitSpecialiation whether this new function declaration is
4187/// an explicit specialization of the previous declaration.
4188///
4189/// This sets NewFD->isInvalidDecl() to true if there was an error.
4190void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4191                                    LookupResult &Previous,
4192                                    bool IsExplicitSpecialization,
4193                                    bool &Redeclaration) {
4194  // If NewFD is already known erroneous, don't do any of this checking.
4195  if (NewFD->isInvalidDecl()) {
4196    // If this is a class member, mark the class invalid immediately.
4197    // This avoids some consistency errors later.
4198    if (isa<CXXMethodDecl>(NewFD))
4199      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4200
4201    return;
4202  }
4203
4204  if (NewFD->getResultType()->isVariablyModifiedType()) {
4205    // Functions returning a variably modified type violate C99 6.7.5.2p2
4206    // because all functions have linkage.
4207    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4208    return NewFD->setInvalidDecl();
4209  }
4210
4211  if (NewFD->isMain())
4212    CheckMain(NewFD);
4213
4214  // Check for a previous declaration of this name.
4215  if (Previous.empty() && NewFD->isExternC()) {
4216    // Since we did not find anything by this name and we're declaring
4217    // an extern "C" function, look for a non-visible extern "C"
4218    // declaration with the same name.
4219    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4220      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4221    if (Pos != LocallyScopedExternalDecls.end())
4222      Previous.addDecl(Pos->second);
4223  }
4224
4225  // Merge or overload the declaration with an existing declaration of
4226  // the same name, if appropriate.
4227  if (!Previous.empty()) {
4228    // Determine whether NewFD is an overload of PrevDecl or
4229    // a declaration that requires merging. If it's an overload,
4230    // there's no more work to do here; we'll just add the new
4231    // function to the scope.
4232
4233    NamedDecl *OldDecl = 0;
4234    if (!AllowOverloadingOfFunction(Previous, Context)) {
4235      Redeclaration = true;
4236      OldDecl = Previous.getFoundDecl();
4237    } else {
4238      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4239                            /*NewIsUsingDecl*/ false)) {
4240      case Ovl_Match:
4241        Redeclaration = true;
4242        break;
4243
4244      case Ovl_NonFunction:
4245        Redeclaration = true;
4246        break;
4247
4248      case Ovl_Overload:
4249        Redeclaration = false;
4250        break;
4251      }
4252
4253      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4254        // If a function name is overloadable in C, then every function
4255        // with that name must be marked "overloadable".
4256        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4257          << Redeclaration << NewFD;
4258        NamedDecl *OverloadedDecl = 0;
4259        if (Redeclaration)
4260          OverloadedDecl = OldDecl;
4261        else if (!Previous.empty())
4262          OverloadedDecl = Previous.getRepresentativeDecl();
4263        if (OverloadedDecl)
4264          Diag(OverloadedDecl->getLocation(),
4265               diag::note_attribute_overloadable_prev_overload);
4266        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4267                                                        Context));
4268      }
4269    }
4270
4271    if (Redeclaration) {
4272      // NewFD and OldDecl represent declarations that need to be
4273      // merged.
4274      if (MergeFunctionDecl(NewFD, OldDecl))
4275        return NewFD->setInvalidDecl();
4276
4277      Previous.clear();
4278      Previous.addDecl(OldDecl);
4279
4280      if (FunctionTemplateDecl *OldTemplateDecl
4281                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4282        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4283        FunctionTemplateDecl *NewTemplateDecl
4284          = NewFD->getDescribedFunctionTemplate();
4285        assert(NewTemplateDecl && "Template/non-template mismatch");
4286        if (CXXMethodDecl *Method
4287              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4288          Method->setAccess(OldTemplateDecl->getAccess());
4289          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4290        }
4291
4292        // If this is an explicit specialization of a member that is a function
4293        // template, mark it as a member specialization.
4294        if (IsExplicitSpecialization &&
4295            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4296          NewTemplateDecl->setMemberSpecialization();
4297          assert(OldTemplateDecl->isMemberSpecialization());
4298        }
4299      } else {
4300        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4301          NewFD->setAccess(OldDecl->getAccess());
4302        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4303      }
4304    }
4305  }
4306
4307  // Semantic checking for this function declaration (in isolation).
4308  if (getLangOptions().CPlusPlus) {
4309    // C++-specific checks.
4310    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4311      CheckConstructor(Constructor);
4312    } else if (CXXDestructorDecl *Destructor =
4313                dyn_cast<CXXDestructorDecl>(NewFD)) {
4314      CXXRecordDecl *Record = Destructor->getParent();
4315      QualType ClassType = Context.getTypeDeclType(Record);
4316
4317      // FIXME: Shouldn't we be able to perform this check even when the class
4318      // type is dependent? Both gcc and edg can handle that.
4319      if (!ClassType->isDependentType()) {
4320        DeclarationName Name
4321          = Context.DeclarationNames.getCXXDestructorName(
4322                                        Context.getCanonicalType(ClassType));
4323        if (NewFD->getDeclName() != Name) {
4324          Diag(NewFD->getLocation(), diag::err_destructor_name);
4325          return NewFD->setInvalidDecl();
4326        }
4327      }
4328    } else if (CXXConversionDecl *Conversion
4329               = dyn_cast<CXXConversionDecl>(NewFD)) {
4330      ActOnConversionDeclarator(Conversion);
4331    }
4332
4333    // Find any virtual functions that this function overrides.
4334    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4335      if (!Method->isFunctionTemplateSpecialization() &&
4336          !Method->getDescribedFunctionTemplate()) {
4337        if (AddOverriddenMethods(Method->getParent(), Method)) {
4338          // If the function was marked as "static", we have a problem.
4339          if (NewFD->getStorageClass() == SC_Static) {
4340            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4341              << NewFD->getDeclName();
4342            for (CXXMethodDecl::method_iterator
4343                      Overridden = Method->begin_overridden_methods(),
4344                   OverriddenEnd = Method->end_overridden_methods();
4345                 Overridden != OverriddenEnd;
4346                 ++Overridden) {
4347              Diag((*Overridden)->getLocation(),
4348                   diag::note_overridden_virtual_function);
4349            }
4350          }
4351        }
4352      }
4353    }
4354
4355    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4356    if (NewFD->isOverloadedOperator() &&
4357        CheckOverloadedOperatorDeclaration(NewFD))
4358      return NewFD->setInvalidDecl();
4359
4360    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4361    if (NewFD->getLiteralIdentifier() &&
4362        CheckLiteralOperatorDeclaration(NewFD))
4363      return NewFD->setInvalidDecl();
4364
4365    // In C++, check default arguments now that we have merged decls. Unless
4366    // the lexical context is the class, because in this case this is done
4367    // during delayed parsing anyway.
4368    if (!CurContext->isRecord())
4369      CheckCXXDefaultArguments(NewFD);
4370
4371    // If this function declares a builtin function, check the type of this
4372    // declaration against the expected type for the builtin.
4373    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4374      ASTContext::GetBuiltinTypeError Error;
4375      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4376      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4377        // The type of this function differs from the type of the builtin,
4378        // so forget about the builtin entirely.
4379        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4380      }
4381    }
4382  }
4383}
4384
4385void Sema::CheckMain(FunctionDecl* FD) {
4386  // C++ [basic.start.main]p3:  A program that declares main to be inline
4387  //   or static is ill-formed.
4388  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4389  //   shall not appear in a declaration of main.
4390  // static main is not an error under C99, but we should warn about it.
4391  bool isInline = FD->isInlineSpecified();
4392  bool isStatic = FD->getStorageClass() == SC_Static;
4393  if (isInline || isStatic) {
4394    unsigned diagID = diag::warn_unusual_main_decl;
4395    if (isInline || getLangOptions().CPlusPlus)
4396      diagID = diag::err_unusual_main_decl;
4397
4398    int which = isStatic + (isInline << 1) - 1;
4399    Diag(FD->getLocation(), diagID) << which;
4400  }
4401
4402  QualType T = FD->getType();
4403  assert(T->isFunctionType() && "function decl is not of function type");
4404  const FunctionType* FT = T->getAs<FunctionType>();
4405
4406  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4407    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4408    FD->setInvalidDecl(true);
4409  }
4410
4411  // Treat protoless main() as nullary.
4412  if (isa<FunctionNoProtoType>(FT)) return;
4413
4414  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4415  unsigned nparams = FTP->getNumArgs();
4416  assert(FD->getNumParams() == nparams);
4417
4418  bool HasExtraParameters = (nparams > 3);
4419
4420  // Darwin passes an undocumented fourth argument of type char**.  If
4421  // other platforms start sprouting these, the logic below will start
4422  // getting shifty.
4423  if (nparams == 4 &&
4424      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4425    HasExtraParameters = false;
4426
4427  if (HasExtraParameters) {
4428    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4429    FD->setInvalidDecl(true);
4430    nparams = 3;
4431  }
4432
4433  // FIXME: a lot of the following diagnostics would be improved
4434  // if we had some location information about types.
4435
4436  QualType CharPP =
4437    Context.getPointerType(Context.getPointerType(Context.CharTy));
4438  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4439
4440  for (unsigned i = 0; i < nparams; ++i) {
4441    QualType AT = FTP->getArgType(i);
4442
4443    bool mismatch = true;
4444
4445    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4446      mismatch = false;
4447    else if (Expected[i] == CharPP) {
4448      // As an extension, the following forms are okay:
4449      //   char const **
4450      //   char const * const *
4451      //   char * const *
4452
4453      QualifierCollector qs;
4454      const PointerType* PT;
4455      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4456          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4457          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4458        qs.removeConst();
4459        mismatch = !qs.empty();
4460      }
4461    }
4462
4463    if (mismatch) {
4464      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4465      // TODO: suggest replacing given type with expected type
4466      FD->setInvalidDecl(true);
4467    }
4468  }
4469
4470  if (nparams == 1 && !FD->isInvalidDecl()) {
4471    Diag(FD->getLocation(), diag::warn_main_one_arg);
4472  }
4473
4474  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4475    Diag(FD->getLocation(), diag::err_main_template_decl);
4476    FD->setInvalidDecl();
4477  }
4478}
4479
4480bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4481  // FIXME: Need strict checking.  In C89, we need to check for
4482  // any assignment, increment, decrement, function-calls, or
4483  // commas outside of a sizeof.  In C99, it's the same list,
4484  // except that the aforementioned are allowed in unevaluated
4485  // expressions.  Everything else falls under the
4486  // "may accept other forms of constant expressions" exception.
4487  // (We never end up here for C++, so the constant expression
4488  // rules there don't matter.)
4489  if (Init->isConstantInitializer(Context, false))
4490    return false;
4491  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4492    << Init->getSourceRange();
4493  return true;
4494}
4495
4496/// AddInitializerToDecl - Adds the initializer Init to the
4497/// declaration dcl. If DirectInit is true, this is C++ direct
4498/// initialization rather than copy initialization.
4499void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4500                                bool DirectInit, bool TypeMayContainAuto) {
4501  // If there is no declaration, there was an error parsing it.  Just ignore
4502  // the initializer.
4503  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4504    return;
4505
4506  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4507    // With declarators parsed the way they are, the parser cannot
4508    // distinguish between a normal initializer and a pure-specifier.
4509    // Thus this grotesque test.
4510    IntegerLiteral *IL;
4511    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4512        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4513      CheckPureMethod(Method, Init->getSourceRange());
4514    else {
4515      Diag(Method->getLocation(), diag::err_member_function_initialization)
4516        << Method->getDeclName() << Init->getSourceRange();
4517      Method->setInvalidDecl();
4518    }
4519    return;
4520  }
4521
4522  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4523  if (!VDecl) {
4524    if (getLangOptions().CPlusPlus &&
4525        RealDecl->getLexicalDeclContext()->isRecord() &&
4526        isa<NamedDecl>(RealDecl))
4527      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4528    else
4529      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4530    RealDecl->setInvalidDecl();
4531    return;
4532  }
4533
4534  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4535  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4536    QualType DeducedType;
4537    if (!DeduceAutoType(VDecl->getType(), Init, DeducedType)) {
4538      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4539        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4540        << Init->getSourceRange();
4541      RealDecl->setInvalidDecl();
4542      return;
4543    }
4544    VDecl->setType(DeducedType);
4545
4546    // If this is a redeclaration, check that the type we just deduced matches
4547    // the previously declared type.
4548    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4549      MergeVarDeclTypes(VDecl, Old);
4550  }
4551
4552
4553  // A definition must end up with a complete type, which means it must be
4554  // complete with the restriction that an array type might be completed by the
4555  // initializer; note that later code assumes this restriction.
4556  QualType BaseDeclType = VDecl->getType();
4557  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4558    BaseDeclType = Array->getElementType();
4559  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4560                          diag::err_typecheck_decl_incomplete_type)) {
4561    RealDecl->setInvalidDecl();
4562    return;
4563  }
4564
4565  // The variable can not have an abstract class type.
4566  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4567                             diag::err_abstract_type_in_decl,
4568                             AbstractVariableType))
4569    VDecl->setInvalidDecl();
4570
4571  const VarDecl *Def;
4572  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4573    Diag(VDecl->getLocation(), diag::err_redefinition)
4574      << VDecl->getDeclName();
4575    Diag(Def->getLocation(), diag::note_previous_definition);
4576    VDecl->setInvalidDecl();
4577    return;
4578  }
4579
4580  const VarDecl* PrevInit = 0;
4581  if (getLangOptions().CPlusPlus) {
4582    // C++ [class.static.data]p4
4583    //   If a static data member is of const integral or const
4584    //   enumeration type, its declaration in the class definition can
4585    //   specify a constant-initializer which shall be an integral
4586    //   constant expression (5.19). In that case, the member can appear
4587    //   in integral constant expressions. The member shall still be
4588    //   defined in a namespace scope if it is used in the program and the
4589    //   namespace scope definition shall not contain an initializer.
4590    //
4591    // We already performed a redefinition check above, but for static
4592    // data members we also need to check whether there was an in-class
4593    // declaration with an initializer.
4594    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4595      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4596      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4597      return;
4598    }
4599
4600    if (VDecl->hasLocalStorage())
4601      getCurFunction()->setHasBranchProtectedScope();
4602
4603    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4604      VDecl->setInvalidDecl();
4605      return;
4606    }
4607  }
4608
4609  // Capture the variable that is being initialized and the style of
4610  // initialization.
4611  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4612
4613  // FIXME: Poor source location information.
4614  InitializationKind Kind
4615    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4616                                                   Init->getLocStart(),
4617                                                   Init->getLocEnd())
4618                : InitializationKind::CreateCopy(VDecl->getLocation(),
4619                                                 Init->getLocStart());
4620
4621  // Get the decls type and save a reference for later, since
4622  // CheckInitializerTypes may change it.
4623  QualType DclT = VDecl->getType(), SavT = DclT;
4624  if (VDecl->isLocalVarDecl()) {
4625    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4626      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4627      VDecl->setInvalidDecl();
4628    } else if (!VDecl->isInvalidDecl()) {
4629      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4630      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4631                                                MultiExprArg(*this, &Init, 1),
4632                                                &DclT);
4633      if (Result.isInvalid()) {
4634        VDecl->setInvalidDecl();
4635        return;
4636      }
4637
4638      Init = Result.takeAs<Expr>();
4639
4640      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4641      // Don't check invalid declarations to avoid emitting useless diagnostics.
4642      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4643        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4644          CheckForConstantInitializer(Init, DclT);
4645      }
4646    }
4647  } else if (VDecl->isStaticDataMember() &&
4648             VDecl->getLexicalDeclContext()->isRecord()) {
4649    // This is an in-class initialization for a static data member, e.g.,
4650    //
4651    // struct S {
4652    //   static const int value = 17;
4653    // };
4654
4655    // Try to perform the initialization regardless.
4656    if (!VDecl->isInvalidDecl()) {
4657      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4658      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4659                                          MultiExprArg(*this, &Init, 1),
4660                                          &DclT);
4661      if (Result.isInvalid()) {
4662        VDecl->setInvalidDecl();
4663        return;
4664      }
4665
4666      Init = Result.takeAs<Expr>();
4667    }
4668
4669    // C++ [class.mem]p4:
4670    //   A member-declarator can contain a constant-initializer only
4671    //   if it declares a static member (9.4) of const integral or
4672    //   const enumeration type, see 9.4.2.
4673    QualType T = VDecl->getType();
4674
4675    // Do nothing on dependent types.
4676    if (T->isDependentType()) {
4677
4678    // Require constness.
4679    } else if (!T.isConstQualified()) {
4680      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4681        << Init->getSourceRange();
4682      VDecl->setInvalidDecl();
4683
4684    // We allow integer constant expressions in all cases.
4685    } else if (T->isIntegralOrEnumerationType()) {
4686      if (!Init->isValueDependent()) {
4687        // Check whether the expression is a constant expression.
4688        llvm::APSInt Value;
4689        SourceLocation Loc;
4690        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4691          Diag(Loc, diag::err_in_class_initializer_non_constant)
4692            << Init->getSourceRange();
4693          VDecl->setInvalidDecl();
4694        }
4695      }
4696
4697    // We allow floating-point constants as an extension in C++03, and
4698    // C++0x has far more complicated rules that we don't really
4699    // implement fully.
4700    } else {
4701      bool Allowed = false;
4702      if (getLangOptions().CPlusPlus0x) {
4703        Allowed = T->isLiteralType();
4704      } else if (T->isFloatingType()) { // also permits complex, which is ok
4705        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4706          << T << Init->getSourceRange();
4707        Allowed = true;
4708      }
4709
4710      if (!Allowed) {
4711        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4712          << T << Init->getSourceRange();
4713        VDecl->setInvalidDecl();
4714
4715      // TODO: there are probably expressions that pass here that shouldn't.
4716      } else if (!Init->isValueDependent() &&
4717                 !Init->isConstantInitializer(Context, false)) {
4718        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4719          << Init->getSourceRange();
4720        VDecl->setInvalidDecl();
4721      }
4722    }
4723  } else if (VDecl->isFileVarDecl()) {
4724    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4725        (!getLangOptions().CPlusPlus ||
4726         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4727      Diag(VDecl->getLocation(), diag::warn_extern_init);
4728    if (!VDecl->isInvalidDecl()) {
4729      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4730      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4731                                                MultiExprArg(*this, &Init, 1),
4732                                                &DclT);
4733      if (Result.isInvalid()) {
4734        VDecl->setInvalidDecl();
4735        return;
4736      }
4737
4738      Init = Result.takeAs<Expr>();
4739    }
4740
4741    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4742    // Don't check invalid declarations to avoid emitting useless diagnostics.
4743    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4744      // C99 6.7.8p4. All file scoped initializers need to be constant.
4745      CheckForConstantInitializer(Init, DclT);
4746    }
4747  }
4748  // If the type changed, it means we had an incomplete type that was
4749  // completed by the initializer. For example:
4750  //   int ary[] = { 1, 3, 5 };
4751  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4752  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4753    VDecl->setType(DclT);
4754    Init->setType(DclT);
4755  }
4756
4757
4758  // If this variable is a local declaration with record type, make sure it
4759  // doesn't have a flexible member initialization.  We only support this as a
4760  // global/static definition.
4761  if (VDecl->hasLocalStorage())
4762    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4763      if (RT->getDecl()->hasFlexibleArrayMember()) {
4764        // Check whether the initializer tries to initialize the flexible
4765        // array member itself to anything other than an empty initializer list.
4766        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4767          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4768                                         RT->getDecl()->field_end()) - 1;
4769          if (Index < ILE->getNumInits() &&
4770              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4771                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4772            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4773            VDecl->setInvalidDecl();
4774          }
4775        }
4776      }
4777
4778  // Check any implicit conversions within the expression.
4779  CheckImplicitConversions(Init, VDecl->getLocation());
4780
4781  Init = MaybeCreateExprWithCleanups(Init);
4782  // Attach the initializer to the decl.
4783  VDecl->setInit(Init);
4784
4785  CheckCompleteVariableDeclaration(VDecl);
4786}
4787
4788/// ActOnInitializerError - Given that there was an error parsing an
4789/// initializer for the given declaration, try to return to some form
4790/// of sanity.
4791void Sema::ActOnInitializerError(Decl *D) {
4792  // Our main concern here is re-establishing invariants like "a
4793  // variable's type is either dependent or complete".
4794  if (!D || D->isInvalidDecl()) return;
4795
4796  VarDecl *VD = dyn_cast<VarDecl>(D);
4797  if (!VD) return;
4798
4799  // Auto types are meaningless if we can't make sense of the initializer.
4800  if (ParsingInitForAutoVars.count(D)) {
4801    D->setInvalidDecl();
4802    return;
4803  }
4804
4805  QualType Ty = VD->getType();
4806  if (Ty->isDependentType()) return;
4807
4808  // Require a complete type.
4809  if (RequireCompleteType(VD->getLocation(),
4810                          Context.getBaseElementType(Ty),
4811                          diag::err_typecheck_decl_incomplete_type)) {
4812    VD->setInvalidDecl();
4813    return;
4814  }
4815
4816  // Require an abstract type.
4817  if (RequireNonAbstractType(VD->getLocation(), Ty,
4818                             diag::err_abstract_type_in_decl,
4819                             AbstractVariableType)) {
4820    VD->setInvalidDecl();
4821    return;
4822  }
4823
4824  // Don't bother complaining about constructors or destructors,
4825  // though.
4826}
4827
4828void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4829                                  bool TypeMayContainAuto) {
4830  // If there is no declaration, there was an error parsing it. Just ignore it.
4831  if (RealDecl == 0)
4832    return;
4833
4834  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4835    QualType Type = Var->getType();
4836
4837    // C++0x [dcl.spec.auto]p3
4838    if (TypeMayContainAuto && Type->getContainedAutoType()) {
4839      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4840        << Var->getDeclName() << Type;
4841      Var->setInvalidDecl();
4842      return;
4843    }
4844
4845    switch (Var->isThisDeclarationADefinition()) {
4846    case VarDecl::Definition:
4847      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4848        break;
4849
4850      // We have an out-of-line definition of a static data member
4851      // that has an in-class initializer, so we type-check this like
4852      // a declaration.
4853      //
4854      // Fall through
4855
4856    case VarDecl::DeclarationOnly:
4857      // It's only a declaration.
4858
4859      // Block scope. C99 6.7p7: If an identifier for an object is
4860      // declared with no linkage (C99 6.2.2p6), the type for the
4861      // object shall be complete.
4862      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4863          !Var->getLinkage() && !Var->isInvalidDecl() &&
4864          RequireCompleteType(Var->getLocation(), Type,
4865                              diag::err_typecheck_decl_incomplete_type))
4866        Var->setInvalidDecl();
4867
4868      // Make sure that the type is not abstract.
4869      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4870          RequireNonAbstractType(Var->getLocation(), Type,
4871                                 diag::err_abstract_type_in_decl,
4872                                 AbstractVariableType))
4873        Var->setInvalidDecl();
4874      return;
4875
4876    case VarDecl::TentativeDefinition:
4877      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4878      // object that has file scope without an initializer, and without a
4879      // storage-class specifier or with the storage-class specifier "static",
4880      // constitutes a tentative definition. Note: A tentative definition with
4881      // external linkage is valid (C99 6.2.2p5).
4882      if (!Var->isInvalidDecl()) {
4883        if (const IncompleteArrayType *ArrayT
4884                                    = Context.getAsIncompleteArrayType(Type)) {
4885          if (RequireCompleteType(Var->getLocation(),
4886                                  ArrayT->getElementType(),
4887                                  diag::err_illegal_decl_array_incomplete_type))
4888            Var->setInvalidDecl();
4889        } else if (Var->getStorageClass() == SC_Static) {
4890          // C99 6.9.2p3: If the declaration of an identifier for an object is
4891          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4892          // declared type shall not be an incomplete type.
4893          // NOTE: code such as the following
4894          //     static struct s;
4895          //     struct s { int a; };
4896          // is accepted by gcc. Hence here we issue a warning instead of
4897          // an error and we do not invalidate the static declaration.
4898          // NOTE: to avoid multiple warnings, only check the first declaration.
4899          if (Var->getPreviousDeclaration() == 0)
4900            RequireCompleteType(Var->getLocation(), Type,
4901                                diag::ext_typecheck_decl_incomplete_type);
4902        }
4903      }
4904
4905      // Record the tentative definition; we're done.
4906      if (!Var->isInvalidDecl())
4907        TentativeDefinitions.push_back(Var);
4908      return;
4909    }
4910
4911    // Provide a specific diagnostic for uninitialized variable
4912    // definitions with incomplete array type.
4913    if (Type->isIncompleteArrayType()) {
4914      Diag(Var->getLocation(),
4915           diag::err_typecheck_incomplete_array_needs_initializer);
4916      Var->setInvalidDecl();
4917      return;
4918    }
4919
4920    // Provide a specific diagnostic for uninitialized variable
4921    // definitions with reference type.
4922    if (Type->isReferenceType()) {
4923      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4924        << Var->getDeclName()
4925        << SourceRange(Var->getLocation(), Var->getLocation());
4926      Var->setInvalidDecl();
4927      return;
4928    }
4929
4930    // Do not attempt to type-check the default initializer for a
4931    // variable with dependent type.
4932    if (Type->isDependentType())
4933      return;
4934
4935    if (Var->isInvalidDecl())
4936      return;
4937
4938    if (RequireCompleteType(Var->getLocation(),
4939                            Context.getBaseElementType(Type),
4940                            diag::err_typecheck_decl_incomplete_type)) {
4941      Var->setInvalidDecl();
4942      return;
4943    }
4944
4945    // The variable can not have an abstract class type.
4946    if (RequireNonAbstractType(Var->getLocation(), Type,
4947                               diag::err_abstract_type_in_decl,
4948                               AbstractVariableType)) {
4949      Var->setInvalidDecl();
4950      return;
4951    }
4952
4953    const RecordType *Record
4954      = Context.getBaseElementType(Type)->getAs<RecordType>();
4955    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4956        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4957      // C++03 [dcl.init]p9:
4958      //   If no initializer is specified for an object, and the
4959      //   object is of (possibly cv-qualified) non-POD class type (or
4960      //   array thereof), the object shall be default-initialized; if
4961      //   the object is of const-qualified type, the underlying class
4962      //   type shall have a user-declared default
4963      //   constructor. Otherwise, if no initializer is specified for
4964      //   a non- static object, the object and its subobjects, if
4965      //   any, have an indeterminate initial value); if the object
4966      //   or any of its subobjects are of const-qualified type, the
4967      //   program is ill-formed.
4968      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4969    } else {
4970      // Check for jumps past the implicit initializer.  C++0x
4971      // clarifies that this applies to a "variable with automatic
4972      // storage duration", not a "local variable".
4973      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4974        getCurFunction()->setHasBranchProtectedScope();
4975
4976      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4977      InitializationKind Kind
4978        = InitializationKind::CreateDefault(Var->getLocation());
4979
4980      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4981      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4982                                        MultiExprArg(*this, 0, 0));
4983      if (Init.isInvalid())
4984        Var->setInvalidDecl();
4985      else if (Init.get())
4986        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4987    }
4988
4989    CheckCompleteVariableDeclaration(Var);
4990  }
4991}
4992
4993void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
4994  if (var->isInvalidDecl()) return;
4995
4996  // All the following checks are C++ only.
4997  if (!getLangOptions().CPlusPlus) return;
4998
4999  QualType baseType = Context.getBaseElementType(var->getType());
5000  if (baseType->isDependentType()) return;
5001
5002  // __block variables might require us to capture a copy-initializer.
5003  if (var->hasAttr<BlocksAttr>()) {
5004    // It's currently invalid to ever have a __block variable with an
5005    // array type; should we diagnose that here?
5006
5007    // Regardless, we don't want to ignore array nesting when
5008    // constructing this copy.
5009    QualType type = var->getType();
5010
5011    if (type->isStructureOrClassType()) {
5012      SourceLocation poi = var->getLocation();
5013      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5014      ExprResult result =
5015        PerformCopyInitialization(
5016                        InitializedEntity::InitializeBlock(poi, type, false),
5017                                  poi, Owned(varRef));
5018      if (!result.isInvalid()) {
5019        result = MaybeCreateExprWithCleanups(result);
5020        Expr *init = result.takeAs<Expr>();
5021        Context.setBlockVarCopyInits(var, init);
5022      }
5023    }
5024  }
5025
5026  // Check for global constructors.
5027  if (!var->getDeclContext()->isDependentContext() &&
5028      var->hasGlobalStorage() &&
5029      !var->isStaticLocal() &&
5030      var->getInit() &&
5031      !var->getInit()->isConstantInitializer(Context,
5032                                             baseType->isReferenceType()))
5033    Diag(var->getLocation(), diag::warn_global_constructor)
5034      << var->getInit()->getSourceRange();
5035
5036  // Require the destructor.
5037  if (const RecordType *recordType = baseType->getAs<RecordType>())
5038    FinalizeVarWithDestructor(var, recordType);
5039}
5040
5041/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5042/// any semantic actions necessary after any initializer has been attached.
5043void
5044Sema::FinalizeDeclaration(Decl *ThisDecl) {
5045  // Note that we are no longer parsing the initializer for this declaration.
5046  ParsingInitForAutoVars.erase(ThisDecl);
5047}
5048
5049Sema::DeclGroupPtrTy
5050Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5051                              Decl **Group, unsigned NumDecls) {
5052  llvm::SmallVector<Decl*, 8> Decls;
5053
5054  if (DS.isTypeSpecOwned())
5055    Decls.push_back(DS.getRepAsDecl());
5056
5057  for (unsigned i = 0; i != NumDecls; ++i)
5058    if (Decl *D = Group[i])
5059      Decls.push_back(D);
5060
5061  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5062                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5063}
5064
5065/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5066/// group, performing any necessary semantic checking.
5067Sema::DeclGroupPtrTy
5068Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5069                           bool TypeMayContainAuto) {
5070  // C++0x [dcl.spec.auto]p7:
5071  //   If the type deduced for the template parameter U is not the same in each
5072  //   deduction, the program is ill-formed.
5073  // FIXME: When initializer-list support is added, a distinction is needed
5074  // between the deduced type U and the deduced type which 'auto' stands for.
5075  //   auto a = 0, b = { 1, 2, 3 };
5076  // is legal because the deduced type U is 'int' in both cases.
5077  if (TypeMayContainAuto && NumDecls > 1) {
5078    QualType Deduced;
5079    CanQualType DeducedCanon;
5080    VarDecl *DeducedDecl = 0;
5081    for (unsigned i = 0; i != NumDecls; ++i) {
5082      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5083        AutoType *AT = D->getType()->getContainedAutoType();
5084        // Don't reissue diagnostics when instantiating a template.
5085        if (AT && D->isInvalidDecl())
5086          break;
5087        if (AT && AT->isDeduced()) {
5088          QualType U = AT->getDeducedType();
5089          CanQualType UCanon = Context.getCanonicalType(U);
5090          if (Deduced.isNull()) {
5091            Deduced = U;
5092            DeducedCanon = UCanon;
5093            DeducedDecl = D;
5094          } else if (DeducedCanon != UCanon) {
5095            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5096                 diag::err_auto_different_deductions)
5097              << Deduced << DeducedDecl->getDeclName()
5098              << U << D->getDeclName()
5099              << DeducedDecl->getInit()->getSourceRange()
5100              << D->getInit()->getSourceRange();
5101            D->setInvalidDecl();
5102            break;
5103          }
5104        }
5105      }
5106    }
5107  }
5108
5109  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5110}
5111
5112
5113/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5114/// to introduce parameters into function prototype scope.
5115Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5116  const DeclSpec &DS = D.getDeclSpec();
5117
5118  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5119  VarDecl::StorageClass StorageClass = SC_None;
5120  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5121  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5122    StorageClass = SC_Register;
5123    StorageClassAsWritten = SC_Register;
5124  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5125    Diag(DS.getStorageClassSpecLoc(),
5126         diag::err_invalid_storage_class_in_func_decl);
5127    D.getMutableDeclSpec().ClearStorageClassSpecs();
5128  }
5129
5130  if (D.getDeclSpec().isThreadSpecified())
5131    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5132
5133  DiagnoseFunctionSpecifiers(D);
5134
5135  TagDecl *OwnedDecl = 0;
5136  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5137  QualType parmDeclType = TInfo->getType();
5138
5139  if (getLangOptions().CPlusPlus) {
5140    // Check that there are no default arguments inside the type of this
5141    // parameter.
5142    CheckExtraCXXDefaultArguments(D);
5143
5144    if (OwnedDecl && OwnedDecl->isDefinition()) {
5145      // C++ [dcl.fct]p6:
5146      //   Types shall not be defined in return or parameter types.
5147      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5148        << Context.getTypeDeclType(OwnedDecl);
5149    }
5150
5151    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5152    if (D.getCXXScopeSpec().isSet()) {
5153      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5154        << D.getCXXScopeSpec().getRange();
5155      D.getCXXScopeSpec().clear();
5156    }
5157  }
5158
5159  // Ensure we have a valid name
5160  IdentifierInfo *II = 0;
5161  if (D.hasName()) {
5162    II = D.getIdentifier();
5163    if (!II) {
5164      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5165        << GetNameForDeclarator(D).getName().getAsString();
5166      D.setInvalidType(true);
5167    }
5168  }
5169
5170  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5171  if (II) {
5172    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5173                   ForRedeclaration);
5174    LookupName(R, S);
5175    if (R.isSingleResult()) {
5176      NamedDecl *PrevDecl = R.getFoundDecl();
5177      if (PrevDecl->isTemplateParameter()) {
5178        // Maybe we will complain about the shadowed template parameter.
5179        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5180        // Just pretend that we didn't see the previous declaration.
5181        PrevDecl = 0;
5182      } else if (S->isDeclScope(PrevDecl)) {
5183        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5184        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5185
5186        // Recover by removing the name
5187        II = 0;
5188        D.SetIdentifier(0, D.getIdentifierLoc());
5189        D.setInvalidType(true);
5190      }
5191    }
5192  }
5193
5194  // Temporarily put parameter variables in the translation unit, not
5195  // the enclosing context.  This prevents them from accidentally
5196  // looking like class members in C++.
5197  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5198                                    TInfo, parmDeclType, II,
5199                                    D.getIdentifierLoc(),
5200                                    StorageClass, StorageClassAsWritten);
5201
5202  if (D.isInvalidType())
5203    New->setInvalidDecl();
5204
5205  // Add the parameter declaration into this scope.
5206  S->AddDecl(New);
5207  if (II)
5208    IdResolver.AddDecl(New);
5209
5210  ProcessDeclAttributes(S, New, D);
5211
5212  if (New->hasAttr<BlocksAttr>()) {
5213    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5214  }
5215  return New;
5216}
5217
5218/// \brief Synthesizes a variable for a parameter arising from a
5219/// typedef.
5220ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5221                                              SourceLocation Loc,
5222                                              QualType T) {
5223  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5224                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5225                                           SC_None, SC_None, 0);
5226  Param->setImplicit();
5227  return Param;
5228}
5229
5230void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5231                                    ParmVarDecl * const *ParamEnd) {
5232  // Don't diagnose unused-parameter errors in template instantiations; we
5233  // will already have done so in the template itself.
5234  if (!ActiveTemplateInstantiations.empty())
5235    return;
5236
5237  for (; Param != ParamEnd; ++Param) {
5238    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5239        !(*Param)->hasAttr<UnusedAttr>()) {
5240      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5241        << (*Param)->getDeclName();
5242    }
5243  }
5244}
5245
5246void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5247                                                  ParmVarDecl * const *ParamEnd,
5248                                                  QualType ReturnTy,
5249                                                  NamedDecl *D) {
5250  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5251    return;
5252
5253  // Warn if the return value is pass-by-value and larger than the specified
5254  // threshold.
5255  if (ReturnTy->isPODType()) {
5256    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5257    if (Size > LangOpts.NumLargeByValueCopy)
5258      Diag(D->getLocation(), diag::warn_return_value_size)
5259          << D->getDeclName() << Size;
5260  }
5261
5262  // Warn if any parameter is pass-by-value and larger than the specified
5263  // threshold.
5264  for (; Param != ParamEnd; ++Param) {
5265    QualType T = (*Param)->getType();
5266    if (!T->isPODType())
5267      continue;
5268    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5269    if (Size > LangOpts.NumLargeByValueCopy)
5270      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5271          << (*Param)->getDeclName() << Size;
5272  }
5273}
5274
5275ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5276                                  TypeSourceInfo *TSInfo, QualType T,
5277                                  IdentifierInfo *Name,
5278                                  SourceLocation NameLoc,
5279                                  VarDecl::StorageClass StorageClass,
5280                                  VarDecl::StorageClass StorageClassAsWritten) {
5281  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5282                                         adjustParameterType(T), TSInfo,
5283                                         StorageClass, StorageClassAsWritten,
5284                                         0);
5285
5286  // Parameters can not be abstract class types.
5287  // For record types, this is done by the AbstractClassUsageDiagnoser once
5288  // the class has been completely parsed.
5289  if (!CurContext->isRecord() &&
5290      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5291                             AbstractParamType))
5292    New->setInvalidDecl();
5293
5294  // Parameter declarators cannot be interface types. All ObjC objects are
5295  // passed by reference.
5296  if (T->isObjCObjectType()) {
5297    Diag(NameLoc,
5298         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5299    New->setInvalidDecl();
5300  }
5301
5302  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5303  // duration shall not be qualified by an address-space qualifier."
5304  // Since all parameters have automatic store duration, they can not have
5305  // an address space.
5306  if (T.getAddressSpace() != 0) {
5307    Diag(NameLoc, diag::err_arg_with_address_space);
5308    New->setInvalidDecl();
5309  }
5310
5311  return New;
5312}
5313
5314void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5315                                           SourceLocation LocAfterDecls) {
5316  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5317
5318  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5319  // for a K&R function.
5320  if (!FTI.hasPrototype) {
5321    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5322      --i;
5323      if (FTI.ArgInfo[i].Param == 0) {
5324        llvm::SmallString<256> Code;
5325        llvm::raw_svector_ostream(Code) << "  int "
5326                                        << FTI.ArgInfo[i].Ident->getName()
5327                                        << ";\n";
5328        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5329          << FTI.ArgInfo[i].Ident
5330          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5331
5332        // Implicitly declare the argument as type 'int' for lack of a better
5333        // type.
5334        DeclSpec DS;
5335        const char* PrevSpec; // unused
5336        unsigned DiagID; // unused
5337        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5338                           PrevSpec, DiagID);
5339        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5340        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5341        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5342      }
5343    }
5344  }
5345}
5346
5347Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5348                                         Declarator &D) {
5349  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5350  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5351  Scope *ParentScope = FnBodyScope->getParent();
5352
5353  Decl *DP = HandleDeclarator(ParentScope, D,
5354                              MultiTemplateParamsArg(*this),
5355                              /*IsFunctionDefinition=*/true);
5356  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5357}
5358
5359static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5360  // Don't warn about invalid declarations.
5361  if (FD->isInvalidDecl())
5362    return false;
5363
5364  // Or declarations that aren't global.
5365  if (!FD->isGlobal())
5366    return false;
5367
5368  // Don't warn about C++ member functions.
5369  if (isa<CXXMethodDecl>(FD))
5370    return false;
5371
5372  // Don't warn about 'main'.
5373  if (FD->isMain())
5374    return false;
5375
5376  // Don't warn about inline functions.
5377  if (FD->isInlineSpecified())
5378    return false;
5379
5380  // Don't warn about function templates.
5381  if (FD->getDescribedFunctionTemplate())
5382    return false;
5383
5384  // Don't warn about function template specializations.
5385  if (FD->isFunctionTemplateSpecialization())
5386    return false;
5387
5388  bool MissingPrototype = true;
5389  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5390       Prev; Prev = Prev->getPreviousDeclaration()) {
5391    // Ignore any declarations that occur in function or method
5392    // scope, because they aren't visible from the header.
5393    if (Prev->getDeclContext()->isFunctionOrMethod())
5394      continue;
5395
5396    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5397    break;
5398  }
5399
5400  return MissingPrototype;
5401}
5402
5403Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5404  // Clear the last template instantiation error context.
5405  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5406
5407  if (!D)
5408    return D;
5409  FunctionDecl *FD = 0;
5410
5411  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5412    FD = FunTmpl->getTemplatedDecl();
5413  else
5414    FD = cast<FunctionDecl>(D);
5415
5416  // Enter a new function scope
5417  PushFunctionScope();
5418
5419  // See if this is a redefinition.
5420  // But don't complain if we're in GNU89 mode and the previous definition
5421  // was an extern inline function.
5422  const FunctionDecl *Definition;
5423  if (FD->hasBody(Definition) &&
5424      !canRedefineFunction(Definition, getLangOptions())) {
5425    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5426        Definition->getStorageClass() == SC_Extern)
5427      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5428        << FD->getDeclName() << getLangOptions().CPlusPlus;
5429    else
5430      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5431    Diag(Definition->getLocation(), diag::note_previous_definition);
5432  }
5433
5434  // Builtin functions cannot be defined.
5435  if (unsigned BuiltinID = FD->getBuiltinID()) {
5436    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5437      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5438      FD->setInvalidDecl();
5439    }
5440  }
5441
5442  // The return type of a function definition must be complete
5443  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5444  QualType ResultType = FD->getResultType();
5445  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5446      !FD->isInvalidDecl() &&
5447      RequireCompleteType(FD->getLocation(), ResultType,
5448                          diag::err_func_def_incomplete_result))
5449    FD->setInvalidDecl();
5450
5451  // GNU warning -Wmissing-prototypes:
5452  //   Warn if a global function is defined without a previous
5453  //   prototype declaration. This warning is issued even if the
5454  //   definition itself provides a prototype. The aim is to detect
5455  //   global functions that fail to be declared in header files.
5456  if (ShouldWarnAboutMissingPrototype(FD))
5457    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5458
5459  if (FnBodyScope)
5460    PushDeclContext(FnBodyScope, FD);
5461
5462  // Check the validity of our function parameters
5463  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5464                           /*CheckParameterNames=*/true);
5465
5466  // Introduce our parameters into the function scope
5467  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5468    ParmVarDecl *Param = FD->getParamDecl(p);
5469    Param->setOwningFunction(FD);
5470
5471    // If this has an identifier, add it to the scope stack.
5472    if (Param->getIdentifier() && FnBodyScope) {
5473      CheckShadow(FnBodyScope, Param);
5474
5475      PushOnScopeChains(Param, FnBodyScope);
5476    }
5477  }
5478
5479  // Checking attributes of current function definition
5480  // dllimport attribute.
5481  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5482  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5483    // dllimport attribute cannot be directly applied to definition.
5484    if (!DA->isInherited()) {
5485      Diag(FD->getLocation(),
5486           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5487        << "dllimport";
5488      FD->setInvalidDecl();
5489      return FD;
5490    }
5491
5492    // Visual C++ appears to not think this is an issue, so only issue
5493    // a warning when Microsoft extensions are disabled.
5494    if (!LangOpts.Microsoft) {
5495      // If a symbol previously declared dllimport is later defined, the
5496      // attribute is ignored in subsequent references, and a warning is
5497      // emitted.
5498      Diag(FD->getLocation(),
5499           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5500        << FD->getName() << "dllimport";
5501    }
5502  }
5503  return FD;
5504}
5505
5506/// \brief Given the set of return statements within a function body,
5507/// compute the variables that are subject to the named return value
5508/// optimization.
5509///
5510/// Each of the variables that is subject to the named return value
5511/// optimization will be marked as NRVO variables in the AST, and any
5512/// return statement that has a marked NRVO variable as its NRVO candidate can
5513/// use the named return value optimization.
5514///
5515/// This function applies a very simplistic algorithm for NRVO: if every return
5516/// statement in the function has the same NRVO candidate, that candidate is
5517/// the NRVO variable.
5518///
5519/// FIXME: Employ a smarter algorithm that accounts for multiple return
5520/// statements and the lifetimes of the NRVO candidates. We should be able to
5521/// find a maximal set of NRVO variables.
5522static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5523  ReturnStmt **Returns = Scope->Returns.data();
5524
5525  const VarDecl *NRVOCandidate = 0;
5526  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5527    if (!Returns[I]->getNRVOCandidate())
5528      return;
5529
5530    if (!NRVOCandidate)
5531      NRVOCandidate = Returns[I]->getNRVOCandidate();
5532    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5533      return;
5534  }
5535
5536  if (NRVOCandidate)
5537    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5538}
5539
5540Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5541  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5542}
5543
5544Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5545                                    bool IsInstantiation) {
5546  FunctionDecl *FD = 0;
5547  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5548  if (FunTmpl)
5549    FD = FunTmpl->getTemplatedDecl();
5550  else
5551    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5552
5553  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5554  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5555
5556  if (FD) {
5557    FD->setBody(Body);
5558    if (FD->isMain()) {
5559      // C and C++ allow for main to automagically return 0.
5560      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5561      FD->setHasImplicitReturnZero(true);
5562      WP.disableCheckFallThrough();
5563    }
5564
5565    if (!FD->isInvalidDecl()) {
5566      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5567      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5568                                             FD->getResultType(), FD);
5569
5570      // If this is a constructor, we need a vtable.
5571      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5572        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5573
5574      ComputeNRVO(Body, getCurFunction());
5575    }
5576
5577    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5578  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5579    assert(MD == getCurMethodDecl() && "Method parsing confused");
5580    MD->setBody(Body);
5581    if (Body)
5582      MD->setEndLoc(Body->getLocEnd());
5583    if (!MD->isInvalidDecl()) {
5584      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5585      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5586                                             MD->getResultType(), MD);
5587    }
5588  } else {
5589    return 0;
5590  }
5591
5592  // Verify and clean out per-function state.
5593  if (Body) {
5594    // C++ constructors that have function-try-blocks can't have return
5595    // statements in the handlers of that block. (C++ [except.handle]p14)
5596    // Verify this.
5597    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5598      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5599
5600    // Verify that that gotos and switch cases don't jump into scopes illegally.
5601    // Verify that that gotos and switch cases don't jump into scopes illegally.
5602    if (getCurFunction()->NeedsScopeChecking() &&
5603        !dcl->isInvalidDecl() &&
5604        !hasAnyErrorsInThisFunction())
5605      DiagnoseInvalidJumps(Body);
5606
5607    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5608      if (!Destructor->getParent()->isDependentType())
5609        CheckDestructor(Destructor);
5610
5611      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5612                                             Destructor->getParent());
5613    }
5614
5615    // If any errors have occurred, clear out any temporaries that may have
5616    // been leftover. This ensures that these temporaries won't be picked up for
5617    // deletion in some later function.
5618    if (PP.getDiagnostics().hasErrorOccurred())
5619      ExprTemporaries.clear();
5620    else if (!isa<FunctionTemplateDecl>(dcl)) {
5621      // Since the body is valid, issue any analysis-based warnings that are
5622      // enabled.
5623      ActivePolicy = &WP;
5624    }
5625
5626    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5627  }
5628
5629  if (!IsInstantiation)
5630    PopDeclContext();
5631
5632  PopFunctionOrBlockScope(ActivePolicy, dcl);
5633
5634  // If any errors have occurred, clear out any temporaries that may have
5635  // been leftover. This ensures that these temporaries won't be picked up for
5636  // deletion in some later function.
5637  if (getDiagnostics().hasErrorOccurred())
5638    ExprTemporaries.clear();
5639
5640  return dcl;
5641}
5642
5643/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5644/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5645NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5646                                          IdentifierInfo &II, Scope *S) {
5647  // Before we produce a declaration for an implicitly defined
5648  // function, see whether there was a locally-scoped declaration of
5649  // this name as a function or variable. If so, use that
5650  // (non-visible) declaration, and complain about it.
5651  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5652    = LocallyScopedExternalDecls.find(&II);
5653  if (Pos != LocallyScopedExternalDecls.end()) {
5654    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5655    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5656    return Pos->second;
5657  }
5658
5659  // Extension in C99.  Legal in C90, but warn about it.
5660  if (II.getName().startswith("__builtin_"))
5661    Diag(Loc, diag::warn_builtin_unknown) << &II;
5662  else if (getLangOptions().C99)
5663    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5664  else
5665    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5666
5667  // Set a Declarator for the implicit definition: int foo();
5668  const char *Dummy;
5669  DeclSpec DS;
5670  unsigned DiagID;
5671  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5672  (void)Error; // Silence warning.
5673  assert(!Error && "Error setting up implicit decl!");
5674  Declarator D(DS, Declarator::BlockContext);
5675  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5676                                             false, false, SourceLocation(), 0,
5677                                             0, 0, true, SourceLocation(),
5678                                             false, SourceLocation(),
5679                                             false, 0,0,0, Loc, Loc, D),
5680                SourceLocation());
5681  D.SetIdentifier(&II, Loc);
5682
5683  // Insert this function into translation-unit scope.
5684
5685  DeclContext *PrevDC = CurContext;
5686  CurContext = Context.getTranslationUnitDecl();
5687
5688  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5689  FD->setImplicit();
5690
5691  CurContext = PrevDC;
5692
5693  AddKnownFunctionAttributes(FD);
5694
5695  return FD;
5696}
5697
5698/// \brief Adds any function attributes that we know a priori based on
5699/// the declaration of this function.
5700///
5701/// These attributes can apply both to implicitly-declared builtins
5702/// (like __builtin___printf_chk) or to library-declared functions
5703/// like NSLog or printf.
5704void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5705  if (FD->isInvalidDecl())
5706    return;
5707
5708  // If this is a built-in function, map its builtin attributes to
5709  // actual attributes.
5710  if (unsigned BuiltinID = FD->getBuiltinID()) {
5711    // Handle printf-formatting attributes.
5712    unsigned FormatIdx;
5713    bool HasVAListArg;
5714    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5715      if (!FD->getAttr<FormatAttr>())
5716        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5717                                                "printf", FormatIdx+1,
5718                                               HasVAListArg ? 0 : FormatIdx+2));
5719    }
5720    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5721                                             HasVAListArg)) {
5722     if (!FD->getAttr<FormatAttr>())
5723       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5724                                              "scanf", FormatIdx+1,
5725                                              HasVAListArg ? 0 : FormatIdx+2));
5726    }
5727
5728    // Mark const if we don't care about errno and that is the only
5729    // thing preventing the function from being const. This allows
5730    // IRgen to use LLVM intrinsics for such functions.
5731    if (!getLangOptions().MathErrno &&
5732        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5733      if (!FD->getAttr<ConstAttr>())
5734        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5735    }
5736
5737    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5738      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5739    if (Context.BuiltinInfo.isConst(BuiltinID))
5740      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5741  }
5742
5743  IdentifierInfo *Name = FD->getIdentifier();
5744  if (!Name)
5745    return;
5746  if ((!getLangOptions().CPlusPlus &&
5747       FD->getDeclContext()->isTranslationUnit()) ||
5748      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5749       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5750       LinkageSpecDecl::lang_c)) {
5751    // Okay: this could be a libc/libm/Objective-C function we know
5752    // about.
5753  } else
5754    return;
5755
5756  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5757    // FIXME: NSLog and NSLogv should be target specific
5758    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5759      // FIXME: We known better than our headers.
5760      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5761    } else
5762      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5763                                             "printf", 1,
5764                                             Name->isStr("NSLogv") ? 0 : 2));
5765  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5766    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5767    // target-specific builtins, perhaps?
5768    if (!FD->getAttr<FormatAttr>())
5769      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5770                                             "printf", 2,
5771                                             Name->isStr("vasprintf") ? 0 : 3));
5772  }
5773}
5774
5775TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5776                                    TypeSourceInfo *TInfo) {
5777  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5778  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5779
5780  if (!TInfo) {
5781    assert(D.isInvalidType() && "no declarator info for valid type");
5782    TInfo = Context.getTrivialTypeSourceInfo(T);
5783  }
5784
5785  // Scope manipulation handled by caller.
5786  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5787                                           D.getIdentifierLoc(),
5788                                           D.getIdentifier(),
5789                                           TInfo);
5790
5791  // Bail out immediately if we have an invalid declaration.
5792  if (D.isInvalidType()) {
5793    NewTD->setInvalidDecl();
5794    return NewTD;
5795  }
5796
5797  // C++ [dcl.typedef]p8:
5798  //   If the typedef declaration defines an unnamed class (or
5799  //   enum), the first typedef-name declared by the declaration
5800  //   to be that class type (or enum type) is used to denote the
5801  //   class type (or enum type) for linkage purposes only.
5802  // We need to check whether the type was declared in the declaration.
5803  switch (D.getDeclSpec().getTypeSpecType()) {
5804  case TST_enum:
5805  case TST_struct:
5806  case TST_union:
5807  case TST_class: {
5808    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5809
5810    // Do nothing if the tag is not anonymous or already has an
5811    // associated typedef (from an earlier typedef in this decl group).
5812    if (tagFromDeclSpec->getIdentifier()) break;
5813    if (tagFromDeclSpec->getTypedefForAnonDecl()) break;
5814
5815    // A well-formed anonymous tag must always be a TUK_Definition.
5816    assert(tagFromDeclSpec->isThisDeclarationADefinition());
5817
5818    // The type must match the tag exactly;  no qualifiers allowed.
5819    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
5820      break;
5821
5822    // Otherwise, set this is the anon-decl typedef for the tag.
5823    tagFromDeclSpec->setTypedefForAnonDecl(NewTD);
5824    break;
5825  }
5826
5827  default:
5828    break;
5829  }
5830
5831  return NewTD;
5832}
5833
5834
5835/// \brief Determine whether a tag with a given kind is acceptable
5836/// as a redeclaration of the given tag declaration.
5837///
5838/// \returns true if the new tag kind is acceptable, false otherwise.
5839bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5840                                        TagTypeKind NewTag,
5841                                        SourceLocation NewTagLoc,
5842                                        const IdentifierInfo &Name) {
5843  // C++ [dcl.type.elab]p3:
5844  //   The class-key or enum keyword present in the
5845  //   elaborated-type-specifier shall agree in kind with the
5846  //   declaration to which the name in the elaborated-type-specifier
5847  //   refers. This rule also applies to the form of
5848  //   elaborated-type-specifier that declares a class-name or
5849  //   friend class since it can be construed as referring to the
5850  //   definition of the class. Thus, in any
5851  //   elaborated-type-specifier, the enum keyword shall be used to
5852  //   refer to an enumeration (7.2), the union class-key shall be
5853  //   used to refer to a union (clause 9), and either the class or
5854  //   struct class-key shall be used to refer to a class (clause 9)
5855  //   declared using the class or struct class-key.
5856  TagTypeKind OldTag = Previous->getTagKind();
5857  if (OldTag == NewTag)
5858    return true;
5859
5860  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5861      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5862    // Warn about the struct/class tag mismatch.
5863    bool isTemplate = false;
5864    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5865      isTemplate = Record->getDescribedClassTemplate();
5866
5867    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5868      << (NewTag == TTK_Class)
5869      << isTemplate << &Name
5870      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5871                              OldTag == TTK_Class? "class" : "struct");
5872    Diag(Previous->getLocation(), diag::note_previous_use);
5873    return true;
5874  }
5875  return false;
5876}
5877
5878/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5879/// former case, Name will be non-null.  In the later case, Name will be null.
5880/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5881/// reference/declaration/definition of a tag.
5882Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5883                     SourceLocation KWLoc, CXXScopeSpec &SS,
5884                     IdentifierInfo *Name, SourceLocation NameLoc,
5885                     AttributeList *Attr, AccessSpecifier AS,
5886                     MultiTemplateParamsArg TemplateParameterLists,
5887                     bool &OwnedDecl, bool &IsDependent,
5888                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5889                     TypeResult UnderlyingType) {
5890  // If this is not a definition, it must have a name.
5891  assert((Name != 0 || TUK == TUK_Definition) &&
5892         "Nameless record must be a definition!");
5893  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5894
5895  OwnedDecl = false;
5896  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5897
5898  // FIXME: Check explicit specializations more carefully.
5899  bool isExplicitSpecialization = false;
5900  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5901  bool Invalid = false;
5902
5903  // We only need to do this matching if we have template parameters
5904  // or a scope specifier, which also conveniently avoids this work
5905  // for non-C++ cases.
5906  if (NumMatchedTemplateParamLists ||
5907      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5908    if (TemplateParameterList *TemplateParams
5909          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5910                                                TemplateParameterLists.get(),
5911                                               TemplateParameterLists.size(),
5912                                                    TUK == TUK_Friend,
5913                                                    isExplicitSpecialization,
5914                                                    Invalid)) {
5915      // All but one template parameter lists have been matching.
5916      --NumMatchedTemplateParamLists;
5917
5918      if (TemplateParams->size() > 0) {
5919        // This is a declaration or definition of a class template (which may
5920        // be a member of another template).
5921        if (Invalid)
5922          return 0;
5923
5924        OwnedDecl = false;
5925        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5926                                               SS, Name, NameLoc, Attr,
5927                                               TemplateParams,
5928                                               AS);
5929        TemplateParameterLists.release();
5930        return Result.get();
5931      } else {
5932        // The "template<>" header is extraneous.
5933        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5934          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5935        isExplicitSpecialization = true;
5936      }
5937    }
5938  }
5939
5940  // Figure out the underlying type if this a enum declaration. We need to do
5941  // this early, because it's needed to detect if this is an incompatible
5942  // redeclaration.
5943  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5944
5945  if (Kind == TTK_Enum) {
5946    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5947      // No underlying type explicitly specified, or we failed to parse the
5948      // type, default to int.
5949      EnumUnderlying = Context.IntTy.getTypePtr();
5950    else if (UnderlyingType.get()) {
5951      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5952      // integral type; any cv-qualification is ignored.
5953      TypeSourceInfo *TI = 0;
5954      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5955      EnumUnderlying = TI;
5956
5957      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5958
5959      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5960        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5961          << T;
5962        // Recover by falling back to int.
5963        EnumUnderlying = Context.IntTy.getTypePtr();
5964      }
5965
5966      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
5967                                          UPPC_FixedUnderlyingType))
5968        EnumUnderlying = Context.IntTy.getTypePtr();
5969
5970    } else if (getLangOptions().Microsoft)
5971      // Microsoft enums are always of int type.
5972      EnumUnderlying = Context.IntTy.getTypePtr();
5973  }
5974
5975  DeclContext *SearchDC = CurContext;
5976  DeclContext *DC = CurContext;
5977  bool isStdBadAlloc = false;
5978
5979  RedeclarationKind Redecl = ForRedeclaration;
5980  if (TUK == TUK_Friend || TUK == TUK_Reference)
5981    Redecl = NotForRedeclaration;
5982
5983  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5984
5985  if (Name && SS.isNotEmpty()) {
5986    // We have a nested-name tag ('struct foo::bar').
5987
5988    // Check for invalid 'foo::'.
5989    if (SS.isInvalid()) {
5990      Name = 0;
5991      goto CreateNewDecl;
5992    }
5993
5994    // If this is a friend or a reference to a class in a dependent
5995    // context, don't try to make a decl for it.
5996    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5997      DC = computeDeclContext(SS, false);
5998      if (!DC) {
5999        IsDependent = true;
6000        return 0;
6001      }
6002    } else {
6003      DC = computeDeclContext(SS, true);
6004      if (!DC) {
6005        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6006          << SS.getRange();
6007        return 0;
6008      }
6009    }
6010
6011    if (RequireCompleteDeclContext(SS, DC))
6012      return 0;
6013
6014    SearchDC = DC;
6015    // Look-up name inside 'foo::'.
6016    LookupQualifiedName(Previous, DC);
6017
6018    if (Previous.isAmbiguous())
6019      return 0;
6020
6021    if (Previous.empty()) {
6022      // Name lookup did not find anything. However, if the
6023      // nested-name-specifier refers to the current instantiation,
6024      // and that current instantiation has any dependent base
6025      // classes, we might find something at instantiation time: treat
6026      // this as a dependent elaborated-type-specifier.
6027      // But this only makes any sense for reference-like lookups.
6028      if (Previous.wasNotFoundInCurrentInstantiation() &&
6029          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6030        IsDependent = true;
6031        return 0;
6032      }
6033
6034      // A tag 'foo::bar' must already exist.
6035      Diag(NameLoc, diag::err_not_tag_in_scope)
6036        << Kind << Name << DC << SS.getRange();
6037      Name = 0;
6038      Invalid = true;
6039      goto CreateNewDecl;
6040    }
6041  } else if (Name) {
6042    // If this is a named struct, check to see if there was a previous forward
6043    // declaration or definition.
6044    // FIXME: We're looking into outer scopes here, even when we
6045    // shouldn't be. Doing so can result in ambiguities that we
6046    // shouldn't be diagnosing.
6047    LookupName(Previous, S);
6048
6049    // Note:  there used to be some attempt at recovery here.
6050    if (Previous.isAmbiguous())
6051      return 0;
6052
6053    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6054      // FIXME: This makes sure that we ignore the contexts associated
6055      // with C structs, unions, and enums when looking for a matching
6056      // tag declaration or definition. See the similar lookup tweak
6057      // in Sema::LookupName; is there a better way to deal with this?
6058      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6059        SearchDC = SearchDC->getParent();
6060    }
6061  } else if (S->isFunctionPrototypeScope()) {
6062    // If this is an enum declaration in function prototype scope, set its
6063    // initial context to the translation unit.
6064    SearchDC = Context.getTranslationUnitDecl();
6065  }
6066
6067  if (Previous.isSingleResult() &&
6068      Previous.getFoundDecl()->isTemplateParameter()) {
6069    // Maybe we will complain about the shadowed template parameter.
6070    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6071    // Just pretend that we didn't see the previous declaration.
6072    Previous.clear();
6073  }
6074
6075  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6076      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6077    // This is a declaration of or a reference to "std::bad_alloc".
6078    isStdBadAlloc = true;
6079
6080    if (Previous.empty() && StdBadAlloc) {
6081      // std::bad_alloc has been implicitly declared (but made invisible to
6082      // name lookup). Fill in this implicit declaration as the previous
6083      // declaration, so that the declarations get chained appropriately.
6084      Previous.addDecl(getStdBadAlloc());
6085    }
6086  }
6087
6088  // If we didn't find a previous declaration, and this is a reference
6089  // (or friend reference), move to the correct scope.  In C++, we
6090  // also need to do a redeclaration lookup there, just in case
6091  // there's a shadow friend decl.
6092  if (Name && Previous.empty() &&
6093      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6094    if (Invalid) goto CreateNewDecl;
6095    assert(SS.isEmpty());
6096
6097    if (TUK == TUK_Reference) {
6098      // C++ [basic.scope.pdecl]p5:
6099      //   -- for an elaborated-type-specifier of the form
6100      //
6101      //          class-key identifier
6102      //
6103      //      if the elaborated-type-specifier is used in the
6104      //      decl-specifier-seq or parameter-declaration-clause of a
6105      //      function defined in namespace scope, the identifier is
6106      //      declared as a class-name in the namespace that contains
6107      //      the declaration; otherwise, except as a friend
6108      //      declaration, the identifier is declared in the smallest
6109      //      non-class, non-function-prototype scope that contains the
6110      //      declaration.
6111      //
6112      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6113      // C structs and unions.
6114      //
6115      // It is an error in C++ to declare (rather than define) an enum
6116      // type, including via an elaborated type specifier.  We'll
6117      // diagnose that later; for now, declare the enum in the same
6118      // scope as we would have picked for any other tag type.
6119      //
6120      // GNU C also supports this behavior as part of its incomplete
6121      // enum types extension, while GNU C++ does not.
6122      //
6123      // Find the context where we'll be declaring the tag.
6124      // FIXME: We would like to maintain the current DeclContext as the
6125      // lexical context,
6126      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6127        SearchDC = SearchDC->getParent();
6128
6129      // Find the scope where we'll be declaring the tag.
6130      while (S->isClassScope() ||
6131             (getLangOptions().CPlusPlus &&
6132              S->isFunctionPrototypeScope()) ||
6133             ((S->getFlags() & Scope::DeclScope) == 0) ||
6134             (S->getEntity() &&
6135              ((DeclContext *)S->getEntity())->isTransparentContext()))
6136        S = S->getParent();
6137    } else {
6138      assert(TUK == TUK_Friend);
6139      // C++ [namespace.memdef]p3:
6140      //   If a friend declaration in a non-local class first declares a
6141      //   class or function, the friend class or function is a member of
6142      //   the innermost enclosing namespace.
6143      SearchDC = SearchDC->getEnclosingNamespaceContext();
6144    }
6145
6146    // In C++, we need to do a redeclaration lookup to properly
6147    // diagnose some problems.
6148    if (getLangOptions().CPlusPlus) {
6149      Previous.setRedeclarationKind(ForRedeclaration);
6150      LookupQualifiedName(Previous, SearchDC);
6151    }
6152  }
6153
6154  if (!Previous.empty()) {
6155    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6156
6157    // It's okay to have a tag decl in the same scope as a typedef
6158    // which hides a tag decl in the same scope.  Finding this
6159    // insanity with a redeclaration lookup can only actually happen
6160    // in C++.
6161    //
6162    // This is also okay for elaborated-type-specifiers, which is
6163    // technically forbidden by the current standard but which is
6164    // okay according to the likely resolution of an open issue;
6165    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6166    if (getLangOptions().CPlusPlus) {
6167      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6168        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6169          TagDecl *Tag = TT->getDecl();
6170          if (Tag->getDeclName() == Name &&
6171              Tag->getDeclContext()->getRedeclContext()
6172                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6173            PrevDecl = Tag;
6174            Previous.clear();
6175            Previous.addDecl(Tag);
6176            Previous.resolveKind();
6177          }
6178        }
6179      }
6180    }
6181
6182    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6183      // If this is a use of a previous tag, or if the tag is already declared
6184      // in the same scope (so that the definition/declaration completes or
6185      // rementions the tag), reuse the decl.
6186      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6187          isDeclInScope(PrevDecl, SearchDC, S)) {
6188        // Make sure that this wasn't declared as an enum and now used as a
6189        // struct or something similar.
6190        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6191          bool SafeToContinue
6192            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6193               Kind != TTK_Enum);
6194          if (SafeToContinue)
6195            Diag(KWLoc, diag::err_use_with_wrong_tag)
6196              << Name
6197              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6198                                              PrevTagDecl->getKindName());
6199          else
6200            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6201          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6202
6203          if (SafeToContinue)
6204            Kind = PrevTagDecl->getTagKind();
6205          else {
6206            // Recover by making this an anonymous redefinition.
6207            Name = 0;
6208            Previous.clear();
6209            Invalid = true;
6210          }
6211        }
6212
6213        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6214          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6215
6216          // All conflicts with previous declarations are recovered by
6217          // returning the previous declaration.
6218          if (ScopedEnum != PrevEnum->isScoped()) {
6219            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6220              << PrevEnum->isScoped();
6221            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6222            return PrevTagDecl;
6223          }
6224          else if (EnumUnderlying && PrevEnum->isFixed()) {
6225            QualType T;
6226            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6227                T = TI->getType();
6228            else
6229                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6230
6231            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6232              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6233                   diag::err_enum_redeclare_type_mismatch)
6234                << T
6235                << PrevEnum->getIntegerType();
6236              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6237              return PrevTagDecl;
6238            }
6239          }
6240          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6241            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6242              << PrevEnum->isFixed();
6243            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6244            return PrevTagDecl;
6245          }
6246        }
6247
6248        if (!Invalid) {
6249          // If this is a use, just return the declaration we found.
6250
6251          // FIXME: In the future, return a variant or some other clue
6252          // for the consumer of this Decl to know it doesn't own it.
6253          // For our current ASTs this shouldn't be a problem, but will
6254          // need to be changed with DeclGroups.
6255          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6256              TUK == TUK_Friend)
6257            return PrevTagDecl;
6258
6259          // Diagnose attempts to redefine a tag.
6260          if (TUK == TUK_Definition) {
6261            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6262              // If we're defining a specialization and the previous definition
6263              // is from an implicit instantiation, don't emit an error
6264              // here; we'll catch this in the general case below.
6265              if (!isExplicitSpecialization ||
6266                  !isa<CXXRecordDecl>(Def) ||
6267                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6268                                               == TSK_ExplicitSpecialization) {
6269                Diag(NameLoc, diag::err_redefinition) << Name;
6270                Diag(Def->getLocation(), diag::note_previous_definition);
6271                // If this is a redefinition, recover by making this
6272                // struct be anonymous, which will make any later
6273                // references get the previous definition.
6274                Name = 0;
6275                Previous.clear();
6276                Invalid = true;
6277              }
6278            } else {
6279              // If the type is currently being defined, complain
6280              // about a nested redefinition.
6281              const TagType *Tag
6282                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6283              if (Tag->isBeingDefined()) {
6284                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6285                Diag(PrevTagDecl->getLocation(),
6286                     diag::note_previous_definition);
6287                Name = 0;
6288                Previous.clear();
6289                Invalid = true;
6290              }
6291            }
6292
6293            // Okay, this is definition of a previously declared or referenced
6294            // tag PrevDecl. We're going to create a new Decl for it.
6295          }
6296        }
6297        // If we get here we have (another) forward declaration or we
6298        // have a definition.  Just create a new decl.
6299
6300      } else {
6301        // If we get here, this is a definition of a new tag type in a nested
6302        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6303        // new decl/type.  We set PrevDecl to NULL so that the entities
6304        // have distinct types.
6305        Previous.clear();
6306      }
6307      // If we get here, we're going to create a new Decl. If PrevDecl
6308      // is non-NULL, it's a definition of the tag declared by
6309      // PrevDecl. If it's NULL, we have a new definition.
6310
6311
6312    // Otherwise, PrevDecl is not a tag, but was found with tag
6313    // lookup.  This is only actually possible in C++, where a few
6314    // things like templates still live in the tag namespace.
6315    } else {
6316      assert(getLangOptions().CPlusPlus);
6317
6318      // Use a better diagnostic if an elaborated-type-specifier
6319      // found the wrong kind of type on the first
6320      // (non-redeclaration) lookup.
6321      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6322          !Previous.isForRedeclaration()) {
6323        unsigned Kind = 0;
6324        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6325        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6326        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6327        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6328        Invalid = true;
6329
6330      // Otherwise, only diagnose if the declaration is in scope.
6331      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6332        // do nothing
6333
6334      // Diagnose implicit declarations introduced by elaborated types.
6335      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6336        unsigned Kind = 0;
6337        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6338        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6339        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6340        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6341        Invalid = true;
6342
6343      // Otherwise it's a declaration.  Call out a particularly common
6344      // case here.
6345      } else if (isa<TypedefDecl>(PrevDecl)) {
6346        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6347          << Name
6348          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6349        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6350        Invalid = true;
6351
6352      // Otherwise, diagnose.
6353      } else {
6354        // The tag name clashes with something else in the target scope,
6355        // issue an error and recover by making this tag be anonymous.
6356        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6357        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6358        Name = 0;
6359        Invalid = true;
6360      }
6361
6362      // The existing declaration isn't relevant to us; we're in a
6363      // new scope, so clear out the previous declaration.
6364      Previous.clear();
6365    }
6366  }
6367
6368CreateNewDecl:
6369
6370  TagDecl *PrevDecl = 0;
6371  if (Previous.isSingleResult())
6372    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6373
6374  // If there is an identifier, use the location of the identifier as the
6375  // location of the decl, otherwise use the location of the struct/union
6376  // keyword.
6377  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6378
6379  // Otherwise, create a new declaration. If there is a previous
6380  // declaration of the same entity, the two will be linked via
6381  // PrevDecl.
6382  TagDecl *New;
6383
6384  bool IsForwardReference = false;
6385  if (Kind == TTK_Enum) {
6386    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6387    // enum X { A, B, C } D;    D should chain to X.
6388    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6389                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6390                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6391    // If this is an undefined enum, warn.
6392    if (TUK != TUK_Definition && !Invalid) {
6393      TagDecl *Def;
6394      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6395        // C++0x: 7.2p2: opaque-enum-declaration.
6396        // Conflicts are diagnosed above. Do nothing.
6397      }
6398      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6399        Diag(Loc, diag::ext_forward_ref_enum_def)
6400          << New;
6401        Diag(Def->getLocation(), diag::note_previous_definition);
6402      } else {
6403        unsigned DiagID = diag::ext_forward_ref_enum;
6404        if (getLangOptions().Microsoft)
6405          DiagID = diag::ext_ms_forward_ref_enum;
6406        else if (getLangOptions().CPlusPlus)
6407          DiagID = diag::err_forward_ref_enum;
6408        Diag(Loc, DiagID);
6409
6410        // If this is a forward-declared reference to an enumeration, make a
6411        // note of it; we won't actually be introducing the declaration into
6412        // the declaration context.
6413        if (TUK == TUK_Reference)
6414          IsForwardReference = true;
6415      }
6416    }
6417
6418    if (EnumUnderlying) {
6419      EnumDecl *ED = cast<EnumDecl>(New);
6420      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6421        ED->setIntegerTypeSourceInfo(TI);
6422      else
6423        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6424      ED->setPromotionType(ED->getIntegerType());
6425    }
6426
6427  } else {
6428    // struct/union/class
6429
6430    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6431    // struct X { int A; } D;    D should chain to X.
6432    if (getLangOptions().CPlusPlus) {
6433      // FIXME: Look for a way to use RecordDecl for simple structs.
6434      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6435                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6436
6437      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6438        StdBadAlloc = cast<CXXRecordDecl>(New);
6439    } else
6440      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6441                               cast_or_null<RecordDecl>(PrevDecl));
6442  }
6443
6444  // Maybe add qualifier info.
6445  if (SS.isNotEmpty()) {
6446    if (SS.isSet()) {
6447      New->setQualifierInfo(SS.getWithLocInContext(Context));
6448      if (NumMatchedTemplateParamLists > 0) {
6449        New->setTemplateParameterListsInfo(Context,
6450                                           NumMatchedTemplateParamLists,
6451                    (TemplateParameterList**) TemplateParameterLists.release());
6452      }
6453    }
6454    else
6455      Invalid = true;
6456  }
6457
6458  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6459    // Add alignment attributes if necessary; these attributes are checked when
6460    // the ASTContext lays out the structure.
6461    //
6462    // It is important for implementing the correct semantics that this
6463    // happen here (in act on tag decl). The #pragma pack stack is
6464    // maintained as a result of parser callbacks which can occur at
6465    // many points during the parsing of a struct declaration (because
6466    // the #pragma tokens are effectively skipped over during the
6467    // parsing of the struct).
6468    AddAlignmentAttributesForRecord(RD);
6469  }
6470
6471  // If this is a specialization of a member class (of a class template),
6472  // check the specialization.
6473  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6474    Invalid = true;
6475
6476  if (Invalid)
6477    New->setInvalidDecl();
6478
6479  if (Attr)
6480    ProcessDeclAttributeList(S, New, Attr);
6481
6482  // If we're declaring or defining a tag in function prototype scope
6483  // in C, note that this type can only be used within the function.
6484  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6485    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6486
6487  // Set the lexical context. If the tag has a C++ scope specifier, the
6488  // lexical context will be different from the semantic context.
6489  New->setLexicalDeclContext(CurContext);
6490
6491  // Mark this as a friend decl if applicable.
6492  if (TUK == TUK_Friend)
6493    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6494
6495  // Set the access specifier.
6496  if (!Invalid && SearchDC->isRecord())
6497    SetMemberAccessSpecifier(New, PrevDecl, AS);
6498
6499  if (TUK == TUK_Definition)
6500    New->startDefinition();
6501
6502  // If this has an identifier, add it to the scope stack.
6503  if (TUK == TUK_Friend) {
6504    // We might be replacing an existing declaration in the lookup tables;
6505    // if so, borrow its access specifier.
6506    if (PrevDecl)
6507      New->setAccess(PrevDecl->getAccess());
6508
6509    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6510    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6511    if (Name) // can be null along some error paths
6512      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6513        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6514  } else if (Name) {
6515    S = getNonFieldDeclScope(S);
6516    PushOnScopeChains(New, S, !IsForwardReference);
6517    if (IsForwardReference)
6518      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6519
6520  } else {
6521    CurContext->addDecl(New);
6522  }
6523
6524  // If this is the C FILE type, notify the AST context.
6525  if (IdentifierInfo *II = New->getIdentifier())
6526    if (!New->isInvalidDecl() &&
6527        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6528        II->isStr("FILE"))
6529      Context.setFILEDecl(New);
6530
6531  OwnedDecl = true;
6532  return New;
6533}
6534
6535void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6536  AdjustDeclIfTemplate(TagD);
6537  TagDecl *Tag = cast<TagDecl>(TagD);
6538
6539  // Enter the tag context.
6540  PushDeclContext(S, Tag);
6541}
6542
6543void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6544                                           ClassVirtSpecifiers &CVS,
6545                                           SourceLocation LBraceLoc) {
6546  AdjustDeclIfTemplate(TagD);
6547  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6548
6549  FieldCollector->StartClass();
6550
6551  if (!Record->getIdentifier())
6552    return;
6553
6554  if (CVS.isFinalSpecified())
6555    Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6556  if (CVS.isExplicitSpecified())
6557    Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6558
6559  // C++ [class]p2:
6560  //   [...] The class-name is also inserted into the scope of the
6561  //   class itself; this is known as the injected-class-name. For
6562  //   purposes of access checking, the injected-class-name is treated
6563  //   as if it were a public member name.
6564  CXXRecordDecl *InjectedClassName
6565    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6566                            CurContext, Record->getLocation(),
6567                            Record->getIdentifier(),
6568                            Record->getTagKeywordLoc(),
6569                            /*PrevDecl=*/0,
6570                            /*DelayTypeCreation=*/true);
6571  Context.getTypeDeclType(InjectedClassName, Record);
6572  InjectedClassName->setImplicit();
6573  InjectedClassName->setAccess(AS_public);
6574  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6575      InjectedClassName->setDescribedClassTemplate(Template);
6576  PushOnScopeChains(InjectedClassName, S);
6577  assert(InjectedClassName->isInjectedClassName() &&
6578         "Broken injected-class-name");
6579}
6580
6581void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6582                                    SourceLocation RBraceLoc) {
6583  AdjustDeclIfTemplate(TagD);
6584  TagDecl *Tag = cast<TagDecl>(TagD);
6585  Tag->setRBraceLoc(RBraceLoc);
6586
6587  if (isa<CXXRecordDecl>(Tag))
6588    FieldCollector->FinishClass();
6589
6590  // Exit this scope of this tag's definition.
6591  PopDeclContext();
6592
6593  // Notify the consumer that we've defined a tag.
6594  Consumer.HandleTagDeclDefinition(Tag);
6595}
6596
6597void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6598  AdjustDeclIfTemplate(TagD);
6599  TagDecl *Tag = cast<TagDecl>(TagD);
6600  Tag->setInvalidDecl();
6601
6602  // We're undoing ActOnTagStartDefinition here, not
6603  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6604  // the FieldCollector.
6605
6606  PopDeclContext();
6607}
6608
6609// Note that FieldName may be null for anonymous bitfields.
6610bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6611                          QualType FieldTy, const Expr *BitWidth,
6612                          bool *ZeroWidth) {
6613  // Default to true; that shouldn't confuse checks for emptiness
6614  if (ZeroWidth)
6615    *ZeroWidth = true;
6616
6617  // C99 6.7.2.1p4 - verify the field type.
6618  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6619  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6620    // Handle incomplete types with specific error.
6621    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6622      return true;
6623    if (FieldName)
6624      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6625        << FieldName << FieldTy << BitWidth->getSourceRange();
6626    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6627      << FieldTy << BitWidth->getSourceRange();
6628  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6629                                             UPPC_BitFieldWidth))
6630    return true;
6631
6632  // If the bit-width is type- or value-dependent, don't try to check
6633  // it now.
6634  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6635    return false;
6636
6637  llvm::APSInt Value;
6638  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6639    return true;
6640
6641  if (Value != 0 && ZeroWidth)
6642    *ZeroWidth = false;
6643
6644  // Zero-width bitfield is ok for anonymous field.
6645  if (Value == 0 && FieldName)
6646    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6647
6648  if (Value.isSigned() && Value.isNegative()) {
6649    if (FieldName)
6650      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6651               << FieldName << Value.toString(10);
6652    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6653      << Value.toString(10);
6654  }
6655
6656  if (!FieldTy->isDependentType()) {
6657    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6658    if (Value.getZExtValue() > TypeSize) {
6659      if (!getLangOptions().CPlusPlus) {
6660        if (FieldName)
6661          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6662            << FieldName << (unsigned)Value.getZExtValue()
6663            << (unsigned)TypeSize;
6664
6665        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6666          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6667      }
6668
6669      if (FieldName)
6670        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6671          << FieldName << (unsigned)Value.getZExtValue()
6672          << (unsigned)TypeSize;
6673      else
6674        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6675          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6676    }
6677  }
6678
6679  return false;
6680}
6681
6682/// ActOnField - Each field of a struct/union/class is passed into this in order
6683/// to create a FieldDecl object for it.
6684Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6685                                 SourceLocation DeclStart,
6686                                 Declarator &D, ExprTy *BitfieldWidth) {
6687  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6688                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6689                               AS_public);
6690  return Res;
6691}
6692
6693/// HandleField - Analyze a field of a C struct or a C++ data member.
6694///
6695FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6696                             SourceLocation DeclStart,
6697                             Declarator &D, Expr *BitWidth,
6698                             AccessSpecifier AS) {
6699  IdentifierInfo *II = D.getIdentifier();
6700  SourceLocation Loc = DeclStart;
6701  if (II) Loc = D.getIdentifierLoc();
6702
6703  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6704  QualType T = TInfo->getType();
6705  if (getLangOptions().CPlusPlus) {
6706    CheckExtraCXXDefaultArguments(D);
6707
6708    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6709                                        UPPC_DataMemberType)) {
6710      D.setInvalidType();
6711      T = Context.IntTy;
6712      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6713    }
6714  }
6715
6716  DiagnoseFunctionSpecifiers(D);
6717
6718  if (D.getDeclSpec().isThreadSpecified())
6719    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6720
6721  // Check to see if this name was declared as a member previously
6722  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6723  LookupName(Previous, S);
6724  assert((Previous.empty() || Previous.isOverloadedResult() ||
6725          Previous.isSingleResult())
6726    && "Lookup of member name should be either overloaded, single or null");
6727
6728  // If the name is overloaded then get any declaration else get the single result
6729  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6730    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6731
6732  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6733    // Maybe we will complain about the shadowed template parameter.
6734    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6735    // Just pretend that we didn't see the previous declaration.
6736    PrevDecl = 0;
6737  }
6738
6739  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6740    PrevDecl = 0;
6741
6742  bool Mutable
6743    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6744  SourceLocation TSSL = D.getSourceRange().getBegin();
6745  FieldDecl *NewFD
6746    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6747                     AS, PrevDecl, &D);
6748
6749  if (NewFD->isInvalidDecl())
6750    Record->setInvalidDecl();
6751
6752  if (NewFD->isInvalidDecl() && PrevDecl) {
6753    // Don't introduce NewFD into scope; there's already something
6754    // with the same name in the same scope.
6755  } else if (II) {
6756    PushOnScopeChains(NewFD, S);
6757  } else
6758    Record->addDecl(NewFD);
6759
6760  return NewFD;
6761}
6762
6763/// \brief Build a new FieldDecl and check its well-formedness.
6764///
6765/// This routine builds a new FieldDecl given the fields name, type,
6766/// record, etc. \p PrevDecl should refer to any previous declaration
6767/// with the same name and in the same scope as the field to be
6768/// created.
6769///
6770/// \returns a new FieldDecl.
6771///
6772/// \todo The Declarator argument is a hack. It will be removed once
6773FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6774                                TypeSourceInfo *TInfo,
6775                                RecordDecl *Record, SourceLocation Loc,
6776                                bool Mutable, Expr *BitWidth,
6777                                SourceLocation TSSL,
6778                                AccessSpecifier AS, NamedDecl *PrevDecl,
6779                                Declarator *D) {
6780  IdentifierInfo *II = Name.getAsIdentifierInfo();
6781  bool InvalidDecl = false;
6782  if (D) InvalidDecl = D->isInvalidType();
6783
6784  // If we receive a broken type, recover by assuming 'int' and
6785  // marking this declaration as invalid.
6786  if (T.isNull()) {
6787    InvalidDecl = true;
6788    T = Context.IntTy;
6789  }
6790
6791  QualType EltTy = Context.getBaseElementType(T);
6792  if (!EltTy->isDependentType() &&
6793      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6794    // Fields of incomplete type force their record to be invalid.
6795    Record->setInvalidDecl();
6796    InvalidDecl = true;
6797  }
6798
6799  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6800  // than a variably modified type.
6801  if (!InvalidDecl && T->isVariablyModifiedType()) {
6802    bool SizeIsNegative;
6803    llvm::APSInt Oversized;
6804    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6805                                                           SizeIsNegative,
6806                                                           Oversized);
6807    if (!FixedTy.isNull()) {
6808      Diag(Loc, diag::warn_illegal_constant_array_size);
6809      T = FixedTy;
6810    } else {
6811      if (SizeIsNegative)
6812        Diag(Loc, diag::err_typecheck_negative_array_size);
6813      else if (Oversized.getBoolValue())
6814        Diag(Loc, diag::err_array_too_large)
6815          << Oversized.toString(10);
6816      else
6817        Diag(Loc, diag::err_typecheck_field_variable_size);
6818      InvalidDecl = true;
6819    }
6820  }
6821
6822  // Fields can not have abstract class types
6823  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6824                                             diag::err_abstract_type_in_decl,
6825                                             AbstractFieldType))
6826    InvalidDecl = true;
6827
6828  bool ZeroWidth = false;
6829  // If this is declared as a bit-field, check the bit-field.
6830  if (!InvalidDecl && BitWidth &&
6831      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6832    InvalidDecl = true;
6833    BitWidth = 0;
6834    ZeroWidth = false;
6835  }
6836
6837  // Check that 'mutable' is consistent with the type of the declaration.
6838  if (!InvalidDecl && Mutable) {
6839    unsigned DiagID = 0;
6840    if (T->isReferenceType())
6841      DiagID = diag::err_mutable_reference;
6842    else if (T.isConstQualified())
6843      DiagID = diag::err_mutable_const;
6844
6845    if (DiagID) {
6846      SourceLocation ErrLoc = Loc;
6847      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6848        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6849      Diag(ErrLoc, DiagID);
6850      Mutable = false;
6851      InvalidDecl = true;
6852    }
6853  }
6854
6855  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6856                                       BitWidth, Mutable);
6857  if (InvalidDecl)
6858    NewFD->setInvalidDecl();
6859
6860  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6861    Diag(Loc, diag::err_duplicate_member) << II;
6862    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6863    NewFD->setInvalidDecl();
6864  }
6865
6866  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6867    if (Record->isUnion()) {
6868      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6869        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6870        if (RDecl->getDefinition()) {
6871          // C++ [class.union]p1: An object of a class with a non-trivial
6872          // constructor, a non-trivial copy constructor, a non-trivial
6873          // destructor, or a non-trivial copy assignment operator
6874          // cannot be a member of a union, nor can an array of such
6875          // objects.
6876          // TODO: C++0x alters this restriction significantly.
6877          if (CheckNontrivialField(NewFD))
6878            NewFD->setInvalidDecl();
6879        }
6880      }
6881
6882      // C++ [class.union]p1: If a union contains a member of reference type,
6883      // the program is ill-formed.
6884      if (EltTy->isReferenceType()) {
6885        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6886          << NewFD->getDeclName() << EltTy;
6887        NewFD->setInvalidDecl();
6888      }
6889    }
6890  }
6891
6892  // FIXME: We need to pass in the attributes given an AST
6893  // representation, not a parser representation.
6894  if (D)
6895    // FIXME: What to pass instead of TUScope?
6896    ProcessDeclAttributes(TUScope, NewFD, *D);
6897
6898  if (T.isObjCGCWeak())
6899    Diag(Loc, diag::warn_attribute_weak_on_field);
6900
6901  NewFD->setAccess(AS);
6902  return NewFD;
6903}
6904
6905bool Sema::CheckNontrivialField(FieldDecl *FD) {
6906  assert(FD);
6907  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6908
6909  if (FD->isInvalidDecl())
6910    return true;
6911
6912  QualType EltTy = Context.getBaseElementType(FD->getType());
6913  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6914    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6915    if (RDecl->getDefinition()) {
6916      // We check for copy constructors before constructors
6917      // because otherwise we'll never get complaints about
6918      // copy constructors.
6919
6920      CXXSpecialMember member = CXXInvalid;
6921      if (!RDecl->hasTrivialCopyConstructor())
6922        member = CXXCopyConstructor;
6923      else if (!RDecl->hasTrivialConstructor())
6924        member = CXXConstructor;
6925      else if (!RDecl->hasTrivialCopyAssignment())
6926        member = CXXCopyAssignment;
6927      else if (!RDecl->hasTrivialDestructor())
6928        member = CXXDestructor;
6929
6930      if (member != CXXInvalid) {
6931        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6932              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6933        DiagnoseNontrivial(RT, member);
6934        return true;
6935      }
6936    }
6937  }
6938
6939  return false;
6940}
6941
6942/// DiagnoseNontrivial - Given that a class has a non-trivial
6943/// special member, figure out why.
6944void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6945  QualType QT(T, 0U);
6946  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6947
6948  // Check whether the member was user-declared.
6949  switch (member) {
6950  case CXXInvalid:
6951    break;
6952
6953  case CXXConstructor:
6954    if (RD->hasUserDeclaredConstructor()) {
6955      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6956      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6957        const FunctionDecl *body = 0;
6958        ci->hasBody(body);
6959        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6960          SourceLocation CtorLoc = ci->getLocation();
6961          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6962          return;
6963        }
6964      }
6965
6966      assert(0 && "found no user-declared constructors");
6967      return;
6968    }
6969    break;
6970
6971  case CXXCopyConstructor:
6972    if (RD->hasUserDeclaredCopyConstructor()) {
6973      SourceLocation CtorLoc =
6974        RD->getCopyConstructor(Context, 0)->getLocation();
6975      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6976      return;
6977    }
6978    break;
6979
6980  case CXXCopyAssignment:
6981    if (RD->hasUserDeclaredCopyAssignment()) {
6982      // FIXME: this should use the location of the copy
6983      // assignment, not the type.
6984      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6985      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6986      return;
6987    }
6988    break;
6989
6990  case CXXDestructor:
6991    if (RD->hasUserDeclaredDestructor()) {
6992      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6993      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6994      return;
6995    }
6996    break;
6997  }
6998
6999  typedef CXXRecordDecl::base_class_iterator base_iter;
7000
7001  // Virtual bases and members inhibit trivial copying/construction,
7002  // but not trivial destruction.
7003  if (member != CXXDestructor) {
7004    // Check for virtual bases.  vbases includes indirect virtual bases,
7005    // so we just iterate through the direct bases.
7006    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7007      if (bi->isVirtual()) {
7008        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7009        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7010        return;
7011      }
7012
7013    // Check for virtual methods.
7014    typedef CXXRecordDecl::method_iterator meth_iter;
7015    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7016         ++mi) {
7017      if (mi->isVirtual()) {
7018        SourceLocation MLoc = mi->getSourceRange().getBegin();
7019        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7020        return;
7021      }
7022    }
7023  }
7024
7025  bool (CXXRecordDecl::*hasTrivial)() const;
7026  switch (member) {
7027  case CXXConstructor:
7028    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7029  case CXXCopyConstructor:
7030    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7031  case CXXCopyAssignment:
7032    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7033  case CXXDestructor:
7034    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7035  default:
7036    assert(0 && "unexpected special member"); return;
7037  }
7038
7039  // Check for nontrivial bases (and recurse).
7040  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7041    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7042    assert(BaseRT && "Don't know how to handle dependent bases");
7043    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7044    if (!(BaseRecTy->*hasTrivial)()) {
7045      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7046      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7047      DiagnoseNontrivial(BaseRT, member);
7048      return;
7049    }
7050  }
7051
7052  // Check for nontrivial members (and recurse).
7053  typedef RecordDecl::field_iterator field_iter;
7054  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7055       ++fi) {
7056    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7057    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7058      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7059
7060      if (!(EltRD->*hasTrivial)()) {
7061        SourceLocation FLoc = (*fi)->getLocation();
7062        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7063        DiagnoseNontrivial(EltRT, member);
7064        return;
7065      }
7066    }
7067  }
7068
7069  assert(0 && "found no explanation for non-trivial member");
7070}
7071
7072/// TranslateIvarVisibility - Translate visibility from a token ID to an
7073///  AST enum value.
7074static ObjCIvarDecl::AccessControl
7075TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7076  switch (ivarVisibility) {
7077  default: assert(0 && "Unknown visitibility kind");
7078  case tok::objc_private: return ObjCIvarDecl::Private;
7079  case tok::objc_public: return ObjCIvarDecl::Public;
7080  case tok::objc_protected: return ObjCIvarDecl::Protected;
7081  case tok::objc_package: return ObjCIvarDecl::Package;
7082  }
7083}
7084
7085/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7086/// in order to create an IvarDecl object for it.
7087Decl *Sema::ActOnIvar(Scope *S,
7088                                SourceLocation DeclStart,
7089                                Decl *IntfDecl,
7090                                Declarator &D, ExprTy *BitfieldWidth,
7091                                tok::ObjCKeywordKind Visibility) {
7092
7093  IdentifierInfo *II = D.getIdentifier();
7094  Expr *BitWidth = (Expr*)BitfieldWidth;
7095  SourceLocation Loc = DeclStart;
7096  if (II) Loc = D.getIdentifierLoc();
7097
7098  // FIXME: Unnamed fields can be handled in various different ways, for
7099  // example, unnamed unions inject all members into the struct namespace!
7100
7101  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7102  QualType T = TInfo->getType();
7103
7104  if (BitWidth) {
7105    // 6.7.2.1p3, 6.7.2.1p4
7106    if (VerifyBitField(Loc, II, T, BitWidth)) {
7107      D.setInvalidType();
7108      BitWidth = 0;
7109    }
7110  } else {
7111    // Not a bitfield.
7112
7113    // validate II.
7114
7115  }
7116  if (T->isReferenceType()) {
7117    Diag(Loc, diag::err_ivar_reference_type);
7118    D.setInvalidType();
7119  }
7120  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7121  // than a variably modified type.
7122  else if (T->isVariablyModifiedType()) {
7123    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7124    D.setInvalidType();
7125  }
7126
7127  // Get the visibility (access control) for this ivar.
7128  ObjCIvarDecl::AccessControl ac =
7129    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7130                                        : ObjCIvarDecl::None;
7131  // Must set ivar's DeclContext to its enclosing interface.
7132  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7133  ObjCContainerDecl *EnclosingContext;
7134  if (ObjCImplementationDecl *IMPDecl =
7135      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7136    if (!LangOpts.ObjCNonFragileABI2) {
7137    // Case of ivar declared in an implementation. Context is that of its class.
7138      EnclosingContext = IMPDecl->getClassInterface();
7139      assert(EnclosingContext && "Implementation has no class interface!");
7140    }
7141    else
7142      EnclosingContext = EnclosingDecl;
7143  } else {
7144    if (ObjCCategoryDecl *CDecl =
7145        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7146      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7147        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7148        return 0;
7149      }
7150    }
7151    EnclosingContext = EnclosingDecl;
7152  }
7153
7154  // Construct the decl.
7155  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
7156                                             EnclosingContext, Loc, II, T,
7157                                             TInfo, ac, (Expr *)BitfieldWidth);
7158
7159  if (II) {
7160    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7161                                           ForRedeclaration);
7162    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7163        && !isa<TagDecl>(PrevDecl)) {
7164      Diag(Loc, diag::err_duplicate_member) << II;
7165      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7166      NewID->setInvalidDecl();
7167    }
7168  }
7169
7170  // Process attributes attached to the ivar.
7171  ProcessDeclAttributes(S, NewID, D);
7172
7173  if (D.isInvalidType())
7174    NewID->setInvalidDecl();
7175
7176  if (II) {
7177    // FIXME: When interfaces are DeclContexts, we'll need to add
7178    // these to the interface.
7179    S->AddDecl(NewID);
7180    IdResolver.AddDecl(NewID);
7181  }
7182
7183  return NewID;
7184}
7185
7186/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7187/// class and class extensions. For every class @interface and class
7188/// extension @interface, if the last ivar is a bitfield of any type,
7189/// then add an implicit `char :0` ivar to the end of that interface.
7190void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7191                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7192  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7193    return;
7194
7195  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7196  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7197
7198  if (!Ivar->isBitField())
7199    return;
7200  uint64_t BitFieldSize =
7201    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7202  if (BitFieldSize == 0)
7203    return;
7204  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7205  if (!ID) {
7206    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7207      if (!CD->IsClassExtension())
7208        return;
7209    }
7210    // No need to add this to end of @implementation.
7211    else
7212      return;
7213  }
7214  // All conditions are met. Add a new bitfield to the tail end of ivars.
7215  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7216  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7217
7218  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7219                              DeclLoc, 0,
7220                              Context.CharTy,
7221                              Context.CreateTypeSourceInfo(Context.CharTy),
7222                              ObjCIvarDecl::Private, BW,
7223                              true);
7224  AllIvarDecls.push_back(Ivar);
7225}
7226
7227void Sema::ActOnFields(Scope* S,
7228                       SourceLocation RecLoc, Decl *EnclosingDecl,
7229                       Decl **Fields, unsigned NumFields,
7230                       SourceLocation LBrac, SourceLocation RBrac,
7231                       AttributeList *Attr) {
7232  assert(EnclosingDecl && "missing record or interface decl");
7233
7234  // If the decl this is being inserted into is invalid, then it may be a
7235  // redeclaration or some other bogus case.  Don't try to add fields to it.
7236  if (EnclosingDecl->isInvalidDecl()) {
7237    // FIXME: Deallocate fields?
7238    return;
7239  }
7240
7241
7242  // Verify that all the fields are okay.
7243  unsigned NumNamedMembers = 0;
7244  llvm::SmallVector<FieldDecl*, 32> RecFields;
7245
7246  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7247  for (unsigned i = 0; i != NumFields; ++i) {
7248    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7249
7250    // Get the type for the field.
7251    const Type *FDTy = FD->getType().getTypePtr();
7252
7253    if (!FD->isAnonymousStructOrUnion()) {
7254      // Remember all fields written by the user.
7255      RecFields.push_back(FD);
7256    }
7257
7258    // If the field is already invalid for some reason, don't emit more
7259    // diagnostics about it.
7260    if (FD->isInvalidDecl()) {
7261      EnclosingDecl->setInvalidDecl();
7262      continue;
7263    }
7264
7265    // C99 6.7.2.1p2:
7266    //   A structure or union shall not contain a member with
7267    //   incomplete or function type (hence, a structure shall not
7268    //   contain an instance of itself, but may contain a pointer to
7269    //   an instance of itself), except that the last member of a
7270    //   structure with more than one named member may have incomplete
7271    //   array type; such a structure (and any union containing,
7272    //   possibly recursively, a member that is such a structure)
7273    //   shall not be a member of a structure or an element of an
7274    //   array.
7275    if (FDTy->isFunctionType()) {
7276      // Field declared as a function.
7277      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7278        << FD->getDeclName();
7279      FD->setInvalidDecl();
7280      EnclosingDecl->setInvalidDecl();
7281      continue;
7282    } else if (FDTy->isIncompleteArrayType() && Record &&
7283               ((i == NumFields - 1 && !Record->isUnion()) ||
7284                (getLangOptions().Microsoft &&
7285                 (i == NumFields - 1 || Record->isUnion())))) {
7286      // Flexible array member.
7287      // Microsoft is more permissive regarding flexible array.
7288      // It will accept flexible array in union and also
7289      // as the sole element of a struct/class.
7290      if (getLangOptions().Microsoft) {
7291        if (Record->isUnion())
7292          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7293            << FD->getDeclName();
7294        else if (NumFields == 1)
7295          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7296            << FD->getDeclName() << Record->getTagKind();
7297      } else  if (NumNamedMembers < 1) {
7298        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7299          << FD->getDeclName();
7300        FD->setInvalidDecl();
7301        EnclosingDecl->setInvalidDecl();
7302        continue;
7303      }
7304      if (!FD->getType()->isDependentType() &&
7305          !Context.getBaseElementType(FD->getType())->isPODType()) {
7306        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7307          << FD->getDeclName() << FD->getType();
7308        FD->setInvalidDecl();
7309        EnclosingDecl->setInvalidDecl();
7310        continue;
7311      }
7312      // Okay, we have a legal flexible array member at the end of the struct.
7313      if (Record)
7314        Record->setHasFlexibleArrayMember(true);
7315    } else if (!FDTy->isDependentType() &&
7316               RequireCompleteType(FD->getLocation(), FD->getType(),
7317                                   diag::err_field_incomplete)) {
7318      // Incomplete type
7319      FD->setInvalidDecl();
7320      EnclosingDecl->setInvalidDecl();
7321      continue;
7322    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7323      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7324        // If this is a member of a union, then entire union becomes "flexible".
7325        if (Record && Record->isUnion()) {
7326          Record->setHasFlexibleArrayMember(true);
7327        } else {
7328          // If this is a struct/class and this is not the last element, reject
7329          // it.  Note that GCC supports variable sized arrays in the middle of
7330          // structures.
7331          if (i != NumFields-1)
7332            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7333              << FD->getDeclName() << FD->getType();
7334          else {
7335            // We support flexible arrays at the end of structs in
7336            // other structs as an extension.
7337            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7338              << FD->getDeclName();
7339            if (Record)
7340              Record->setHasFlexibleArrayMember(true);
7341          }
7342        }
7343      }
7344      if (Record && FDTTy->getDecl()->hasObjectMember())
7345        Record->setHasObjectMember(true);
7346    } else if (FDTy->isObjCObjectType()) {
7347      /// A field cannot be an Objective-c object
7348      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7349      FD->setInvalidDecl();
7350      EnclosingDecl->setInvalidDecl();
7351      continue;
7352    } else if (getLangOptions().ObjC1 &&
7353               getLangOptions().getGCMode() != LangOptions::NonGC &&
7354               Record &&
7355               (FD->getType()->isObjCObjectPointerType() ||
7356                FD->getType().isObjCGCStrong()))
7357      Record->setHasObjectMember(true);
7358    else if (Context.getAsArrayType(FD->getType())) {
7359      QualType BaseType = Context.getBaseElementType(FD->getType());
7360      if (Record && BaseType->isRecordType() &&
7361          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7362        Record->setHasObjectMember(true);
7363    }
7364    // Keep track of the number of named members.
7365    if (FD->getIdentifier())
7366      ++NumNamedMembers;
7367  }
7368
7369  // Okay, we successfully defined 'Record'.
7370  if (Record) {
7371    bool Completed = false;
7372    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7373      if (!CXXRecord->isInvalidDecl()) {
7374        // Set access bits correctly on the directly-declared conversions.
7375        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7376        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7377             I != E; ++I)
7378          Convs->setAccess(I, (*I)->getAccess());
7379
7380        if (!CXXRecord->isDependentType()) {
7381          // Add any implicitly-declared members to this class.
7382          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7383
7384          // If we have virtual base classes, we may end up finding multiple
7385          // final overriders for a given virtual function. Check for this
7386          // problem now.
7387          if (CXXRecord->getNumVBases()) {
7388            CXXFinalOverriderMap FinalOverriders;
7389            CXXRecord->getFinalOverriders(FinalOverriders);
7390
7391            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7392                                             MEnd = FinalOverriders.end();
7393                 M != MEnd; ++M) {
7394              for (OverridingMethods::iterator SO = M->second.begin(),
7395                                            SOEnd = M->second.end();
7396                   SO != SOEnd; ++SO) {
7397                assert(SO->second.size() > 0 &&
7398                       "Virtual function without overridding functions?");
7399                if (SO->second.size() == 1)
7400                  continue;
7401
7402                // C++ [class.virtual]p2:
7403                //   In a derived class, if a virtual member function of a base
7404                //   class subobject has more than one final overrider the
7405                //   program is ill-formed.
7406                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7407                  << (NamedDecl *)M->first << Record;
7408                Diag(M->first->getLocation(),
7409                     diag::note_overridden_virtual_function);
7410                for (OverridingMethods::overriding_iterator
7411                          OM = SO->second.begin(),
7412                       OMEnd = SO->second.end();
7413                     OM != OMEnd; ++OM)
7414                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7415                    << (NamedDecl *)M->first << OM->Method->getParent();
7416
7417                Record->setInvalidDecl();
7418              }
7419            }
7420            CXXRecord->completeDefinition(&FinalOverriders);
7421            Completed = true;
7422          }
7423        }
7424      }
7425    }
7426
7427    if (!Completed)
7428      Record->completeDefinition();
7429  } else {
7430    ObjCIvarDecl **ClsFields =
7431      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7432    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7433      ID->setLocEnd(RBrac);
7434      // Add ivar's to class's DeclContext.
7435      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7436        ClsFields[i]->setLexicalDeclContext(ID);
7437        ID->addDecl(ClsFields[i]);
7438      }
7439      // Must enforce the rule that ivars in the base classes may not be
7440      // duplicates.
7441      if (ID->getSuperClass())
7442        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7443    } else if (ObjCImplementationDecl *IMPDecl =
7444                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7445      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7446      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7447        // Ivar declared in @implementation never belongs to the implementation.
7448        // Only it is in implementation's lexical context.
7449        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7450      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7451    } else if (ObjCCategoryDecl *CDecl =
7452                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7453      // case of ivars in class extension; all other cases have been
7454      // reported as errors elsewhere.
7455      // FIXME. Class extension does not have a LocEnd field.
7456      // CDecl->setLocEnd(RBrac);
7457      // Add ivar's to class extension's DeclContext.
7458      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7459        ClsFields[i]->setLexicalDeclContext(CDecl);
7460        CDecl->addDecl(ClsFields[i]);
7461      }
7462    }
7463  }
7464
7465  if (Attr)
7466    ProcessDeclAttributeList(S, Record, Attr);
7467
7468  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7469  // set the visibility of this record.
7470  if (Record && !Record->getDeclContext()->isRecord())
7471    AddPushedVisibilityAttribute(Record);
7472}
7473
7474/// \brief Determine whether the given integral value is representable within
7475/// the given type T.
7476static bool isRepresentableIntegerValue(ASTContext &Context,
7477                                        llvm::APSInt &Value,
7478                                        QualType T) {
7479  assert(T->isIntegralType(Context) && "Integral type required!");
7480  unsigned BitWidth = Context.getIntWidth(T);
7481
7482  if (Value.isUnsigned() || Value.isNonNegative()) {
7483    if (T->isSignedIntegerType())
7484      --BitWidth;
7485    return Value.getActiveBits() <= BitWidth;
7486  }
7487  return Value.getMinSignedBits() <= BitWidth;
7488}
7489
7490// \brief Given an integral type, return the next larger integral type
7491// (or a NULL type of no such type exists).
7492static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7493  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7494  // enum checking below.
7495  assert(T->isIntegralType(Context) && "Integral type required!");
7496  const unsigned NumTypes = 4;
7497  QualType SignedIntegralTypes[NumTypes] = {
7498    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7499  };
7500  QualType UnsignedIntegralTypes[NumTypes] = {
7501    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7502    Context.UnsignedLongLongTy
7503  };
7504
7505  unsigned BitWidth = Context.getTypeSize(T);
7506  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7507                                            : UnsignedIntegralTypes;
7508  for (unsigned I = 0; I != NumTypes; ++I)
7509    if (Context.getTypeSize(Types[I]) > BitWidth)
7510      return Types[I];
7511
7512  return QualType();
7513}
7514
7515EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7516                                          EnumConstantDecl *LastEnumConst,
7517                                          SourceLocation IdLoc,
7518                                          IdentifierInfo *Id,
7519                                          Expr *Val) {
7520  unsigned IntWidth = Context.Target.getIntWidth();
7521  llvm::APSInt EnumVal(IntWidth);
7522  QualType EltTy;
7523
7524  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7525    Val = 0;
7526
7527  if (Val) {
7528    if (Enum->isDependentType() || Val->isTypeDependent())
7529      EltTy = Context.DependentTy;
7530    else {
7531      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7532      SourceLocation ExpLoc;
7533      if (!Val->isValueDependent() &&
7534          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7535        Val = 0;
7536      } else {
7537        if (!getLangOptions().CPlusPlus) {
7538          // C99 6.7.2.2p2:
7539          //   The expression that defines the value of an enumeration constant
7540          //   shall be an integer constant expression that has a value
7541          //   representable as an int.
7542
7543          // Complain if the value is not representable in an int.
7544          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7545            Diag(IdLoc, diag::ext_enum_value_not_int)
7546              << EnumVal.toString(10) << Val->getSourceRange()
7547              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7548          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7549            // Force the type of the expression to 'int'.
7550            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7551          }
7552        }
7553
7554        if (Enum->isFixed()) {
7555          EltTy = Enum->getIntegerType();
7556
7557          // C++0x [dcl.enum]p5:
7558          //   ... if the initializing value of an enumerator cannot be
7559          //   represented by the underlying type, the program is ill-formed.
7560          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7561            if (getLangOptions().Microsoft) {
7562              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7563              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7564            } else
7565              Diag(IdLoc, diag::err_enumerator_too_large)
7566                << EltTy;
7567          } else
7568            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7569        }
7570        else {
7571          // C++0x [dcl.enum]p5:
7572          //   If the underlying type is not fixed, the type of each enumerator
7573          //   is the type of its initializing value:
7574          //     - If an initializer is specified for an enumerator, the
7575          //       initializing value has the same type as the expression.
7576          EltTy = Val->getType();
7577        }
7578      }
7579    }
7580  }
7581
7582  if (!Val) {
7583    if (Enum->isDependentType())
7584      EltTy = Context.DependentTy;
7585    else if (!LastEnumConst) {
7586      // C++0x [dcl.enum]p5:
7587      //   If the underlying type is not fixed, the type of each enumerator
7588      //   is the type of its initializing value:
7589      //     - If no initializer is specified for the first enumerator, the
7590      //       initializing value has an unspecified integral type.
7591      //
7592      // GCC uses 'int' for its unspecified integral type, as does
7593      // C99 6.7.2.2p3.
7594      if (Enum->isFixed()) {
7595        EltTy = Enum->getIntegerType();
7596      }
7597      else {
7598        EltTy = Context.IntTy;
7599      }
7600    } else {
7601      // Assign the last value + 1.
7602      EnumVal = LastEnumConst->getInitVal();
7603      ++EnumVal;
7604      EltTy = LastEnumConst->getType();
7605
7606      // Check for overflow on increment.
7607      if (EnumVal < LastEnumConst->getInitVal()) {
7608        // C++0x [dcl.enum]p5:
7609        //   If the underlying type is not fixed, the type of each enumerator
7610        //   is the type of its initializing value:
7611        //
7612        //     - Otherwise the type of the initializing value is the same as
7613        //       the type of the initializing value of the preceding enumerator
7614        //       unless the incremented value is not representable in that type,
7615        //       in which case the type is an unspecified integral type
7616        //       sufficient to contain the incremented value. If no such type
7617        //       exists, the program is ill-formed.
7618        QualType T = getNextLargerIntegralType(Context, EltTy);
7619        if (T.isNull() || Enum->isFixed()) {
7620          // There is no integral type larger enough to represent this
7621          // value. Complain, then allow the value to wrap around.
7622          EnumVal = LastEnumConst->getInitVal();
7623          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7624          ++EnumVal;
7625          if (Enum->isFixed())
7626            // When the underlying type is fixed, this is ill-formed.
7627            Diag(IdLoc, diag::err_enumerator_wrapped)
7628              << EnumVal.toString(10)
7629              << EltTy;
7630          else
7631            Diag(IdLoc, diag::warn_enumerator_too_large)
7632              << EnumVal.toString(10);
7633        } else {
7634          EltTy = T;
7635        }
7636
7637        // Retrieve the last enumerator's value, extent that type to the
7638        // type that is supposed to be large enough to represent the incremented
7639        // value, then increment.
7640        EnumVal = LastEnumConst->getInitVal();
7641        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7642        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7643        ++EnumVal;
7644
7645        // If we're not in C++, diagnose the overflow of enumerator values,
7646        // which in C99 means that the enumerator value is not representable in
7647        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7648        // permits enumerator values that are representable in some larger
7649        // integral type.
7650        if (!getLangOptions().CPlusPlus && !T.isNull())
7651          Diag(IdLoc, diag::warn_enum_value_overflow);
7652      } else if (!getLangOptions().CPlusPlus &&
7653                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7654        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7655        Diag(IdLoc, diag::ext_enum_value_not_int)
7656          << EnumVal.toString(10) << 1;
7657      }
7658    }
7659  }
7660
7661  if (!EltTy->isDependentType()) {
7662    // Make the enumerator value match the signedness and size of the
7663    // enumerator's type.
7664    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7665    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7666  }
7667
7668  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7669                                  Val, EnumVal);
7670}
7671
7672
7673Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7674                              SourceLocation IdLoc, IdentifierInfo *Id,
7675                              AttributeList *Attr,
7676                              SourceLocation EqualLoc, ExprTy *val) {
7677  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7678  EnumConstantDecl *LastEnumConst =
7679    cast_or_null<EnumConstantDecl>(lastEnumConst);
7680  Expr *Val = static_cast<Expr*>(val);
7681
7682  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7683  // we find one that is.
7684  S = getNonFieldDeclScope(S);
7685
7686  // Verify that there isn't already something declared with this name in this
7687  // scope.
7688  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7689                                         ForRedeclaration);
7690  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7691    // Maybe we will complain about the shadowed template parameter.
7692    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7693    // Just pretend that we didn't see the previous declaration.
7694    PrevDecl = 0;
7695  }
7696
7697  if (PrevDecl) {
7698    // When in C++, we may get a TagDecl with the same name; in this case the
7699    // enum constant will 'hide' the tag.
7700    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7701           "Received TagDecl when not in C++!");
7702    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7703      if (isa<EnumConstantDecl>(PrevDecl))
7704        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7705      else
7706        Diag(IdLoc, diag::err_redefinition) << Id;
7707      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7708      return 0;
7709    }
7710  }
7711
7712  // C++ [class.mem]p13:
7713  //   If T is the name of a class, then each of the following shall have a
7714  //   name different from T:
7715  //     - every enumerator of every member of class T that is an enumerated
7716  //       type
7717  if (CXXRecordDecl *Record
7718                      = dyn_cast<CXXRecordDecl>(
7719                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7720    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7721      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7722
7723  EnumConstantDecl *New =
7724    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7725
7726  if (New) {
7727    // Process attributes.
7728    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7729
7730    // Register this decl in the current scope stack.
7731    New->setAccess(TheEnumDecl->getAccess());
7732    PushOnScopeChains(New, S);
7733  }
7734
7735  return New;
7736}
7737
7738void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7739                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7740                         Decl **Elements, unsigned NumElements,
7741                         Scope *S, AttributeList *Attr) {
7742  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7743  QualType EnumType = Context.getTypeDeclType(Enum);
7744
7745  if (Attr)
7746    ProcessDeclAttributeList(S, Enum, Attr);
7747
7748  if (Enum->isDependentType()) {
7749    for (unsigned i = 0; i != NumElements; ++i) {
7750      EnumConstantDecl *ECD =
7751        cast_or_null<EnumConstantDecl>(Elements[i]);
7752      if (!ECD) continue;
7753
7754      ECD->setType(EnumType);
7755    }
7756
7757    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7758    return;
7759  }
7760
7761  // TODO: If the result value doesn't fit in an int, it must be a long or long
7762  // long value.  ISO C does not support this, but GCC does as an extension,
7763  // emit a warning.
7764  unsigned IntWidth = Context.Target.getIntWidth();
7765  unsigned CharWidth = Context.Target.getCharWidth();
7766  unsigned ShortWidth = Context.Target.getShortWidth();
7767
7768  // Verify that all the values are okay, compute the size of the values, and
7769  // reverse the list.
7770  unsigned NumNegativeBits = 0;
7771  unsigned NumPositiveBits = 0;
7772
7773  // Keep track of whether all elements have type int.
7774  bool AllElementsInt = true;
7775
7776  for (unsigned i = 0; i != NumElements; ++i) {
7777    EnumConstantDecl *ECD =
7778      cast_or_null<EnumConstantDecl>(Elements[i]);
7779    if (!ECD) continue;  // Already issued a diagnostic.
7780
7781    const llvm::APSInt &InitVal = ECD->getInitVal();
7782
7783    // Keep track of the size of positive and negative values.
7784    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7785      NumPositiveBits = std::max(NumPositiveBits,
7786                                 (unsigned)InitVal.getActiveBits());
7787    else
7788      NumNegativeBits = std::max(NumNegativeBits,
7789                                 (unsigned)InitVal.getMinSignedBits());
7790
7791    // Keep track of whether every enum element has type int (very commmon).
7792    if (AllElementsInt)
7793      AllElementsInt = ECD->getType() == Context.IntTy;
7794  }
7795
7796  // Figure out the type that should be used for this enum.
7797  QualType BestType;
7798  unsigned BestWidth;
7799
7800  // C++0x N3000 [conv.prom]p3:
7801  //   An rvalue of an unscoped enumeration type whose underlying
7802  //   type is not fixed can be converted to an rvalue of the first
7803  //   of the following types that can represent all the values of
7804  //   the enumeration: int, unsigned int, long int, unsigned long
7805  //   int, long long int, or unsigned long long int.
7806  // C99 6.4.4.3p2:
7807  //   An identifier declared as an enumeration constant has type int.
7808  // The C99 rule is modified by a gcc extension
7809  QualType BestPromotionType;
7810
7811  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7812  // -fshort-enums is the equivalent to specifying the packed attribute on all
7813  // enum definitions.
7814  if (LangOpts.ShortEnums)
7815    Packed = true;
7816
7817  if (Enum->isFixed()) {
7818    BestType = BestPromotionType = Enum->getIntegerType();
7819    // We don't need to set BestWidth, because BestType is going to be the type
7820    // of the enumerators, but we do anyway because otherwise some compilers
7821    // warn that it might be used uninitialized.
7822    BestWidth = CharWidth;
7823  }
7824  else if (NumNegativeBits) {
7825    // If there is a negative value, figure out the smallest integer type (of
7826    // int/long/longlong) that fits.
7827    // If it's packed, check also if it fits a char or a short.
7828    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7829      BestType = Context.SignedCharTy;
7830      BestWidth = CharWidth;
7831    } else if (Packed && NumNegativeBits <= ShortWidth &&
7832               NumPositiveBits < ShortWidth) {
7833      BestType = Context.ShortTy;
7834      BestWidth = ShortWidth;
7835    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7836      BestType = Context.IntTy;
7837      BestWidth = IntWidth;
7838    } else {
7839      BestWidth = Context.Target.getLongWidth();
7840
7841      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7842        BestType = Context.LongTy;
7843      } else {
7844        BestWidth = Context.Target.getLongLongWidth();
7845
7846        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7847          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7848        BestType = Context.LongLongTy;
7849      }
7850    }
7851    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7852  } else {
7853    // If there is no negative value, figure out the smallest type that fits
7854    // all of the enumerator values.
7855    // If it's packed, check also if it fits a char or a short.
7856    if (Packed && NumPositiveBits <= CharWidth) {
7857      BestType = Context.UnsignedCharTy;
7858      BestPromotionType = Context.IntTy;
7859      BestWidth = CharWidth;
7860    } else if (Packed && NumPositiveBits <= ShortWidth) {
7861      BestType = Context.UnsignedShortTy;
7862      BestPromotionType = Context.IntTy;
7863      BestWidth = ShortWidth;
7864    } else if (NumPositiveBits <= IntWidth) {
7865      BestType = Context.UnsignedIntTy;
7866      BestWidth = IntWidth;
7867      BestPromotionType
7868        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7869                           ? Context.UnsignedIntTy : Context.IntTy;
7870    } else if (NumPositiveBits <=
7871               (BestWidth = Context.Target.getLongWidth())) {
7872      BestType = Context.UnsignedLongTy;
7873      BestPromotionType
7874        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7875                           ? Context.UnsignedLongTy : Context.LongTy;
7876    } else {
7877      BestWidth = Context.Target.getLongLongWidth();
7878      assert(NumPositiveBits <= BestWidth &&
7879             "How could an initializer get larger than ULL?");
7880      BestType = Context.UnsignedLongLongTy;
7881      BestPromotionType
7882        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7883                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7884    }
7885  }
7886
7887  // Loop over all of the enumerator constants, changing their types to match
7888  // the type of the enum if needed.
7889  for (unsigned i = 0; i != NumElements; ++i) {
7890    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7891    if (!ECD) continue;  // Already issued a diagnostic.
7892
7893    // Standard C says the enumerators have int type, but we allow, as an
7894    // extension, the enumerators to be larger than int size.  If each
7895    // enumerator value fits in an int, type it as an int, otherwise type it the
7896    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7897    // that X has type 'int', not 'unsigned'.
7898
7899    // Determine whether the value fits into an int.
7900    llvm::APSInt InitVal = ECD->getInitVal();
7901
7902    // If it fits into an integer type, force it.  Otherwise force it to match
7903    // the enum decl type.
7904    QualType NewTy;
7905    unsigned NewWidth;
7906    bool NewSign;
7907    if (!getLangOptions().CPlusPlus &&
7908        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7909      NewTy = Context.IntTy;
7910      NewWidth = IntWidth;
7911      NewSign = true;
7912    } else if (ECD->getType() == BestType) {
7913      // Already the right type!
7914      if (getLangOptions().CPlusPlus)
7915        // C++ [dcl.enum]p4: Following the closing brace of an
7916        // enum-specifier, each enumerator has the type of its
7917        // enumeration.
7918        ECD->setType(EnumType);
7919      continue;
7920    } else {
7921      NewTy = BestType;
7922      NewWidth = BestWidth;
7923      NewSign = BestType->isSignedIntegerType();
7924    }
7925
7926    // Adjust the APSInt value.
7927    InitVal = InitVal.extOrTrunc(NewWidth);
7928    InitVal.setIsSigned(NewSign);
7929    ECD->setInitVal(InitVal);
7930
7931    // Adjust the Expr initializer and type.
7932    if (ECD->getInitExpr() &&
7933	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
7934      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7935                                                CK_IntegralCast,
7936                                                ECD->getInitExpr(),
7937                                                /*base paths*/ 0,
7938                                                VK_RValue));
7939    if (getLangOptions().CPlusPlus)
7940      // C++ [dcl.enum]p4: Following the closing brace of an
7941      // enum-specifier, each enumerator has the type of its
7942      // enumeration.
7943      ECD->setType(EnumType);
7944    else
7945      ECD->setType(NewTy);
7946  }
7947
7948  Enum->completeDefinition(BestType, BestPromotionType,
7949                           NumPositiveBits, NumNegativeBits);
7950}
7951
7952Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7953  StringLiteral *AsmString = cast<StringLiteral>(expr);
7954
7955  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7956                                                   Loc, AsmString);
7957  CurContext->addDecl(New);
7958  return New;
7959}
7960
7961void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7962                             SourceLocation PragmaLoc,
7963                             SourceLocation NameLoc) {
7964  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7965
7966  if (PrevDecl) {
7967    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7968  } else {
7969    (void)WeakUndeclaredIdentifiers.insert(
7970      std::pair<IdentifierInfo*,WeakInfo>
7971        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7972  }
7973}
7974
7975void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7976                                IdentifierInfo* AliasName,
7977                                SourceLocation PragmaLoc,
7978                                SourceLocation NameLoc,
7979                                SourceLocation AliasNameLoc) {
7980  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7981                                    LookupOrdinaryName);
7982  WeakInfo W = WeakInfo(Name, NameLoc);
7983
7984  if (PrevDecl) {
7985    if (!PrevDecl->hasAttr<AliasAttr>())
7986      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7987        DeclApplyPragmaWeak(TUScope, ND, W);
7988  } else {
7989    (void)WeakUndeclaredIdentifiers.insert(
7990      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7991  }
7992}
7993