CodeGenTypes.cpp revision 251662
1//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the code that handles AST -> LLVM type lowering.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenTypes.h"
15#include "CGCXXABI.h"
16#include "CGCall.h"
17#include "CGOpenCLRuntime.h"
18#include "CGRecordLayout.h"
19#include "TargetInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/RecordLayout.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Module.h"
28using namespace clang;
29using namespace CodeGen;
30
31CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
32  : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
33    TheDataLayout(cgm.getDataLayout()),
34    Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
35    CodeGenOpts(cgm.getCodeGenOpts()),
36    TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
37  SkippedLayout = false;
38}
39
40CodeGenTypes::~CodeGenTypes() {
41  for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
42         I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
43      I != E; ++I)
44    delete I->second;
45
46  for (llvm::FoldingSet<CGFunctionInfo>::iterator
47       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
48    delete &*I++;
49}
50
51void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
52                                     llvm::StructType *Ty,
53                                     StringRef suffix) {
54  SmallString<256> TypeName;
55  llvm::raw_svector_ostream OS(TypeName);
56  OS << RD->getKindName() << '.';
57
58  // Name the codegen type after the typedef name
59  // if there is no tag type name available
60  if (RD->getIdentifier()) {
61    // FIXME: We should not have to check for a null decl context here.
62    // Right now we do it because the implicit Obj-C decls don't have one.
63    if (RD->getDeclContext())
64      RD->printQualifiedName(OS);
65    else
66      RD->printName(OS);
67  } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
68    // FIXME: We should not have to check for a null decl context here.
69    // Right now we do it because the implicit Obj-C decls don't have one.
70    if (TDD->getDeclContext())
71      TDD->printQualifiedName(OS);
72    else
73      TDD->printName(OS);
74  } else
75    OS << "anon";
76
77  if (!suffix.empty())
78    OS << suffix;
79
80  Ty->setName(OS.str());
81}
82
83/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
84/// ConvertType in that it is used to convert to the memory representation for
85/// a type.  For example, the scalar representation for _Bool is i1, but the
86/// memory representation is usually i8 or i32, depending on the target.
87llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
88  llvm::Type *R = ConvertType(T);
89
90  // If this is a non-bool type, don't map it.
91  if (!R->isIntegerTy(1))
92    return R;
93
94  // Otherwise, return an integer of the target-specified size.
95  return llvm::IntegerType::get(getLLVMContext(),
96                                (unsigned)Context.getTypeSize(T));
97}
98
99
100/// isRecordLayoutComplete - Return true if the specified type is already
101/// completely laid out.
102bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
103  llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
104  RecordDeclTypes.find(Ty);
105  return I != RecordDeclTypes.end() && !I->second->isOpaque();
106}
107
108static bool
109isSafeToConvert(QualType T, CodeGenTypes &CGT,
110                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
111
112
113/// isSafeToConvert - Return true if it is safe to convert the specified record
114/// decl to IR and lay it out, false if doing so would cause us to get into a
115/// recursive compilation mess.
116static bool
117isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
118                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
119  // If we have already checked this type (maybe the same type is used by-value
120  // multiple times in multiple structure fields, don't check again.
121  if (!AlreadyChecked.insert(RD)) return true;
122
123  const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
124
125  // If this type is already laid out, converting it is a noop.
126  if (CGT.isRecordLayoutComplete(Key)) return true;
127
128  // If this type is currently being laid out, we can't recursively compile it.
129  if (CGT.isRecordBeingLaidOut(Key))
130    return false;
131
132  // If this type would require laying out bases that are currently being laid
133  // out, don't do it.  This includes virtual base classes which get laid out
134  // when a class is translated, even though they aren't embedded by-value into
135  // the class.
136  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
137    for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
138         E = CRD->bases_end(); I != E; ++I)
139      if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
140                           CGT, AlreadyChecked))
141        return false;
142  }
143
144  // If this type would require laying out members that are currently being laid
145  // out, don't do it.
146  for (RecordDecl::field_iterator I = RD->field_begin(),
147       E = RD->field_end(); I != E; ++I)
148    if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
149      return false;
150
151  // If there are no problems, lets do it.
152  return true;
153}
154
155/// isSafeToConvert - Return true if it is safe to convert this field type,
156/// which requires the structure elements contained by-value to all be
157/// recursively safe to convert.
158static bool
159isSafeToConvert(QualType T, CodeGenTypes &CGT,
160                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
161  T = T.getCanonicalType();
162
163  // If this is a record, check it.
164  if (const RecordType *RT = dyn_cast<RecordType>(T))
165    return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
166
167  // If this is an array, check the elements, which are embedded inline.
168  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
169    return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
170
171  // Otherwise, there is no concern about transforming this.  We only care about
172  // things that are contained by-value in a structure that can have another
173  // structure as a member.
174  return true;
175}
176
177
178/// isSafeToConvert - Return true if it is safe to convert the specified record
179/// decl to IR and lay it out, false if doing so would cause us to get into a
180/// recursive compilation mess.
181static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
182  // If no structs are being laid out, we can certainly do this one.
183  if (CGT.noRecordsBeingLaidOut()) return true;
184
185  llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
186  return isSafeToConvert(RD, CGT, AlreadyChecked);
187}
188
189
190/// isFuncTypeArgumentConvertible - Return true if the specified type in a
191/// function argument or result position can be converted to an IR type at this
192/// point.  This boils down to being whether it is complete, as well as whether
193/// we've temporarily deferred expanding the type because we're in a recursive
194/// context.
195bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
196  // If this isn't a tagged type, we can convert it!
197  const TagType *TT = Ty->getAs<TagType>();
198  if (TT == 0) return true;
199
200  // Incomplete types cannot be converted.
201  if (TT->isIncompleteType())
202    return false;
203
204  // If this is an enum, then it is always safe to convert.
205  const RecordType *RT = dyn_cast<RecordType>(TT);
206  if (RT == 0) return true;
207
208  // Otherwise, we have to be careful.  If it is a struct that we're in the
209  // process of expanding, then we can't convert the function type.  That's ok
210  // though because we must be in a pointer context under the struct, so we can
211  // just convert it to a dummy type.
212  //
213  // We decide this by checking whether ConvertRecordDeclType returns us an
214  // opaque type for a struct that we know is defined.
215  return isSafeToConvert(RT->getDecl(), *this);
216}
217
218
219/// Code to verify a given function type is complete, i.e. the return type
220/// and all of the argument types are complete.  Also check to see if we are in
221/// a RS_StructPointer context, and if so whether any struct types have been
222/// pended.  If so, we don't want to ask the ABI lowering code to handle a type
223/// that cannot be converted to an IR type.
224bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
225  if (!isFuncTypeArgumentConvertible(FT->getResultType()))
226    return false;
227
228  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
229    for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
230      if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
231        return false;
232
233  return true;
234}
235
236/// UpdateCompletedType - When we find the full definition for a TagDecl,
237/// replace the 'opaque' type we previously made for it if applicable.
238void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
239  // If this is an enum being completed, then we flush all non-struct types from
240  // the cache.  This allows function types and other things that may be derived
241  // from the enum to be recomputed.
242  if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
243    // Only flush the cache if we've actually already converted this type.
244    if (TypeCache.count(ED->getTypeForDecl())) {
245      // Okay, we formed some types based on this.  We speculated that the enum
246      // would be lowered to i32, so we only need to flush the cache if this
247      // didn't happen.
248      if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
249        TypeCache.clear();
250    }
251    return;
252  }
253
254  // If we completed a RecordDecl that we previously used and converted to an
255  // anonymous type, then go ahead and complete it now.
256  const RecordDecl *RD = cast<RecordDecl>(TD);
257  if (RD->isDependentType()) return;
258
259  // Only complete it if we converted it already.  If we haven't converted it
260  // yet, we'll just do it lazily.
261  if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
262    ConvertRecordDeclType(RD);
263}
264
265static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
266                                    const llvm::fltSemantics &format,
267                                    bool UseNativeHalf = false) {
268  if (&format == &llvm::APFloat::IEEEhalf) {
269    if (UseNativeHalf)
270      return llvm::Type::getHalfTy(VMContext);
271    else
272      return llvm::Type::getInt16Ty(VMContext);
273  }
274  if (&format == &llvm::APFloat::IEEEsingle)
275    return llvm::Type::getFloatTy(VMContext);
276  if (&format == &llvm::APFloat::IEEEdouble)
277    return llvm::Type::getDoubleTy(VMContext);
278  if (&format == &llvm::APFloat::IEEEquad)
279    return llvm::Type::getFP128Ty(VMContext);
280  if (&format == &llvm::APFloat::PPCDoubleDouble)
281    return llvm::Type::getPPC_FP128Ty(VMContext);
282  if (&format == &llvm::APFloat::x87DoubleExtended)
283    return llvm::Type::getX86_FP80Ty(VMContext);
284  llvm_unreachable("Unknown float format!");
285}
286
287/// ConvertType - Convert the specified type to its LLVM form.
288llvm::Type *CodeGenTypes::ConvertType(QualType T) {
289  T = Context.getCanonicalType(T);
290
291  const Type *Ty = T.getTypePtr();
292
293  // RecordTypes are cached and processed specially.
294  if (const RecordType *RT = dyn_cast<RecordType>(Ty))
295    return ConvertRecordDeclType(RT->getDecl());
296
297  // See if type is already cached.
298  llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
299  // If type is found in map then use it. Otherwise, convert type T.
300  if (TCI != TypeCache.end())
301    return TCI->second;
302
303  // If we don't have it in the cache, convert it now.
304  llvm::Type *ResultType = 0;
305  switch (Ty->getTypeClass()) {
306  case Type::Record: // Handled above.
307#define TYPE(Class, Base)
308#define ABSTRACT_TYPE(Class, Base)
309#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
310#define DEPENDENT_TYPE(Class, Base) case Type::Class:
311#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
312#include "clang/AST/TypeNodes.def"
313    llvm_unreachable("Non-canonical or dependent types aren't possible.");
314
315  case Type::Builtin: {
316    switch (cast<BuiltinType>(Ty)->getKind()) {
317    case BuiltinType::Void:
318    case BuiltinType::ObjCId:
319    case BuiltinType::ObjCClass:
320    case BuiltinType::ObjCSel:
321      // LLVM void type can only be used as the result of a function call.  Just
322      // map to the same as char.
323      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
324      break;
325
326    case BuiltinType::Bool:
327      // Note that we always return bool as i1 for use as a scalar type.
328      ResultType = llvm::Type::getInt1Ty(getLLVMContext());
329      break;
330
331    case BuiltinType::Char_S:
332    case BuiltinType::Char_U:
333    case BuiltinType::SChar:
334    case BuiltinType::UChar:
335    case BuiltinType::Short:
336    case BuiltinType::UShort:
337    case BuiltinType::Int:
338    case BuiltinType::UInt:
339    case BuiltinType::Long:
340    case BuiltinType::ULong:
341    case BuiltinType::LongLong:
342    case BuiltinType::ULongLong:
343    case BuiltinType::WChar_S:
344    case BuiltinType::WChar_U:
345    case BuiltinType::Char16:
346    case BuiltinType::Char32:
347      ResultType = llvm::IntegerType::get(getLLVMContext(),
348                                 static_cast<unsigned>(Context.getTypeSize(T)));
349      break;
350
351    case BuiltinType::Half:
352      // Half FP can either be storage-only (lowered to i16) or native.
353      ResultType = getTypeForFormat(getLLVMContext(),
354          Context.getFloatTypeSemantics(T),
355          Context.getLangOpts().NativeHalfType);
356      break;
357    case BuiltinType::Float:
358    case BuiltinType::Double:
359    case BuiltinType::LongDouble:
360      ResultType = getTypeForFormat(getLLVMContext(),
361                                    Context.getFloatTypeSemantics(T),
362                                    /* UseNativeHalf = */ false);
363      break;
364
365    case BuiltinType::NullPtr:
366      // Model std::nullptr_t as i8*
367      ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
368      break;
369
370    case BuiltinType::UInt128:
371    case BuiltinType::Int128:
372      ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
373      break;
374
375    case BuiltinType::OCLImage1d:
376    case BuiltinType::OCLImage1dArray:
377    case BuiltinType::OCLImage1dBuffer:
378    case BuiltinType::OCLImage2d:
379    case BuiltinType::OCLImage2dArray:
380    case BuiltinType::OCLImage3d:
381    case BuiltinType::OCLSampler:
382    case BuiltinType::OCLEvent:
383      ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
384      break;
385
386    case BuiltinType::Dependent:
387#define BUILTIN_TYPE(Id, SingletonId)
388#define PLACEHOLDER_TYPE(Id, SingletonId) \
389    case BuiltinType::Id:
390#include "clang/AST/BuiltinTypes.def"
391      llvm_unreachable("Unexpected placeholder builtin type!");
392    }
393    break;
394  }
395  case Type::Auto:
396    llvm_unreachable("Unexpected undeduced auto type!");
397  case Type::Complex: {
398    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
399    ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
400    break;
401  }
402  case Type::LValueReference:
403  case Type::RValueReference: {
404    const ReferenceType *RTy = cast<ReferenceType>(Ty);
405    QualType ETy = RTy->getPointeeType();
406    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
407    unsigned AS = Context.getTargetAddressSpace(ETy);
408    ResultType = llvm::PointerType::get(PointeeType, AS);
409    break;
410  }
411  case Type::Pointer: {
412    const PointerType *PTy = cast<PointerType>(Ty);
413    QualType ETy = PTy->getPointeeType();
414    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
415    if (PointeeType->isVoidTy())
416      PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
417    unsigned AS = Context.getTargetAddressSpace(ETy);
418    ResultType = llvm::PointerType::get(PointeeType, AS);
419    break;
420  }
421
422  case Type::VariableArray: {
423    const VariableArrayType *A = cast<VariableArrayType>(Ty);
424    assert(A->getIndexTypeCVRQualifiers() == 0 &&
425           "FIXME: We only handle trivial array types so far!");
426    // VLAs resolve to the innermost element type; this matches
427    // the return of alloca, and there isn't any obviously better choice.
428    ResultType = ConvertTypeForMem(A->getElementType());
429    break;
430  }
431  case Type::IncompleteArray: {
432    const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
433    assert(A->getIndexTypeCVRQualifiers() == 0 &&
434           "FIXME: We only handle trivial array types so far!");
435    // int X[] -> [0 x int], unless the element type is not sized.  If it is
436    // unsized (e.g. an incomplete struct) just use [0 x i8].
437    ResultType = ConvertTypeForMem(A->getElementType());
438    if (!ResultType->isSized()) {
439      SkippedLayout = true;
440      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
441    }
442    ResultType = llvm::ArrayType::get(ResultType, 0);
443    break;
444  }
445  case Type::ConstantArray: {
446    const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
447    llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
448
449    // Lower arrays of undefined struct type to arrays of i8 just to have a
450    // concrete type.
451    if (!EltTy->isSized()) {
452      SkippedLayout = true;
453      EltTy = llvm::Type::getInt8Ty(getLLVMContext());
454    }
455
456    ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
457    break;
458  }
459  case Type::ExtVector:
460  case Type::Vector: {
461    const VectorType *VT = cast<VectorType>(Ty);
462    ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
463                                       VT->getNumElements());
464    break;
465  }
466  case Type::FunctionNoProto:
467  case Type::FunctionProto: {
468    const FunctionType *FT = cast<FunctionType>(Ty);
469    // First, check whether we can build the full function type.  If the
470    // function type depends on an incomplete type (e.g. a struct or enum), we
471    // cannot lower the function type.
472    if (!isFuncTypeConvertible(FT)) {
473      // This function's type depends on an incomplete tag type.
474
475      // Force conversion of all the relevant record types, to make sure
476      // we re-convert the FunctionType when appropriate.
477      if (const RecordType *RT = FT->getResultType()->getAs<RecordType>())
478        ConvertRecordDeclType(RT->getDecl());
479      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
480        for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
481          if (const RecordType *RT = FPT->getArgType(i)->getAs<RecordType>())
482            ConvertRecordDeclType(RT->getDecl());
483
484      // Return a placeholder type.
485      ResultType = llvm::StructType::get(getLLVMContext());
486
487      SkippedLayout = true;
488      break;
489    }
490
491    // While we're converting the argument types for a function, we don't want
492    // to recursively convert any pointed-to structs.  Converting directly-used
493    // structs is ok though.
494    if (!RecordsBeingLaidOut.insert(Ty)) {
495      ResultType = llvm::StructType::get(getLLVMContext());
496
497      SkippedLayout = true;
498      break;
499    }
500
501    // The function type can be built; call the appropriate routines to
502    // build it.
503    const CGFunctionInfo *FI;
504    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
505      FI = &arrangeFreeFunctionType(
506                   CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
507    } else {
508      const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
509      FI = &arrangeFreeFunctionType(
510                CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
511    }
512
513    // If there is something higher level prodding our CGFunctionInfo, then
514    // don't recurse into it again.
515    if (FunctionsBeingProcessed.count(FI)) {
516
517      ResultType = llvm::StructType::get(getLLVMContext());
518      SkippedLayout = true;
519    } else {
520
521      // Otherwise, we're good to go, go ahead and convert it.
522      ResultType = GetFunctionType(*FI);
523    }
524
525    RecordsBeingLaidOut.erase(Ty);
526
527    if (SkippedLayout)
528      TypeCache.clear();
529
530    if (RecordsBeingLaidOut.empty())
531      while (!DeferredRecords.empty())
532        ConvertRecordDeclType(DeferredRecords.pop_back_val());
533    break;
534  }
535
536  case Type::ObjCObject:
537    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
538    break;
539
540  case Type::ObjCInterface: {
541    // Objective-C interfaces are always opaque (outside of the
542    // runtime, which can do whatever it likes); we never refine
543    // these.
544    llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
545    if (!T)
546      T = llvm::StructType::create(getLLVMContext());
547    ResultType = T;
548    break;
549  }
550
551  case Type::ObjCObjectPointer: {
552    // Protocol qualifications do not influence the LLVM type, we just return a
553    // pointer to the underlying interface type. We don't need to worry about
554    // recursive conversion.
555    llvm::Type *T =
556      ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
557    ResultType = T->getPointerTo();
558    break;
559  }
560
561  case Type::Enum: {
562    const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
563    if (ED->isCompleteDefinition() || ED->isFixed())
564      return ConvertType(ED->getIntegerType());
565    // Return a placeholder 'i32' type.  This can be changed later when the
566    // type is defined (see UpdateCompletedType), but is likely to be the
567    // "right" answer.
568    ResultType = llvm::Type::getInt32Ty(getLLVMContext());
569    break;
570  }
571
572  case Type::BlockPointer: {
573    const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
574    llvm::Type *PointeeType = ConvertTypeForMem(FTy);
575    unsigned AS = Context.getTargetAddressSpace(FTy);
576    ResultType = llvm::PointerType::get(PointeeType, AS);
577    break;
578  }
579
580  case Type::MemberPointer: {
581    ResultType =
582      getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
583    break;
584  }
585
586  case Type::Atomic: {
587    QualType valueType = cast<AtomicType>(Ty)->getValueType();
588    ResultType = ConvertTypeForMem(valueType);
589
590    // Pad out to the inflated size if necessary.
591    uint64_t valueSize = Context.getTypeSize(valueType);
592    uint64_t atomicSize = Context.getTypeSize(Ty);
593    if (valueSize != atomicSize) {
594      assert(valueSize < atomicSize);
595      llvm::Type *elts[] = {
596        ResultType,
597        llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
598      };
599      ResultType = llvm::StructType::get(getLLVMContext(),
600                                         llvm::makeArrayRef(elts));
601    }
602    break;
603  }
604  }
605
606  assert(ResultType && "Didn't convert a type?");
607
608  TypeCache[Ty] = ResultType;
609  return ResultType;
610}
611
612bool CodeGenModule::isPaddedAtomicType(QualType type) {
613  return isPaddedAtomicType(type->castAs<AtomicType>());
614}
615
616bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
617  return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
618}
619
620/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
621llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
622  // TagDecl's are not necessarily unique, instead use the (clang)
623  // type connected to the decl.
624  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
625
626  llvm::StructType *&Entry = RecordDeclTypes[Key];
627
628  // If we don't have a StructType at all yet, create the forward declaration.
629  if (Entry == 0) {
630    Entry = llvm::StructType::create(getLLVMContext());
631    addRecordTypeName(RD, Entry, "");
632  }
633  llvm::StructType *Ty = Entry;
634
635  // If this is still a forward declaration, or the LLVM type is already
636  // complete, there's nothing more to do.
637  RD = RD->getDefinition();
638  if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
639    return Ty;
640
641  // If converting this type would cause us to infinitely loop, don't do it!
642  if (!isSafeToConvert(RD, *this)) {
643    DeferredRecords.push_back(RD);
644    return Ty;
645  }
646
647  // Okay, this is a definition of a type.  Compile the implementation now.
648  bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
649  assert(InsertResult && "Recursively compiling a struct?");
650
651  // Force conversion of non-virtual base classes recursively.
652  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
653    for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
654         e = CRD->bases_end(); i != e; ++i) {
655      if (i->isVirtual()) continue;
656
657      ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
658    }
659  }
660
661  // Layout fields.
662  CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
663  CGRecordLayouts[Key] = Layout;
664
665  // We're done laying out this struct.
666  bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
667  assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
668
669  // If this struct blocked a FunctionType conversion, then recompute whatever
670  // was derived from that.
671  // FIXME: This is hugely overconservative.
672  if (SkippedLayout)
673    TypeCache.clear();
674
675  // If we're done converting the outer-most record, then convert any deferred
676  // structs as well.
677  if (RecordsBeingLaidOut.empty())
678    while (!DeferredRecords.empty())
679      ConvertRecordDeclType(DeferredRecords.pop_back_val());
680
681  return Ty;
682}
683
684/// getCGRecordLayout - Return record layout info for the given record decl.
685const CGRecordLayout &
686CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
687  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
688
689  const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
690  if (!Layout) {
691    // Compute the type information.
692    ConvertRecordDeclType(RD);
693
694    // Now try again.
695    Layout = CGRecordLayouts.lookup(Key);
696  }
697
698  assert(Layout && "Unable to find record layout information for type");
699  return *Layout;
700}
701
702bool CodeGenTypes::isZeroInitializable(QualType T) {
703  // No need to check for member pointers when not compiling C++.
704  if (!Context.getLangOpts().CPlusPlus)
705    return true;
706
707  T = Context.getBaseElementType(T);
708
709  // Records are non-zero-initializable if they contain any
710  // non-zero-initializable subobjects.
711  if (const RecordType *RT = T->getAs<RecordType>()) {
712    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
713    return isZeroInitializable(RD);
714  }
715
716  // We have to ask the ABI about member pointers.
717  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
718    return getCXXABI().isZeroInitializable(MPT);
719
720  // Everything else is okay.
721  return true;
722}
723
724bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
725  return getCGRecordLayout(RD).isZeroInitializable();
726}
727