SemaChecking.cpp revision 243830
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/Lookup.h"
20#include "clang/Sema/ScopeInfo.h"
21#include "clang/Analysis/Analyses/FormatString.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/Expr.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/ExprObjC.h"
29#include "clang/AST/EvaluatedExprVisitor.h"
30#include "clang/AST/DeclObjC.h"
31#include "clang/AST/StmtCXX.h"
32#include "clang/AST/StmtObjC.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/BitVector.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "clang/Basic/TargetBuiltins.h"
39#include "clang/Basic/TargetInfo.h"
40#include "clang/Basic/ConvertUTF.h"
41#include <limits>
42using namespace clang;
43using namespace sema;
44
45SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
46                                                    unsigned ByteNo) const {
47  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
48                               PP.getLangOpts(), PP.getTargetInfo());
49}
50
51/// Checks that a call expression's argument count is the desired number.
52/// This is useful when doing custom type-checking.  Returns true on error.
53static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
54  unsigned argCount = call->getNumArgs();
55  if (argCount == desiredArgCount) return false;
56
57  if (argCount < desiredArgCount)
58    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
59        << 0 /*function call*/ << desiredArgCount << argCount
60        << call->getSourceRange();
61
62  // Highlight all the excess arguments.
63  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
64                    call->getArg(argCount - 1)->getLocEnd());
65
66  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
67    << 0 /*function call*/ << desiredArgCount << argCount
68    << call->getArg(1)->getSourceRange();
69}
70
71/// Check that the first argument to __builtin_annotation is an integer
72/// and the second argument is a non-wide string literal.
73static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
74  if (checkArgCount(S, TheCall, 2))
75    return true;
76
77  // First argument should be an integer.
78  Expr *ValArg = TheCall->getArg(0);
79  QualType Ty = ValArg->getType();
80  if (!Ty->isIntegerType()) {
81    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
82      << ValArg->getSourceRange();
83    return true;
84  }
85
86  // Second argument should be a constant string.
87  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
88  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
89  if (!Literal || !Literal->isAscii()) {
90    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
91      << StrArg->getSourceRange();
92    return true;
93  }
94
95  TheCall->setType(Ty);
96  return false;
97}
98
99ExprResult
100Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
101  ExprResult TheCallResult(Owned(TheCall));
102
103  // Find out if any arguments are required to be integer constant expressions.
104  unsigned ICEArguments = 0;
105  ASTContext::GetBuiltinTypeError Error;
106  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
107  if (Error != ASTContext::GE_None)
108    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
109
110  // If any arguments are required to be ICE's, check and diagnose.
111  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
112    // Skip arguments not required to be ICE's.
113    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
114
115    llvm::APSInt Result;
116    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
117      return true;
118    ICEArguments &= ~(1 << ArgNo);
119  }
120
121  switch (BuiltinID) {
122  case Builtin::BI__builtin___CFStringMakeConstantString:
123    assert(TheCall->getNumArgs() == 1 &&
124           "Wrong # arguments to builtin CFStringMakeConstantString");
125    if (CheckObjCString(TheCall->getArg(0)))
126      return ExprError();
127    break;
128  case Builtin::BI__builtin_stdarg_start:
129  case Builtin::BI__builtin_va_start:
130    if (SemaBuiltinVAStart(TheCall))
131      return ExprError();
132    break;
133  case Builtin::BI__builtin_isgreater:
134  case Builtin::BI__builtin_isgreaterequal:
135  case Builtin::BI__builtin_isless:
136  case Builtin::BI__builtin_islessequal:
137  case Builtin::BI__builtin_islessgreater:
138  case Builtin::BI__builtin_isunordered:
139    if (SemaBuiltinUnorderedCompare(TheCall))
140      return ExprError();
141    break;
142  case Builtin::BI__builtin_fpclassify:
143    if (SemaBuiltinFPClassification(TheCall, 6))
144      return ExprError();
145    break;
146  case Builtin::BI__builtin_isfinite:
147  case Builtin::BI__builtin_isinf:
148  case Builtin::BI__builtin_isinf_sign:
149  case Builtin::BI__builtin_isnan:
150  case Builtin::BI__builtin_isnormal:
151    if (SemaBuiltinFPClassification(TheCall, 1))
152      return ExprError();
153    break;
154  case Builtin::BI__builtin_shufflevector:
155    return SemaBuiltinShuffleVector(TheCall);
156    // TheCall will be freed by the smart pointer here, but that's fine, since
157    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
158  case Builtin::BI__builtin_prefetch:
159    if (SemaBuiltinPrefetch(TheCall))
160      return ExprError();
161    break;
162  case Builtin::BI__builtin_object_size:
163    if (SemaBuiltinObjectSize(TheCall))
164      return ExprError();
165    break;
166  case Builtin::BI__builtin_longjmp:
167    if (SemaBuiltinLongjmp(TheCall))
168      return ExprError();
169    break;
170
171  case Builtin::BI__builtin_classify_type:
172    if (checkArgCount(*this, TheCall, 1)) return true;
173    TheCall->setType(Context.IntTy);
174    break;
175  case Builtin::BI__builtin_constant_p:
176    if (checkArgCount(*this, TheCall, 1)) return true;
177    TheCall->setType(Context.IntTy);
178    break;
179  case Builtin::BI__sync_fetch_and_add:
180  case Builtin::BI__sync_fetch_and_add_1:
181  case Builtin::BI__sync_fetch_and_add_2:
182  case Builtin::BI__sync_fetch_and_add_4:
183  case Builtin::BI__sync_fetch_and_add_8:
184  case Builtin::BI__sync_fetch_and_add_16:
185  case Builtin::BI__sync_fetch_and_sub:
186  case Builtin::BI__sync_fetch_and_sub_1:
187  case Builtin::BI__sync_fetch_and_sub_2:
188  case Builtin::BI__sync_fetch_and_sub_4:
189  case Builtin::BI__sync_fetch_and_sub_8:
190  case Builtin::BI__sync_fetch_and_sub_16:
191  case Builtin::BI__sync_fetch_and_or:
192  case Builtin::BI__sync_fetch_and_or_1:
193  case Builtin::BI__sync_fetch_and_or_2:
194  case Builtin::BI__sync_fetch_and_or_4:
195  case Builtin::BI__sync_fetch_and_or_8:
196  case Builtin::BI__sync_fetch_and_or_16:
197  case Builtin::BI__sync_fetch_and_and:
198  case Builtin::BI__sync_fetch_and_and_1:
199  case Builtin::BI__sync_fetch_and_and_2:
200  case Builtin::BI__sync_fetch_and_and_4:
201  case Builtin::BI__sync_fetch_and_and_8:
202  case Builtin::BI__sync_fetch_and_and_16:
203  case Builtin::BI__sync_fetch_and_xor:
204  case Builtin::BI__sync_fetch_and_xor_1:
205  case Builtin::BI__sync_fetch_and_xor_2:
206  case Builtin::BI__sync_fetch_and_xor_4:
207  case Builtin::BI__sync_fetch_and_xor_8:
208  case Builtin::BI__sync_fetch_and_xor_16:
209  case Builtin::BI__sync_add_and_fetch:
210  case Builtin::BI__sync_add_and_fetch_1:
211  case Builtin::BI__sync_add_and_fetch_2:
212  case Builtin::BI__sync_add_and_fetch_4:
213  case Builtin::BI__sync_add_and_fetch_8:
214  case Builtin::BI__sync_add_and_fetch_16:
215  case Builtin::BI__sync_sub_and_fetch:
216  case Builtin::BI__sync_sub_and_fetch_1:
217  case Builtin::BI__sync_sub_and_fetch_2:
218  case Builtin::BI__sync_sub_and_fetch_4:
219  case Builtin::BI__sync_sub_and_fetch_8:
220  case Builtin::BI__sync_sub_and_fetch_16:
221  case Builtin::BI__sync_and_and_fetch:
222  case Builtin::BI__sync_and_and_fetch_1:
223  case Builtin::BI__sync_and_and_fetch_2:
224  case Builtin::BI__sync_and_and_fetch_4:
225  case Builtin::BI__sync_and_and_fetch_8:
226  case Builtin::BI__sync_and_and_fetch_16:
227  case Builtin::BI__sync_or_and_fetch:
228  case Builtin::BI__sync_or_and_fetch_1:
229  case Builtin::BI__sync_or_and_fetch_2:
230  case Builtin::BI__sync_or_and_fetch_4:
231  case Builtin::BI__sync_or_and_fetch_8:
232  case Builtin::BI__sync_or_and_fetch_16:
233  case Builtin::BI__sync_xor_and_fetch:
234  case Builtin::BI__sync_xor_and_fetch_1:
235  case Builtin::BI__sync_xor_and_fetch_2:
236  case Builtin::BI__sync_xor_and_fetch_4:
237  case Builtin::BI__sync_xor_and_fetch_8:
238  case Builtin::BI__sync_xor_and_fetch_16:
239  case Builtin::BI__sync_val_compare_and_swap:
240  case Builtin::BI__sync_val_compare_and_swap_1:
241  case Builtin::BI__sync_val_compare_and_swap_2:
242  case Builtin::BI__sync_val_compare_and_swap_4:
243  case Builtin::BI__sync_val_compare_and_swap_8:
244  case Builtin::BI__sync_val_compare_and_swap_16:
245  case Builtin::BI__sync_bool_compare_and_swap:
246  case Builtin::BI__sync_bool_compare_and_swap_1:
247  case Builtin::BI__sync_bool_compare_and_swap_2:
248  case Builtin::BI__sync_bool_compare_and_swap_4:
249  case Builtin::BI__sync_bool_compare_and_swap_8:
250  case Builtin::BI__sync_bool_compare_and_swap_16:
251  case Builtin::BI__sync_lock_test_and_set:
252  case Builtin::BI__sync_lock_test_and_set_1:
253  case Builtin::BI__sync_lock_test_and_set_2:
254  case Builtin::BI__sync_lock_test_and_set_4:
255  case Builtin::BI__sync_lock_test_and_set_8:
256  case Builtin::BI__sync_lock_test_and_set_16:
257  case Builtin::BI__sync_lock_release:
258  case Builtin::BI__sync_lock_release_1:
259  case Builtin::BI__sync_lock_release_2:
260  case Builtin::BI__sync_lock_release_4:
261  case Builtin::BI__sync_lock_release_8:
262  case Builtin::BI__sync_lock_release_16:
263  case Builtin::BI__sync_swap:
264  case Builtin::BI__sync_swap_1:
265  case Builtin::BI__sync_swap_2:
266  case Builtin::BI__sync_swap_4:
267  case Builtin::BI__sync_swap_8:
268  case Builtin::BI__sync_swap_16:
269    return SemaBuiltinAtomicOverloaded(TheCallResult);
270#define BUILTIN(ID, TYPE, ATTRS)
271#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
272  case Builtin::BI##ID: \
273    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
274#include "clang/Basic/Builtins.def"
275  case Builtin::BI__builtin_annotation:
276    if (SemaBuiltinAnnotation(*this, TheCall))
277      return ExprError();
278    break;
279  }
280
281  // Since the target specific builtins for each arch overlap, only check those
282  // of the arch we are compiling for.
283  if (BuiltinID >= Builtin::FirstTSBuiltin) {
284    switch (Context.getTargetInfo().getTriple().getArch()) {
285      case llvm::Triple::arm:
286      case llvm::Triple::thumb:
287        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
288          return ExprError();
289        break;
290      case llvm::Triple::mips:
291      case llvm::Triple::mipsel:
292      case llvm::Triple::mips64:
293      case llvm::Triple::mips64el:
294        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
295          return ExprError();
296        break;
297      default:
298        break;
299    }
300  }
301
302  return TheCallResult;
303}
304
305// Get the valid immediate range for the specified NEON type code.
306static unsigned RFT(unsigned t, bool shift = false) {
307  NeonTypeFlags Type(t);
308  int IsQuad = Type.isQuad();
309  switch (Type.getEltType()) {
310  case NeonTypeFlags::Int8:
311  case NeonTypeFlags::Poly8:
312    return shift ? 7 : (8 << IsQuad) - 1;
313  case NeonTypeFlags::Int16:
314  case NeonTypeFlags::Poly16:
315    return shift ? 15 : (4 << IsQuad) - 1;
316  case NeonTypeFlags::Int32:
317    return shift ? 31 : (2 << IsQuad) - 1;
318  case NeonTypeFlags::Int64:
319    return shift ? 63 : (1 << IsQuad) - 1;
320  case NeonTypeFlags::Float16:
321    assert(!shift && "cannot shift float types!");
322    return (4 << IsQuad) - 1;
323  case NeonTypeFlags::Float32:
324    assert(!shift && "cannot shift float types!");
325    return (2 << IsQuad) - 1;
326  }
327  llvm_unreachable("Invalid NeonTypeFlag!");
328}
329
330/// getNeonEltType - Return the QualType corresponding to the elements of
331/// the vector type specified by the NeonTypeFlags.  This is used to check
332/// the pointer arguments for Neon load/store intrinsics.
333static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
334  switch (Flags.getEltType()) {
335  case NeonTypeFlags::Int8:
336    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
337  case NeonTypeFlags::Int16:
338    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
339  case NeonTypeFlags::Int32:
340    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
341  case NeonTypeFlags::Int64:
342    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
343  case NeonTypeFlags::Poly8:
344    return Context.SignedCharTy;
345  case NeonTypeFlags::Poly16:
346    return Context.ShortTy;
347  case NeonTypeFlags::Float16:
348    return Context.UnsignedShortTy;
349  case NeonTypeFlags::Float32:
350    return Context.FloatTy;
351  }
352  llvm_unreachable("Invalid NeonTypeFlag!");
353}
354
355bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
356  llvm::APSInt Result;
357
358  uint64_t mask = 0;
359  unsigned TV = 0;
360  int PtrArgNum = -1;
361  bool HasConstPtr = false;
362  switch (BuiltinID) {
363#define GET_NEON_OVERLOAD_CHECK
364#include "clang/Basic/arm_neon.inc"
365#undef GET_NEON_OVERLOAD_CHECK
366  }
367
368  // For NEON intrinsics which are overloaded on vector element type, validate
369  // the immediate which specifies which variant to emit.
370  unsigned ImmArg = TheCall->getNumArgs()-1;
371  if (mask) {
372    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
373      return true;
374
375    TV = Result.getLimitedValue(64);
376    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
377      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
378        << TheCall->getArg(ImmArg)->getSourceRange();
379  }
380
381  if (PtrArgNum >= 0) {
382    // Check that pointer arguments have the specified type.
383    Expr *Arg = TheCall->getArg(PtrArgNum);
384    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
385      Arg = ICE->getSubExpr();
386    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
387    QualType RHSTy = RHS.get()->getType();
388    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
389    if (HasConstPtr)
390      EltTy = EltTy.withConst();
391    QualType LHSTy = Context.getPointerType(EltTy);
392    AssignConvertType ConvTy;
393    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
394    if (RHS.isInvalid())
395      return true;
396    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
397                                 RHS.get(), AA_Assigning))
398      return true;
399  }
400
401  // For NEON intrinsics which take an immediate value as part of the
402  // instruction, range check them here.
403  unsigned i = 0, l = 0, u = 0;
404  switch (BuiltinID) {
405  default: return false;
406  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
407  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
408  case ARM::BI__builtin_arm_vcvtr_f:
409  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
410#define GET_NEON_IMMEDIATE_CHECK
411#include "clang/Basic/arm_neon.inc"
412#undef GET_NEON_IMMEDIATE_CHECK
413  };
414
415  // We can't check the value of a dependent argument.
416  if (TheCall->getArg(i)->isTypeDependent() ||
417      TheCall->getArg(i)->isValueDependent())
418    return false;
419
420  // Check that the immediate argument is actually a constant.
421  if (SemaBuiltinConstantArg(TheCall, i, Result))
422    return true;
423
424  // Range check against the upper/lower values for this isntruction.
425  unsigned Val = Result.getZExtValue();
426  if (Val < l || Val > (u + l))
427    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
428      << l << u+l << TheCall->getArg(i)->getSourceRange();
429
430  // FIXME: VFP Intrinsics should error if VFP not present.
431  return false;
432}
433
434bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
435  unsigned i = 0, l = 0, u = 0;
436  switch (BuiltinID) {
437  default: return false;
438  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
439  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
440  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
441  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
442  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
443  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
444  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
445  };
446
447  // We can't check the value of a dependent argument.
448  if (TheCall->getArg(i)->isTypeDependent() ||
449      TheCall->getArg(i)->isValueDependent())
450    return false;
451
452  // Check that the immediate argument is actually a constant.
453  llvm::APSInt Result;
454  if (SemaBuiltinConstantArg(TheCall, i, Result))
455    return true;
456
457  // Range check against the upper/lower values for this instruction.
458  unsigned Val = Result.getZExtValue();
459  if (Val < l || Val > u)
460    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
461      << l << u << TheCall->getArg(i)->getSourceRange();
462
463  return false;
464}
465
466/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
467/// parameter with the FormatAttr's correct format_idx and firstDataArg.
468/// Returns true when the format fits the function and the FormatStringInfo has
469/// been populated.
470bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
471                               FormatStringInfo *FSI) {
472  FSI->HasVAListArg = Format->getFirstArg() == 0;
473  FSI->FormatIdx = Format->getFormatIdx() - 1;
474  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
475
476  // The way the format attribute works in GCC, the implicit this argument
477  // of member functions is counted. However, it doesn't appear in our own
478  // lists, so decrement format_idx in that case.
479  if (IsCXXMember) {
480    if(FSI->FormatIdx == 0)
481      return false;
482    --FSI->FormatIdx;
483    if (FSI->FirstDataArg != 0)
484      --FSI->FirstDataArg;
485  }
486  return true;
487}
488
489/// Handles the checks for format strings, non-POD arguments to vararg
490/// functions, and NULL arguments passed to non-NULL parameters.
491void Sema::checkCall(NamedDecl *FDecl, Expr **Args,
492                     unsigned NumArgs,
493                     unsigned NumProtoArgs,
494                     bool IsMemberFunction,
495                     SourceLocation Loc,
496                     SourceRange Range,
497                     VariadicCallType CallType) {
498  if (CurContext->isDependentContext())
499    return;
500
501  // Printf and scanf checking.
502  bool HandledFormatString = false;
503  for (specific_attr_iterator<FormatAttr>
504         I = FDecl->specific_attr_begin<FormatAttr>(),
505         E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
506    if (CheckFormatArguments(*I, Args, NumArgs, IsMemberFunction, CallType,
507                             Loc, Range))
508        HandledFormatString = true;
509
510  // Refuse POD arguments that weren't caught by the format string
511  // checks above.
512  if (!HandledFormatString && CallType != VariadicDoesNotApply)
513    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < NumArgs; ++ArgIdx) {
514      // Args[ArgIdx] can be null in malformed code.
515      if (Expr *Arg = Args[ArgIdx])
516        variadicArgumentPODCheck(Arg, CallType);
517    }
518
519  for (specific_attr_iterator<NonNullAttr>
520         I = FDecl->specific_attr_begin<NonNullAttr>(),
521         E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
522    CheckNonNullArguments(*I, Args, Loc);
523
524  // Type safety checking.
525  for (specific_attr_iterator<ArgumentWithTypeTagAttr>
526         i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
527         e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
528    CheckArgumentWithTypeTag(*i, Args);
529  }
530}
531
532/// CheckConstructorCall - Check a constructor call for correctness and safety
533/// properties not enforced by the C type system.
534void Sema::CheckConstructorCall(FunctionDecl *FDecl, Expr **Args,
535                                unsigned NumArgs,
536                                const FunctionProtoType *Proto,
537                                SourceLocation Loc) {
538  VariadicCallType CallType =
539    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
540  checkCall(FDecl, Args, NumArgs, Proto->getNumArgs(),
541            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
542}
543
544/// CheckFunctionCall - Check a direct function call for various correctness
545/// and safety properties not strictly enforced by the C type system.
546bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
547                             const FunctionProtoType *Proto) {
548  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
549                              isa<CXXMethodDecl>(FDecl);
550  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
551                          IsMemberOperatorCall;
552  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
553                                                  TheCall->getCallee());
554  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
555  Expr** Args = TheCall->getArgs();
556  unsigned NumArgs = TheCall->getNumArgs();
557  if (IsMemberOperatorCall) {
558    // If this is a call to a member operator, hide the first argument
559    // from checkCall.
560    // FIXME: Our choice of AST representation here is less than ideal.
561    ++Args;
562    --NumArgs;
563  }
564  checkCall(FDecl, Args, NumArgs, NumProtoArgs,
565            IsMemberFunction, TheCall->getRParenLoc(),
566            TheCall->getCallee()->getSourceRange(), CallType);
567
568  IdentifierInfo *FnInfo = FDecl->getIdentifier();
569  // None of the checks below are needed for functions that don't have
570  // simple names (e.g., C++ conversion functions).
571  if (!FnInfo)
572    return false;
573
574  unsigned CMId = FDecl->getMemoryFunctionKind();
575  if (CMId == 0)
576    return false;
577
578  // Handle memory setting and copying functions.
579  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
580    CheckStrlcpycatArguments(TheCall, FnInfo);
581  else if (CMId == Builtin::BIstrncat)
582    CheckStrncatArguments(TheCall, FnInfo);
583  else
584    CheckMemaccessArguments(TheCall, CMId, FnInfo);
585
586  return false;
587}
588
589bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
590                               Expr **Args, unsigned NumArgs) {
591  VariadicCallType CallType =
592      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
593
594  checkCall(Method, Args, NumArgs, Method->param_size(),
595            /*IsMemberFunction=*/false,
596            lbrac, Method->getSourceRange(), CallType);
597
598  return false;
599}
600
601bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
602                          const FunctionProtoType *Proto) {
603  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
604  if (!V)
605    return false;
606
607  QualType Ty = V->getType();
608  if (!Ty->isBlockPointerType())
609    return false;
610
611  VariadicCallType CallType =
612      Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
613  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
614
615  checkCall(NDecl, TheCall->getArgs(), TheCall->getNumArgs(),
616            NumProtoArgs, /*IsMemberFunction=*/false,
617            TheCall->getRParenLoc(),
618            TheCall->getCallee()->getSourceRange(), CallType);
619
620  return false;
621}
622
623ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
624                                         AtomicExpr::AtomicOp Op) {
625  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
626  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
627
628  // All these operations take one of the following forms:
629  enum {
630    // C    __c11_atomic_init(A *, C)
631    Init,
632    // C    __c11_atomic_load(A *, int)
633    Load,
634    // void __atomic_load(A *, CP, int)
635    Copy,
636    // C    __c11_atomic_add(A *, M, int)
637    Arithmetic,
638    // C    __atomic_exchange_n(A *, CP, int)
639    Xchg,
640    // void __atomic_exchange(A *, C *, CP, int)
641    GNUXchg,
642    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
643    C11CmpXchg,
644    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
645    GNUCmpXchg
646  } Form = Init;
647  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
648  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
649  // where:
650  //   C is an appropriate type,
651  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
652  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
653  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
654  //   the int parameters are for orderings.
655
656  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
657         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
658         && "need to update code for modified C11 atomics");
659  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
660               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
661  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
662             Op == AtomicExpr::AO__atomic_store_n ||
663             Op == AtomicExpr::AO__atomic_exchange_n ||
664             Op == AtomicExpr::AO__atomic_compare_exchange_n;
665  bool IsAddSub = false;
666
667  switch (Op) {
668  case AtomicExpr::AO__c11_atomic_init:
669    Form = Init;
670    break;
671
672  case AtomicExpr::AO__c11_atomic_load:
673  case AtomicExpr::AO__atomic_load_n:
674    Form = Load;
675    break;
676
677  case AtomicExpr::AO__c11_atomic_store:
678  case AtomicExpr::AO__atomic_load:
679  case AtomicExpr::AO__atomic_store:
680  case AtomicExpr::AO__atomic_store_n:
681    Form = Copy;
682    break;
683
684  case AtomicExpr::AO__c11_atomic_fetch_add:
685  case AtomicExpr::AO__c11_atomic_fetch_sub:
686  case AtomicExpr::AO__atomic_fetch_add:
687  case AtomicExpr::AO__atomic_fetch_sub:
688  case AtomicExpr::AO__atomic_add_fetch:
689  case AtomicExpr::AO__atomic_sub_fetch:
690    IsAddSub = true;
691    // Fall through.
692  case AtomicExpr::AO__c11_atomic_fetch_and:
693  case AtomicExpr::AO__c11_atomic_fetch_or:
694  case AtomicExpr::AO__c11_atomic_fetch_xor:
695  case AtomicExpr::AO__atomic_fetch_and:
696  case AtomicExpr::AO__atomic_fetch_or:
697  case AtomicExpr::AO__atomic_fetch_xor:
698  case AtomicExpr::AO__atomic_fetch_nand:
699  case AtomicExpr::AO__atomic_and_fetch:
700  case AtomicExpr::AO__atomic_or_fetch:
701  case AtomicExpr::AO__atomic_xor_fetch:
702  case AtomicExpr::AO__atomic_nand_fetch:
703    Form = Arithmetic;
704    break;
705
706  case AtomicExpr::AO__c11_atomic_exchange:
707  case AtomicExpr::AO__atomic_exchange_n:
708    Form = Xchg;
709    break;
710
711  case AtomicExpr::AO__atomic_exchange:
712    Form = GNUXchg;
713    break;
714
715  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
716  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
717    Form = C11CmpXchg;
718    break;
719
720  case AtomicExpr::AO__atomic_compare_exchange:
721  case AtomicExpr::AO__atomic_compare_exchange_n:
722    Form = GNUCmpXchg;
723    break;
724  }
725
726  // Check we have the right number of arguments.
727  if (TheCall->getNumArgs() < NumArgs[Form]) {
728    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
729      << 0 << NumArgs[Form] << TheCall->getNumArgs()
730      << TheCall->getCallee()->getSourceRange();
731    return ExprError();
732  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
733    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
734         diag::err_typecheck_call_too_many_args)
735      << 0 << NumArgs[Form] << TheCall->getNumArgs()
736      << TheCall->getCallee()->getSourceRange();
737    return ExprError();
738  }
739
740  // Inspect the first argument of the atomic operation.
741  Expr *Ptr = TheCall->getArg(0);
742  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
743  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
744  if (!pointerType) {
745    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
746      << Ptr->getType() << Ptr->getSourceRange();
747    return ExprError();
748  }
749
750  // For a __c11 builtin, this should be a pointer to an _Atomic type.
751  QualType AtomTy = pointerType->getPointeeType(); // 'A'
752  QualType ValType = AtomTy; // 'C'
753  if (IsC11) {
754    if (!AtomTy->isAtomicType()) {
755      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
756        << Ptr->getType() << Ptr->getSourceRange();
757      return ExprError();
758    }
759    if (AtomTy.isConstQualified()) {
760      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
761        << Ptr->getType() << Ptr->getSourceRange();
762      return ExprError();
763    }
764    ValType = AtomTy->getAs<AtomicType>()->getValueType();
765  }
766
767  // For an arithmetic operation, the implied arithmetic must be well-formed.
768  if (Form == Arithmetic) {
769    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
770    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
771      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
772        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
773      return ExprError();
774    }
775    if (!IsAddSub && !ValType->isIntegerType()) {
776      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
777        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
778      return ExprError();
779    }
780  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
781    // For __atomic_*_n operations, the value type must be a scalar integral or
782    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
783    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
784      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
785    return ExprError();
786  }
787
788  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
789    // For GNU atomics, require a trivially-copyable type. This is not part of
790    // the GNU atomics specification, but we enforce it for sanity.
791    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
792      << Ptr->getType() << Ptr->getSourceRange();
793    return ExprError();
794  }
795
796  // FIXME: For any builtin other than a load, the ValType must not be
797  // const-qualified.
798
799  switch (ValType.getObjCLifetime()) {
800  case Qualifiers::OCL_None:
801  case Qualifiers::OCL_ExplicitNone:
802    // okay
803    break;
804
805  case Qualifiers::OCL_Weak:
806  case Qualifiers::OCL_Strong:
807  case Qualifiers::OCL_Autoreleasing:
808    // FIXME: Can this happen? By this point, ValType should be known
809    // to be trivially copyable.
810    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
811      << ValType << Ptr->getSourceRange();
812    return ExprError();
813  }
814
815  QualType ResultType = ValType;
816  if (Form == Copy || Form == GNUXchg || Form == Init)
817    ResultType = Context.VoidTy;
818  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
819    ResultType = Context.BoolTy;
820
821  // The type of a parameter passed 'by value'. In the GNU atomics, such
822  // arguments are actually passed as pointers.
823  QualType ByValType = ValType; // 'CP'
824  if (!IsC11 && !IsN)
825    ByValType = Ptr->getType();
826
827  // The first argument --- the pointer --- has a fixed type; we
828  // deduce the types of the rest of the arguments accordingly.  Walk
829  // the remaining arguments, converting them to the deduced value type.
830  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
831    QualType Ty;
832    if (i < NumVals[Form] + 1) {
833      switch (i) {
834      case 1:
835        // The second argument is the non-atomic operand. For arithmetic, this
836        // is always passed by value, and for a compare_exchange it is always
837        // passed by address. For the rest, GNU uses by-address and C11 uses
838        // by-value.
839        assert(Form != Load);
840        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
841          Ty = ValType;
842        else if (Form == Copy || Form == Xchg)
843          Ty = ByValType;
844        else if (Form == Arithmetic)
845          Ty = Context.getPointerDiffType();
846        else
847          Ty = Context.getPointerType(ValType.getUnqualifiedType());
848        break;
849      case 2:
850        // The third argument to compare_exchange / GNU exchange is a
851        // (pointer to a) desired value.
852        Ty = ByValType;
853        break;
854      case 3:
855        // The fourth argument to GNU compare_exchange is a 'weak' flag.
856        Ty = Context.BoolTy;
857        break;
858      }
859    } else {
860      // The order(s) are always converted to int.
861      Ty = Context.IntTy;
862    }
863
864    InitializedEntity Entity =
865        InitializedEntity::InitializeParameter(Context, Ty, false);
866    ExprResult Arg = TheCall->getArg(i);
867    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
868    if (Arg.isInvalid())
869      return true;
870    TheCall->setArg(i, Arg.get());
871  }
872
873  // Permute the arguments into a 'consistent' order.
874  SmallVector<Expr*, 5> SubExprs;
875  SubExprs.push_back(Ptr);
876  switch (Form) {
877  case Init:
878    // Note, AtomicExpr::getVal1() has a special case for this atomic.
879    SubExprs.push_back(TheCall->getArg(1)); // Val1
880    break;
881  case Load:
882    SubExprs.push_back(TheCall->getArg(1)); // Order
883    break;
884  case Copy:
885  case Arithmetic:
886  case Xchg:
887    SubExprs.push_back(TheCall->getArg(2)); // Order
888    SubExprs.push_back(TheCall->getArg(1)); // Val1
889    break;
890  case GNUXchg:
891    // Note, AtomicExpr::getVal2() has a special case for this atomic.
892    SubExprs.push_back(TheCall->getArg(3)); // Order
893    SubExprs.push_back(TheCall->getArg(1)); // Val1
894    SubExprs.push_back(TheCall->getArg(2)); // Val2
895    break;
896  case C11CmpXchg:
897    SubExprs.push_back(TheCall->getArg(3)); // Order
898    SubExprs.push_back(TheCall->getArg(1)); // Val1
899    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
900    SubExprs.push_back(TheCall->getArg(2)); // Val2
901    break;
902  case GNUCmpXchg:
903    SubExprs.push_back(TheCall->getArg(4)); // Order
904    SubExprs.push_back(TheCall->getArg(1)); // Val1
905    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
906    SubExprs.push_back(TheCall->getArg(2)); // Val2
907    SubExprs.push_back(TheCall->getArg(3)); // Weak
908    break;
909  }
910
911  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
912                                        SubExprs, ResultType, Op,
913                                        TheCall->getRParenLoc()));
914}
915
916
917/// checkBuiltinArgument - Given a call to a builtin function, perform
918/// normal type-checking on the given argument, updating the call in
919/// place.  This is useful when a builtin function requires custom
920/// type-checking for some of its arguments but not necessarily all of
921/// them.
922///
923/// Returns true on error.
924static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
925  FunctionDecl *Fn = E->getDirectCallee();
926  assert(Fn && "builtin call without direct callee!");
927
928  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
929  InitializedEntity Entity =
930    InitializedEntity::InitializeParameter(S.Context, Param);
931
932  ExprResult Arg = E->getArg(0);
933  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
934  if (Arg.isInvalid())
935    return true;
936
937  E->setArg(ArgIndex, Arg.take());
938  return false;
939}
940
941/// SemaBuiltinAtomicOverloaded - We have a call to a function like
942/// __sync_fetch_and_add, which is an overloaded function based on the pointer
943/// type of its first argument.  The main ActOnCallExpr routines have already
944/// promoted the types of arguments because all of these calls are prototyped as
945/// void(...).
946///
947/// This function goes through and does final semantic checking for these
948/// builtins,
949ExprResult
950Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
951  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
952  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
953  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
954
955  // Ensure that we have at least one argument to do type inference from.
956  if (TheCall->getNumArgs() < 1) {
957    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
958      << 0 << 1 << TheCall->getNumArgs()
959      << TheCall->getCallee()->getSourceRange();
960    return ExprError();
961  }
962
963  // Inspect the first argument of the atomic builtin.  This should always be
964  // a pointer type, whose element is an integral scalar or pointer type.
965  // Because it is a pointer type, we don't have to worry about any implicit
966  // casts here.
967  // FIXME: We don't allow floating point scalars as input.
968  Expr *FirstArg = TheCall->getArg(0);
969  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
970  if (FirstArgResult.isInvalid())
971    return ExprError();
972  FirstArg = FirstArgResult.take();
973  TheCall->setArg(0, FirstArg);
974
975  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
976  if (!pointerType) {
977    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
978      << FirstArg->getType() << FirstArg->getSourceRange();
979    return ExprError();
980  }
981
982  QualType ValType = pointerType->getPointeeType();
983  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
984      !ValType->isBlockPointerType()) {
985    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
986      << FirstArg->getType() << FirstArg->getSourceRange();
987    return ExprError();
988  }
989
990  switch (ValType.getObjCLifetime()) {
991  case Qualifiers::OCL_None:
992  case Qualifiers::OCL_ExplicitNone:
993    // okay
994    break;
995
996  case Qualifiers::OCL_Weak:
997  case Qualifiers::OCL_Strong:
998  case Qualifiers::OCL_Autoreleasing:
999    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1000      << ValType << FirstArg->getSourceRange();
1001    return ExprError();
1002  }
1003
1004  // Strip any qualifiers off ValType.
1005  ValType = ValType.getUnqualifiedType();
1006
1007  // The majority of builtins return a value, but a few have special return
1008  // types, so allow them to override appropriately below.
1009  QualType ResultType = ValType;
1010
1011  // We need to figure out which concrete builtin this maps onto.  For example,
1012  // __sync_fetch_and_add with a 2 byte object turns into
1013  // __sync_fetch_and_add_2.
1014#define BUILTIN_ROW(x) \
1015  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1016    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1017
1018  static const unsigned BuiltinIndices[][5] = {
1019    BUILTIN_ROW(__sync_fetch_and_add),
1020    BUILTIN_ROW(__sync_fetch_and_sub),
1021    BUILTIN_ROW(__sync_fetch_and_or),
1022    BUILTIN_ROW(__sync_fetch_and_and),
1023    BUILTIN_ROW(__sync_fetch_and_xor),
1024
1025    BUILTIN_ROW(__sync_add_and_fetch),
1026    BUILTIN_ROW(__sync_sub_and_fetch),
1027    BUILTIN_ROW(__sync_and_and_fetch),
1028    BUILTIN_ROW(__sync_or_and_fetch),
1029    BUILTIN_ROW(__sync_xor_and_fetch),
1030
1031    BUILTIN_ROW(__sync_val_compare_and_swap),
1032    BUILTIN_ROW(__sync_bool_compare_and_swap),
1033    BUILTIN_ROW(__sync_lock_test_and_set),
1034    BUILTIN_ROW(__sync_lock_release),
1035    BUILTIN_ROW(__sync_swap)
1036  };
1037#undef BUILTIN_ROW
1038
1039  // Determine the index of the size.
1040  unsigned SizeIndex;
1041  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1042  case 1: SizeIndex = 0; break;
1043  case 2: SizeIndex = 1; break;
1044  case 4: SizeIndex = 2; break;
1045  case 8: SizeIndex = 3; break;
1046  case 16: SizeIndex = 4; break;
1047  default:
1048    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1049      << FirstArg->getType() << FirstArg->getSourceRange();
1050    return ExprError();
1051  }
1052
1053  // Each of these builtins has one pointer argument, followed by some number of
1054  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1055  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1056  // as the number of fixed args.
1057  unsigned BuiltinID = FDecl->getBuiltinID();
1058  unsigned BuiltinIndex, NumFixed = 1;
1059  switch (BuiltinID) {
1060  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1061  case Builtin::BI__sync_fetch_and_add:
1062  case Builtin::BI__sync_fetch_and_add_1:
1063  case Builtin::BI__sync_fetch_and_add_2:
1064  case Builtin::BI__sync_fetch_and_add_4:
1065  case Builtin::BI__sync_fetch_and_add_8:
1066  case Builtin::BI__sync_fetch_and_add_16:
1067    BuiltinIndex = 0;
1068    break;
1069
1070  case Builtin::BI__sync_fetch_and_sub:
1071  case Builtin::BI__sync_fetch_and_sub_1:
1072  case Builtin::BI__sync_fetch_and_sub_2:
1073  case Builtin::BI__sync_fetch_and_sub_4:
1074  case Builtin::BI__sync_fetch_and_sub_8:
1075  case Builtin::BI__sync_fetch_and_sub_16:
1076    BuiltinIndex = 1;
1077    break;
1078
1079  case Builtin::BI__sync_fetch_and_or:
1080  case Builtin::BI__sync_fetch_and_or_1:
1081  case Builtin::BI__sync_fetch_and_or_2:
1082  case Builtin::BI__sync_fetch_and_or_4:
1083  case Builtin::BI__sync_fetch_and_or_8:
1084  case Builtin::BI__sync_fetch_and_or_16:
1085    BuiltinIndex = 2;
1086    break;
1087
1088  case Builtin::BI__sync_fetch_and_and:
1089  case Builtin::BI__sync_fetch_and_and_1:
1090  case Builtin::BI__sync_fetch_and_and_2:
1091  case Builtin::BI__sync_fetch_and_and_4:
1092  case Builtin::BI__sync_fetch_and_and_8:
1093  case Builtin::BI__sync_fetch_and_and_16:
1094    BuiltinIndex = 3;
1095    break;
1096
1097  case Builtin::BI__sync_fetch_and_xor:
1098  case Builtin::BI__sync_fetch_and_xor_1:
1099  case Builtin::BI__sync_fetch_and_xor_2:
1100  case Builtin::BI__sync_fetch_and_xor_4:
1101  case Builtin::BI__sync_fetch_and_xor_8:
1102  case Builtin::BI__sync_fetch_and_xor_16:
1103    BuiltinIndex = 4;
1104    break;
1105
1106  case Builtin::BI__sync_add_and_fetch:
1107  case Builtin::BI__sync_add_and_fetch_1:
1108  case Builtin::BI__sync_add_and_fetch_2:
1109  case Builtin::BI__sync_add_and_fetch_4:
1110  case Builtin::BI__sync_add_and_fetch_8:
1111  case Builtin::BI__sync_add_and_fetch_16:
1112    BuiltinIndex = 5;
1113    break;
1114
1115  case Builtin::BI__sync_sub_and_fetch:
1116  case Builtin::BI__sync_sub_and_fetch_1:
1117  case Builtin::BI__sync_sub_and_fetch_2:
1118  case Builtin::BI__sync_sub_and_fetch_4:
1119  case Builtin::BI__sync_sub_and_fetch_8:
1120  case Builtin::BI__sync_sub_and_fetch_16:
1121    BuiltinIndex = 6;
1122    break;
1123
1124  case Builtin::BI__sync_and_and_fetch:
1125  case Builtin::BI__sync_and_and_fetch_1:
1126  case Builtin::BI__sync_and_and_fetch_2:
1127  case Builtin::BI__sync_and_and_fetch_4:
1128  case Builtin::BI__sync_and_and_fetch_8:
1129  case Builtin::BI__sync_and_and_fetch_16:
1130    BuiltinIndex = 7;
1131    break;
1132
1133  case Builtin::BI__sync_or_and_fetch:
1134  case Builtin::BI__sync_or_and_fetch_1:
1135  case Builtin::BI__sync_or_and_fetch_2:
1136  case Builtin::BI__sync_or_and_fetch_4:
1137  case Builtin::BI__sync_or_and_fetch_8:
1138  case Builtin::BI__sync_or_and_fetch_16:
1139    BuiltinIndex = 8;
1140    break;
1141
1142  case Builtin::BI__sync_xor_and_fetch:
1143  case Builtin::BI__sync_xor_and_fetch_1:
1144  case Builtin::BI__sync_xor_and_fetch_2:
1145  case Builtin::BI__sync_xor_and_fetch_4:
1146  case Builtin::BI__sync_xor_and_fetch_8:
1147  case Builtin::BI__sync_xor_and_fetch_16:
1148    BuiltinIndex = 9;
1149    break;
1150
1151  case Builtin::BI__sync_val_compare_and_swap:
1152  case Builtin::BI__sync_val_compare_and_swap_1:
1153  case Builtin::BI__sync_val_compare_and_swap_2:
1154  case Builtin::BI__sync_val_compare_and_swap_4:
1155  case Builtin::BI__sync_val_compare_and_swap_8:
1156  case Builtin::BI__sync_val_compare_and_swap_16:
1157    BuiltinIndex = 10;
1158    NumFixed = 2;
1159    break;
1160
1161  case Builtin::BI__sync_bool_compare_and_swap:
1162  case Builtin::BI__sync_bool_compare_and_swap_1:
1163  case Builtin::BI__sync_bool_compare_and_swap_2:
1164  case Builtin::BI__sync_bool_compare_and_swap_4:
1165  case Builtin::BI__sync_bool_compare_and_swap_8:
1166  case Builtin::BI__sync_bool_compare_and_swap_16:
1167    BuiltinIndex = 11;
1168    NumFixed = 2;
1169    ResultType = Context.BoolTy;
1170    break;
1171
1172  case Builtin::BI__sync_lock_test_and_set:
1173  case Builtin::BI__sync_lock_test_and_set_1:
1174  case Builtin::BI__sync_lock_test_and_set_2:
1175  case Builtin::BI__sync_lock_test_and_set_4:
1176  case Builtin::BI__sync_lock_test_and_set_8:
1177  case Builtin::BI__sync_lock_test_and_set_16:
1178    BuiltinIndex = 12;
1179    break;
1180
1181  case Builtin::BI__sync_lock_release:
1182  case Builtin::BI__sync_lock_release_1:
1183  case Builtin::BI__sync_lock_release_2:
1184  case Builtin::BI__sync_lock_release_4:
1185  case Builtin::BI__sync_lock_release_8:
1186  case Builtin::BI__sync_lock_release_16:
1187    BuiltinIndex = 13;
1188    NumFixed = 0;
1189    ResultType = Context.VoidTy;
1190    break;
1191
1192  case Builtin::BI__sync_swap:
1193  case Builtin::BI__sync_swap_1:
1194  case Builtin::BI__sync_swap_2:
1195  case Builtin::BI__sync_swap_4:
1196  case Builtin::BI__sync_swap_8:
1197  case Builtin::BI__sync_swap_16:
1198    BuiltinIndex = 14;
1199    break;
1200  }
1201
1202  // Now that we know how many fixed arguments we expect, first check that we
1203  // have at least that many.
1204  if (TheCall->getNumArgs() < 1+NumFixed) {
1205    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1206      << 0 << 1+NumFixed << TheCall->getNumArgs()
1207      << TheCall->getCallee()->getSourceRange();
1208    return ExprError();
1209  }
1210
1211  // Get the decl for the concrete builtin from this, we can tell what the
1212  // concrete integer type we should convert to is.
1213  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1214  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1215  FunctionDecl *NewBuiltinDecl;
1216  if (NewBuiltinID == BuiltinID)
1217    NewBuiltinDecl = FDecl;
1218  else {
1219    // Perform builtin lookup to avoid redeclaring it.
1220    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1221    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1222    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1223    assert(Res.getFoundDecl());
1224    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1225    if (NewBuiltinDecl == 0)
1226      return ExprError();
1227  }
1228
1229  // The first argument --- the pointer --- has a fixed type; we
1230  // deduce the types of the rest of the arguments accordingly.  Walk
1231  // the remaining arguments, converting them to the deduced value type.
1232  for (unsigned i = 0; i != NumFixed; ++i) {
1233    ExprResult Arg = TheCall->getArg(i+1);
1234
1235    // GCC does an implicit conversion to the pointer or integer ValType.  This
1236    // can fail in some cases (1i -> int**), check for this error case now.
1237    // Initialize the argument.
1238    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1239                                                   ValType, /*consume*/ false);
1240    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1241    if (Arg.isInvalid())
1242      return ExprError();
1243
1244    // Okay, we have something that *can* be converted to the right type.  Check
1245    // to see if there is a potentially weird extension going on here.  This can
1246    // happen when you do an atomic operation on something like an char* and
1247    // pass in 42.  The 42 gets converted to char.  This is even more strange
1248    // for things like 45.123 -> char, etc.
1249    // FIXME: Do this check.
1250    TheCall->setArg(i+1, Arg.take());
1251  }
1252
1253  ASTContext& Context = this->getASTContext();
1254
1255  // Create a new DeclRefExpr to refer to the new decl.
1256  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1257      Context,
1258      DRE->getQualifierLoc(),
1259      SourceLocation(),
1260      NewBuiltinDecl,
1261      /*enclosing*/ false,
1262      DRE->getLocation(),
1263      Context.BuiltinFnTy,
1264      DRE->getValueKind());
1265
1266  // Set the callee in the CallExpr.
1267  // FIXME: This loses syntactic information.
1268  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1269  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1270                                              CK_BuiltinFnToFnPtr);
1271  TheCall->setCallee(PromotedCall.take());
1272
1273  // Change the result type of the call to match the original value type. This
1274  // is arbitrary, but the codegen for these builtins ins design to handle it
1275  // gracefully.
1276  TheCall->setType(ResultType);
1277
1278  return TheCallResult;
1279}
1280
1281/// CheckObjCString - Checks that the argument to the builtin
1282/// CFString constructor is correct
1283/// Note: It might also make sense to do the UTF-16 conversion here (would
1284/// simplify the backend).
1285bool Sema::CheckObjCString(Expr *Arg) {
1286  Arg = Arg->IgnoreParenCasts();
1287  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1288
1289  if (!Literal || !Literal->isAscii()) {
1290    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1291      << Arg->getSourceRange();
1292    return true;
1293  }
1294
1295  if (Literal->containsNonAsciiOrNull()) {
1296    StringRef String = Literal->getString();
1297    unsigned NumBytes = String.size();
1298    SmallVector<UTF16, 128> ToBuf(NumBytes);
1299    const UTF8 *FromPtr = (const UTF8 *)String.data();
1300    UTF16 *ToPtr = &ToBuf[0];
1301
1302    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1303                                                 &ToPtr, ToPtr + NumBytes,
1304                                                 strictConversion);
1305    // Check for conversion failure.
1306    if (Result != conversionOK)
1307      Diag(Arg->getLocStart(),
1308           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1309  }
1310  return false;
1311}
1312
1313/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1314/// Emit an error and return true on failure, return false on success.
1315bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1316  Expr *Fn = TheCall->getCallee();
1317  if (TheCall->getNumArgs() > 2) {
1318    Diag(TheCall->getArg(2)->getLocStart(),
1319         diag::err_typecheck_call_too_many_args)
1320      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1321      << Fn->getSourceRange()
1322      << SourceRange(TheCall->getArg(2)->getLocStart(),
1323                     (*(TheCall->arg_end()-1))->getLocEnd());
1324    return true;
1325  }
1326
1327  if (TheCall->getNumArgs() < 2) {
1328    return Diag(TheCall->getLocEnd(),
1329      diag::err_typecheck_call_too_few_args_at_least)
1330      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1331  }
1332
1333  // Type-check the first argument normally.
1334  if (checkBuiltinArgument(*this, TheCall, 0))
1335    return true;
1336
1337  // Determine whether the current function is variadic or not.
1338  BlockScopeInfo *CurBlock = getCurBlock();
1339  bool isVariadic;
1340  if (CurBlock)
1341    isVariadic = CurBlock->TheDecl->isVariadic();
1342  else if (FunctionDecl *FD = getCurFunctionDecl())
1343    isVariadic = FD->isVariadic();
1344  else
1345    isVariadic = getCurMethodDecl()->isVariadic();
1346
1347  if (!isVariadic) {
1348    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1349    return true;
1350  }
1351
1352  // Verify that the second argument to the builtin is the last argument of the
1353  // current function or method.
1354  bool SecondArgIsLastNamedArgument = false;
1355  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1356
1357  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1358    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1359      // FIXME: This isn't correct for methods (results in bogus warning).
1360      // Get the last formal in the current function.
1361      const ParmVarDecl *LastArg;
1362      if (CurBlock)
1363        LastArg = *(CurBlock->TheDecl->param_end()-1);
1364      else if (FunctionDecl *FD = getCurFunctionDecl())
1365        LastArg = *(FD->param_end()-1);
1366      else
1367        LastArg = *(getCurMethodDecl()->param_end()-1);
1368      SecondArgIsLastNamedArgument = PV == LastArg;
1369    }
1370  }
1371
1372  if (!SecondArgIsLastNamedArgument)
1373    Diag(TheCall->getArg(1)->getLocStart(),
1374         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1375  return false;
1376}
1377
1378/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1379/// friends.  This is declared to take (...), so we have to check everything.
1380bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1381  if (TheCall->getNumArgs() < 2)
1382    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1383      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1384  if (TheCall->getNumArgs() > 2)
1385    return Diag(TheCall->getArg(2)->getLocStart(),
1386                diag::err_typecheck_call_too_many_args)
1387      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1388      << SourceRange(TheCall->getArg(2)->getLocStart(),
1389                     (*(TheCall->arg_end()-1))->getLocEnd());
1390
1391  ExprResult OrigArg0 = TheCall->getArg(0);
1392  ExprResult OrigArg1 = TheCall->getArg(1);
1393
1394  // Do standard promotions between the two arguments, returning their common
1395  // type.
1396  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1397  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1398    return true;
1399
1400  // Make sure any conversions are pushed back into the call; this is
1401  // type safe since unordered compare builtins are declared as "_Bool
1402  // foo(...)".
1403  TheCall->setArg(0, OrigArg0.get());
1404  TheCall->setArg(1, OrigArg1.get());
1405
1406  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1407    return false;
1408
1409  // If the common type isn't a real floating type, then the arguments were
1410  // invalid for this operation.
1411  if (Res.isNull() || !Res->isRealFloatingType())
1412    return Diag(OrigArg0.get()->getLocStart(),
1413                diag::err_typecheck_call_invalid_ordered_compare)
1414      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1415      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1416
1417  return false;
1418}
1419
1420/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1421/// __builtin_isnan and friends.  This is declared to take (...), so we have
1422/// to check everything. We expect the last argument to be a floating point
1423/// value.
1424bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1425  if (TheCall->getNumArgs() < NumArgs)
1426    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1427      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1428  if (TheCall->getNumArgs() > NumArgs)
1429    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1430                diag::err_typecheck_call_too_many_args)
1431      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1432      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1433                     (*(TheCall->arg_end()-1))->getLocEnd());
1434
1435  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1436
1437  if (OrigArg->isTypeDependent())
1438    return false;
1439
1440  // This operation requires a non-_Complex floating-point number.
1441  if (!OrigArg->getType()->isRealFloatingType())
1442    return Diag(OrigArg->getLocStart(),
1443                diag::err_typecheck_call_invalid_unary_fp)
1444      << OrigArg->getType() << OrigArg->getSourceRange();
1445
1446  // If this is an implicit conversion from float -> double, remove it.
1447  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1448    Expr *CastArg = Cast->getSubExpr();
1449    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1450      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1451             "promotion from float to double is the only expected cast here");
1452      Cast->setSubExpr(0);
1453      TheCall->setArg(NumArgs-1, CastArg);
1454    }
1455  }
1456
1457  return false;
1458}
1459
1460/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1461// This is declared to take (...), so we have to check everything.
1462ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1463  if (TheCall->getNumArgs() < 2)
1464    return ExprError(Diag(TheCall->getLocEnd(),
1465                          diag::err_typecheck_call_too_few_args_at_least)
1466      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1467      << TheCall->getSourceRange());
1468
1469  // Determine which of the following types of shufflevector we're checking:
1470  // 1) unary, vector mask: (lhs, mask)
1471  // 2) binary, vector mask: (lhs, rhs, mask)
1472  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1473  QualType resType = TheCall->getArg(0)->getType();
1474  unsigned numElements = 0;
1475
1476  if (!TheCall->getArg(0)->isTypeDependent() &&
1477      !TheCall->getArg(1)->isTypeDependent()) {
1478    QualType LHSType = TheCall->getArg(0)->getType();
1479    QualType RHSType = TheCall->getArg(1)->getType();
1480
1481    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1482      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1483        << SourceRange(TheCall->getArg(0)->getLocStart(),
1484                       TheCall->getArg(1)->getLocEnd());
1485      return ExprError();
1486    }
1487
1488    numElements = LHSType->getAs<VectorType>()->getNumElements();
1489    unsigned numResElements = TheCall->getNumArgs() - 2;
1490
1491    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1492    // with mask.  If so, verify that RHS is an integer vector type with the
1493    // same number of elts as lhs.
1494    if (TheCall->getNumArgs() == 2) {
1495      if (!RHSType->hasIntegerRepresentation() ||
1496          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1497        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1498          << SourceRange(TheCall->getArg(1)->getLocStart(),
1499                         TheCall->getArg(1)->getLocEnd());
1500      numResElements = numElements;
1501    }
1502    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1503      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1504        << SourceRange(TheCall->getArg(0)->getLocStart(),
1505                       TheCall->getArg(1)->getLocEnd());
1506      return ExprError();
1507    } else if (numElements != numResElements) {
1508      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1509      resType = Context.getVectorType(eltType, numResElements,
1510                                      VectorType::GenericVector);
1511    }
1512  }
1513
1514  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1515    if (TheCall->getArg(i)->isTypeDependent() ||
1516        TheCall->getArg(i)->isValueDependent())
1517      continue;
1518
1519    llvm::APSInt Result(32);
1520    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1521      return ExprError(Diag(TheCall->getLocStart(),
1522                  diag::err_shufflevector_nonconstant_argument)
1523                << TheCall->getArg(i)->getSourceRange());
1524
1525    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1526      return ExprError(Diag(TheCall->getLocStart(),
1527                  diag::err_shufflevector_argument_too_large)
1528               << TheCall->getArg(i)->getSourceRange());
1529  }
1530
1531  SmallVector<Expr*, 32> exprs;
1532
1533  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1534    exprs.push_back(TheCall->getArg(i));
1535    TheCall->setArg(i, 0);
1536  }
1537
1538  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1539                                            TheCall->getCallee()->getLocStart(),
1540                                            TheCall->getRParenLoc()));
1541}
1542
1543/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1544// This is declared to take (const void*, ...) and can take two
1545// optional constant int args.
1546bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1547  unsigned NumArgs = TheCall->getNumArgs();
1548
1549  if (NumArgs > 3)
1550    return Diag(TheCall->getLocEnd(),
1551             diag::err_typecheck_call_too_many_args_at_most)
1552             << 0 /*function call*/ << 3 << NumArgs
1553             << TheCall->getSourceRange();
1554
1555  // Argument 0 is checked for us and the remaining arguments must be
1556  // constant integers.
1557  for (unsigned i = 1; i != NumArgs; ++i) {
1558    Expr *Arg = TheCall->getArg(i);
1559
1560    // We can't check the value of a dependent argument.
1561    if (Arg->isTypeDependent() || Arg->isValueDependent())
1562      continue;
1563
1564    llvm::APSInt Result;
1565    if (SemaBuiltinConstantArg(TheCall, i, Result))
1566      return true;
1567
1568    // FIXME: gcc issues a warning and rewrites these to 0. These
1569    // seems especially odd for the third argument since the default
1570    // is 3.
1571    if (i == 1) {
1572      if (Result.getLimitedValue() > 1)
1573        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1574             << "0" << "1" << Arg->getSourceRange();
1575    } else {
1576      if (Result.getLimitedValue() > 3)
1577        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1578            << "0" << "3" << Arg->getSourceRange();
1579    }
1580  }
1581
1582  return false;
1583}
1584
1585/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1586/// TheCall is a constant expression.
1587bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1588                                  llvm::APSInt &Result) {
1589  Expr *Arg = TheCall->getArg(ArgNum);
1590  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1591  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1592
1593  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1594
1595  if (!Arg->isIntegerConstantExpr(Result, Context))
1596    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1597                << FDecl->getDeclName() <<  Arg->getSourceRange();
1598
1599  return false;
1600}
1601
1602/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1603/// int type). This simply type checks that type is one of the defined
1604/// constants (0-3).
1605// For compatibility check 0-3, llvm only handles 0 and 2.
1606bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1607  llvm::APSInt Result;
1608
1609  // We can't check the value of a dependent argument.
1610  if (TheCall->getArg(1)->isTypeDependent() ||
1611      TheCall->getArg(1)->isValueDependent())
1612    return false;
1613
1614  // Check constant-ness first.
1615  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1616    return true;
1617
1618  Expr *Arg = TheCall->getArg(1);
1619  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1620    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1621             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1622  }
1623
1624  return false;
1625}
1626
1627/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1628/// This checks that val is a constant 1.
1629bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1630  Expr *Arg = TheCall->getArg(1);
1631  llvm::APSInt Result;
1632
1633  // TODO: This is less than ideal. Overload this to take a value.
1634  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1635    return true;
1636
1637  if (Result != 1)
1638    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1639             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1640
1641  return false;
1642}
1643
1644// Determine if an expression is a string literal or constant string.
1645// If this function returns false on the arguments to a function expecting a
1646// format string, we will usually need to emit a warning.
1647// True string literals are then checked by CheckFormatString.
1648Sema::StringLiteralCheckType
1649Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
1650                            unsigned NumArgs, bool HasVAListArg,
1651                            unsigned format_idx, unsigned firstDataArg,
1652                            FormatStringType Type, VariadicCallType CallType,
1653                            bool inFunctionCall) {
1654 tryAgain:
1655  if (E->isTypeDependent() || E->isValueDependent())
1656    return SLCT_NotALiteral;
1657
1658  E = E->IgnoreParenCasts();
1659
1660  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1661    // Technically -Wformat-nonliteral does not warn about this case.
1662    // The behavior of printf and friends in this case is implementation
1663    // dependent.  Ideally if the format string cannot be null then
1664    // it should have a 'nonnull' attribute in the function prototype.
1665    return SLCT_CheckedLiteral;
1666
1667  switch (E->getStmtClass()) {
1668  case Stmt::BinaryConditionalOperatorClass:
1669  case Stmt::ConditionalOperatorClass: {
1670    // The expression is a literal if both sub-expressions were, and it was
1671    // completely checked only if both sub-expressions were checked.
1672    const AbstractConditionalOperator *C =
1673        cast<AbstractConditionalOperator>(E);
1674    StringLiteralCheckType Left =
1675        checkFormatStringExpr(C->getTrueExpr(), Args, NumArgs,
1676                              HasVAListArg, format_idx, firstDataArg,
1677                              Type, CallType, inFunctionCall);
1678    if (Left == SLCT_NotALiteral)
1679      return SLCT_NotALiteral;
1680    StringLiteralCheckType Right =
1681        checkFormatStringExpr(C->getFalseExpr(), Args, NumArgs,
1682                              HasVAListArg, format_idx, firstDataArg,
1683                              Type, CallType, inFunctionCall);
1684    return Left < Right ? Left : Right;
1685  }
1686
1687  case Stmt::ImplicitCastExprClass: {
1688    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1689    goto tryAgain;
1690  }
1691
1692  case Stmt::OpaqueValueExprClass:
1693    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1694      E = src;
1695      goto tryAgain;
1696    }
1697    return SLCT_NotALiteral;
1698
1699  case Stmt::PredefinedExprClass:
1700    // While __func__, etc., are technically not string literals, they
1701    // cannot contain format specifiers and thus are not a security
1702    // liability.
1703    return SLCT_UncheckedLiteral;
1704
1705  case Stmt::DeclRefExprClass: {
1706    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1707
1708    // As an exception, do not flag errors for variables binding to
1709    // const string literals.
1710    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1711      bool isConstant = false;
1712      QualType T = DR->getType();
1713
1714      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1715        isConstant = AT->getElementType().isConstant(Context);
1716      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1717        isConstant = T.isConstant(Context) &&
1718                     PT->getPointeeType().isConstant(Context);
1719      } else if (T->isObjCObjectPointerType()) {
1720        // In ObjC, there is usually no "const ObjectPointer" type,
1721        // so don't check if the pointee type is constant.
1722        isConstant = T.isConstant(Context);
1723      }
1724
1725      if (isConstant) {
1726        if (const Expr *Init = VD->getAnyInitializer()) {
1727          // Look through initializers like const char c[] = { "foo" }
1728          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1729            if (InitList->isStringLiteralInit())
1730              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1731          }
1732          return checkFormatStringExpr(Init, Args, NumArgs,
1733                                       HasVAListArg, format_idx,
1734                                       firstDataArg, Type, CallType,
1735                                       /*inFunctionCall*/false);
1736        }
1737      }
1738
1739      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1740      // special check to see if the format string is a function parameter
1741      // of the function calling the printf function.  If the function
1742      // has an attribute indicating it is a printf-like function, then we
1743      // should suppress warnings concerning non-literals being used in a call
1744      // to a vprintf function.  For example:
1745      //
1746      // void
1747      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1748      //      va_list ap;
1749      //      va_start(ap, fmt);
1750      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1751      //      ...
1752      //
1753      if (HasVAListArg) {
1754        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1755          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1756            int PVIndex = PV->getFunctionScopeIndex() + 1;
1757            for (specific_attr_iterator<FormatAttr>
1758                 i = ND->specific_attr_begin<FormatAttr>(),
1759                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1760              FormatAttr *PVFormat = *i;
1761              // adjust for implicit parameter
1762              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1763                if (MD->isInstance())
1764                  ++PVIndex;
1765              // We also check if the formats are compatible.
1766              // We can't pass a 'scanf' string to a 'printf' function.
1767              if (PVIndex == PVFormat->getFormatIdx() &&
1768                  Type == GetFormatStringType(PVFormat))
1769                return SLCT_UncheckedLiteral;
1770            }
1771          }
1772        }
1773      }
1774    }
1775
1776    return SLCT_NotALiteral;
1777  }
1778
1779  case Stmt::CallExprClass:
1780  case Stmt::CXXMemberCallExprClass: {
1781    const CallExpr *CE = cast<CallExpr>(E);
1782    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1783      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1784        unsigned ArgIndex = FA->getFormatIdx();
1785        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1786          if (MD->isInstance())
1787            --ArgIndex;
1788        const Expr *Arg = CE->getArg(ArgIndex - 1);
1789
1790        return checkFormatStringExpr(Arg, Args, NumArgs,
1791                                     HasVAListArg, format_idx, firstDataArg,
1792                                     Type, CallType, inFunctionCall);
1793      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1794        unsigned BuiltinID = FD->getBuiltinID();
1795        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1796            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1797          const Expr *Arg = CE->getArg(0);
1798          return checkFormatStringExpr(Arg, Args, NumArgs,
1799                                       HasVAListArg, format_idx,
1800                                       firstDataArg, Type, CallType,
1801                                       inFunctionCall);
1802        }
1803      }
1804    }
1805
1806    return SLCT_NotALiteral;
1807  }
1808  case Stmt::ObjCStringLiteralClass:
1809  case Stmt::StringLiteralClass: {
1810    const StringLiteral *StrE = NULL;
1811
1812    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1813      StrE = ObjCFExpr->getString();
1814    else
1815      StrE = cast<StringLiteral>(E);
1816
1817    if (StrE) {
1818      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1819                        firstDataArg, Type, inFunctionCall, CallType);
1820      return SLCT_CheckedLiteral;
1821    }
1822
1823    return SLCT_NotALiteral;
1824  }
1825
1826  default:
1827    return SLCT_NotALiteral;
1828  }
1829}
1830
1831void
1832Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1833                            const Expr * const *ExprArgs,
1834                            SourceLocation CallSiteLoc) {
1835  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1836                                  e = NonNull->args_end();
1837       i != e; ++i) {
1838    const Expr *ArgExpr = ExprArgs[*i];
1839    if (ArgExpr->isNullPointerConstant(Context,
1840                                       Expr::NPC_ValueDependentIsNotNull))
1841      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1842  }
1843}
1844
1845Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1846  return llvm::StringSwitch<FormatStringType>(Format->getType())
1847  .Case("scanf", FST_Scanf)
1848  .Cases("printf", "printf0", FST_Printf)
1849  .Cases("NSString", "CFString", FST_NSString)
1850  .Case("strftime", FST_Strftime)
1851  .Case("strfmon", FST_Strfmon)
1852  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1853  .Default(FST_Unknown);
1854}
1855
1856/// CheckFormatArguments - Check calls to printf and scanf (and similar
1857/// functions) for correct use of format strings.
1858/// Returns true if a format string has been fully checked.
1859bool Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1860                                unsigned NumArgs, bool IsCXXMember,
1861                                VariadicCallType CallType,
1862                                SourceLocation Loc, SourceRange Range) {
1863  FormatStringInfo FSI;
1864  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1865    return CheckFormatArguments(Args, NumArgs, FSI.HasVAListArg, FSI.FormatIdx,
1866                                FSI.FirstDataArg, GetFormatStringType(Format),
1867                                CallType, Loc, Range);
1868  return false;
1869}
1870
1871bool Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1872                                bool HasVAListArg, unsigned format_idx,
1873                                unsigned firstDataArg, FormatStringType Type,
1874                                VariadicCallType CallType,
1875                                SourceLocation Loc, SourceRange Range) {
1876  // CHECK: printf/scanf-like function is called with no format string.
1877  if (format_idx >= NumArgs) {
1878    Diag(Loc, diag::warn_missing_format_string) << Range;
1879    return false;
1880  }
1881
1882  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1883
1884  // CHECK: format string is not a string literal.
1885  //
1886  // Dynamically generated format strings are difficult to
1887  // automatically vet at compile time.  Requiring that format strings
1888  // are string literals: (1) permits the checking of format strings by
1889  // the compiler and thereby (2) can practically remove the source of
1890  // many format string exploits.
1891
1892  // Format string can be either ObjC string (e.g. @"%d") or
1893  // C string (e.g. "%d")
1894  // ObjC string uses the same format specifiers as C string, so we can use
1895  // the same format string checking logic for both ObjC and C strings.
1896  StringLiteralCheckType CT =
1897      checkFormatStringExpr(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1898                            format_idx, firstDataArg, Type, CallType);
1899  if (CT != SLCT_NotALiteral)
1900    // Literal format string found, check done!
1901    return CT == SLCT_CheckedLiteral;
1902
1903  // Strftime is particular as it always uses a single 'time' argument,
1904  // so it is safe to pass a non-literal string.
1905  if (Type == FST_Strftime)
1906    return false;
1907
1908  // Do not emit diag when the string param is a macro expansion and the
1909  // format is either NSString or CFString. This is a hack to prevent
1910  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1911  // which are usually used in place of NS and CF string literals.
1912  if (Type == FST_NSString &&
1913      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1914    return false;
1915
1916  // If there are no arguments specified, warn with -Wformat-security, otherwise
1917  // warn only with -Wformat-nonliteral.
1918  if (NumArgs == format_idx+1)
1919    Diag(Args[format_idx]->getLocStart(),
1920         diag::warn_format_nonliteral_noargs)
1921      << OrigFormatExpr->getSourceRange();
1922  else
1923    Diag(Args[format_idx]->getLocStart(),
1924         diag::warn_format_nonliteral)
1925           << OrigFormatExpr->getSourceRange();
1926  return false;
1927}
1928
1929namespace {
1930class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1931protected:
1932  Sema &S;
1933  const StringLiteral *FExpr;
1934  const Expr *OrigFormatExpr;
1935  const unsigned FirstDataArg;
1936  const unsigned NumDataArgs;
1937  const char *Beg; // Start of format string.
1938  const bool HasVAListArg;
1939  const Expr * const *Args;
1940  const unsigned NumArgs;
1941  unsigned FormatIdx;
1942  llvm::BitVector CoveredArgs;
1943  bool usesPositionalArgs;
1944  bool atFirstArg;
1945  bool inFunctionCall;
1946  Sema::VariadicCallType CallType;
1947public:
1948  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1949                     const Expr *origFormatExpr, unsigned firstDataArg,
1950                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
1951                     Expr **args, unsigned numArgs,
1952                     unsigned formatIdx, bool inFunctionCall,
1953                     Sema::VariadicCallType callType)
1954    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1955      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1956      Beg(beg), HasVAListArg(hasVAListArg),
1957      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1958      usesPositionalArgs(false), atFirstArg(true),
1959      inFunctionCall(inFunctionCall), CallType(callType) {
1960        CoveredArgs.resize(numDataArgs);
1961        CoveredArgs.reset();
1962      }
1963
1964  void DoneProcessing();
1965
1966  void HandleIncompleteSpecifier(const char *startSpecifier,
1967                                 unsigned specifierLen);
1968
1969  void HandleInvalidLengthModifier(
1970      const analyze_format_string::FormatSpecifier &FS,
1971      const analyze_format_string::ConversionSpecifier &CS,
1972      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
1973
1974  void HandleNonStandardLengthModifier(
1975      const analyze_format_string::FormatSpecifier &FS,
1976      const char *startSpecifier, unsigned specifierLen);
1977
1978  void HandleNonStandardConversionSpecifier(
1979      const analyze_format_string::ConversionSpecifier &CS,
1980      const char *startSpecifier, unsigned specifierLen);
1981
1982  virtual void HandlePosition(const char *startPos, unsigned posLen);
1983
1984  virtual void HandleInvalidPosition(const char *startSpecifier,
1985                                     unsigned specifierLen,
1986                                     analyze_format_string::PositionContext p);
1987
1988  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1989
1990  void HandleNullChar(const char *nullCharacter);
1991
1992  template <typename Range>
1993  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1994                                   const Expr *ArgumentExpr,
1995                                   PartialDiagnostic PDiag,
1996                                   SourceLocation StringLoc,
1997                                   bool IsStringLocation, Range StringRange,
1998                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
1999
2000protected:
2001  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2002                                        const char *startSpec,
2003                                        unsigned specifierLen,
2004                                        const char *csStart, unsigned csLen);
2005
2006  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2007                                         const char *startSpec,
2008                                         unsigned specifierLen);
2009
2010  SourceRange getFormatStringRange();
2011  CharSourceRange getSpecifierRange(const char *startSpecifier,
2012                                    unsigned specifierLen);
2013  SourceLocation getLocationOfByte(const char *x);
2014
2015  const Expr *getDataArg(unsigned i) const;
2016
2017  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2018                    const analyze_format_string::ConversionSpecifier &CS,
2019                    const char *startSpecifier, unsigned specifierLen,
2020                    unsigned argIndex);
2021
2022  template <typename Range>
2023  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2024                            bool IsStringLocation, Range StringRange,
2025                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2026
2027  void CheckPositionalAndNonpositionalArgs(
2028      const analyze_format_string::FormatSpecifier *FS);
2029};
2030}
2031
2032SourceRange CheckFormatHandler::getFormatStringRange() {
2033  return OrigFormatExpr->getSourceRange();
2034}
2035
2036CharSourceRange CheckFormatHandler::
2037getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2038  SourceLocation Start = getLocationOfByte(startSpecifier);
2039  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2040
2041  // Advance the end SourceLocation by one due to half-open ranges.
2042  End = End.getLocWithOffset(1);
2043
2044  return CharSourceRange::getCharRange(Start, End);
2045}
2046
2047SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2048  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2049}
2050
2051void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2052                                                   unsigned specifierLen){
2053  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2054                       getLocationOfByte(startSpecifier),
2055                       /*IsStringLocation*/true,
2056                       getSpecifierRange(startSpecifier, specifierLen));
2057}
2058
2059void CheckFormatHandler::HandleInvalidLengthModifier(
2060    const analyze_format_string::FormatSpecifier &FS,
2061    const analyze_format_string::ConversionSpecifier &CS,
2062    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2063  using namespace analyze_format_string;
2064
2065  const LengthModifier &LM = FS.getLengthModifier();
2066  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2067
2068  // See if we know how to fix this length modifier.
2069  llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2070  if (FixedLM) {
2071    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2072                         getLocationOfByte(LM.getStart()),
2073                         /*IsStringLocation*/true,
2074                         getSpecifierRange(startSpecifier, specifierLen));
2075
2076    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2077      << FixedLM->toString()
2078      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2079
2080  } else {
2081    FixItHint Hint;
2082    if (DiagID == diag::warn_format_nonsensical_length)
2083      Hint = FixItHint::CreateRemoval(LMRange);
2084
2085    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2086                         getLocationOfByte(LM.getStart()),
2087                         /*IsStringLocation*/true,
2088                         getSpecifierRange(startSpecifier, specifierLen),
2089                         Hint);
2090  }
2091}
2092
2093void CheckFormatHandler::HandleNonStandardLengthModifier(
2094    const analyze_format_string::FormatSpecifier &FS,
2095    const char *startSpecifier, unsigned specifierLen) {
2096  using namespace analyze_format_string;
2097
2098  const LengthModifier &LM = FS.getLengthModifier();
2099  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2100
2101  // See if we know how to fix this length modifier.
2102  llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2103  if (FixedLM) {
2104    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2105                           << LM.toString() << 0,
2106                         getLocationOfByte(LM.getStart()),
2107                         /*IsStringLocation*/true,
2108                         getSpecifierRange(startSpecifier, specifierLen));
2109
2110    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2111      << FixedLM->toString()
2112      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2113
2114  } else {
2115    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2116                           << LM.toString() << 0,
2117                         getLocationOfByte(LM.getStart()),
2118                         /*IsStringLocation*/true,
2119                         getSpecifierRange(startSpecifier, specifierLen));
2120  }
2121}
2122
2123void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2124    const analyze_format_string::ConversionSpecifier &CS,
2125    const char *startSpecifier, unsigned specifierLen) {
2126  using namespace analyze_format_string;
2127
2128  // See if we know how to fix this conversion specifier.
2129  llvm::Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2130  if (FixedCS) {
2131    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2132                          << CS.toString() << /*conversion specifier*/1,
2133                         getLocationOfByte(CS.getStart()),
2134                         /*IsStringLocation*/true,
2135                         getSpecifierRange(startSpecifier, specifierLen));
2136
2137    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2138    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2139      << FixedCS->toString()
2140      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2141  } else {
2142    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2143                          << CS.toString() << /*conversion specifier*/1,
2144                         getLocationOfByte(CS.getStart()),
2145                         /*IsStringLocation*/true,
2146                         getSpecifierRange(startSpecifier, specifierLen));
2147  }
2148}
2149
2150void CheckFormatHandler::HandlePosition(const char *startPos,
2151                                        unsigned posLen) {
2152  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2153                               getLocationOfByte(startPos),
2154                               /*IsStringLocation*/true,
2155                               getSpecifierRange(startPos, posLen));
2156}
2157
2158void
2159CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2160                                     analyze_format_string::PositionContext p) {
2161  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2162                         << (unsigned) p,
2163                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2164                       getSpecifierRange(startPos, posLen));
2165}
2166
2167void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2168                                            unsigned posLen) {
2169  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2170                               getLocationOfByte(startPos),
2171                               /*IsStringLocation*/true,
2172                               getSpecifierRange(startPos, posLen));
2173}
2174
2175void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2176  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2177    // The presence of a null character is likely an error.
2178    EmitFormatDiagnostic(
2179      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2180      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2181      getFormatStringRange());
2182  }
2183}
2184
2185// Note that this may return NULL if there was an error parsing or building
2186// one of the argument expressions.
2187const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2188  return Args[FirstDataArg + i];
2189}
2190
2191void CheckFormatHandler::DoneProcessing() {
2192    // Does the number of data arguments exceed the number of
2193    // format conversions in the format string?
2194  if (!HasVAListArg) {
2195      // Find any arguments that weren't covered.
2196    CoveredArgs.flip();
2197    signed notCoveredArg = CoveredArgs.find_first();
2198    if (notCoveredArg >= 0) {
2199      assert((unsigned)notCoveredArg < NumDataArgs);
2200      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2201        SourceLocation Loc = E->getLocStart();
2202        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2203          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2204                               Loc, /*IsStringLocation*/false,
2205                               getFormatStringRange());
2206        }
2207      }
2208    }
2209  }
2210}
2211
2212bool
2213CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2214                                                     SourceLocation Loc,
2215                                                     const char *startSpec,
2216                                                     unsigned specifierLen,
2217                                                     const char *csStart,
2218                                                     unsigned csLen) {
2219
2220  bool keepGoing = true;
2221  if (argIndex < NumDataArgs) {
2222    // Consider the argument coverered, even though the specifier doesn't
2223    // make sense.
2224    CoveredArgs.set(argIndex);
2225  }
2226  else {
2227    // If argIndex exceeds the number of data arguments we
2228    // don't issue a warning because that is just a cascade of warnings (and
2229    // they may have intended '%%' anyway). We don't want to continue processing
2230    // the format string after this point, however, as we will like just get
2231    // gibberish when trying to match arguments.
2232    keepGoing = false;
2233  }
2234
2235  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2236                         << StringRef(csStart, csLen),
2237                       Loc, /*IsStringLocation*/true,
2238                       getSpecifierRange(startSpec, specifierLen));
2239
2240  return keepGoing;
2241}
2242
2243void
2244CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2245                                                      const char *startSpec,
2246                                                      unsigned specifierLen) {
2247  EmitFormatDiagnostic(
2248    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2249    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2250}
2251
2252bool
2253CheckFormatHandler::CheckNumArgs(
2254  const analyze_format_string::FormatSpecifier &FS,
2255  const analyze_format_string::ConversionSpecifier &CS,
2256  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2257
2258  if (argIndex >= NumDataArgs) {
2259    PartialDiagnostic PDiag = FS.usesPositionalArg()
2260      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2261           << (argIndex+1) << NumDataArgs)
2262      : S.PDiag(diag::warn_printf_insufficient_data_args);
2263    EmitFormatDiagnostic(
2264      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2265      getSpecifierRange(startSpecifier, specifierLen));
2266    return false;
2267  }
2268  return true;
2269}
2270
2271template<typename Range>
2272void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2273                                              SourceLocation Loc,
2274                                              bool IsStringLocation,
2275                                              Range StringRange,
2276                                              ArrayRef<FixItHint> FixIt) {
2277  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2278                       Loc, IsStringLocation, StringRange, FixIt);
2279}
2280
2281/// \brief If the format string is not within the funcion call, emit a note
2282/// so that the function call and string are in diagnostic messages.
2283///
2284/// \param InFunctionCall if true, the format string is within the function
2285/// call and only one diagnostic message will be produced.  Otherwise, an
2286/// extra note will be emitted pointing to location of the format string.
2287///
2288/// \param ArgumentExpr the expression that is passed as the format string
2289/// argument in the function call.  Used for getting locations when two
2290/// diagnostics are emitted.
2291///
2292/// \param PDiag the callee should already have provided any strings for the
2293/// diagnostic message.  This function only adds locations and fixits
2294/// to diagnostics.
2295///
2296/// \param Loc primary location for diagnostic.  If two diagnostics are
2297/// required, one will be at Loc and a new SourceLocation will be created for
2298/// the other one.
2299///
2300/// \param IsStringLocation if true, Loc points to the format string should be
2301/// used for the note.  Otherwise, Loc points to the argument list and will
2302/// be used with PDiag.
2303///
2304/// \param StringRange some or all of the string to highlight.  This is
2305/// templated so it can accept either a CharSourceRange or a SourceRange.
2306///
2307/// \param FixIt optional fix it hint for the format string.
2308template<typename Range>
2309void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2310                                              const Expr *ArgumentExpr,
2311                                              PartialDiagnostic PDiag,
2312                                              SourceLocation Loc,
2313                                              bool IsStringLocation,
2314                                              Range StringRange,
2315                                              ArrayRef<FixItHint> FixIt) {
2316  if (InFunctionCall) {
2317    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2318    D << StringRange;
2319    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2320         I != E; ++I) {
2321      D << *I;
2322    }
2323  } else {
2324    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2325      << ArgumentExpr->getSourceRange();
2326
2327    const Sema::SemaDiagnosticBuilder &Note =
2328      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2329             diag::note_format_string_defined);
2330
2331    Note << StringRange;
2332    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2333         I != E; ++I) {
2334      Note << *I;
2335    }
2336  }
2337}
2338
2339//===--- CHECK: Printf format string checking ------------------------------===//
2340
2341namespace {
2342class CheckPrintfHandler : public CheckFormatHandler {
2343  bool ObjCContext;
2344public:
2345  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2346                     const Expr *origFormatExpr, unsigned firstDataArg,
2347                     unsigned numDataArgs, bool isObjC,
2348                     const char *beg, bool hasVAListArg,
2349                     Expr **Args, unsigned NumArgs,
2350                     unsigned formatIdx, bool inFunctionCall,
2351                     Sema::VariadicCallType CallType)
2352  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2353                       numDataArgs, beg, hasVAListArg, Args, NumArgs,
2354                       formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2355  {}
2356
2357
2358  bool HandleInvalidPrintfConversionSpecifier(
2359                                      const analyze_printf::PrintfSpecifier &FS,
2360                                      const char *startSpecifier,
2361                                      unsigned specifierLen);
2362
2363  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2364                             const char *startSpecifier,
2365                             unsigned specifierLen);
2366  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2367                       const char *StartSpecifier,
2368                       unsigned SpecifierLen,
2369                       const Expr *E);
2370
2371  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2372                    const char *startSpecifier, unsigned specifierLen);
2373  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2374                           const analyze_printf::OptionalAmount &Amt,
2375                           unsigned type,
2376                           const char *startSpecifier, unsigned specifierLen);
2377  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2378                  const analyze_printf::OptionalFlag &flag,
2379                  const char *startSpecifier, unsigned specifierLen);
2380  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2381                         const analyze_printf::OptionalFlag &ignoredFlag,
2382                         const analyze_printf::OptionalFlag &flag,
2383                         const char *startSpecifier, unsigned specifierLen);
2384  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2385                           const Expr *E, const CharSourceRange &CSR);
2386
2387};
2388}
2389
2390bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2391                                      const analyze_printf::PrintfSpecifier &FS,
2392                                      const char *startSpecifier,
2393                                      unsigned specifierLen) {
2394  const analyze_printf::PrintfConversionSpecifier &CS =
2395    FS.getConversionSpecifier();
2396
2397  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2398                                          getLocationOfByte(CS.getStart()),
2399                                          startSpecifier, specifierLen,
2400                                          CS.getStart(), CS.getLength());
2401}
2402
2403bool CheckPrintfHandler::HandleAmount(
2404                               const analyze_format_string::OptionalAmount &Amt,
2405                               unsigned k, const char *startSpecifier,
2406                               unsigned specifierLen) {
2407
2408  if (Amt.hasDataArgument()) {
2409    if (!HasVAListArg) {
2410      unsigned argIndex = Amt.getArgIndex();
2411      if (argIndex >= NumDataArgs) {
2412        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2413                               << k,
2414                             getLocationOfByte(Amt.getStart()),
2415                             /*IsStringLocation*/true,
2416                             getSpecifierRange(startSpecifier, specifierLen));
2417        // Don't do any more checking.  We will just emit
2418        // spurious errors.
2419        return false;
2420      }
2421
2422      // Type check the data argument.  It should be an 'int'.
2423      // Although not in conformance with C99, we also allow the argument to be
2424      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2425      // doesn't emit a warning for that case.
2426      CoveredArgs.set(argIndex);
2427      const Expr *Arg = getDataArg(argIndex);
2428      if (!Arg)
2429        return false;
2430
2431      QualType T = Arg->getType();
2432
2433      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2434      assert(AT.isValid());
2435
2436      if (!AT.matchesType(S.Context, T)) {
2437        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2438                               << k << AT.getRepresentativeTypeName(S.Context)
2439                               << T << Arg->getSourceRange(),
2440                             getLocationOfByte(Amt.getStart()),
2441                             /*IsStringLocation*/true,
2442                             getSpecifierRange(startSpecifier, specifierLen));
2443        // Don't do any more checking.  We will just emit
2444        // spurious errors.
2445        return false;
2446      }
2447    }
2448  }
2449  return true;
2450}
2451
2452void CheckPrintfHandler::HandleInvalidAmount(
2453                                      const analyze_printf::PrintfSpecifier &FS,
2454                                      const analyze_printf::OptionalAmount &Amt,
2455                                      unsigned type,
2456                                      const char *startSpecifier,
2457                                      unsigned specifierLen) {
2458  const analyze_printf::PrintfConversionSpecifier &CS =
2459    FS.getConversionSpecifier();
2460
2461  FixItHint fixit =
2462    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2463      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2464                                 Amt.getConstantLength()))
2465      : FixItHint();
2466
2467  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2468                         << type << CS.toString(),
2469                       getLocationOfByte(Amt.getStart()),
2470                       /*IsStringLocation*/true,
2471                       getSpecifierRange(startSpecifier, specifierLen),
2472                       fixit);
2473}
2474
2475void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2476                                    const analyze_printf::OptionalFlag &flag,
2477                                    const char *startSpecifier,
2478                                    unsigned specifierLen) {
2479  // Warn about pointless flag with a fixit removal.
2480  const analyze_printf::PrintfConversionSpecifier &CS =
2481    FS.getConversionSpecifier();
2482  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2483                         << flag.toString() << CS.toString(),
2484                       getLocationOfByte(flag.getPosition()),
2485                       /*IsStringLocation*/true,
2486                       getSpecifierRange(startSpecifier, specifierLen),
2487                       FixItHint::CreateRemoval(
2488                         getSpecifierRange(flag.getPosition(), 1)));
2489}
2490
2491void CheckPrintfHandler::HandleIgnoredFlag(
2492                                const analyze_printf::PrintfSpecifier &FS,
2493                                const analyze_printf::OptionalFlag &ignoredFlag,
2494                                const analyze_printf::OptionalFlag &flag,
2495                                const char *startSpecifier,
2496                                unsigned specifierLen) {
2497  // Warn about ignored flag with a fixit removal.
2498  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2499                         << ignoredFlag.toString() << flag.toString(),
2500                       getLocationOfByte(ignoredFlag.getPosition()),
2501                       /*IsStringLocation*/true,
2502                       getSpecifierRange(startSpecifier, specifierLen),
2503                       FixItHint::CreateRemoval(
2504                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2505}
2506
2507// Determines if the specified is a C++ class or struct containing
2508// a member with the specified name and kind (e.g. a CXXMethodDecl named
2509// "c_str()").
2510template<typename MemberKind>
2511static llvm::SmallPtrSet<MemberKind*, 1>
2512CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2513  const RecordType *RT = Ty->getAs<RecordType>();
2514  llvm::SmallPtrSet<MemberKind*, 1> Results;
2515
2516  if (!RT)
2517    return Results;
2518  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2519  if (!RD)
2520    return Results;
2521
2522  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2523                 Sema::LookupMemberName);
2524
2525  // We just need to include all members of the right kind turned up by the
2526  // filter, at this point.
2527  if (S.LookupQualifiedName(R, RT->getDecl()))
2528    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2529      NamedDecl *decl = (*I)->getUnderlyingDecl();
2530      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2531        Results.insert(FK);
2532    }
2533  return Results;
2534}
2535
2536// Check if a (w)string was passed when a (w)char* was needed, and offer a
2537// better diagnostic if so. AT is assumed to be valid.
2538// Returns true when a c_str() conversion method is found.
2539bool CheckPrintfHandler::checkForCStrMembers(
2540    const analyze_printf::ArgType &AT, const Expr *E,
2541    const CharSourceRange &CSR) {
2542  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2543
2544  MethodSet Results =
2545      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2546
2547  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2548       MI != ME; ++MI) {
2549    const CXXMethodDecl *Method = *MI;
2550    if (Method->getNumParams() == 0 &&
2551          AT.matchesType(S.Context, Method->getResultType())) {
2552      // FIXME: Suggest parens if the expression needs them.
2553      SourceLocation EndLoc =
2554          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2555      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2556          << "c_str()"
2557          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2558      return true;
2559    }
2560  }
2561
2562  return false;
2563}
2564
2565bool
2566CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2567                                            &FS,
2568                                          const char *startSpecifier,
2569                                          unsigned specifierLen) {
2570
2571  using namespace analyze_format_string;
2572  using namespace analyze_printf;
2573  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2574
2575  if (FS.consumesDataArgument()) {
2576    if (atFirstArg) {
2577        atFirstArg = false;
2578        usesPositionalArgs = FS.usesPositionalArg();
2579    }
2580    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2581      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2582                                        startSpecifier, specifierLen);
2583      return false;
2584    }
2585  }
2586
2587  // First check if the field width, precision, and conversion specifier
2588  // have matching data arguments.
2589  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2590                    startSpecifier, specifierLen)) {
2591    return false;
2592  }
2593
2594  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2595                    startSpecifier, specifierLen)) {
2596    return false;
2597  }
2598
2599  if (!CS.consumesDataArgument()) {
2600    // FIXME: Technically specifying a precision or field width here
2601    // makes no sense.  Worth issuing a warning at some point.
2602    return true;
2603  }
2604
2605  // Consume the argument.
2606  unsigned argIndex = FS.getArgIndex();
2607  if (argIndex < NumDataArgs) {
2608    // The check to see if the argIndex is valid will come later.
2609    // We set the bit here because we may exit early from this
2610    // function if we encounter some other error.
2611    CoveredArgs.set(argIndex);
2612  }
2613
2614  // FreeBSD extensions
2615  if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
2616      CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
2617    // claim the second argument
2618    CoveredArgs.set(argIndex + 1);
2619
2620    // Now type check the data expression that matches the
2621    // format specifier.
2622    const Expr *Ex = getDataArg(argIndex);
2623    const analyze_printf::ArgType &AT =
2624      (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
2625        ArgType(S.Context.IntTy) : ArgType::CStrTy;
2626    if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
2627      S.Diag(getLocationOfByte(CS.getStart()),
2628             diag::warn_printf_conversion_argument_type_mismatch)
2629        << AT.getRepresentativeType(S.Context) << Ex->getType()
2630        << getSpecifierRange(startSpecifier, specifierLen)
2631        << Ex->getSourceRange();
2632
2633    // Now type check the data expression that matches the
2634    // format specifier.
2635    Ex = getDataArg(argIndex + 1);
2636    const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
2637    if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
2638      S.Diag(getLocationOfByte(CS.getStart()),
2639             diag::warn_printf_conversion_argument_type_mismatch)
2640        << AT2.getRepresentativeType(S.Context) << Ex->getType()
2641        << getSpecifierRange(startSpecifier, specifierLen)
2642        << Ex->getSourceRange();
2643
2644     return true;
2645  }
2646  // END OF FREEBSD EXTENSIONS
2647
2648  // Check for using an Objective-C specific conversion specifier
2649  // in a non-ObjC literal.
2650  if (!ObjCContext && CS.isObjCArg()) {
2651    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2652                                                  specifierLen);
2653  }
2654
2655  // Check for invalid use of field width
2656  if (!FS.hasValidFieldWidth()) {
2657    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2658        startSpecifier, specifierLen);
2659  }
2660
2661  // Check for invalid use of precision
2662  if (!FS.hasValidPrecision()) {
2663    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2664        startSpecifier, specifierLen);
2665  }
2666
2667  // Check each flag does not conflict with any other component.
2668  if (!FS.hasValidThousandsGroupingPrefix())
2669    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2670  if (!FS.hasValidLeadingZeros())
2671    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2672  if (!FS.hasValidPlusPrefix())
2673    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2674  if (!FS.hasValidSpacePrefix())
2675    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2676  if (!FS.hasValidAlternativeForm())
2677    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2678  if (!FS.hasValidLeftJustified())
2679    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2680
2681  // Check that flags are not ignored by another flag
2682  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2683    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2684        startSpecifier, specifierLen);
2685  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2686    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2687            startSpecifier, specifierLen);
2688
2689  // Check the length modifier is valid with the given conversion specifier.
2690  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2691    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2692                                diag::warn_format_nonsensical_length);
2693  else if (!FS.hasStandardLengthModifier())
2694    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2695  else if (!FS.hasStandardLengthConversionCombination())
2696    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2697                                diag::warn_format_non_standard_conversion_spec);
2698
2699  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2700    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2701
2702  // The remaining checks depend on the data arguments.
2703  if (HasVAListArg)
2704    return true;
2705
2706  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2707    return false;
2708
2709  const Expr *Arg = getDataArg(argIndex);
2710  if (!Arg)
2711    return true;
2712
2713  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2714}
2715
2716static bool requiresParensToAddCast(const Expr *E) {
2717  // FIXME: We should have a general way to reason about operator
2718  // precedence and whether parens are actually needed here.
2719  // Take care of a few common cases where they aren't.
2720  const Expr *Inside = E->IgnoreImpCasts();
2721  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2722    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2723
2724  switch (Inside->getStmtClass()) {
2725  case Stmt::ArraySubscriptExprClass:
2726  case Stmt::CallExprClass:
2727  case Stmt::DeclRefExprClass:
2728  case Stmt::MemberExprClass:
2729  case Stmt::ObjCIvarRefExprClass:
2730  case Stmt::ObjCMessageExprClass:
2731  case Stmt::ObjCPropertyRefExprClass:
2732  case Stmt::ParenExprClass:
2733  case Stmt::UnaryOperatorClass:
2734    return false;
2735  default:
2736    return true;
2737  }
2738}
2739
2740bool
2741CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2742                                    const char *StartSpecifier,
2743                                    unsigned SpecifierLen,
2744                                    const Expr *E) {
2745  using namespace analyze_format_string;
2746  using namespace analyze_printf;
2747  // Now type check the data expression that matches the
2748  // format specifier.
2749  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2750                                                    ObjCContext);
2751  if (!AT.isValid())
2752    return true;
2753
2754  QualType IntendedTy = E->getType();
2755  if (AT.matchesType(S.Context, IntendedTy))
2756    return true;
2757
2758  // Look through argument promotions for our error message's reported type.
2759  // This includes the integral and floating promotions, but excludes array
2760  // and function pointer decay; seeing that an argument intended to be a
2761  // string has type 'char [6]' is probably more confusing than 'char *'.
2762  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2763    if (ICE->getCastKind() == CK_IntegralCast ||
2764        ICE->getCastKind() == CK_FloatingCast) {
2765      E = ICE->getSubExpr();
2766      IntendedTy = E->getType();
2767
2768      // Check if we didn't match because of an implicit cast from a 'char'
2769      // or 'short' to an 'int'.  This is done because printf is a varargs
2770      // function.
2771      if (ICE->getType() == S.Context.IntTy ||
2772          ICE->getType() == S.Context.UnsignedIntTy) {
2773        // All further checking is done on the subexpression.
2774        if (AT.matchesType(S.Context, IntendedTy))
2775          return true;
2776      }
2777    }
2778  }
2779
2780  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2781    // Special-case some of Darwin's platform-independence types.
2782    if (const TypedefType *UserTy = IntendedTy->getAs<TypedefType>()) {
2783      StringRef Name = UserTy->getDecl()->getName();
2784      IntendedTy = llvm::StringSwitch<QualType>(Name)
2785        .Case("NSInteger", S.Context.LongTy)
2786        .Case("NSUInteger", S.Context.UnsignedLongTy)
2787        .Case("SInt32", S.Context.IntTy)
2788        .Case("UInt32", S.Context.UnsignedIntTy)
2789        .Default(IntendedTy);
2790    }
2791  }
2792
2793  // We may be able to offer a FixItHint if it is a supported type.
2794  PrintfSpecifier fixedFS = FS;
2795  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
2796                                 S.Context, ObjCContext);
2797
2798  if (success) {
2799    // Get the fix string from the fixed format specifier
2800    SmallString<16> buf;
2801    llvm::raw_svector_ostream os(buf);
2802    fixedFS.toString(os);
2803
2804    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
2805
2806    if (IntendedTy != E->getType()) {
2807      // The canonical type for formatting this value is different from the
2808      // actual type of the expression. (This occurs, for example, with Darwin's
2809      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
2810      // should be printed as 'long' for 64-bit compatibility.)
2811      // Rather than emitting a normal format/argument mismatch, we want to
2812      // add a cast to the recommended type (and correct the format string
2813      // if necessary).
2814      SmallString<16> CastBuf;
2815      llvm::raw_svector_ostream CastFix(CastBuf);
2816      CastFix << "(";
2817      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
2818      CastFix << ")";
2819
2820      SmallVector<FixItHint,4> Hints;
2821      if (!AT.matchesType(S.Context, IntendedTy))
2822        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
2823
2824      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
2825        // If there's already a cast present, just replace it.
2826        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
2827        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
2828
2829      } else if (!requiresParensToAddCast(E)) {
2830        // If the expression has high enough precedence,
2831        // just write the C-style cast.
2832        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2833                                                   CastFix.str()));
2834      } else {
2835        // Otherwise, add parens around the expression as well as the cast.
2836        CastFix << "(";
2837        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2838                                                   CastFix.str()));
2839
2840        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
2841        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
2842      }
2843
2844      // We extract the name from the typedef because we don't want to show
2845      // the underlying type in the diagnostic.
2846      const TypedefType *UserTy = cast<TypedefType>(E->getType());
2847      StringRef Name = UserTy->getDecl()->getName();
2848
2849      // Finally, emit the diagnostic.
2850      EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
2851                             << Name << IntendedTy
2852                             << E->getSourceRange(),
2853                           E->getLocStart(), /*IsStringLocation=*/false,
2854                           SpecRange, Hints);
2855    } else {
2856      EmitFormatDiagnostic(
2857        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2858          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
2859          << E->getSourceRange(),
2860        E->getLocStart(),
2861        /*IsStringLocation*/false,
2862        SpecRange,
2863        FixItHint::CreateReplacement(SpecRange, os.str()));
2864    }
2865  } else {
2866    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2867                                                   SpecifierLen);
2868    // Since the warning for passing non-POD types to variadic functions
2869    // was deferred until now, we emit a warning for non-POD
2870    // arguments here.
2871    if (S.isValidVarArgType(E->getType()) == Sema::VAK_Invalid) {
2872      unsigned DiagKind;
2873      if (E->getType()->isObjCObjectType())
2874        DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2875      else
2876        DiagKind = diag::warn_non_pod_vararg_with_format_string;
2877
2878      EmitFormatDiagnostic(
2879        S.PDiag(DiagKind)
2880          << S.getLangOpts().CPlusPlus0x
2881          << E->getType()
2882          << CallType
2883          << AT.getRepresentativeTypeName(S.Context)
2884          << CSR
2885          << E->getSourceRange(),
2886        E->getLocStart(), /*IsStringLocation*/false, CSR);
2887
2888      checkForCStrMembers(AT, E, CSR);
2889    } else
2890      EmitFormatDiagnostic(
2891        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2892          << AT.getRepresentativeTypeName(S.Context) << E->getType()
2893          << CSR
2894          << E->getSourceRange(),
2895        E->getLocStart(), /*IsStringLocation*/false, CSR);
2896  }
2897
2898  return true;
2899}
2900
2901//===--- CHECK: Scanf format string checking ------------------------------===//
2902
2903namespace {
2904class CheckScanfHandler : public CheckFormatHandler {
2905public:
2906  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2907                    const Expr *origFormatExpr, unsigned firstDataArg,
2908                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
2909                    Expr **Args, unsigned NumArgs,
2910                    unsigned formatIdx, bool inFunctionCall,
2911                    Sema::VariadicCallType CallType)
2912  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2913                       numDataArgs, beg, hasVAListArg,
2914                       Args, NumArgs, formatIdx, inFunctionCall, CallType)
2915  {}
2916
2917  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2918                            const char *startSpecifier,
2919                            unsigned specifierLen);
2920
2921  bool HandleInvalidScanfConversionSpecifier(
2922          const analyze_scanf::ScanfSpecifier &FS,
2923          const char *startSpecifier,
2924          unsigned specifierLen);
2925
2926  void HandleIncompleteScanList(const char *start, const char *end);
2927};
2928}
2929
2930void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2931                                                 const char *end) {
2932  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2933                       getLocationOfByte(end), /*IsStringLocation*/true,
2934                       getSpecifierRange(start, end - start));
2935}
2936
2937bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2938                                        const analyze_scanf::ScanfSpecifier &FS,
2939                                        const char *startSpecifier,
2940                                        unsigned specifierLen) {
2941
2942  const analyze_scanf::ScanfConversionSpecifier &CS =
2943    FS.getConversionSpecifier();
2944
2945  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2946                                          getLocationOfByte(CS.getStart()),
2947                                          startSpecifier, specifierLen,
2948                                          CS.getStart(), CS.getLength());
2949}
2950
2951bool CheckScanfHandler::HandleScanfSpecifier(
2952                                       const analyze_scanf::ScanfSpecifier &FS,
2953                                       const char *startSpecifier,
2954                                       unsigned specifierLen) {
2955
2956  using namespace analyze_scanf;
2957  using namespace analyze_format_string;
2958
2959  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2960
2961  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2962  // be used to decide if we are using positional arguments consistently.
2963  if (FS.consumesDataArgument()) {
2964    if (atFirstArg) {
2965      atFirstArg = false;
2966      usesPositionalArgs = FS.usesPositionalArg();
2967    }
2968    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2969      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2970                                        startSpecifier, specifierLen);
2971      return false;
2972    }
2973  }
2974
2975  // Check if the field with is non-zero.
2976  const OptionalAmount &Amt = FS.getFieldWidth();
2977  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2978    if (Amt.getConstantAmount() == 0) {
2979      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2980                                                   Amt.getConstantLength());
2981      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2982                           getLocationOfByte(Amt.getStart()),
2983                           /*IsStringLocation*/true, R,
2984                           FixItHint::CreateRemoval(R));
2985    }
2986  }
2987
2988  if (!FS.consumesDataArgument()) {
2989    // FIXME: Technically specifying a precision or field width here
2990    // makes no sense.  Worth issuing a warning at some point.
2991    return true;
2992  }
2993
2994  // Consume the argument.
2995  unsigned argIndex = FS.getArgIndex();
2996  if (argIndex < NumDataArgs) {
2997      // The check to see if the argIndex is valid will come later.
2998      // We set the bit here because we may exit early from this
2999      // function if we encounter some other error.
3000    CoveredArgs.set(argIndex);
3001  }
3002
3003  // Check the length modifier is valid with the given conversion specifier.
3004  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3005    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3006                                diag::warn_format_nonsensical_length);
3007  else if (!FS.hasStandardLengthModifier())
3008    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3009  else if (!FS.hasStandardLengthConversionCombination())
3010    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3011                                diag::warn_format_non_standard_conversion_spec);
3012
3013  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3014    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3015
3016  // The remaining checks depend on the data arguments.
3017  if (HasVAListArg)
3018    return true;
3019
3020  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3021    return false;
3022
3023  // Check that the argument type matches the format specifier.
3024  const Expr *Ex = getDataArg(argIndex);
3025  if (!Ex)
3026    return true;
3027
3028  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3029  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3030    ScanfSpecifier fixedFS = FS;
3031    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3032                                   S.Context);
3033
3034    if (success) {
3035      // Get the fix string from the fixed format specifier.
3036      SmallString<128> buf;
3037      llvm::raw_svector_ostream os(buf);
3038      fixedFS.toString(os);
3039
3040      EmitFormatDiagnostic(
3041        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3042          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3043          << Ex->getSourceRange(),
3044        Ex->getLocStart(),
3045        /*IsStringLocation*/false,
3046        getSpecifierRange(startSpecifier, specifierLen),
3047        FixItHint::CreateReplacement(
3048          getSpecifierRange(startSpecifier, specifierLen),
3049          os.str()));
3050    } else {
3051      EmitFormatDiagnostic(
3052        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3053          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3054          << Ex->getSourceRange(),
3055        Ex->getLocStart(),
3056        /*IsStringLocation*/false,
3057        getSpecifierRange(startSpecifier, specifierLen));
3058    }
3059  }
3060
3061  return true;
3062}
3063
3064void Sema::CheckFormatString(const StringLiteral *FExpr,
3065                             const Expr *OrigFormatExpr,
3066                             Expr **Args, unsigned NumArgs,
3067                             bool HasVAListArg, unsigned format_idx,
3068                             unsigned firstDataArg, FormatStringType Type,
3069                             bool inFunctionCall, VariadicCallType CallType) {
3070
3071  // CHECK: is the format string a wide literal?
3072  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3073    CheckFormatHandler::EmitFormatDiagnostic(
3074      *this, inFunctionCall, Args[format_idx],
3075      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3076      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3077    return;
3078  }
3079
3080  // Str - The format string.  NOTE: this is NOT null-terminated!
3081  StringRef StrRef = FExpr->getString();
3082  const char *Str = StrRef.data();
3083  unsigned StrLen = StrRef.size();
3084  const unsigned numDataArgs = NumArgs - firstDataArg;
3085
3086  // CHECK: empty format string?
3087  if (StrLen == 0 && numDataArgs > 0) {
3088    CheckFormatHandler::EmitFormatDiagnostic(
3089      *this, inFunctionCall, Args[format_idx],
3090      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3091      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3092    return;
3093  }
3094
3095  if (Type == FST_Printf || Type == FST_NSString) {
3096    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3097                         numDataArgs, (Type == FST_NSString),
3098                         Str, HasVAListArg, Args, NumArgs, format_idx,
3099                         inFunctionCall, CallType);
3100
3101    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3102                                                  getLangOpts(),
3103                                                  Context.getTargetInfo()))
3104      H.DoneProcessing();
3105  } else if (Type == FST_Scanf) {
3106    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3107                        Str, HasVAListArg, Args, NumArgs, format_idx,
3108                        inFunctionCall, CallType);
3109
3110    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3111                                                 getLangOpts(),
3112                                                 Context.getTargetInfo()))
3113      H.DoneProcessing();
3114  } // TODO: handle other formats
3115}
3116
3117//===--- CHECK: Standard memory functions ---------------------------------===//
3118
3119/// \brief Determine whether the given type is a dynamic class type (e.g.,
3120/// whether it has a vtable).
3121static bool isDynamicClassType(QualType T) {
3122  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3123    if (CXXRecordDecl *Definition = Record->getDefinition())
3124      if (Definition->isDynamicClass())
3125        return true;
3126
3127  return false;
3128}
3129
3130/// \brief If E is a sizeof expression, returns its argument expression,
3131/// otherwise returns NULL.
3132static const Expr *getSizeOfExprArg(const Expr* E) {
3133  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3134      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3135    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3136      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3137
3138  return 0;
3139}
3140
3141/// \brief If E is a sizeof expression, returns its argument type.
3142static QualType getSizeOfArgType(const Expr* E) {
3143  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3144      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3145    if (SizeOf->getKind() == clang::UETT_SizeOf)
3146      return SizeOf->getTypeOfArgument();
3147
3148  return QualType();
3149}
3150
3151/// \brief Check for dangerous or invalid arguments to memset().
3152///
3153/// This issues warnings on known problematic, dangerous or unspecified
3154/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3155/// function calls.
3156///
3157/// \param Call The call expression to diagnose.
3158void Sema::CheckMemaccessArguments(const CallExpr *Call,
3159                                   unsigned BId,
3160                                   IdentifierInfo *FnName) {
3161  assert(BId != 0);
3162
3163  // It is possible to have a non-standard definition of memset.  Validate
3164  // we have enough arguments, and if not, abort further checking.
3165  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3166  if (Call->getNumArgs() < ExpectedNumArgs)
3167    return;
3168
3169  unsigned LastArg = (BId == Builtin::BImemset ||
3170                      BId == Builtin::BIstrndup ? 1 : 2);
3171  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3172  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3173
3174  // We have special checking when the length is a sizeof expression.
3175  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3176  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3177  llvm::FoldingSetNodeID SizeOfArgID;
3178
3179  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3180    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3181    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3182
3183    QualType DestTy = Dest->getType();
3184    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3185      QualType PointeeTy = DestPtrTy->getPointeeType();
3186
3187      // Never warn about void type pointers. This can be used to suppress
3188      // false positives.
3189      if (PointeeTy->isVoidType())
3190        continue;
3191
3192      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3193      // actually comparing the expressions for equality. Because computing the
3194      // expression IDs can be expensive, we only do this if the diagnostic is
3195      // enabled.
3196      if (SizeOfArg &&
3197          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3198                                   SizeOfArg->getExprLoc())) {
3199        // We only compute IDs for expressions if the warning is enabled, and
3200        // cache the sizeof arg's ID.
3201        if (SizeOfArgID == llvm::FoldingSetNodeID())
3202          SizeOfArg->Profile(SizeOfArgID, Context, true);
3203        llvm::FoldingSetNodeID DestID;
3204        Dest->Profile(DestID, Context, true);
3205        if (DestID == SizeOfArgID) {
3206          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3207          //       over sizeof(src) as well.
3208          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3209          StringRef ReadableName = FnName->getName();
3210
3211          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3212            if (UnaryOp->getOpcode() == UO_AddrOf)
3213              ActionIdx = 1; // If its an address-of operator, just remove it.
3214          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
3215            ActionIdx = 2; // If the pointee's size is sizeof(char),
3216                           // suggest an explicit length.
3217
3218          // If the function is defined as a builtin macro, do not show macro
3219          // expansion.
3220          SourceLocation SL = SizeOfArg->getExprLoc();
3221          SourceRange DSR = Dest->getSourceRange();
3222          SourceRange SSR = SizeOfArg->getSourceRange();
3223          SourceManager &SM  = PP.getSourceManager();
3224
3225          if (SM.isMacroArgExpansion(SL)) {
3226            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3227            SL = SM.getSpellingLoc(SL);
3228            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3229                             SM.getSpellingLoc(DSR.getEnd()));
3230            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3231                             SM.getSpellingLoc(SSR.getEnd()));
3232          }
3233
3234          DiagRuntimeBehavior(SL, SizeOfArg,
3235                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3236                                << ReadableName
3237                                << PointeeTy
3238                                << DestTy
3239                                << DSR
3240                                << SSR);
3241          DiagRuntimeBehavior(SL, SizeOfArg,
3242                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3243                                << ActionIdx
3244                                << SSR);
3245
3246          break;
3247        }
3248      }
3249
3250      // Also check for cases where the sizeof argument is the exact same
3251      // type as the memory argument, and where it points to a user-defined
3252      // record type.
3253      if (SizeOfArgTy != QualType()) {
3254        if (PointeeTy->isRecordType() &&
3255            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3256          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3257                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3258                                << FnName << SizeOfArgTy << ArgIdx
3259                                << PointeeTy << Dest->getSourceRange()
3260                                << LenExpr->getSourceRange());
3261          break;
3262        }
3263      }
3264
3265      // Always complain about dynamic classes.
3266      if (isDynamicClassType(PointeeTy)) {
3267
3268        unsigned OperationType = 0;
3269        // "overwritten" if we're warning about the destination for any call
3270        // but memcmp; otherwise a verb appropriate to the call.
3271        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3272          if (BId == Builtin::BImemcpy)
3273            OperationType = 1;
3274          else if(BId == Builtin::BImemmove)
3275            OperationType = 2;
3276          else if (BId == Builtin::BImemcmp)
3277            OperationType = 3;
3278        }
3279
3280        DiagRuntimeBehavior(
3281          Dest->getExprLoc(), Dest,
3282          PDiag(diag::warn_dyn_class_memaccess)
3283            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3284            << FnName << PointeeTy
3285            << OperationType
3286            << Call->getCallee()->getSourceRange());
3287      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3288               BId != Builtin::BImemset)
3289        DiagRuntimeBehavior(
3290          Dest->getExprLoc(), Dest,
3291          PDiag(diag::warn_arc_object_memaccess)
3292            << ArgIdx << FnName << PointeeTy
3293            << Call->getCallee()->getSourceRange());
3294      else
3295        continue;
3296
3297      DiagRuntimeBehavior(
3298        Dest->getExprLoc(), Dest,
3299        PDiag(diag::note_bad_memaccess_silence)
3300          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3301      break;
3302    }
3303  }
3304}
3305
3306// A little helper routine: ignore addition and subtraction of integer literals.
3307// This intentionally does not ignore all integer constant expressions because
3308// we don't want to remove sizeof().
3309static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3310  Ex = Ex->IgnoreParenCasts();
3311
3312  for (;;) {
3313    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3314    if (!BO || !BO->isAdditiveOp())
3315      break;
3316
3317    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3318    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3319
3320    if (isa<IntegerLiteral>(RHS))
3321      Ex = LHS;
3322    else if (isa<IntegerLiteral>(LHS))
3323      Ex = RHS;
3324    else
3325      break;
3326  }
3327
3328  return Ex;
3329}
3330
3331static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3332                                                      ASTContext &Context) {
3333  // Only handle constant-sized or VLAs, but not flexible members.
3334  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3335    // Only issue the FIXIT for arrays of size > 1.
3336    if (CAT->getSize().getSExtValue() <= 1)
3337      return false;
3338  } else if (!Ty->isVariableArrayType()) {
3339    return false;
3340  }
3341  return true;
3342}
3343
3344// Warn if the user has made the 'size' argument to strlcpy or strlcat
3345// be the size of the source, instead of the destination.
3346void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3347                                    IdentifierInfo *FnName) {
3348
3349  // Don't crash if the user has the wrong number of arguments
3350  if (Call->getNumArgs() != 3)
3351    return;
3352
3353  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3354  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3355  const Expr *CompareWithSrc = NULL;
3356
3357  // Look for 'strlcpy(dst, x, sizeof(x))'
3358  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3359    CompareWithSrc = Ex;
3360  else {
3361    // Look for 'strlcpy(dst, x, strlen(x))'
3362    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3363      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3364          && SizeCall->getNumArgs() == 1)
3365        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3366    }
3367  }
3368
3369  if (!CompareWithSrc)
3370    return;
3371
3372  // Determine if the argument to sizeof/strlen is equal to the source
3373  // argument.  In principle there's all kinds of things you could do
3374  // here, for instance creating an == expression and evaluating it with
3375  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3376  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3377  if (!SrcArgDRE)
3378    return;
3379
3380  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3381  if (!CompareWithSrcDRE ||
3382      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3383    return;
3384
3385  const Expr *OriginalSizeArg = Call->getArg(2);
3386  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3387    << OriginalSizeArg->getSourceRange() << FnName;
3388
3389  // Output a FIXIT hint if the destination is an array (rather than a
3390  // pointer to an array).  This could be enhanced to handle some
3391  // pointers if we know the actual size, like if DstArg is 'array+2'
3392  // we could say 'sizeof(array)-2'.
3393  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3394  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3395    return;
3396
3397  SmallString<128> sizeString;
3398  llvm::raw_svector_ostream OS(sizeString);
3399  OS << "sizeof(";
3400  DstArg->printPretty(OS, 0, getPrintingPolicy());
3401  OS << ")";
3402
3403  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3404    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3405                                    OS.str());
3406}
3407
3408/// Check if two expressions refer to the same declaration.
3409static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3410  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3411    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3412      return D1->getDecl() == D2->getDecl();
3413  return false;
3414}
3415
3416static const Expr *getStrlenExprArg(const Expr *E) {
3417  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3418    const FunctionDecl *FD = CE->getDirectCallee();
3419    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3420      return 0;
3421    return CE->getArg(0)->IgnoreParenCasts();
3422  }
3423  return 0;
3424}
3425
3426// Warn on anti-patterns as the 'size' argument to strncat.
3427// The correct size argument should look like following:
3428//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3429void Sema::CheckStrncatArguments(const CallExpr *CE,
3430                                 IdentifierInfo *FnName) {
3431  // Don't crash if the user has the wrong number of arguments.
3432  if (CE->getNumArgs() < 3)
3433    return;
3434  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3435  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3436  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3437
3438  // Identify common expressions, which are wrongly used as the size argument
3439  // to strncat and may lead to buffer overflows.
3440  unsigned PatternType = 0;
3441  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3442    // - sizeof(dst)
3443    if (referToTheSameDecl(SizeOfArg, DstArg))
3444      PatternType = 1;
3445    // - sizeof(src)
3446    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3447      PatternType = 2;
3448  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3449    if (BE->getOpcode() == BO_Sub) {
3450      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3451      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3452      // - sizeof(dst) - strlen(dst)
3453      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3454          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3455        PatternType = 1;
3456      // - sizeof(src) - (anything)
3457      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3458        PatternType = 2;
3459    }
3460  }
3461
3462  if (PatternType == 0)
3463    return;
3464
3465  // Generate the diagnostic.
3466  SourceLocation SL = LenArg->getLocStart();
3467  SourceRange SR = LenArg->getSourceRange();
3468  SourceManager &SM  = PP.getSourceManager();
3469
3470  // If the function is defined as a builtin macro, do not show macro expansion.
3471  if (SM.isMacroArgExpansion(SL)) {
3472    SL = SM.getSpellingLoc(SL);
3473    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3474                     SM.getSpellingLoc(SR.getEnd()));
3475  }
3476
3477  // Check if the destination is an array (rather than a pointer to an array).
3478  QualType DstTy = DstArg->getType();
3479  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3480                                                                    Context);
3481  if (!isKnownSizeArray) {
3482    if (PatternType == 1)
3483      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3484    else
3485      Diag(SL, diag::warn_strncat_src_size) << SR;
3486    return;
3487  }
3488
3489  if (PatternType == 1)
3490    Diag(SL, diag::warn_strncat_large_size) << SR;
3491  else
3492    Diag(SL, diag::warn_strncat_src_size) << SR;
3493
3494  SmallString<128> sizeString;
3495  llvm::raw_svector_ostream OS(sizeString);
3496  OS << "sizeof(";
3497  DstArg->printPretty(OS, 0, getPrintingPolicy());
3498  OS << ") - ";
3499  OS << "strlen(";
3500  DstArg->printPretty(OS, 0, getPrintingPolicy());
3501  OS << ") - 1";
3502
3503  Diag(SL, diag::note_strncat_wrong_size)
3504    << FixItHint::CreateReplacement(SR, OS.str());
3505}
3506
3507//===--- CHECK: Return Address of Stack Variable --------------------------===//
3508
3509static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3510                     Decl *ParentDecl);
3511static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3512                      Decl *ParentDecl);
3513
3514/// CheckReturnStackAddr - Check if a return statement returns the address
3515///   of a stack variable.
3516void
3517Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3518                           SourceLocation ReturnLoc) {
3519
3520  Expr *stackE = 0;
3521  SmallVector<DeclRefExpr *, 8> refVars;
3522
3523  // Perform checking for returned stack addresses, local blocks,
3524  // label addresses or references to temporaries.
3525  if (lhsType->isPointerType() ||
3526      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3527    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3528  } else if (lhsType->isReferenceType()) {
3529    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3530  }
3531
3532  if (stackE == 0)
3533    return; // Nothing suspicious was found.
3534
3535  SourceLocation diagLoc;
3536  SourceRange diagRange;
3537  if (refVars.empty()) {
3538    diagLoc = stackE->getLocStart();
3539    diagRange = stackE->getSourceRange();
3540  } else {
3541    // We followed through a reference variable. 'stackE' contains the
3542    // problematic expression but we will warn at the return statement pointing
3543    // at the reference variable. We will later display the "trail" of
3544    // reference variables using notes.
3545    diagLoc = refVars[0]->getLocStart();
3546    diagRange = refVars[0]->getSourceRange();
3547  }
3548
3549  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3550    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3551                                             : diag::warn_ret_stack_addr)
3552     << DR->getDecl()->getDeclName() << diagRange;
3553  } else if (isa<BlockExpr>(stackE)) { // local block.
3554    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3555  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3556    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3557  } else { // local temporary.
3558    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3559                                             : diag::warn_ret_local_temp_addr)
3560     << diagRange;
3561  }
3562
3563  // Display the "trail" of reference variables that we followed until we
3564  // found the problematic expression using notes.
3565  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3566    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3567    // If this var binds to another reference var, show the range of the next
3568    // var, otherwise the var binds to the problematic expression, in which case
3569    // show the range of the expression.
3570    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3571                                  : stackE->getSourceRange();
3572    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3573      << VD->getDeclName() << range;
3574  }
3575}
3576
3577/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3578///  check if the expression in a return statement evaluates to an address
3579///  to a location on the stack, a local block, an address of a label, or a
3580///  reference to local temporary. The recursion is used to traverse the
3581///  AST of the return expression, with recursion backtracking when we
3582///  encounter a subexpression that (1) clearly does not lead to one of the
3583///  above problematic expressions (2) is something we cannot determine leads to
3584///  a problematic expression based on such local checking.
3585///
3586///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3587///  the expression that they point to. Such variables are added to the
3588///  'refVars' vector so that we know what the reference variable "trail" was.
3589///
3590///  EvalAddr processes expressions that are pointers that are used as
3591///  references (and not L-values).  EvalVal handles all other values.
3592///  At the base case of the recursion is a check for the above problematic
3593///  expressions.
3594///
3595///  This implementation handles:
3596///
3597///   * pointer-to-pointer casts
3598///   * implicit conversions from array references to pointers
3599///   * taking the address of fields
3600///   * arbitrary interplay between "&" and "*" operators
3601///   * pointer arithmetic from an address of a stack variable
3602///   * taking the address of an array element where the array is on the stack
3603static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3604                      Decl *ParentDecl) {
3605  if (E->isTypeDependent())
3606      return NULL;
3607
3608  // We should only be called for evaluating pointer expressions.
3609  assert((E->getType()->isAnyPointerType() ||
3610          E->getType()->isBlockPointerType() ||
3611          E->getType()->isObjCQualifiedIdType()) &&
3612         "EvalAddr only works on pointers");
3613
3614  E = E->IgnoreParens();
3615
3616  // Our "symbolic interpreter" is just a dispatch off the currently
3617  // viewed AST node.  We then recursively traverse the AST by calling
3618  // EvalAddr and EvalVal appropriately.
3619  switch (E->getStmtClass()) {
3620  case Stmt::DeclRefExprClass: {
3621    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3622
3623    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3624      // If this is a reference variable, follow through to the expression that
3625      // it points to.
3626      if (V->hasLocalStorage() &&
3627          V->getType()->isReferenceType() && V->hasInit()) {
3628        // Add the reference variable to the "trail".
3629        refVars.push_back(DR);
3630        return EvalAddr(V->getInit(), refVars, ParentDecl);
3631      }
3632
3633    return NULL;
3634  }
3635
3636  case Stmt::UnaryOperatorClass: {
3637    // The only unary operator that make sense to handle here
3638    // is AddrOf.  All others don't make sense as pointers.
3639    UnaryOperator *U = cast<UnaryOperator>(E);
3640
3641    if (U->getOpcode() == UO_AddrOf)
3642      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3643    else
3644      return NULL;
3645  }
3646
3647  case Stmt::BinaryOperatorClass: {
3648    // Handle pointer arithmetic.  All other binary operators are not valid
3649    // in this context.
3650    BinaryOperator *B = cast<BinaryOperator>(E);
3651    BinaryOperatorKind op = B->getOpcode();
3652
3653    if (op != BO_Add && op != BO_Sub)
3654      return NULL;
3655
3656    Expr *Base = B->getLHS();
3657
3658    // Determine which argument is the real pointer base.  It could be
3659    // the RHS argument instead of the LHS.
3660    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3661
3662    assert (Base->getType()->isPointerType());
3663    return EvalAddr(Base, refVars, ParentDecl);
3664  }
3665
3666  // For conditional operators we need to see if either the LHS or RHS are
3667  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3668  case Stmt::ConditionalOperatorClass: {
3669    ConditionalOperator *C = cast<ConditionalOperator>(E);
3670
3671    // Handle the GNU extension for missing LHS.
3672    if (Expr *lhsExpr = C->getLHS()) {
3673    // In C++, we can have a throw-expression, which has 'void' type.
3674      if (!lhsExpr->getType()->isVoidType())
3675        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3676          return LHS;
3677    }
3678
3679    // In C++, we can have a throw-expression, which has 'void' type.
3680    if (C->getRHS()->getType()->isVoidType())
3681      return NULL;
3682
3683    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3684  }
3685
3686  case Stmt::BlockExprClass:
3687    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3688      return E; // local block.
3689    return NULL;
3690
3691  case Stmt::AddrLabelExprClass:
3692    return E; // address of label.
3693
3694  case Stmt::ExprWithCleanupsClass:
3695    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3696                    ParentDecl);
3697
3698  // For casts, we need to handle conversions from arrays to
3699  // pointer values, and pointer-to-pointer conversions.
3700  case Stmt::ImplicitCastExprClass:
3701  case Stmt::CStyleCastExprClass:
3702  case Stmt::CXXFunctionalCastExprClass:
3703  case Stmt::ObjCBridgedCastExprClass:
3704  case Stmt::CXXStaticCastExprClass:
3705  case Stmt::CXXDynamicCastExprClass:
3706  case Stmt::CXXConstCastExprClass:
3707  case Stmt::CXXReinterpretCastExprClass: {
3708    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3709    switch (cast<CastExpr>(E)->getCastKind()) {
3710    case CK_BitCast:
3711    case CK_LValueToRValue:
3712    case CK_NoOp:
3713    case CK_BaseToDerived:
3714    case CK_DerivedToBase:
3715    case CK_UncheckedDerivedToBase:
3716    case CK_Dynamic:
3717    case CK_CPointerToObjCPointerCast:
3718    case CK_BlockPointerToObjCPointerCast:
3719    case CK_AnyPointerToBlockPointerCast:
3720      return EvalAddr(SubExpr, refVars, ParentDecl);
3721
3722    case CK_ArrayToPointerDecay:
3723      return EvalVal(SubExpr, refVars, ParentDecl);
3724
3725    default:
3726      return 0;
3727    }
3728  }
3729
3730  case Stmt::MaterializeTemporaryExprClass:
3731    if (Expr *Result = EvalAddr(
3732                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3733                                refVars, ParentDecl))
3734      return Result;
3735
3736    return E;
3737
3738  // Everything else: we simply don't reason about them.
3739  default:
3740    return NULL;
3741  }
3742}
3743
3744
3745///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3746///   See the comments for EvalAddr for more details.
3747static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3748                     Decl *ParentDecl) {
3749do {
3750  // We should only be called for evaluating non-pointer expressions, or
3751  // expressions with a pointer type that are not used as references but instead
3752  // are l-values (e.g., DeclRefExpr with a pointer type).
3753
3754  // Our "symbolic interpreter" is just a dispatch off the currently
3755  // viewed AST node.  We then recursively traverse the AST by calling
3756  // EvalAddr and EvalVal appropriately.
3757
3758  E = E->IgnoreParens();
3759  switch (E->getStmtClass()) {
3760  case Stmt::ImplicitCastExprClass: {
3761    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3762    if (IE->getValueKind() == VK_LValue) {
3763      E = IE->getSubExpr();
3764      continue;
3765    }
3766    return NULL;
3767  }
3768
3769  case Stmt::ExprWithCleanupsClass:
3770    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3771
3772  case Stmt::DeclRefExprClass: {
3773    // When we hit a DeclRefExpr we are looking at code that refers to a
3774    // variable's name. If it's not a reference variable we check if it has
3775    // local storage within the function, and if so, return the expression.
3776    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3777
3778    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3779      // Check if it refers to itself, e.g. "int& i = i;".
3780      if (V == ParentDecl)
3781        return DR;
3782
3783      if (V->hasLocalStorage()) {
3784        if (!V->getType()->isReferenceType())
3785          return DR;
3786
3787        // Reference variable, follow through to the expression that
3788        // it points to.
3789        if (V->hasInit()) {
3790          // Add the reference variable to the "trail".
3791          refVars.push_back(DR);
3792          return EvalVal(V->getInit(), refVars, V);
3793        }
3794      }
3795    }
3796
3797    return NULL;
3798  }
3799
3800  case Stmt::UnaryOperatorClass: {
3801    // The only unary operator that make sense to handle here
3802    // is Deref.  All others don't resolve to a "name."  This includes
3803    // handling all sorts of rvalues passed to a unary operator.
3804    UnaryOperator *U = cast<UnaryOperator>(E);
3805
3806    if (U->getOpcode() == UO_Deref)
3807      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3808
3809    return NULL;
3810  }
3811
3812  case Stmt::ArraySubscriptExprClass: {
3813    // Array subscripts are potential references to data on the stack.  We
3814    // retrieve the DeclRefExpr* for the array variable if it indeed
3815    // has local storage.
3816    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3817  }
3818
3819  case Stmt::ConditionalOperatorClass: {
3820    // For conditional operators we need to see if either the LHS or RHS are
3821    // non-NULL Expr's.  If one is non-NULL, we return it.
3822    ConditionalOperator *C = cast<ConditionalOperator>(E);
3823
3824    // Handle the GNU extension for missing LHS.
3825    if (Expr *lhsExpr = C->getLHS())
3826      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3827        return LHS;
3828
3829    return EvalVal(C->getRHS(), refVars, ParentDecl);
3830  }
3831
3832  // Accesses to members are potential references to data on the stack.
3833  case Stmt::MemberExprClass: {
3834    MemberExpr *M = cast<MemberExpr>(E);
3835
3836    // Check for indirect access.  We only want direct field accesses.
3837    if (M->isArrow())
3838      return NULL;
3839
3840    // Check whether the member type is itself a reference, in which case
3841    // we're not going to refer to the member, but to what the member refers to.
3842    if (M->getMemberDecl()->getType()->isReferenceType())
3843      return NULL;
3844
3845    return EvalVal(M->getBase(), refVars, ParentDecl);
3846  }
3847
3848  case Stmt::MaterializeTemporaryExprClass:
3849    if (Expr *Result = EvalVal(
3850                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3851                               refVars, ParentDecl))
3852      return Result;
3853
3854    return E;
3855
3856  default:
3857    // Check that we don't return or take the address of a reference to a
3858    // temporary. This is only useful in C++.
3859    if (!E->isTypeDependent() && E->isRValue())
3860      return E;
3861
3862    // Everything else: we simply don't reason about them.
3863    return NULL;
3864  }
3865} while (true);
3866}
3867
3868//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3869
3870/// Check for comparisons of floating point operands using != and ==.
3871/// Issue a warning if these are no self-comparisons, as they are not likely
3872/// to do what the programmer intended.
3873void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3874  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3875  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3876
3877  // Special case: check for x == x (which is OK).
3878  // Do not emit warnings for such cases.
3879  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3880    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3881      if (DRL->getDecl() == DRR->getDecl())
3882        return;
3883
3884
3885  // Special case: check for comparisons against literals that can be exactly
3886  //  represented by APFloat.  In such cases, do not emit a warning.  This
3887  //  is a heuristic: often comparison against such literals are used to
3888  //  detect if a value in a variable has not changed.  This clearly can
3889  //  lead to false negatives.
3890  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3891    if (FLL->isExact())
3892      return;
3893  } else
3894    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3895      if (FLR->isExact())
3896        return;
3897
3898  // Check for comparisons with builtin types.
3899  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3900    if (CL->isBuiltinCall())
3901      return;
3902
3903  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3904    if (CR->isBuiltinCall())
3905      return;
3906
3907  // Emit the diagnostic.
3908  Diag(Loc, diag::warn_floatingpoint_eq)
3909    << LHS->getSourceRange() << RHS->getSourceRange();
3910}
3911
3912//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3913//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3914
3915namespace {
3916
3917/// Structure recording the 'active' range of an integer-valued
3918/// expression.
3919struct IntRange {
3920  /// The number of bits active in the int.
3921  unsigned Width;
3922
3923  /// True if the int is known not to have negative values.
3924  bool NonNegative;
3925
3926  IntRange(unsigned Width, bool NonNegative)
3927    : Width(Width), NonNegative(NonNegative)
3928  {}
3929
3930  /// Returns the range of the bool type.
3931  static IntRange forBoolType() {
3932    return IntRange(1, true);
3933  }
3934
3935  /// Returns the range of an opaque value of the given integral type.
3936  static IntRange forValueOfType(ASTContext &C, QualType T) {
3937    return forValueOfCanonicalType(C,
3938                          T->getCanonicalTypeInternal().getTypePtr());
3939  }
3940
3941  /// Returns the range of an opaque value of a canonical integral type.
3942  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3943    assert(T->isCanonicalUnqualified());
3944
3945    if (const VectorType *VT = dyn_cast<VectorType>(T))
3946      T = VT->getElementType().getTypePtr();
3947    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3948      T = CT->getElementType().getTypePtr();
3949
3950    // For enum types, use the known bit width of the enumerators.
3951    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3952      EnumDecl *Enum = ET->getDecl();
3953      if (!Enum->isCompleteDefinition())
3954        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3955
3956      unsigned NumPositive = Enum->getNumPositiveBits();
3957      unsigned NumNegative = Enum->getNumNegativeBits();
3958
3959      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3960    }
3961
3962    const BuiltinType *BT = cast<BuiltinType>(T);
3963    assert(BT->isInteger());
3964
3965    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3966  }
3967
3968  /// Returns the "target" range of a canonical integral type, i.e.
3969  /// the range of values expressible in the type.
3970  ///
3971  /// This matches forValueOfCanonicalType except that enums have the
3972  /// full range of their type, not the range of their enumerators.
3973  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3974    assert(T->isCanonicalUnqualified());
3975
3976    if (const VectorType *VT = dyn_cast<VectorType>(T))
3977      T = VT->getElementType().getTypePtr();
3978    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3979      T = CT->getElementType().getTypePtr();
3980    if (const EnumType *ET = dyn_cast<EnumType>(T))
3981      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3982
3983    const BuiltinType *BT = cast<BuiltinType>(T);
3984    assert(BT->isInteger());
3985
3986    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3987  }
3988
3989  /// Returns the supremum of two ranges: i.e. their conservative merge.
3990  static IntRange join(IntRange L, IntRange R) {
3991    return IntRange(std::max(L.Width, R.Width),
3992                    L.NonNegative && R.NonNegative);
3993  }
3994
3995  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3996  static IntRange meet(IntRange L, IntRange R) {
3997    return IntRange(std::min(L.Width, R.Width),
3998                    L.NonNegative || R.NonNegative);
3999  }
4000};
4001
4002static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4003                              unsigned MaxWidth) {
4004  if (value.isSigned() && value.isNegative())
4005    return IntRange(value.getMinSignedBits(), false);
4006
4007  if (value.getBitWidth() > MaxWidth)
4008    value = value.trunc(MaxWidth);
4009
4010  // isNonNegative() just checks the sign bit without considering
4011  // signedness.
4012  return IntRange(value.getActiveBits(), true);
4013}
4014
4015static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4016                              unsigned MaxWidth) {
4017  if (result.isInt())
4018    return GetValueRange(C, result.getInt(), MaxWidth);
4019
4020  if (result.isVector()) {
4021    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4022    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4023      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4024      R = IntRange::join(R, El);
4025    }
4026    return R;
4027  }
4028
4029  if (result.isComplexInt()) {
4030    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4031    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4032    return IntRange::join(R, I);
4033  }
4034
4035  // This can happen with lossless casts to intptr_t of "based" lvalues.
4036  // Assume it might use arbitrary bits.
4037  // FIXME: The only reason we need to pass the type in here is to get
4038  // the sign right on this one case.  It would be nice if APValue
4039  // preserved this.
4040  assert(result.isLValue() || result.isAddrLabelDiff());
4041  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4042}
4043
4044/// Pseudo-evaluate the given integer expression, estimating the
4045/// range of values it might take.
4046///
4047/// \param MaxWidth - the width to which the value will be truncated
4048static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4049  E = E->IgnoreParens();
4050
4051  // Try a full evaluation first.
4052  Expr::EvalResult result;
4053  if (E->EvaluateAsRValue(result, C))
4054    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
4055
4056  // I think we only want to look through implicit casts here; if the
4057  // user has an explicit widening cast, we should treat the value as
4058  // being of the new, wider type.
4059  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4060    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4061      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4062
4063    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
4064
4065    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4066
4067    // Assume that non-integer casts can span the full range of the type.
4068    if (!isIntegerCast)
4069      return OutputTypeRange;
4070
4071    IntRange SubRange
4072      = GetExprRange(C, CE->getSubExpr(),
4073                     std::min(MaxWidth, OutputTypeRange.Width));
4074
4075    // Bail out if the subexpr's range is as wide as the cast type.
4076    if (SubRange.Width >= OutputTypeRange.Width)
4077      return OutputTypeRange;
4078
4079    // Otherwise, we take the smaller width, and we're non-negative if
4080    // either the output type or the subexpr is.
4081    return IntRange(SubRange.Width,
4082                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4083  }
4084
4085  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4086    // If we can fold the condition, just take that operand.
4087    bool CondResult;
4088    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4089      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4090                                        : CO->getFalseExpr(),
4091                          MaxWidth);
4092
4093    // Otherwise, conservatively merge.
4094    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4095    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4096    return IntRange::join(L, R);
4097  }
4098
4099  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4100    switch (BO->getOpcode()) {
4101
4102    // Boolean-valued operations are single-bit and positive.
4103    case BO_LAnd:
4104    case BO_LOr:
4105    case BO_LT:
4106    case BO_GT:
4107    case BO_LE:
4108    case BO_GE:
4109    case BO_EQ:
4110    case BO_NE:
4111      return IntRange::forBoolType();
4112
4113    // The type of the assignments is the type of the LHS, so the RHS
4114    // is not necessarily the same type.
4115    case BO_MulAssign:
4116    case BO_DivAssign:
4117    case BO_RemAssign:
4118    case BO_AddAssign:
4119    case BO_SubAssign:
4120    case BO_XorAssign:
4121    case BO_OrAssign:
4122      // TODO: bitfields?
4123      return IntRange::forValueOfType(C, E->getType());
4124
4125    // Simple assignments just pass through the RHS, which will have
4126    // been coerced to the LHS type.
4127    case BO_Assign:
4128      // TODO: bitfields?
4129      return GetExprRange(C, BO->getRHS(), MaxWidth);
4130
4131    // Operations with opaque sources are black-listed.
4132    case BO_PtrMemD:
4133    case BO_PtrMemI:
4134      return IntRange::forValueOfType(C, E->getType());
4135
4136    // Bitwise-and uses the *infinum* of the two source ranges.
4137    case BO_And:
4138    case BO_AndAssign:
4139      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4140                            GetExprRange(C, BO->getRHS(), MaxWidth));
4141
4142    // Left shift gets black-listed based on a judgement call.
4143    case BO_Shl:
4144      // ...except that we want to treat '1 << (blah)' as logically
4145      // positive.  It's an important idiom.
4146      if (IntegerLiteral *I
4147            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4148        if (I->getValue() == 1) {
4149          IntRange R = IntRange::forValueOfType(C, E->getType());
4150          return IntRange(R.Width, /*NonNegative*/ true);
4151        }
4152      }
4153      // fallthrough
4154
4155    case BO_ShlAssign:
4156      return IntRange::forValueOfType(C, E->getType());
4157
4158    // Right shift by a constant can narrow its left argument.
4159    case BO_Shr:
4160    case BO_ShrAssign: {
4161      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4162
4163      // If the shift amount is a positive constant, drop the width by
4164      // that much.
4165      llvm::APSInt shift;
4166      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4167          shift.isNonNegative()) {
4168        unsigned zext = shift.getZExtValue();
4169        if (zext >= L.Width)
4170          L.Width = (L.NonNegative ? 0 : 1);
4171        else
4172          L.Width -= zext;
4173      }
4174
4175      return L;
4176    }
4177
4178    // Comma acts as its right operand.
4179    case BO_Comma:
4180      return GetExprRange(C, BO->getRHS(), MaxWidth);
4181
4182    // Black-list pointer subtractions.
4183    case BO_Sub:
4184      if (BO->getLHS()->getType()->isPointerType())
4185        return IntRange::forValueOfType(C, E->getType());
4186      break;
4187
4188    // The width of a division result is mostly determined by the size
4189    // of the LHS.
4190    case BO_Div: {
4191      // Don't 'pre-truncate' the operands.
4192      unsigned opWidth = C.getIntWidth(E->getType());
4193      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4194
4195      // If the divisor is constant, use that.
4196      llvm::APSInt divisor;
4197      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4198        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4199        if (log2 >= L.Width)
4200          L.Width = (L.NonNegative ? 0 : 1);
4201        else
4202          L.Width = std::min(L.Width - log2, MaxWidth);
4203        return L;
4204      }
4205
4206      // Otherwise, just use the LHS's width.
4207      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4208      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4209    }
4210
4211    // The result of a remainder can't be larger than the result of
4212    // either side.
4213    case BO_Rem: {
4214      // Don't 'pre-truncate' the operands.
4215      unsigned opWidth = C.getIntWidth(E->getType());
4216      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4217      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4218
4219      IntRange meet = IntRange::meet(L, R);
4220      meet.Width = std::min(meet.Width, MaxWidth);
4221      return meet;
4222    }
4223
4224    // The default behavior is okay for these.
4225    case BO_Mul:
4226    case BO_Add:
4227    case BO_Xor:
4228    case BO_Or:
4229      break;
4230    }
4231
4232    // The default case is to treat the operation as if it were closed
4233    // on the narrowest type that encompasses both operands.
4234    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4235    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4236    return IntRange::join(L, R);
4237  }
4238
4239  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4240    switch (UO->getOpcode()) {
4241    // Boolean-valued operations are white-listed.
4242    case UO_LNot:
4243      return IntRange::forBoolType();
4244
4245    // Operations with opaque sources are black-listed.
4246    case UO_Deref:
4247    case UO_AddrOf: // should be impossible
4248      return IntRange::forValueOfType(C, E->getType());
4249
4250    default:
4251      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4252    }
4253  }
4254
4255  if (dyn_cast<OffsetOfExpr>(E)) {
4256    IntRange::forValueOfType(C, E->getType());
4257  }
4258
4259  if (FieldDecl *BitField = E->getBitField())
4260    return IntRange(BitField->getBitWidthValue(C),
4261                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4262
4263  return IntRange::forValueOfType(C, E->getType());
4264}
4265
4266static IntRange GetExprRange(ASTContext &C, Expr *E) {
4267  return GetExprRange(C, E, C.getIntWidth(E->getType()));
4268}
4269
4270/// Checks whether the given value, which currently has the given
4271/// source semantics, has the same value when coerced through the
4272/// target semantics.
4273static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4274                                 const llvm::fltSemantics &Src,
4275                                 const llvm::fltSemantics &Tgt) {
4276  llvm::APFloat truncated = value;
4277
4278  bool ignored;
4279  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4280  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4281
4282  return truncated.bitwiseIsEqual(value);
4283}
4284
4285/// Checks whether the given value, which currently has the given
4286/// source semantics, has the same value when coerced through the
4287/// target semantics.
4288///
4289/// The value might be a vector of floats (or a complex number).
4290static bool IsSameFloatAfterCast(const APValue &value,
4291                                 const llvm::fltSemantics &Src,
4292                                 const llvm::fltSemantics &Tgt) {
4293  if (value.isFloat())
4294    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4295
4296  if (value.isVector()) {
4297    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4298      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4299        return false;
4300    return true;
4301  }
4302
4303  assert(value.isComplexFloat());
4304  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4305          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4306}
4307
4308static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4309
4310static bool IsZero(Sema &S, Expr *E) {
4311  // Suppress cases where we are comparing against an enum constant.
4312  if (const DeclRefExpr *DR =
4313      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4314    if (isa<EnumConstantDecl>(DR->getDecl()))
4315      return false;
4316
4317  // Suppress cases where the '0' value is expanded from a macro.
4318  if (E->getLocStart().isMacroID())
4319    return false;
4320
4321  llvm::APSInt Value;
4322  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4323}
4324
4325static bool HasEnumType(Expr *E) {
4326  // Strip off implicit integral promotions.
4327  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4328    if (ICE->getCastKind() != CK_IntegralCast &&
4329        ICE->getCastKind() != CK_NoOp)
4330      break;
4331    E = ICE->getSubExpr();
4332  }
4333
4334  return E->getType()->isEnumeralType();
4335}
4336
4337static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4338  BinaryOperatorKind op = E->getOpcode();
4339  if (E->isValueDependent())
4340    return;
4341
4342  if (op == BO_LT && IsZero(S, E->getRHS())) {
4343    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4344      << "< 0" << "false" << HasEnumType(E->getLHS())
4345      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4346  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4347    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4348      << ">= 0" << "true" << HasEnumType(E->getLHS())
4349      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4350  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4351    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4352      << "0 >" << "false" << HasEnumType(E->getRHS())
4353      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4354  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4355    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4356      << "0 <=" << "true" << HasEnumType(E->getRHS())
4357      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4358  }
4359}
4360
4361static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4362                                         Expr *Constant, Expr *Other,
4363                                         llvm::APSInt Value,
4364                                         bool RhsConstant) {
4365  BinaryOperatorKind op = E->getOpcode();
4366  QualType OtherT = Other->getType();
4367  QualType ConstantT = Constant->getType();
4368  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4369    return;
4370  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4371         && "comparison with non-integer type");
4372  // FIXME. handle cases for signedness to catch (signed char)N == 200
4373  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4374  IntRange LitRange = GetValueRange(S.Context, Value, Value.getBitWidth());
4375  if (OtherRange.Width >= LitRange.Width)
4376    return;
4377  bool IsTrue = true;
4378  if (op == BO_EQ)
4379    IsTrue = false;
4380  else if (op == BO_NE)
4381    IsTrue = true;
4382  else if (RhsConstant) {
4383    if (op == BO_GT || op == BO_GE)
4384      IsTrue = !LitRange.NonNegative;
4385    else // op == BO_LT || op == BO_LE
4386      IsTrue = LitRange.NonNegative;
4387  } else {
4388    if (op == BO_LT || op == BO_LE)
4389      IsTrue = !LitRange.NonNegative;
4390    else // op == BO_GT || op == BO_GE
4391      IsTrue = LitRange.NonNegative;
4392  }
4393  SmallString<16> PrettySourceValue(Value.toString(10));
4394  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4395  << PrettySourceValue << OtherT << IsTrue
4396  << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4397}
4398
4399/// Analyze the operands of the given comparison.  Implements the
4400/// fallback case from AnalyzeComparison.
4401static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4402  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4403  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4404}
4405
4406/// \brief Implements -Wsign-compare.
4407///
4408/// \param E the binary operator to check for warnings
4409static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4410  // The type the comparison is being performed in.
4411  QualType T = E->getLHS()->getType();
4412  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4413         && "comparison with mismatched types");
4414  if (E->isValueDependent())
4415    return AnalyzeImpConvsInComparison(S, E);
4416
4417  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4418  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4419
4420  bool IsComparisonConstant = false;
4421
4422  // Check whether an integer constant comparison results in a value
4423  // of 'true' or 'false'.
4424  if (T->isIntegralType(S.Context)) {
4425    llvm::APSInt RHSValue;
4426    bool IsRHSIntegralLiteral =
4427      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4428    llvm::APSInt LHSValue;
4429    bool IsLHSIntegralLiteral =
4430      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4431    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4432        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4433    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4434      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4435    else
4436      IsComparisonConstant =
4437        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4438  } else if (!T->hasUnsignedIntegerRepresentation())
4439      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4440
4441  // We don't do anything special if this isn't an unsigned integral
4442  // comparison:  we're only interested in integral comparisons, and
4443  // signed comparisons only happen in cases we don't care to warn about.
4444  //
4445  // We also don't care about value-dependent expressions or expressions
4446  // whose result is a constant.
4447  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4448    return AnalyzeImpConvsInComparison(S, E);
4449
4450  // Check to see if one of the (unmodified) operands is of different
4451  // signedness.
4452  Expr *signedOperand, *unsignedOperand;
4453  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4454    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4455           "unsigned comparison between two signed integer expressions?");
4456    signedOperand = LHS;
4457    unsignedOperand = RHS;
4458  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4459    signedOperand = RHS;
4460    unsignedOperand = LHS;
4461  } else {
4462    CheckTrivialUnsignedComparison(S, E);
4463    return AnalyzeImpConvsInComparison(S, E);
4464  }
4465
4466  // Otherwise, calculate the effective range of the signed operand.
4467  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4468
4469  // Go ahead and analyze implicit conversions in the operands.  Note
4470  // that we skip the implicit conversions on both sides.
4471  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4472  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4473
4474  // If the signed range is non-negative, -Wsign-compare won't fire,
4475  // but we should still check for comparisons which are always true
4476  // or false.
4477  if (signedRange.NonNegative)
4478    return CheckTrivialUnsignedComparison(S, E);
4479
4480  // For (in)equality comparisons, if the unsigned operand is a
4481  // constant which cannot collide with a overflowed signed operand,
4482  // then reinterpreting the signed operand as unsigned will not
4483  // change the result of the comparison.
4484  if (E->isEqualityOp()) {
4485    unsigned comparisonWidth = S.Context.getIntWidth(T);
4486    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4487
4488    // We should never be unable to prove that the unsigned operand is
4489    // non-negative.
4490    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4491
4492    if (unsignedRange.Width < comparisonWidth)
4493      return;
4494  }
4495
4496  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4497    S.PDiag(diag::warn_mixed_sign_comparison)
4498      << LHS->getType() << RHS->getType()
4499      << LHS->getSourceRange() << RHS->getSourceRange());
4500}
4501
4502/// Analyzes an attempt to assign the given value to a bitfield.
4503///
4504/// Returns true if there was something fishy about the attempt.
4505static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4506                                      SourceLocation InitLoc) {
4507  assert(Bitfield->isBitField());
4508  if (Bitfield->isInvalidDecl())
4509    return false;
4510
4511  // White-list bool bitfields.
4512  if (Bitfield->getType()->isBooleanType())
4513    return false;
4514
4515  // Ignore value- or type-dependent expressions.
4516  if (Bitfield->getBitWidth()->isValueDependent() ||
4517      Bitfield->getBitWidth()->isTypeDependent() ||
4518      Init->isValueDependent() ||
4519      Init->isTypeDependent())
4520    return false;
4521
4522  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4523
4524  llvm::APSInt Value;
4525  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4526    return false;
4527
4528  unsigned OriginalWidth = Value.getBitWidth();
4529  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4530
4531  if (OriginalWidth <= FieldWidth)
4532    return false;
4533
4534  // Compute the value which the bitfield will contain.
4535  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4536  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4537
4538  // Check whether the stored value is equal to the original value.
4539  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4540  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4541    return false;
4542
4543  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4544  // therefore don't strictly fit into a signed bitfield of width 1.
4545  if (FieldWidth == 1 && Value == 1)
4546    return false;
4547
4548  std::string PrettyValue = Value.toString(10);
4549  std::string PrettyTrunc = TruncatedValue.toString(10);
4550
4551  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4552    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4553    << Init->getSourceRange();
4554
4555  return true;
4556}
4557
4558/// Analyze the given simple or compound assignment for warning-worthy
4559/// operations.
4560static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4561  // Just recurse on the LHS.
4562  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4563
4564  // We want to recurse on the RHS as normal unless we're assigning to
4565  // a bitfield.
4566  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4567    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4568                                  E->getOperatorLoc())) {
4569      // Recurse, ignoring any implicit conversions on the RHS.
4570      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4571                                        E->getOperatorLoc());
4572    }
4573  }
4574
4575  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4576}
4577
4578/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4579static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4580                            SourceLocation CContext, unsigned diag,
4581                            bool pruneControlFlow = false) {
4582  if (pruneControlFlow) {
4583    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4584                          S.PDiag(diag)
4585                            << SourceType << T << E->getSourceRange()
4586                            << SourceRange(CContext));
4587    return;
4588  }
4589  S.Diag(E->getExprLoc(), diag)
4590    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4591}
4592
4593/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4594static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4595                            SourceLocation CContext, unsigned diag,
4596                            bool pruneControlFlow = false) {
4597  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4598}
4599
4600/// Diagnose an implicit cast from a literal expression. Does not warn when the
4601/// cast wouldn't lose information.
4602void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4603                                    SourceLocation CContext) {
4604  // Try to convert the literal exactly to an integer. If we can, don't warn.
4605  bool isExact = false;
4606  const llvm::APFloat &Value = FL->getValue();
4607  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4608                            T->hasUnsignedIntegerRepresentation());
4609  if (Value.convertToInteger(IntegerValue,
4610                             llvm::APFloat::rmTowardZero, &isExact)
4611      == llvm::APFloat::opOK && isExact)
4612    return;
4613
4614  SmallString<16> PrettySourceValue;
4615  Value.toString(PrettySourceValue);
4616  SmallString<16> PrettyTargetValue;
4617  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4618    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4619  else
4620    IntegerValue.toString(PrettyTargetValue);
4621
4622  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4623    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4624    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4625}
4626
4627std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4628  if (!Range.Width) return "0";
4629
4630  llvm::APSInt ValueInRange = Value;
4631  ValueInRange.setIsSigned(!Range.NonNegative);
4632  ValueInRange = ValueInRange.trunc(Range.Width);
4633  return ValueInRange.toString(10);
4634}
4635
4636static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
4637  if (!isa<ImplicitCastExpr>(Ex))
4638    return false;
4639
4640  Expr *InnerE = Ex->IgnoreParenImpCasts();
4641  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
4642  const Type *Source =
4643    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4644  if (Target->isDependentType())
4645    return false;
4646
4647  const BuiltinType *FloatCandidateBT =
4648    dyn_cast<BuiltinType>(ToBool ? Source : Target);
4649  const Type *BoolCandidateType = ToBool ? Target : Source;
4650
4651  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
4652          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
4653}
4654
4655void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
4656                                      SourceLocation CC) {
4657  unsigned NumArgs = TheCall->getNumArgs();
4658  for (unsigned i = 0; i < NumArgs; ++i) {
4659    Expr *CurrA = TheCall->getArg(i);
4660    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
4661      continue;
4662
4663    bool IsSwapped = ((i > 0) &&
4664        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
4665    IsSwapped |= ((i < (NumArgs - 1)) &&
4666        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
4667    if (IsSwapped) {
4668      // Warn on this floating-point to bool conversion.
4669      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
4670                      CurrA->getType(), CC,
4671                      diag::warn_impcast_floating_point_to_bool);
4672    }
4673  }
4674}
4675
4676void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4677                             SourceLocation CC, bool *ICContext = 0) {
4678  if (E->isTypeDependent() || E->isValueDependent()) return;
4679
4680  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4681  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4682  if (Source == Target) return;
4683  if (Target->isDependentType()) return;
4684
4685  // If the conversion context location is invalid don't complain. We also
4686  // don't want to emit a warning if the issue occurs from the expansion of
4687  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4688  // delay this check as long as possible. Once we detect we are in that
4689  // scenario, we just return.
4690  if (CC.isInvalid())
4691    return;
4692
4693  // Diagnose implicit casts to bool.
4694  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4695    if (isa<StringLiteral>(E))
4696      // Warn on string literal to bool.  Checks for string literals in logical
4697      // expressions, for instances, assert(0 && "error here"), is prevented
4698      // by a check in AnalyzeImplicitConversions().
4699      return DiagnoseImpCast(S, E, T, CC,
4700                             diag::warn_impcast_string_literal_to_bool);
4701    if (Source->isFunctionType()) {
4702      // Warn on function to bool. Checks free functions and static member
4703      // functions. Weakly imported functions are excluded from the check,
4704      // since it's common to test their value to check whether the linker
4705      // found a definition for them.
4706      ValueDecl *D = 0;
4707      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4708        D = R->getDecl();
4709      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4710        D = M->getMemberDecl();
4711      }
4712
4713      if (D && !D->isWeak()) {
4714        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4715          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4716            << F << E->getSourceRange() << SourceRange(CC);
4717          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4718            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4719          QualType ReturnType;
4720          UnresolvedSet<4> NonTemplateOverloads;
4721          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4722          if (!ReturnType.isNull()
4723              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4724            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4725              << FixItHint::CreateInsertion(
4726                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4727          return;
4728        }
4729      }
4730    }
4731  }
4732
4733  // Strip vector types.
4734  if (isa<VectorType>(Source)) {
4735    if (!isa<VectorType>(Target)) {
4736      if (S.SourceMgr.isInSystemMacro(CC))
4737        return;
4738      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4739    }
4740
4741    // If the vector cast is cast between two vectors of the same size, it is
4742    // a bitcast, not a conversion.
4743    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4744      return;
4745
4746    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4747    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4748  }
4749
4750  // Strip complex types.
4751  if (isa<ComplexType>(Source)) {
4752    if (!isa<ComplexType>(Target)) {
4753      if (S.SourceMgr.isInSystemMacro(CC))
4754        return;
4755
4756      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4757    }
4758
4759    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4760    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4761  }
4762
4763  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4764  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4765
4766  // If the source is floating point...
4767  if (SourceBT && SourceBT->isFloatingPoint()) {
4768    // ...and the target is floating point...
4769    if (TargetBT && TargetBT->isFloatingPoint()) {
4770      // ...then warn if we're dropping FP rank.
4771
4772      // Builtin FP kinds are ordered by increasing FP rank.
4773      if (SourceBT->getKind() > TargetBT->getKind()) {
4774        // Don't warn about float constants that are precisely
4775        // representable in the target type.
4776        Expr::EvalResult result;
4777        if (E->EvaluateAsRValue(result, S.Context)) {
4778          // Value might be a float, a float vector, or a float complex.
4779          if (IsSameFloatAfterCast(result.Val,
4780                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4781                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4782            return;
4783        }
4784
4785        if (S.SourceMgr.isInSystemMacro(CC))
4786          return;
4787
4788        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4789      }
4790      return;
4791    }
4792
4793    // If the target is integral, always warn.
4794    if (TargetBT && TargetBT->isInteger()) {
4795      if (S.SourceMgr.isInSystemMacro(CC))
4796        return;
4797
4798      Expr *InnerE = E->IgnoreParenImpCasts();
4799      // We also want to warn on, e.g., "int i = -1.234"
4800      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4801        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4802          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4803
4804      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4805        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4806      } else {
4807        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4808      }
4809    }
4810
4811    // If the target is bool, warn if expr is a function or method call.
4812    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
4813        isa<CallExpr>(E)) {
4814      // Check last argument of function call to see if it is an
4815      // implicit cast from a type matching the type the result
4816      // is being cast to.
4817      CallExpr *CEx = cast<CallExpr>(E);
4818      unsigned NumArgs = CEx->getNumArgs();
4819      if (NumArgs > 0) {
4820        Expr *LastA = CEx->getArg(NumArgs - 1);
4821        Expr *InnerE = LastA->IgnoreParenImpCasts();
4822        const Type *InnerType =
4823          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4824        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
4825          // Warn on this floating-point to bool conversion
4826          DiagnoseImpCast(S, E, T, CC,
4827                          diag::warn_impcast_floating_point_to_bool);
4828        }
4829      }
4830    }
4831    return;
4832  }
4833
4834  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4835           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4836      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
4837      && Target->isScalarType()) {
4838    SourceLocation Loc = E->getSourceRange().getBegin();
4839    if (Loc.isMacroID())
4840      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4841    if (!Loc.isMacroID() || CC.isMacroID())
4842      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4843          << T << clang::SourceRange(CC)
4844          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4845  }
4846
4847  if (!Source->isIntegerType() || !Target->isIntegerType())
4848    return;
4849
4850  // TODO: remove this early return once the false positives for constant->bool
4851  // in templates, macros, etc, are reduced or removed.
4852  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4853    return;
4854
4855  IntRange SourceRange = GetExprRange(S.Context, E);
4856  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4857
4858  if (SourceRange.Width > TargetRange.Width) {
4859    // If the source is a constant, use a default-on diagnostic.
4860    // TODO: this should happen for bitfield stores, too.
4861    llvm::APSInt Value(32);
4862    if (E->isIntegerConstantExpr(Value, S.Context)) {
4863      if (S.SourceMgr.isInSystemMacro(CC))
4864        return;
4865
4866      std::string PrettySourceValue = Value.toString(10);
4867      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4868
4869      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4870        S.PDiag(diag::warn_impcast_integer_precision_constant)
4871            << PrettySourceValue << PrettyTargetValue
4872            << E->getType() << T << E->getSourceRange()
4873            << clang::SourceRange(CC));
4874      return;
4875    }
4876
4877    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4878    if (S.SourceMgr.isInSystemMacro(CC))
4879      return;
4880
4881    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
4882      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4883                             /* pruneControlFlow */ true);
4884    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4885  }
4886
4887  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4888      (!TargetRange.NonNegative && SourceRange.NonNegative &&
4889       SourceRange.Width == TargetRange.Width)) {
4890
4891    if (S.SourceMgr.isInSystemMacro(CC))
4892      return;
4893
4894    unsigned DiagID = diag::warn_impcast_integer_sign;
4895
4896    // Traditionally, gcc has warned about this under -Wsign-compare.
4897    // We also want to warn about it in -Wconversion.
4898    // So if -Wconversion is off, use a completely identical diagnostic
4899    // in the sign-compare group.
4900    // The conditional-checking code will
4901    if (ICContext) {
4902      DiagID = diag::warn_impcast_integer_sign_conditional;
4903      *ICContext = true;
4904    }
4905
4906    return DiagnoseImpCast(S, E, T, CC, DiagID);
4907  }
4908
4909  // Diagnose conversions between different enumeration types.
4910  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
4911  // type, to give us better diagnostics.
4912  QualType SourceType = E->getType();
4913  if (!S.getLangOpts().CPlusPlus) {
4914    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4915      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
4916        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
4917        SourceType = S.Context.getTypeDeclType(Enum);
4918        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
4919      }
4920  }
4921
4922  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
4923    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
4924      if ((SourceEnum->getDecl()->getIdentifier() ||
4925           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4926          (TargetEnum->getDecl()->getIdentifier() ||
4927           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4928          SourceEnum != TargetEnum) {
4929        if (S.SourceMgr.isInSystemMacro(CC))
4930          return;
4931
4932        return DiagnoseImpCast(S, E, SourceType, T, CC,
4933                               diag::warn_impcast_different_enum_types);
4934      }
4935
4936  return;
4937}
4938
4939void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4940                              SourceLocation CC, QualType T);
4941
4942void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
4943                             SourceLocation CC, bool &ICContext) {
4944  E = E->IgnoreParenImpCasts();
4945
4946  if (isa<ConditionalOperator>(E))
4947    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
4948
4949  AnalyzeImplicitConversions(S, E, CC);
4950  if (E->getType() != T)
4951    return CheckImplicitConversion(S, E, T, CC, &ICContext);
4952  return;
4953}
4954
4955void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4956                              SourceLocation CC, QualType T) {
4957  AnalyzeImplicitConversions(S, E->getCond(), CC);
4958
4959  bool Suspicious = false;
4960  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
4961  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
4962
4963  // If -Wconversion would have warned about either of the candidates
4964  // for a signedness conversion to the context type...
4965  if (!Suspicious) return;
4966
4967  // ...but it's currently ignored...
4968  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4969                                 CC))
4970    return;
4971
4972  // ...then check whether it would have warned about either of the
4973  // candidates for a signedness conversion to the condition type.
4974  if (E->getType() == T) return;
4975
4976  Suspicious = false;
4977  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4978                          E->getType(), CC, &Suspicious);
4979  if (!Suspicious)
4980    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4981                            E->getType(), CC, &Suspicious);
4982}
4983
4984/// AnalyzeImplicitConversions - Find and report any interesting
4985/// implicit conversions in the given expression.  There are a couple
4986/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4987void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4988  QualType T = OrigE->getType();
4989  Expr *E = OrigE->IgnoreParenImpCasts();
4990
4991  if (E->isTypeDependent() || E->isValueDependent())
4992    return;
4993
4994  // For conditional operators, we analyze the arguments as if they
4995  // were being fed directly into the output.
4996  if (isa<ConditionalOperator>(E)) {
4997    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4998    CheckConditionalOperator(S, CO, CC, T);
4999    return;
5000  }
5001
5002  // Check implicit argument conversions for function calls.
5003  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5004    CheckImplicitArgumentConversions(S, Call, CC);
5005
5006  // Go ahead and check any implicit conversions we might have skipped.
5007  // The non-canonical typecheck is just an optimization;
5008  // CheckImplicitConversion will filter out dead implicit conversions.
5009  if (E->getType() != T)
5010    CheckImplicitConversion(S, E, T, CC);
5011
5012  // Now continue drilling into this expression.
5013
5014  // Skip past explicit casts.
5015  if (isa<ExplicitCastExpr>(E)) {
5016    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5017    return AnalyzeImplicitConversions(S, E, CC);
5018  }
5019
5020  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5021    // Do a somewhat different check with comparison operators.
5022    if (BO->isComparisonOp())
5023      return AnalyzeComparison(S, BO);
5024
5025    // And with simple assignments.
5026    if (BO->getOpcode() == BO_Assign)
5027      return AnalyzeAssignment(S, BO);
5028  }
5029
5030  // These break the otherwise-useful invariant below.  Fortunately,
5031  // we don't really need to recurse into them, because any internal
5032  // expressions should have been analyzed already when they were
5033  // built into statements.
5034  if (isa<StmtExpr>(E)) return;
5035
5036  // Don't descend into unevaluated contexts.
5037  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5038
5039  // Now just recurse over the expression's children.
5040  CC = E->getExprLoc();
5041  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5042  bool IsLogicalOperator = BO && BO->isLogicalOp();
5043  for (Stmt::child_range I = E->children(); I; ++I) {
5044    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5045    if (!ChildExpr)
5046      continue;
5047
5048    if (IsLogicalOperator &&
5049        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5050      // Ignore checking string literals that are in logical operators.
5051      continue;
5052    AnalyzeImplicitConversions(S, ChildExpr, CC);
5053  }
5054}
5055
5056} // end anonymous namespace
5057
5058/// Diagnoses "dangerous" implicit conversions within the given
5059/// expression (which is a full expression).  Implements -Wconversion
5060/// and -Wsign-compare.
5061///
5062/// \param CC the "context" location of the implicit conversion, i.e.
5063///   the most location of the syntactic entity requiring the implicit
5064///   conversion
5065void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5066  // Don't diagnose in unevaluated contexts.
5067  if (isUnevaluatedContext())
5068    return;
5069
5070  // Don't diagnose for value- or type-dependent expressions.
5071  if (E->isTypeDependent() || E->isValueDependent())
5072    return;
5073
5074  // Check for array bounds violations in cases where the check isn't triggered
5075  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5076  // ArraySubscriptExpr is on the RHS of a variable initialization.
5077  CheckArrayAccess(E);
5078
5079  // This is not the right CC for (e.g.) a variable initialization.
5080  AnalyzeImplicitConversions(*this, E, CC);
5081}
5082
5083void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
5084                                       FieldDecl *BitField,
5085                                       Expr *Init) {
5086  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
5087}
5088
5089/// CheckParmsForFunctionDef - Check that the parameters of the given
5090/// function are appropriate for the definition of a function. This
5091/// takes care of any checks that cannot be performed on the
5092/// declaration itself, e.g., that the types of each of the function
5093/// parameters are complete.
5094bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
5095                                    bool CheckParameterNames) {
5096  bool HasInvalidParm = false;
5097  for (; P != PEnd; ++P) {
5098    ParmVarDecl *Param = *P;
5099
5100    // C99 6.7.5.3p4: the parameters in a parameter type list in a
5101    // function declarator that is part of a function definition of
5102    // that function shall not have incomplete type.
5103    //
5104    // This is also C++ [dcl.fct]p6.
5105    if (!Param->isInvalidDecl() &&
5106        RequireCompleteType(Param->getLocation(), Param->getType(),
5107                            diag::err_typecheck_decl_incomplete_type)) {
5108      Param->setInvalidDecl();
5109      HasInvalidParm = true;
5110    }
5111
5112    // C99 6.9.1p5: If the declarator includes a parameter type list, the
5113    // declaration of each parameter shall include an identifier.
5114    if (CheckParameterNames &&
5115        Param->getIdentifier() == 0 &&
5116        !Param->isImplicit() &&
5117        !getLangOpts().CPlusPlus)
5118      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
5119
5120    // C99 6.7.5.3p12:
5121    //   If the function declarator is not part of a definition of that
5122    //   function, parameters may have incomplete type and may use the [*]
5123    //   notation in their sequences of declarator specifiers to specify
5124    //   variable length array types.
5125    QualType PType = Param->getOriginalType();
5126    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
5127      if (AT->getSizeModifier() == ArrayType::Star) {
5128        // FIXME: This diagnosic should point the '[*]' if source-location
5129        // information is added for it.
5130        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
5131      }
5132    }
5133  }
5134
5135  return HasInvalidParm;
5136}
5137
5138/// CheckCastAlign - Implements -Wcast-align, which warns when a
5139/// pointer cast increases the alignment requirements.
5140void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
5141  // This is actually a lot of work to potentially be doing on every
5142  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
5143  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
5144                                          TRange.getBegin())
5145        == DiagnosticsEngine::Ignored)
5146    return;
5147
5148  // Ignore dependent types.
5149  if (T->isDependentType() || Op->getType()->isDependentType())
5150    return;
5151
5152  // Require that the destination be a pointer type.
5153  const PointerType *DestPtr = T->getAs<PointerType>();
5154  if (!DestPtr) return;
5155
5156  // If the destination has alignment 1, we're done.
5157  QualType DestPointee = DestPtr->getPointeeType();
5158  if (DestPointee->isIncompleteType()) return;
5159  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
5160  if (DestAlign.isOne()) return;
5161
5162  // Require that the source be a pointer type.
5163  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
5164  if (!SrcPtr) return;
5165  QualType SrcPointee = SrcPtr->getPointeeType();
5166
5167  // Whitelist casts from cv void*.  We already implicitly
5168  // whitelisted casts to cv void*, since they have alignment 1.
5169  // Also whitelist casts involving incomplete types, which implicitly
5170  // includes 'void'.
5171  if (SrcPointee->isIncompleteType()) return;
5172
5173  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
5174  if (SrcAlign >= DestAlign) return;
5175
5176  Diag(TRange.getBegin(), diag::warn_cast_align)
5177    << Op->getType() << T
5178    << static_cast<unsigned>(SrcAlign.getQuantity())
5179    << static_cast<unsigned>(DestAlign.getQuantity())
5180    << TRange << Op->getSourceRange();
5181}
5182
5183static const Type* getElementType(const Expr *BaseExpr) {
5184  const Type* EltType = BaseExpr->getType().getTypePtr();
5185  if (EltType->isAnyPointerType())
5186    return EltType->getPointeeType().getTypePtr();
5187  else if (EltType->isArrayType())
5188    return EltType->getBaseElementTypeUnsafe();
5189  return EltType;
5190}
5191
5192/// \brief Check whether this array fits the idiom of a size-one tail padded
5193/// array member of a struct.
5194///
5195/// We avoid emitting out-of-bounds access warnings for such arrays as they are
5196/// commonly used to emulate flexible arrays in C89 code.
5197static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
5198                                    const NamedDecl *ND) {
5199  if (Size != 1 || !ND) return false;
5200
5201  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
5202  if (!FD) return false;
5203
5204  // Don't consider sizes resulting from macro expansions or template argument
5205  // substitution to form C89 tail-padded arrays.
5206
5207  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
5208  while (TInfo) {
5209    TypeLoc TL = TInfo->getTypeLoc();
5210    // Look through typedefs.
5211    const TypedefTypeLoc *TTL = dyn_cast<TypedefTypeLoc>(&TL);
5212    if (TTL) {
5213      const TypedefNameDecl *TDL = TTL->getTypedefNameDecl();
5214      TInfo = TDL->getTypeSourceInfo();
5215      continue;
5216    }
5217    ConstantArrayTypeLoc CTL = cast<ConstantArrayTypeLoc>(TL);
5218    const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
5219    if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
5220      return false;
5221    break;
5222  }
5223
5224  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
5225  if (!RD) return false;
5226  if (RD->isUnion()) return false;
5227  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5228    if (!CRD->isStandardLayout()) return false;
5229  }
5230
5231  // See if this is the last field decl in the record.
5232  const Decl *D = FD;
5233  while ((D = D->getNextDeclInContext()))
5234    if (isa<FieldDecl>(D))
5235      return false;
5236  return true;
5237}
5238
5239void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
5240                            const ArraySubscriptExpr *ASE,
5241                            bool AllowOnePastEnd, bool IndexNegated) {
5242  IndexExpr = IndexExpr->IgnoreParenImpCasts();
5243  if (IndexExpr->isValueDependent())
5244    return;
5245
5246  const Type *EffectiveType = getElementType(BaseExpr);
5247  BaseExpr = BaseExpr->IgnoreParenCasts();
5248  const ConstantArrayType *ArrayTy =
5249    Context.getAsConstantArrayType(BaseExpr->getType());
5250  if (!ArrayTy)
5251    return;
5252
5253  llvm::APSInt index;
5254  if (!IndexExpr->EvaluateAsInt(index, Context))
5255    return;
5256  if (IndexNegated)
5257    index = -index;
5258
5259  const NamedDecl *ND = NULL;
5260  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5261    ND = dyn_cast<NamedDecl>(DRE->getDecl());
5262  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5263    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5264
5265  if (index.isUnsigned() || !index.isNegative()) {
5266    llvm::APInt size = ArrayTy->getSize();
5267    if (!size.isStrictlyPositive())
5268      return;
5269
5270    const Type* BaseType = getElementType(BaseExpr);
5271    if (BaseType != EffectiveType) {
5272      // Make sure we're comparing apples to apples when comparing index to size
5273      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
5274      uint64_t array_typesize = Context.getTypeSize(BaseType);
5275      // Handle ptrarith_typesize being zero, such as when casting to void*
5276      if (!ptrarith_typesize) ptrarith_typesize = 1;
5277      if (ptrarith_typesize != array_typesize) {
5278        // There's a cast to a different size type involved
5279        uint64_t ratio = array_typesize / ptrarith_typesize;
5280        // TODO: Be smarter about handling cases where array_typesize is not a
5281        // multiple of ptrarith_typesize
5282        if (ptrarith_typesize * ratio == array_typesize)
5283          size *= llvm::APInt(size.getBitWidth(), ratio);
5284      }
5285    }
5286
5287    if (size.getBitWidth() > index.getBitWidth())
5288      index = index.zext(size.getBitWidth());
5289    else if (size.getBitWidth() < index.getBitWidth())
5290      size = size.zext(index.getBitWidth());
5291
5292    // For array subscripting the index must be less than size, but for pointer
5293    // arithmetic also allow the index (offset) to be equal to size since
5294    // computing the next address after the end of the array is legal and
5295    // commonly done e.g. in C++ iterators and range-based for loops.
5296    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
5297      return;
5298
5299    // Also don't warn for arrays of size 1 which are members of some
5300    // structure. These are often used to approximate flexible arrays in C89
5301    // code.
5302    if (IsTailPaddedMemberArray(*this, size, ND))
5303      return;
5304
5305    // Suppress the warning if the subscript expression (as identified by the
5306    // ']' location) and the index expression are both from macro expansions
5307    // within a system header.
5308    if (ASE) {
5309      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
5310          ASE->getRBracketLoc());
5311      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
5312        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
5313            IndexExpr->getLocStart());
5314        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
5315          return;
5316      }
5317    }
5318
5319    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
5320    if (ASE)
5321      DiagID = diag::warn_array_index_exceeds_bounds;
5322
5323    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5324                        PDiag(DiagID) << index.toString(10, true)
5325                          << size.toString(10, true)
5326                          << (unsigned)size.getLimitedValue(~0U)
5327                          << IndexExpr->getSourceRange());
5328  } else {
5329    unsigned DiagID = diag::warn_array_index_precedes_bounds;
5330    if (!ASE) {
5331      DiagID = diag::warn_ptr_arith_precedes_bounds;
5332      if (index.isNegative()) index = -index;
5333    }
5334
5335    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5336                        PDiag(DiagID) << index.toString(10, true)
5337                          << IndexExpr->getSourceRange());
5338  }
5339
5340  if (!ND) {
5341    // Try harder to find a NamedDecl to point at in the note.
5342    while (const ArraySubscriptExpr *ASE =
5343           dyn_cast<ArraySubscriptExpr>(BaseExpr))
5344      BaseExpr = ASE->getBase()->IgnoreParenCasts();
5345    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5346      ND = dyn_cast<NamedDecl>(DRE->getDecl());
5347    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5348      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5349  }
5350
5351  if (ND)
5352    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5353                        PDiag(diag::note_array_index_out_of_bounds)
5354                          << ND->getDeclName());
5355}
5356
5357void Sema::CheckArrayAccess(const Expr *expr) {
5358  int AllowOnePastEnd = 0;
5359  while (expr) {
5360    expr = expr->IgnoreParenImpCasts();
5361    switch (expr->getStmtClass()) {
5362      case Stmt::ArraySubscriptExprClass: {
5363        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5364        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5365                         AllowOnePastEnd > 0);
5366        return;
5367      }
5368      case Stmt::UnaryOperatorClass: {
5369        // Only unwrap the * and & unary operators
5370        const UnaryOperator *UO = cast<UnaryOperator>(expr);
5371        expr = UO->getSubExpr();
5372        switch (UO->getOpcode()) {
5373          case UO_AddrOf:
5374            AllowOnePastEnd++;
5375            break;
5376          case UO_Deref:
5377            AllowOnePastEnd--;
5378            break;
5379          default:
5380            return;
5381        }
5382        break;
5383      }
5384      case Stmt::ConditionalOperatorClass: {
5385        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5386        if (const Expr *lhs = cond->getLHS())
5387          CheckArrayAccess(lhs);
5388        if (const Expr *rhs = cond->getRHS())
5389          CheckArrayAccess(rhs);
5390        return;
5391      }
5392      default:
5393        return;
5394    }
5395  }
5396}
5397
5398//===--- CHECK: Objective-C retain cycles ----------------------------------//
5399
5400namespace {
5401  struct RetainCycleOwner {
5402    RetainCycleOwner() : Variable(0), Indirect(false) {}
5403    VarDecl *Variable;
5404    SourceRange Range;
5405    SourceLocation Loc;
5406    bool Indirect;
5407
5408    void setLocsFrom(Expr *e) {
5409      Loc = e->getExprLoc();
5410      Range = e->getSourceRange();
5411    }
5412  };
5413}
5414
5415/// Consider whether capturing the given variable can possibly lead to
5416/// a retain cycle.
5417static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
5418  // In ARC, it's captured strongly iff the variable has __strong
5419  // lifetime.  In MRR, it's captured strongly if the variable is
5420  // __block and has an appropriate type.
5421  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5422    return false;
5423
5424  owner.Variable = var;
5425  if (ref)
5426    owner.setLocsFrom(ref);
5427  return true;
5428}
5429
5430static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
5431  while (true) {
5432    e = e->IgnoreParens();
5433    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
5434      switch (cast->getCastKind()) {
5435      case CK_BitCast:
5436      case CK_LValueBitCast:
5437      case CK_LValueToRValue:
5438      case CK_ARCReclaimReturnedObject:
5439        e = cast->getSubExpr();
5440        continue;
5441
5442      default:
5443        return false;
5444      }
5445    }
5446
5447    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
5448      ObjCIvarDecl *ivar = ref->getDecl();
5449      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5450        return false;
5451
5452      // Try to find a retain cycle in the base.
5453      if (!findRetainCycleOwner(S, ref->getBase(), owner))
5454        return false;
5455
5456      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
5457      owner.Indirect = true;
5458      return true;
5459    }
5460
5461    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
5462      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
5463      if (!var) return false;
5464      return considerVariable(var, ref, owner);
5465    }
5466
5467    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
5468      if (member->isArrow()) return false;
5469
5470      // Don't count this as an indirect ownership.
5471      e = member->getBase();
5472      continue;
5473    }
5474
5475    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
5476      // Only pay attention to pseudo-objects on property references.
5477      ObjCPropertyRefExpr *pre
5478        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
5479                                              ->IgnoreParens());
5480      if (!pre) return false;
5481      if (pre->isImplicitProperty()) return false;
5482      ObjCPropertyDecl *property = pre->getExplicitProperty();
5483      if (!property->isRetaining() &&
5484          !(property->getPropertyIvarDecl() &&
5485            property->getPropertyIvarDecl()->getType()
5486              .getObjCLifetime() == Qualifiers::OCL_Strong))
5487          return false;
5488
5489      owner.Indirect = true;
5490      if (pre->isSuperReceiver()) {
5491        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
5492        if (!owner.Variable)
5493          return false;
5494        owner.Loc = pre->getLocation();
5495        owner.Range = pre->getSourceRange();
5496        return true;
5497      }
5498      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
5499                              ->getSourceExpr());
5500      continue;
5501    }
5502
5503    // Array ivars?
5504
5505    return false;
5506  }
5507}
5508
5509namespace {
5510  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
5511    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
5512      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
5513        Variable(variable), Capturer(0) {}
5514
5515    VarDecl *Variable;
5516    Expr *Capturer;
5517
5518    void VisitDeclRefExpr(DeclRefExpr *ref) {
5519      if (ref->getDecl() == Variable && !Capturer)
5520        Capturer = ref;
5521    }
5522
5523    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
5524      if (Capturer) return;
5525      Visit(ref->getBase());
5526      if (Capturer && ref->isFreeIvar())
5527        Capturer = ref;
5528    }
5529
5530    void VisitBlockExpr(BlockExpr *block) {
5531      // Look inside nested blocks
5532      if (block->getBlockDecl()->capturesVariable(Variable))
5533        Visit(block->getBlockDecl()->getBody());
5534    }
5535
5536    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
5537      if (Capturer) return;
5538      if (OVE->getSourceExpr())
5539        Visit(OVE->getSourceExpr());
5540    }
5541  };
5542}
5543
5544/// Check whether the given argument is a block which captures a
5545/// variable.
5546static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
5547  assert(owner.Variable && owner.Loc.isValid());
5548
5549  e = e->IgnoreParenCasts();
5550
5551  // Look through [^{...} copy] and Block_copy(^{...}).
5552  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
5553    Selector Cmd = ME->getSelector();
5554    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
5555      e = ME->getInstanceReceiver();
5556      if (!e)
5557        return 0;
5558      e = e->IgnoreParenCasts();
5559    }
5560  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
5561    if (CE->getNumArgs() == 1) {
5562      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
5563      if (Fn) {
5564        const IdentifierInfo *FnI = Fn->getIdentifier();
5565        if (FnI && FnI->isStr("_Block_copy")) {
5566          e = CE->getArg(0)->IgnoreParenCasts();
5567        }
5568      }
5569    }
5570  }
5571
5572  BlockExpr *block = dyn_cast<BlockExpr>(e);
5573  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
5574    return 0;
5575
5576  FindCaptureVisitor visitor(S.Context, owner.Variable);
5577  visitor.Visit(block->getBlockDecl()->getBody());
5578  return visitor.Capturer;
5579}
5580
5581static void diagnoseRetainCycle(Sema &S, Expr *capturer,
5582                                RetainCycleOwner &owner) {
5583  assert(capturer);
5584  assert(owner.Variable && owner.Loc.isValid());
5585
5586  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
5587    << owner.Variable << capturer->getSourceRange();
5588  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
5589    << owner.Indirect << owner.Range;
5590}
5591
5592/// Check for a keyword selector that starts with the word 'add' or
5593/// 'set'.
5594static bool isSetterLikeSelector(Selector sel) {
5595  if (sel.isUnarySelector()) return false;
5596
5597  StringRef str = sel.getNameForSlot(0);
5598  while (!str.empty() && str.front() == '_') str = str.substr(1);
5599  if (str.startswith("set"))
5600    str = str.substr(3);
5601  else if (str.startswith("add")) {
5602    // Specially whitelist 'addOperationWithBlock:'.
5603    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
5604      return false;
5605    str = str.substr(3);
5606  }
5607  else
5608    return false;
5609
5610  if (str.empty()) return true;
5611  return !islower(str.front());
5612}
5613
5614/// Check a message send to see if it's likely to cause a retain cycle.
5615void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
5616  // Only check instance methods whose selector looks like a setter.
5617  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
5618    return;
5619
5620  // Try to find a variable that the receiver is strongly owned by.
5621  RetainCycleOwner owner;
5622  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
5623    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
5624      return;
5625  } else {
5626    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
5627    owner.Variable = getCurMethodDecl()->getSelfDecl();
5628    owner.Loc = msg->getSuperLoc();
5629    owner.Range = msg->getSuperLoc();
5630  }
5631
5632  // Check whether the receiver is captured by any of the arguments.
5633  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
5634    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
5635      return diagnoseRetainCycle(*this, capturer, owner);
5636}
5637
5638/// Check a property assign to see if it's likely to cause a retain cycle.
5639void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
5640  RetainCycleOwner owner;
5641  if (!findRetainCycleOwner(*this, receiver, owner))
5642    return;
5643
5644  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
5645    diagnoseRetainCycle(*this, capturer, owner);
5646}
5647
5648void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
5649  RetainCycleOwner Owner;
5650  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
5651    return;
5652
5653  // Because we don't have an expression for the variable, we have to set the
5654  // location explicitly here.
5655  Owner.Loc = Var->getLocation();
5656  Owner.Range = Var->getSourceRange();
5657
5658  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
5659    diagnoseRetainCycle(*this, Capturer, Owner);
5660}
5661
5662bool Sema::checkUnsafeAssigns(SourceLocation Loc,
5663                              QualType LHS, Expr *RHS) {
5664  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
5665  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
5666    return false;
5667  // strip off any implicit cast added to get to the one arc-specific
5668  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5669    if (cast->getCastKind() == CK_ARCConsumeObject) {
5670      Diag(Loc, diag::warn_arc_retained_assign)
5671        << (LT == Qualifiers::OCL_ExplicitNone) << 1
5672        << RHS->getSourceRange();
5673      return true;
5674    }
5675    RHS = cast->getSubExpr();
5676  }
5677  return false;
5678}
5679
5680void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
5681                              Expr *LHS, Expr *RHS) {
5682  QualType LHSType;
5683  // PropertyRef on LHS type need be directly obtained from
5684  // its declaration as it has a PsuedoType.
5685  ObjCPropertyRefExpr *PRE
5686    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
5687  if (PRE && !PRE->isImplicitProperty()) {
5688    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5689    if (PD)
5690      LHSType = PD->getType();
5691  }
5692
5693  if (LHSType.isNull())
5694    LHSType = LHS->getType();
5695
5696  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
5697
5698  if (LT == Qualifiers::OCL_Weak) {
5699    DiagnosticsEngine::Level Level =
5700      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
5701    if (Level != DiagnosticsEngine::Ignored)
5702      getCurFunction()->markSafeWeakUse(LHS);
5703  }
5704
5705  if (checkUnsafeAssigns(Loc, LHSType, RHS))
5706    return;
5707
5708  // FIXME. Check for other life times.
5709  if (LT != Qualifiers::OCL_None)
5710    return;
5711
5712  if (PRE) {
5713    if (PRE->isImplicitProperty())
5714      return;
5715    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5716    if (!PD)
5717      return;
5718
5719    unsigned Attributes = PD->getPropertyAttributes();
5720    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
5721      // when 'assign' attribute was not explicitly specified
5722      // by user, ignore it and rely on property type itself
5723      // for lifetime info.
5724      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
5725      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
5726          LHSType->isObjCRetainableType())
5727        return;
5728
5729      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5730        if (cast->getCastKind() == CK_ARCConsumeObject) {
5731          Diag(Loc, diag::warn_arc_retained_property_assign)
5732          << RHS->getSourceRange();
5733          return;
5734        }
5735        RHS = cast->getSubExpr();
5736      }
5737    }
5738    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
5739      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5740        if (cast->getCastKind() == CK_ARCConsumeObject) {
5741          Diag(Loc, diag::warn_arc_retained_assign)
5742          << 0 << 0<< RHS->getSourceRange();
5743          return;
5744        }
5745        RHS = cast->getSubExpr();
5746      }
5747    }
5748  }
5749}
5750
5751//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
5752
5753namespace {
5754bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
5755                                 SourceLocation StmtLoc,
5756                                 const NullStmt *Body) {
5757  // Do not warn if the body is a macro that expands to nothing, e.g:
5758  //
5759  // #define CALL(x)
5760  // if (condition)
5761  //   CALL(0);
5762  //
5763  if (Body->hasLeadingEmptyMacro())
5764    return false;
5765
5766  // Get line numbers of statement and body.
5767  bool StmtLineInvalid;
5768  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
5769                                                      &StmtLineInvalid);
5770  if (StmtLineInvalid)
5771    return false;
5772
5773  bool BodyLineInvalid;
5774  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
5775                                                      &BodyLineInvalid);
5776  if (BodyLineInvalid)
5777    return false;
5778
5779  // Warn if null statement and body are on the same line.
5780  if (StmtLine != BodyLine)
5781    return false;
5782
5783  return true;
5784}
5785} // Unnamed namespace
5786
5787void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
5788                                 const Stmt *Body,
5789                                 unsigned DiagID) {
5790  // Since this is a syntactic check, don't emit diagnostic for template
5791  // instantiations, this just adds noise.
5792  if (CurrentInstantiationScope)
5793    return;
5794
5795  // The body should be a null statement.
5796  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5797  if (!NBody)
5798    return;
5799
5800  // Do the usual checks.
5801  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5802    return;
5803
5804  Diag(NBody->getSemiLoc(), DiagID);
5805  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5806}
5807
5808void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
5809                                 const Stmt *PossibleBody) {
5810  assert(!CurrentInstantiationScope); // Ensured by caller
5811
5812  SourceLocation StmtLoc;
5813  const Stmt *Body;
5814  unsigned DiagID;
5815  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
5816    StmtLoc = FS->getRParenLoc();
5817    Body = FS->getBody();
5818    DiagID = diag::warn_empty_for_body;
5819  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
5820    StmtLoc = WS->getCond()->getSourceRange().getEnd();
5821    Body = WS->getBody();
5822    DiagID = diag::warn_empty_while_body;
5823  } else
5824    return; // Neither `for' nor `while'.
5825
5826  // The body should be a null statement.
5827  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5828  if (!NBody)
5829    return;
5830
5831  // Skip expensive checks if diagnostic is disabled.
5832  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
5833          DiagnosticsEngine::Ignored)
5834    return;
5835
5836  // Do the usual checks.
5837  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5838    return;
5839
5840  // `for(...);' and `while(...);' are popular idioms, so in order to keep
5841  // noise level low, emit diagnostics only if for/while is followed by a
5842  // CompoundStmt, e.g.:
5843  //    for (int i = 0; i < n; i++);
5844  //    {
5845  //      a(i);
5846  //    }
5847  // or if for/while is followed by a statement with more indentation
5848  // than for/while itself:
5849  //    for (int i = 0; i < n; i++);
5850  //      a(i);
5851  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
5852  if (!ProbableTypo) {
5853    bool BodyColInvalid;
5854    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
5855                             PossibleBody->getLocStart(),
5856                             &BodyColInvalid);
5857    if (BodyColInvalid)
5858      return;
5859
5860    bool StmtColInvalid;
5861    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
5862                             S->getLocStart(),
5863                             &StmtColInvalid);
5864    if (StmtColInvalid)
5865      return;
5866
5867    if (BodyCol > StmtCol)
5868      ProbableTypo = true;
5869  }
5870
5871  if (ProbableTypo) {
5872    Diag(NBody->getSemiLoc(), DiagID);
5873    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5874  }
5875}
5876
5877//===--- Layout compatibility ----------------------------------------------//
5878
5879namespace {
5880
5881bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
5882
5883/// \brief Check if two enumeration types are layout-compatible.
5884bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
5885  // C++11 [dcl.enum] p8:
5886  // Two enumeration types are layout-compatible if they have the same
5887  // underlying type.
5888  return ED1->isComplete() && ED2->isComplete() &&
5889         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
5890}
5891
5892/// \brief Check if two fields are layout-compatible.
5893bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
5894  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
5895    return false;
5896
5897  if (Field1->isBitField() != Field2->isBitField())
5898    return false;
5899
5900  if (Field1->isBitField()) {
5901    // Make sure that the bit-fields are the same length.
5902    unsigned Bits1 = Field1->getBitWidthValue(C);
5903    unsigned Bits2 = Field2->getBitWidthValue(C);
5904
5905    if (Bits1 != Bits2)
5906      return false;
5907  }
5908
5909  return true;
5910}
5911
5912/// \brief Check if two standard-layout structs are layout-compatible.
5913/// (C++11 [class.mem] p17)
5914bool isLayoutCompatibleStruct(ASTContext &C,
5915                              RecordDecl *RD1,
5916                              RecordDecl *RD2) {
5917  // If both records are C++ classes, check that base classes match.
5918  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
5919    // If one of records is a CXXRecordDecl we are in C++ mode,
5920    // thus the other one is a CXXRecordDecl, too.
5921    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
5922    // Check number of base classes.
5923    if (D1CXX->getNumBases() != D2CXX->getNumBases())
5924      return false;
5925
5926    // Check the base classes.
5927    for (CXXRecordDecl::base_class_const_iterator
5928               Base1 = D1CXX->bases_begin(),
5929           BaseEnd1 = D1CXX->bases_end(),
5930              Base2 = D2CXX->bases_begin();
5931         Base1 != BaseEnd1;
5932         ++Base1, ++Base2) {
5933      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
5934        return false;
5935    }
5936  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
5937    // If only RD2 is a C++ class, it should have zero base classes.
5938    if (D2CXX->getNumBases() > 0)
5939      return false;
5940  }
5941
5942  // Check the fields.
5943  RecordDecl::field_iterator Field2 = RD2->field_begin(),
5944                             Field2End = RD2->field_end(),
5945                             Field1 = RD1->field_begin(),
5946                             Field1End = RD1->field_end();
5947  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
5948    if (!isLayoutCompatible(C, *Field1, *Field2))
5949      return false;
5950  }
5951  if (Field1 != Field1End || Field2 != Field2End)
5952    return false;
5953
5954  return true;
5955}
5956
5957/// \brief Check if two standard-layout unions are layout-compatible.
5958/// (C++11 [class.mem] p18)
5959bool isLayoutCompatibleUnion(ASTContext &C,
5960                             RecordDecl *RD1,
5961                             RecordDecl *RD2) {
5962  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
5963  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
5964                                  Field2End = RD2->field_end();
5965       Field2 != Field2End; ++Field2) {
5966    UnmatchedFields.insert(*Field2);
5967  }
5968
5969  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
5970                                  Field1End = RD1->field_end();
5971       Field1 != Field1End; ++Field1) {
5972    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
5973        I = UnmatchedFields.begin(),
5974        E = UnmatchedFields.end();
5975
5976    for ( ; I != E; ++I) {
5977      if (isLayoutCompatible(C, *Field1, *I)) {
5978        bool Result = UnmatchedFields.erase(*I);
5979        (void) Result;
5980        assert(Result);
5981        break;
5982      }
5983    }
5984    if (I == E)
5985      return false;
5986  }
5987
5988  return UnmatchedFields.empty();
5989}
5990
5991bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
5992  if (RD1->isUnion() != RD2->isUnion())
5993    return false;
5994
5995  if (RD1->isUnion())
5996    return isLayoutCompatibleUnion(C, RD1, RD2);
5997  else
5998    return isLayoutCompatibleStruct(C, RD1, RD2);
5999}
6000
6001/// \brief Check if two types are layout-compatible in C++11 sense.
6002bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
6003  if (T1.isNull() || T2.isNull())
6004    return false;
6005
6006  // C++11 [basic.types] p11:
6007  // If two types T1 and T2 are the same type, then T1 and T2 are
6008  // layout-compatible types.
6009  if (C.hasSameType(T1, T2))
6010    return true;
6011
6012  T1 = T1.getCanonicalType().getUnqualifiedType();
6013  T2 = T2.getCanonicalType().getUnqualifiedType();
6014
6015  const Type::TypeClass TC1 = T1->getTypeClass();
6016  const Type::TypeClass TC2 = T2->getTypeClass();
6017
6018  if (TC1 != TC2)
6019    return false;
6020
6021  if (TC1 == Type::Enum) {
6022    return isLayoutCompatible(C,
6023                              cast<EnumType>(T1)->getDecl(),
6024                              cast<EnumType>(T2)->getDecl());
6025  } else if (TC1 == Type::Record) {
6026    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
6027      return false;
6028
6029    return isLayoutCompatible(C,
6030                              cast<RecordType>(T1)->getDecl(),
6031                              cast<RecordType>(T2)->getDecl());
6032  }
6033
6034  return false;
6035}
6036}
6037
6038//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
6039
6040namespace {
6041/// \brief Given a type tag expression find the type tag itself.
6042///
6043/// \param TypeExpr Type tag expression, as it appears in user's code.
6044///
6045/// \param VD Declaration of an identifier that appears in a type tag.
6046///
6047/// \param MagicValue Type tag magic value.
6048bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
6049                     const ValueDecl **VD, uint64_t *MagicValue) {
6050  while(true) {
6051    if (!TypeExpr)
6052      return false;
6053
6054    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
6055
6056    switch (TypeExpr->getStmtClass()) {
6057    case Stmt::UnaryOperatorClass: {
6058      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
6059      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
6060        TypeExpr = UO->getSubExpr();
6061        continue;
6062      }
6063      return false;
6064    }
6065
6066    case Stmt::DeclRefExprClass: {
6067      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
6068      *VD = DRE->getDecl();
6069      return true;
6070    }
6071
6072    case Stmt::IntegerLiteralClass: {
6073      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
6074      llvm::APInt MagicValueAPInt = IL->getValue();
6075      if (MagicValueAPInt.getActiveBits() <= 64) {
6076        *MagicValue = MagicValueAPInt.getZExtValue();
6077        return true;
6078      } else
6079        return false;
6080    }
6081
6082    case Stmt::BinaryConditionalOperatorClass:
6083    case Stmt::ConditionalOperatorClass: {
6084      const AbstractConditionalOperator *ACO =
6085          cast<AbstractConditionalOperator>(TypeExpr);
6086      bool Result;
6087      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
6088        if (Result)
6089          TypeExpr = ACO->getTrueExpr();
6090        else
6091          TypeExpr = ACO->getFalseExpr();
6092        continue;
6093      }
6094      return false;
6095    }
6096
6097    case Stmt::BinaryOperatorClass: {
6098      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
6099      if (BO->getOpcode() == BO_Comma) {
6100        TypeExpr = BO->getRHS();
6101        continue;
6102      }
6103      return false;
6104    }
6105
6106    default:
6107      return false;
6108    }
6109  }
6110}
6111
6112/// \brief Retrieve the C type corresponding to type tag TypeExpr.
6113///
6114/// \param TypeExpr Expression that specifies a type tag.
6115///
6116/// \param MagicValues Registered magic values.
6117///
6118/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
6119///        kind.
6120///
6121/// \param TypeInfo Information about the corresponding C type.
6122///
6123/// \returns true if the corresponding C type was found.
6124bool GetMatchingCType(
6125        const IdentifierInfo *ArgumentKind,
6126        const Expr *TypeExpr, const ASTContext &Ctx,
6127        const llvm::DenseMap<Sema::TypeTagMagicValue,
6128                             Sema::TypeTagData> *MagicValues,
6129        bool &FoundWrongKind,
6130        Sema::TypeTagData &TypeInfo) {
6131  FoundWrongKind = false;
6132
6133  // Variable declaration that has type_tag_for_datatype attribute.
6134  const ValueDecl *VD = NULL;
6135
6136  uint64_t MagicValue;
6137
6138  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
6139    return false;
6140
6141  if (VD) {
6142    for (specific_attr_iterator<TypeTagForDatatypeAttr>
6143             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
6144             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
6145         I != E; ++I) {
6146      if (I->getArgumentKind() != ArgumentKind) {
6147        FoundWrongKind = true;
6148        return false;
6149      }
6150      TypeInfo.Type = I->getMatchingCType();
6151      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
6152      TypeInfo.MustBeNull = I->getMustBeNull();
6153      return true;
6154    }
6155    return false;
6156  }
6157
6158  if (!MagicValues)
6159    return false;
6160
6161  llvm::DenseMap<Sema::TypeTagMagicValue,
6162                 Sema::TypeTagData>::const_iterator I =
6163      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
6164  if (I == MagicValues->end())
6165    return false;
6166
6167  TypeInfo = I->second;
6168  return true;
6169}
6170} // unnamed namespace
6171
6172void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
6173                                      uint64_t MagicValue, QualType Type,
6174                                      bool LayoutCompatible,
6175                                      bool MustBeNull) {
6176  if (!TypeTagForDatatypeMagicValues)
6177    TypeTagForDatatypeMagicValues.reset(
6178        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
6179
6180  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
6181  (*TypeTagForDatatypeMagicValues)[Magic] =
6182      TypeTagData(Type, LayoutCompatible, MustBeNull);
6183}
6184
6185namespace {
6186bool IsSameCharType(QualType T1, QualType T2) {
6187  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
6188  if (!BT1)
6189    return false;
6190
6191  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
6192  if (!BT2)
6193    return false;
6194
6195  BuiltinType::Kind T1Kind = BT1->getKind();
6196  BuiltinType::Kind T2Kind = BT2->getKind();
6197
6198  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
6199         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
6200         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
6201         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
6202}
6203} // unnamed namespace
6204
6205void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
6206                                    const Expr * const *ExprArgs) {
6207  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
6208  bool IsPointerAttr = Attr->getIsPointer();
6209
6210  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
6211  bool FoundWrongKind;
6212  TypeTagData TypeInfo;
6213  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
6214                        TypeTagForDatatypeMagicValues.get(),
6215                        FoundWrongKind, TypeInfo)) {
6216    if (FoundWrongKind)
6217      Diag(TypeTagExpr->getExprLoc(),
6218           diag::warn_type_tag_for_datatype_wrong_kind)
6219        << TypeTagExpr->getSourceRange();
6220    return;
6221  }
6222
6223  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
6224  if (IsPointerAttr) {
6225    // Skip implicit cast of pointer to `void *' (as a function argument).
6226    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
6227      if (ICE->getType()->isVoidPointerType() &&
6228          ICE->getCastKind() == CK_BitCast)
6229        ArgumentExpr = ICE->getSubExpr();
6230  }
6231  QualType ArgumentType = ArgumentExpr->getType();
6232
6233  // Passing a `void*' pointer shouldn't trigger a warning.
6234  if (IsPointerAttr && ArgumentType->isVoidPointerType())
6235    return;
6236
6237  if (TypeInfo.MustBeNull) {
6238    // Type tag with matching void type requires a null pointer.
6239    if (!ArgumentExpr->isNullPointerConstant(Context,
6240                                             Expr::NPC_ValueDependentIsNotNull)) {
6241      Diag(ArgumentExpr->getExprLoc(),
6242           diag::warn_type_safety_null_pointer_required)
6243          << ArgumentKind->getName()
6244          << ArgumentExpr->getSourceRange()
6245          << TypeTagExpr->getSourceRange();
6246    }
6247    return;
6248  }
6249
6250  QualType RequiredType = TypeInfo.Type;
6251  if (IsPointerAttr)
6252    RequiredType = Context.getPointerType(RequiredType);
6253
6254  bool mismatch = false;
6255  if (!TypeInfo.LayoutCompatible) {
6256    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
6257
6258    // C++11 [basic.fundamental] p1:
6259    // Plain char, signed char, and unsigned char are three distinct types.
6260    //
6261    // But we treat plain `char' as equivalent to `signed char' or `unsigned
6262    // char' depending on the current char signedness mode.
6263    if (mismatch)
6264      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
6265                                           RequiredType->getPointeeType())) ||
6266          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
6267        mismatch = false;
6268  } else
6269    if (IsPointerAttr)
6270      mismatch = !isLayoutCompatible(Context,
6271                                     ArgumentType->getPointeeType(),
6272                                     RequiredType->getPointeeType());
6273    else
6274      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
6275
6276  if (mismatch)
6277    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
6278        << ArgumentType << ArgumentKind->getName()
6279        << TypeInfo.LayoutCompatible << RequiredType
6280        << ArgumentExpr->getSourceRange()
6281        << TypeTagExpr->getSourceRange();
6282}
6283