JumpDiagnostics.cpp revision 210299
1//===--- JumpDiagnostics.cpp - Analyze Jump Targets for VLA issues --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the JumpScopeChecker class, which is used to diagnose
11// jumps that enter a VLA scope in an invalid way.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/BitVector.h"
16#include "Sema.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/StmtObjC.h"
19#include "clang/AST/StmtCXX.h"
20using namespace clang;
21
22namespace {
23
24/// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
25/// into VLA and other protected scopes.  For example, this rejects:
26///    goto L;
27///    int a[n];
28///  L:
29///
30class JumpScopeChecker {
31  Sema &S;
32
33  /// GotoScope - This is a record that we use to keep track of all of the
34  /// scopes that are introduced by VLAs and other things that scope jumps like
35  /// gotos.  This scope tree has nothing to do with the source scope tree,
36  /// because you can have multiple VLA scopes per compound statement, and most
37  /// compound statements don't introduce any scopes.
38  struct GotoScope {
39    /// ParentScope - The index in ScopeMap of the parent scope.  This is 0 for
40    /// the parent scope is the function body.
41    unsigned ParentScope;
42
43    /// InDiag - The diagnostic to emit if there is a jump into this scope.
44    unsigned InDiag;
45
46    /// OutDiag - The diagnostic to emit if there is an indirect jump out
47    /// of this scope.  Direct jumps always clean up their current scope
48    /// in an orderly way.
49    unsigned OutDiag;
50
51    /// Loc - Location to emit the diagnostic.
52    SourceLocation Loc;
53
54    GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
55              SourceLocation L)
56      : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
57  };
58
59  llvm::SmallVector<GotoScope, 48> Scopes;
60  llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
61  llvm::SmallVector<Stmt*, 16> Jumps;
62
63  llvm::SmallVector<IndirectGotoStmt*, 4> IndirectJumps;
64  llvm::SmallVector<LabelStmt*, 4> IndirectJumpTargets;
65public:
66  JumpScopeChecker(Stmt *Body, Sema &S);
67private:
68  void BuildScopeInformation(Decl *D, unsigned &ParentScope);
69  void BuildScopeInformation(Stmt *S, unsigned ParentScope);
70  void VerifyJumps();
71  void VerifyIndirectJumps();
72  void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope,
73                            LabelStmt *Target, unsigned TargetScope);
74  void CheckJump(Stmt *From, Stmt *To,
75                 SourceLocation DiagLoc, unsigned JumpDiag);
76
77  unsigned GetDeepestCommonScope(unsigned A, unsigned B);
78};
79} // end anonymous namespace
80
81
82JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) {
83  // Add a scope entry for function scope.
84  Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));
85
86  // Build information for the top level compound statement, so that we have a
87  // defined scope record for every "goto" and label.
88  BuildScopeInformation(Body, 0);
89
90  // Check that all jumps we saw are kosher.
91  VerifyJumps();
92  VerifyIndirectJumps();
93}
94
95/// GetDeepestCommonScope - Finds the innermost scope enclosing the
96/// two scopes.
97unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
98  while (A != B) {
99    // Inner scopes are created after outer scopes and therefore have
100    // higher indices.
101    if (A < B) {
102      assert(Scopes[B].ParentScope < B);
103      B = Scopes[B].ParentScope;
104    } else {
105      assert(Scopes[A].ParentScope < A);
106      A = Scopes[A].ParentScope;
107    }
108  }
109  return A;
110}
111
112/// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
113/// diagnostic that should be emitted if control goes over it. If not, return 0.
114static std::pair<unsigned,unsigned>
115    GetDiagForGotoScopeDecl(const Decl *D, bool isCPlusPlus) {
116  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
117    unsigned InDiag = 0, OutDiag = 0;
118    if (VD->getType()->isVariablyModifiedType())
119      InDiag = diag::note_protected_by_vla;
120
121    if (VD->hasAttr<BlocksAttr>()) {
122      InDiag = diag::note_protected_by___block;
123      OutDiag = diag::note_exits___block;
124    } else if (VD->hasAttr<CleanupAttr>()) {
125      InDiag = diag::note_protected_by_cleanup;
126      OutDiag = diag::note_exits_cleanup;
127    } else if (isCPlusPlus) {
128      // FIXME: In C++0x, we have to check more conditions than "did we
129      // just give it an initializer?". See 6.7p3.
130      if (VD->hasLocalStorage() && VD->hasInit())
131        InDiag = diag::note_protected_by_variable_init;
132
133      CanQualType T = VD->getType()->getCanonicalTypeUnqualified();
134      if (!T->isDependentType()) {
135        while (CanQual<ArrayType> AT = T->getAs<ArrayType>())
136          T = AT->getElementType();
137        if (CanQual<RecordType> RT = T->getAs<RecordType>())
138          if (!cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor())
139            OutDiag = diag::note_exits_dtor;
140      }
141    }
142
143    return std::make_pair(InDiag, OutDiag);
144  }
145
146  if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
147    if (TD->getUnderlyingType()->isVariablyModifiedType())
148      return std::make_pair((unsigned) diag::note_protected_by_vla_typedef, 0);
149  }
150
151  return std::make_pair(0U, 0U);
152}
153
154/// \brief Build scope information for a declaration that is part of a DeclStmt.
155void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
156  bool isCPlusPlus = this->S.getLangOptions().CPlusPlus;
157
158  // If this decl causes a new scope, push and switch to it.
159  std::pair<unsigned,unsigned> Diags
160    = GetDiagForGotoScopeDecl(D, isCPlusPlus);
161  if (Diags.first || Diags.second) {
162    Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
163                               D->getLocation()));
164    ParentScope = Scopes.size()-1;
165  }
166
167  // If the decl has an initializer, walk it with the potentially new
168  // scope we just installed.
169  if (VarDecl *VD = dyn_cast<VarDecl>(D))
170    if (Expr *Init = VD->getInit())
171      BuildScopeInformation(Init, ParentScope);
172}
173
174/// BuildScopeInformation - The statements from CI to CE are known to form a
175/// coherent VLA scope with a specified parent node.  Walk through the
176/// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
177/// walking the AST as needed.
178void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned ParentScope) {
179  bool SkipFirstSubStmt = false;
180
181  // If we found a label, remember that it is in ParentScope scope.
182  switch (S->getStmtClass()) {
183  case Stmt::LabelStmtClass:
184  case Stmt::DefaultStmtClass:
185  case Stmt::CaseStmtClass:
186    LabelAndGotoScopes[S] = ParentScope;
187    break;
188
189  case Stmt::AddrLabelExprClass:
190    IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
191    break;
192
193  case Stmt::IndirectGotoStmtClass:
194    LabelAndGotoScopes[S] = ParentScope;
195    IndirectJumps.push_back(cast<IndirectGotoStmt>(S));
196    break;
197
198  case Stmt::SwitchStmtClass:
199    // Evaluate the condition variable before entering the scope of the switch
200    // statement.
201    if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
202      BuildScopeInformation(Var, ParentScope);
203      SkipFirstSubStmt = true;
204    }
205    // Fall through
206
207  case Stmt::GotoStmtClass:
208    // Remember both what scope a goto is in as well as the fact that we have
209    // it.  This makes the second scan not have to walk the AST again.
210    LabelAndGotoScopes[S] = ParentScope;
211    Jumps.push_back(S);
212    break;
213
214  default:
215    break;
216  }
217
218  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
219       ++CI) {
220    if (SkipFirstSubStmt) {
221      SkipFirstSubStmt = false;
222      continue;
223    }
224
225    Stmt *SubStmt = *CI;
226    if (SubStmt == 0) continue;
227
228    // If this is a declstmt with a VLA definition, it defines a scope from here
229    // to the end of the containing context.
230    if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) {
231      // The decl statement creates a scope if any of the decls in it are VLAs
232      // or have the cleanup attribute.
233      for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
234           I != E; ++I)
235        BuildScopeInformation(*I, ParentScope);
236      continue;
237    }
238
239    // Disallow jumps into any part of an @try statement by pushing a scope and
240    // walking all sub-stmts in that scope.
241    if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) {
242      // Recursively walk the AST for the @try part.
243      Scopes.push_back(GotoScope(ParentScope,
244                                 diag::note_protected_by_objc_try,
245                                 diag::note_exits_objc_try,
246                                 AT->getAtTryLoc()));
247      if (Stmt *TryPart = AT->getTryBody())
248        BuildScopeInformation(TryPart, Scopes.size()-1);
249
250      // Jump from the catch to the finally or try is not valid.
251      for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) {
252        ObjCAtCatchStmt *AC = AT->getCatchStmt(I);
253        Scopes.push_back(GotoScope(ParentScope,
254                                   diag::note_protected_by_objc_catch,
255                                   diag::note_exits_objc_catch,
256                                   AC->getAtCatchLoc()));
257        // @catches are nested and it isn't
258        BuildScopeInformation(AC->getCatchBody(), Scopes.size()-1);
259      }
260
261      // Jump from the finally to the try or catch is not valid.
262      if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
263        Scopes.push_back(GotoScope(ParentScope,
264                                   diag::note_protected_by_objc_finally,
265                                   diag::note_exits_objc_finally,
266                                   AF->getAtFinallyLoc()));
267        BuildScopeInformation(AF, Scopes.size()-1);
268      }
269
270      continue;
271    }
272
273    // Disallow jumps into the protected statement of an @synchronized, but
274    // allow jumps into the object expression it protects.
275    if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){
276      // Recursively walk the AST for the @synchronized object expr, it is
277      // evaluated in the normal scope.
278      BuildScopeInformation(AS->getSynchExpr(), ParentScope);
279
280      // Recursively walk the AST for the @synchronized part, protected by a new
281      // scope.
282      Scopes.push_back(GotoScope(ParentScope,
283                                 diag::note_protected_by_objc_synchronized,
284                                 diag::note_exits_objc_synchronized,
285                                 AS->getAtSynchronizedLoc()));
286      BuildScopeInformation(AS->getSynchBody(), Scopes.size()-1);
287      continue;
288    }
289
290    // Disallow jumps into any part of a C++ try statement. This is pretty
291    // much the same as for Obj-C.
292    if (CXXTryStmt *TS = dyn_cast<CXXTryStmt>(SubStmt)) {
293      Scopes.push_back(GotoScope(ParentScope,
294                                 diag::note_protected_by_cxx_try,
295                                 diag::note_exits_cxx_try,
296                                 TS->getSourceRange().getBegin()));
297      if (Stmt *TryBlock = TS->getTryBlock())
298        BuildScopeInformation(TryBlock, Scopes.size()-1);
299
300      // Jump from the catch into the try is not allowed either.
301      for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
302        CXXCatchStmt *CS = TS->getHandler(I);
303        Scopes.push_back(GotoScope(ParentScope,
304                                   diag::note_protected_by_cxx_catch,
305                                   diag::note_exits_cxx_catch,
306                                   CS->getSourceRange().getBegin()));
307        BuildScopeInformation(CS->getHandlerBlock(), Scopes.size()-1);
308      }
309
310      continue;
311    }
312
313    // Recursively walk the AST.
314    BuildScopeInformation(SubStmt, ParentScope);
315  }
316}
317
318/// VerifyJumps - Verify each element of the Jumps array to see if they are
319/// valid, emitting diagnostics if not.
320void JumpScopeChecker::VerifyJumps() {
321  while (!Jumps.empty()) {
322    Stmt *Jump = Jumps.pop_back_val();
323
324    // With a goto,
325    if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
326      CheckJump(GS, GS->getLabel(), GS->getGotoLoc(),
327                diag::err_goto_into_protected_scope);
328      continue;
329    }
330
331    SwitchStmt *SS = cast<SwitchStmt>(Jump);
332    for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
333         SC = SC->getNextSwitchCase()) {
334      assert(LabelAndGotoScopes.count(SC) && "Case not visited?");
335      CheckJump(SS, SC, SC->getLocStart(),
336                diag::err_switch_into_protected_scope);
337    }
338  }
339}
340
341/// VerifyIndirectJumps - Verify whether any possible indirect jump
342/// might cross a protection boundary.  Unlike direct jumps, indirect
343/// jumps count cleanups as protection boundaries:  since there's no
344/// way to know where the jump is going, we can't implicitly run the
345/// right cleanups the way we can with direct jumps.
346///
347/// Thus, an indirect jump is "trivial" if it bypasses no
348/// initializations and no teardowns.  More formally, an indirect jump
349/// from A to B is trivial if the path out from A to DCA(A,B) is
350/// trivial and the path in from DCA(A,B) to B is trivial, where
351/// DCA(A,B) is the deepest common ancestor of A and B.
352/// Jump-triviality is transitive but asymmetric.
353///
354/// A path in is trivial if none of the entered scopes have an InDiag.
355/// A path out is trivial is none of the exited scopes have an OutDiag.
356///
357/// Under these definitions, this function checks that the indirect
358/// jump between A and B is trivial for every indirect goto statement A
359/// and every label B whose address was taken in the function.
360void JumpScopeChecker::VerifyIndirectJumps() {
361  if (IndirectJumps.empty()) return;
362
363  // If there aren't any address-of-label expressions in this function,
364  // complain about the first indirect goto.
365  if (IndirectJumpTargets.empty()) {
366    S.Diag(IndirectJumps[0]->getGotoLoc(),
367           diag::err_indirect_goto_without_addrlabel);
368    return;
369  }
370
371  // Collect a single representative of every scope containing an
372  // indirect goto.  For most code bases, this substantially cuts
373  // down on the number of jump sites we'll have to consider later.
374  typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope;
375  llvm::SmallVector<JumpScope, 32> JumpScopes;
376  {
377    llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap;
378    for (llvm::SmallVectorImpl<IndirectGotoStmt*>::iterator
379           I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) {
380      IndirectGotoStmt *IG = *I;
381      assert(LabelAndGotoScopes.count(IG) &&
382             "indirect jump didn't get added to scopes?");
383      unsigned IGScope = LabelAndGotoScopes[IG];
384      IndirectGotoStmt *&Entry = JumpScopesMap[IGScope];
385      if (!Entry) Entry = IG;
386    }
387    JumpScopes.reserve(JumpScopesMap.size());
388    for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator
389           I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I)
390      JumpScopes.push_back(*I);
391  }
392
393  // Collect a single representative of every scope containing a
394  // label whose address was taken somewhere in the function.
395  // For most code bases, there will be only one such scope.
396  llvm::DenseMap<unsigned, LabelStmt*> TargetScopes;
397  for (llvm::SmallVectorImpl<LabelStmt*>::iterator
398         I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end();
399       I != E; ++I) {
400    LabelStmt *TheLabel = *I;
401    assert(LabelAndGotoScopes.count(TheLabel) &&
402           "Referenced label didn't get added to scopes?");
403    unsigned LabelScope = LabelAndGotoScopes[TheLabel];
404    LabelStmt *&Target = TargetScopes[LabelScope];
405    if (!Target) Target = TheLabel;
406  }
407
408  // For each target scope, make sure it's trivially reachable from
409  // every scope containing a jump site.
410  //
411  // A path between scopes always consists of exitting zero or more
412  // scopes, then entering zero or more scopes.  We build a set of
413  // of scopes S from which the target scope can be trivially
414  // entered, then verify that every jump scope can be trivially
415  // exitted to reach a scope in S.
416  llvm::BitVector Reachable(Scopes.size(), false);
417  for (llvm::DenseMap<unsigned,LabelStmt*>::iterator
418         TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) {
419    unsigned TargetScope = TI->first;
420    LabelStmt *TargetLabel = TI->second;
421
422    Reachable.reset();
423
424    // Mark all the enclosing scopes from which you can safely jump
425    // into the target scope.  'Min' will end up being the index of
426    // the shallowest such scope.
427    unsigned Min = TargetScope;
428    while (true) {
429      Reachable.set(Min);
430
431      // Don't go beyond the outermost scope.
432      if (Min == 0) break;
433
434      // Stop if we can't trivially enter the current scope.
435      if (Scopes[Min].InDiag) break;
436
437      Min = Scopes[Min].ParentScope;
438    }
439
440    // Walk through all the jump sites, checking that they can trivially
441    // reach this label scope.
442    for (llvm::SmallVectorImpl<JumpScope>::iterator
443           I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) {
444      unsigned Scope = I->first;
445
446      // Walk out the "scope chain" for this scope, looking for a scope
447      // we've marked reachable.  For well-formed code this amortizes
448      // to O(JumpScopes.size() / Scopes.size()):  we only iterate
449      // when we see something unmarked, and in well-formed code we
450      // mark everything we iterate past.
451      bool IsReachable = false;
452      while (true) {
453        if (Reachable.test(Scope)) {
454          // If we find something reachable, mark all the scopes we just
455          // walked through as reachable.
456          for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope)
457            Reachable.set(S);
458          IsReachable = true;
459          break;
460        }
461
462        // Don't walk out if we've reached the top-level scope or we've
463        // gotten shallower than the shallowest reachable scope.
464        if (Scope == 0 || Scope < Min) break;
465
466        // Don't walk out through an out-diagnostic.
467        if (Scopes[Scope].OutDiag) break;
468
469        Scope = Scopes[Scope].ParentScope;
470      }
471
472      // Only diagnose if we didn't find something.
473      if (IsReachable) continue;
474
475      DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope);
476    }
477  }
478}
479
480/// Diagnose an indirect jump which is known to cross scopes.
481void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump,
482                                            unsigned JumpScope,
483                                            LabelStmt *Target,
484                                            unsigned TargetScope) {
485  assert(JumpScope != TargetScope);
486
487  S.Diag(Jump->getGotoLoc(), diag::warn_indirect_goto_in_protected_scope);
488  S.Diag(Target->getIdentLoc(), diag::note_indirect_goto_target);
489
490  unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);
491
492  // Walk out the scope chain until we reach the common ancestor.
493  for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
494    if (Scopes[I].OutDiag)
495      S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
496
497  // Now walk into the scopes containing the label whose address was taken.
498  for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
499    if (Scopes[I].InDiag)
500      S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
501}
502
503/// CheckJump - Validate that the specified jump statement is valid: that it is
504/// jumping within or out of its current scope, not into a deeper one.
505void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To,
506                                 SourceLocation DiagLoc, unsigned JumpDiag) {
507  assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?");
508  unsigned FromScope = LabelAndGotoScopes[From];
509
510  assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?");
511  unsigned ToScope = LabelAndGotoScopes[To];
512
513  // Common case: exactly the same scope, which is fine.
514  if (FromScope == ToScope) return;
515
516  unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);
517
518  // It's okay to jump out from a nested scope.
519  if (CommonScope == ToScope) return;
520
521  // Pull out (and reverse) any scopes we might need to diagnose skipping.
522  llvm::SmallVector<unsigned, 10> ToScopes;
523  for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope)
524    if (Scopes[I].InDiag)
525      ToScopes.push_back(I);
526
527  // If the only scopes present are cleanup scopes, we're okay.
528  if (ToScopes.empty()) return;
529
530  S.Diag(DiagLoc, JumpDiag);
531
532  // Emit diagnostics for whatever is left in ToScopes.
533  for (unsigned i = 0, e = ToScopes.size(); i != e; ++i)
534    S.Diag(Scopes[ToScopes[i]].Loc, Scopes[ToScopes[i]].InDiag);
535}
536
537void Sema::DiagnoseInvalidJumps(Stmt *Body) {
538  (void)JumpScopeChecker(Body, *this);
539}
540