CodeGenTypes.cpp revision 243830
1//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the code that handles AST -> LLVM type lowering.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenTypes.h"
15#include "CGCall.h"
16#include "CGCXXABI.h"
17#include "CGRecordLayout.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/RecordLayout.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Module.h"
26#include "llvm/DataLayout.h"
27using namespace clang;
28using namespace CodeGen;
29
30CodeGenTypes::CodeGenTypes(CodeGenModule &CGM)
31  : Context(CGM.getContext()), Target(Context.getTargetInfo()),
32    TheModule(CGM.getModule()), TheDataLayout(CGM.getDataLayout()),
33    TheABIInfo(CGM.getTargetCodeGenInfo().getABIInfo()),
34    TheCXXABI(CGM.getCXXABI()),
35    CodeGenOpts(CGM.getCodeGenOpts()), CGM(CGM) {
36  SkippedLayout = false;
37}
38
39CodeGenTypes::~CodeGenTypes() {
40  for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
41         I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
42      I != E; ++I)
43    delete I->second;
44
45  for (llvm::FoldingSet<CGFunctionInfo>::iterator
46       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
47    delete &*I++;
48}
49
50void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
51                                     llvm::StructType *Ty,
52                                     StringRef suffix) {
53  SmallString<256> TypeName;
54  llvm::raw_svector_ostream OS(TypeName);
55  OS << RD->getKindName() << '.';
56
57  // Name the codegen type after the typedef name
58  // if there is no tag type name available
59  if (RD->getIdentifier()) {
60    // FIXME: We should not have to check for a null decl context here.
61    // Right now we do it because the implicit Obj-C decls don't have one.
62    if (RD->getDeclContext())
63      OS << RD->getQualifiedNameAsString();
64    else
65      RD->printName(OS);
66  } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
67    // FIXME: We should not have to check for a null decl context here.
68    // Right now we do it because the implicit Obj-C decls don't have one.
69    if (TDD->getDeclContext())
70      OS << TDD->getQualifiedNameAsString();
71    else
72      TDD->printName(OS);
73  } else
74    OS << "anon";
75
76  if (!suffix.empty())
77    OS << suffix;
78
79  Ty->setName(OS.str());
80}
81
82/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
83/// ConvertType in that it is used to convert to the memory representation for
84/// a type.  For example, the scalar representation for _Bool is i1, but the
85/// memory representation is usually i8 or i32, depending on the target.
86llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
87  llvm::Type *R = ConvertType(T);
88
89  // If this is a non-bool type, don't map it.
90  if (!R->isIntegerTy(1))
91    return R;
92
93  // Otherwise, return an integer of the target-specified size.
94  return llvm::IntegerType::get(getLLVMContext(),
95                                (unsigned)Context.getTypeSize(T));
96}
97
98
99/// isRecordLayoutComplete - Return true if the specified type is already
100/// completely laid out.
101bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
102  llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
103  RecordDeclTypes.find(Ty);
104  return I != RecordDeclTypes.end() && !I->second->isOpaque();
105}
106
107static bool
108isSafeToConvert(QualType T, CodeGenTypes &CGT,
109                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
110
111
112/// isSafeToConvert - Return true if it is safe to convert the specified record
113/// decl to IR and lay it out, false if doing so would cause us to get into a
114/// recursive compilation mess.
115static bool
116isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
117                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
118  // If we have already checked this type (maybe the same type is used by-value
119  // multiple times in multiple structure fields, don't check again.
120  if (!AlreadyChecked.insert(RD)) return true;
121
122  const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
123
124  // If this type is already laid out, converting it is a noop.
125  if (CGT.isRecordLayoutComplete(Key)) return true;
126
127  // If this type is currently being laid out, we can't recursively compile it.
128  if (CGT.isRecordBeingLaidOut(Key))
129    return false;
130
131  // If this type would require laying out bases that are currently being laid
132  // out, don't do it.  This includes virtual base classes which get laid out
133  // when a class is translated, even though they aren't embedded by-value into
134  // the class.
135  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
136    for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
137         E = CRD->bases_end(); I != E; ++I)
138      if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
139                           CGT, AlreadyChecked))
140        return false;
141  }
142
143  // If this type would require laying out members that are currently being laid
144  // out, don't do it.
145  for (RecordDecl::field_iterator I = RD->field_begin(),
146       E = RD->field_end(); I != E; ++I)
147    if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
148      return false;
149
150  // If there are no problems, lets do it.
151  return true;
152}
153
154/// isSafeToConvert - Return true if it is safe to convert this field type,
155/// which requires the structure elements contained by-value to all be
156/// recursively safe to convert.
157static bool
158isSafeToConvert(QualType T, CodeGenTypes &CGT,
159                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
160  T = T.getCanonicalType();
161
162  // If this is a record, check it.
163  if (const RecordType *RT = dyn_cast<RecordType>(T))
164    return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
165
166  // If this is an array, check the elements, which are embedded inline.
167  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
168    return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
169
170  // Otherwise, there is no concern about transforming this.  We only care about
171  // things that are contained by-value in a structure that can have another
172  // structure as a member.
173  return true;
174}
175
176
177/// isSafeToConvert - Return true if it is safe to convert the specified record
178/// decl to IR and lay it out, false if doing so would cause us to get into a
179/// recursive compilation mess.
180static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
181  // If no structs are being laid out, we can certainly do this one.
182  if (CGT.noRecordsBeingLaidOut()) return true;
183
184  llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
185  return isSafeToConvert(RD, CGT, AlreadyChecked);
186}
187
188
189/// isFuncTypeArgumentConvertible - Return true if the specified type in a
190/// function argument or result position can be converted to an IR type at this
191/// point.  This boils down to being whether it is complete, as well as whether
192/// we've temporarily deferred expanding the type because we're in a recursive
193/// context.
194bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
195  // If this isn't a tagged type, we can convert it!
196  const TagType *TT = Ty->getAs<TagType>();
197  if (TT == 0) return true;
198
199  // Incomplete types cannot be converted.
200  if (TT->isIncompleteType())
201    return false;
202
203  // If this is an enum, then it is always safe to convert.
204  const RecordType *RT = dyn_cast<RecordType>(TT);
205  if (RT == 0) return true;
206
207  // Otherwise, we have to be careful.  If it is a struct that we're in the
208  // process of expanding, then we can't convert the function type.  That's ok
209  // though because we must be in a pointer context under the struct, so we can
210  // just convert it to a dummy type.
211  //
212  // We decide this by checking whether ConvertRecordDeclType returns us an
213  // opaque type for a struct that we know is defined.
214  return isSafeToConvert(RT->getDecl(), *this);
215}
216
217
218/// Code to verify a given function type is complete, i.e. the return type
219/// and all of the argument types are complete.  Also check to see if we are in
220/// a RS_StructPointer context, and if so whether any struct types have been
221/// pended.  If so, we don't want to ask the ABI lowering code to handle a type
222/// that cannot be converted to an IR type.
223bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
224  if (!isFuncTypeArgumentConvertible(FT->getResultType()))
225    return false;
226
227  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
228    for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
229      if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
230        return false;
231
232  return true;
233}
234
235/// UpdateCompletedType - When we find the full definition for a TagDecl,
236/// replace the 'opaque' type we previously made for it if applicable.
237void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
238  // If this is an enum being completed, then we flush all non-struct types from
239  // the cache.  This allows function types and other things that may be derived
240  // from the enum to be recomputed.
241  if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
242    // Only flush the cache if we've actually already converted this type.
243    if (TypeCache.count(ED->getTypeForDecl())) {
244      // Okay, we formed some types based on this.  We speculated that the enum
245      // would be lowered to i32, so we only need to flush the cache if this
246      // didn't happen.
247      if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
248        TypeCache.clear();
249    }
250    return;
251  }
252
253  // If we completed a RecordDecl that we previously used and converted to an
254  // anonymous type, then go ahead and complete it now.
255  const RecordDecl *RD = cast<RecordDecl>(TD);
256  if (RD->isDependentType()) return;
257
258  // Only complete it if we converted it already.  If we haven't converted it
259  // yet, we'll just do it lazily.
260  if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
261    ConvertRecordDeclType(RD);
262}
263
264static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
265                                    const llvm::fltSemantics &format) {
266  if (&format == &llvm::APFloat::IEEEhalf)
267    return llvm::Type::getInt16Ty(VMContext);
268  if (&format == &llvm::APFloat::IEEEsingle)
269    return llvm::Type::getFloatTy(VMContext);
270  if (&format == &llvm::APFloat::IEEEdouble)
271    return llvm::Type::getDoubleTy(VMContext);
272  if (&format == &llvm::APFloat::IEEEquad)
273    return llvm::Type::getFP128Ty(VMContext);
274  if (&format == &llvm::APFloat::PPCDoubleDouble)
275    return llvm::Type::getPPC_FP128Ty(VMContext);
276  if (&format == &llvm::APFloat::x87DoubleExtended)
277    return llvm::Type::getX86_FP80Ty(VMContext);
278  llvm_unreachable("Unknown float format!");
279}
280
281/// ConvertType - Convert the specified type to its LLVM form.
282llvm::Type *CodeGenTypes::ConvertType(QualType T) {
283  T = Context.getCanonicalType(T);
284
285  const Type *Ty = T.getTypePtr();
286
287  // RecordTypes are cached and processed specially.
288  if (const RecordType *RT = dyn_cast<RecordType>(Ty))
289    return ConvertRecordDeclType(RT->getDecl());
290
291  // See if type is already cached.
292  llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
293  // If type is found in map then use it. Otherwise, convert type T.
294  if (TCI != TypeCache.end())
295    return TCI->second;
296
297  // If we don't have it in the cache, convert it now.
298  llvm::Type *ResultType = 0;
299  switch (Ty->getTypeClass()) {
300  case Type::Record: // Handled above.
301#define TYPE(Class, Base)
302#define ABSTRACT_TYPE(Class, Base)
303#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
304#define DEPENDENT_TYPE(Class, Base) case Type::Class:
305#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
306#include "clang/AST/TypeNodes.def"
307    llvm_unreachable("Non-canonical or dependent types aren't possible.");
308
309  case Type::Builtin: {
310    switch (cast<BuiltinType>(Ty)->getKind()) {
311    case BuiltinType::Void:
312    case BuiltinType::ObjCId:
313    case BuiltinType::ObjCClass:
314    case BuiltinType::ObjCSel:
315      // LLVM void type can only be used as the result of a function call.  Just
316      // map to the same as char.
317      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
318      break;
319
320    case BuiltinType::Bool:
321      // Note that we always return bool as i1 for use as a scalar type.
322      ResultType = llvm::Type::getInt1Ty(getLLVMContext());
323      break;
324
325    case BuiltinType::Char_S:
326    case BuiltinType::Char_U:
327    case BuiltinType::SChar:
328    case BuiltinType::UChar:
329    case BuiltinType::Short:
330    case BuiltinType::UShort:
331    case BuiltinType::Int:
332    case BuiltinType::UInt:
333    case BuiltinType::Long:
334    case BuiltinType::ULong:
335    case BuiltinType::LongLong:
336    case BuiltinType::ULongLong:
337    case BuiltinType::WChar_S:
338    case BuiltinType::WChar_U:
339    case BuiltinType::Char16:
340    case BuiltinType::Char32:
341      ResultType = llvm::IntegerType::get(getLLVMContext(),
342                                 static_cast<unsigned>(Context.getTypeSize(T)));
343      break;
344
345    case BuiltinType::Half:
346      // Half is special: it might be lowered to i16 (and will be storage-only
347      // type),. or can be represented as a set of native operations.
348
349      // FIXME: Ask target which kind of half FP it prefers (storage only vs
350      // native).
351      ResultType = llvm::Type::getInt16Ty(getLLVMContext());
352      break;
353    case BuiltinType::Float:
354    case BuiltinType::Double:
355    case BuiltinType::LongDouble:
356      ResultType = getTypeForFormat(getLLVMContext(),
357                                    Context.getFloatTypeSemantics(T));
358      break;
359
360    case BuiltinType::NullPtr:
361      // Model std::nullptr_t as i8*
362      ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
363      break;
364
365    case BuiltinType::UInt128:
366    case BuiltinType::Int128:
367      ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
368      break;
369
370    case BuiltinType::Dependent:
371#define BUILTIN_TYPE(Id, SingletonId)
372#define PLACEHOLDER_TYPE(Id, SingletonId) \
373    case BuiltinType::Id:
374#include "clang/AST/BuiltinTypes.def"
375      llvm_unreachable("Unexpected placeholder builtin type!");
376    }
377    break;
378  }
379  case Type::Complex: {
380    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
381    ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
382    break;
383  }
384  case Type::LValueReference:
385  case Type::RValueReference: {
386    const ReferenceType *RTy = cast<ReferenceType>(Ty);
387    QualType ETy = RTy->getPointeeType();
388    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
389    unsigned AS = Context.getTargetAddressSpace(ETy);
390    ResultType = llvm::PointerType::get(PointeeType, AS);
391    break;
392  }
393  case Type::Pointer: {
394    const PointerType *PTy = cast<PointerType>(Ty);
395    QualType ETy = PTy->getPointeeType();
396    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
397    if (PointeeType->isVoidTy())
398      PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
399    unsigned AS = Context.getTargetAddressSpace(ETy);
400    ResultType = llvm::PointerType::get(PointeeType, AS);
401    break;
402  }
403
404  case Type::VariableArray: {
405    const VariableArrayType *A = cast<VariableArrayType>(Ty);
406    assert(A->getIndexTypeCVRQualifiers() == 0 &&
407           "FIXME: We only handle trivial array types so far!");
408    // VLAs resolve to the innermost element type; this matches
409    // the return of alloca, and there isn't any obviously better choice.
410    ResultType = ConvertTypeForMem(A->getElementType());
411    break;
412  }
413  case Type::IncompleteArray: {
414    const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
415    assert(A->getIndexTypeCVRQualifiers() == 0 &&
416           "FIXME: We only handle trivial array types so far!");
417    // int X[] -> [0 x int], unless the element type is not sized.  If it is
418    // unsized (e.g. an incomplete struct) just use [0 x i8].
419    ResultType = ConvertTypeForMem(A->getElementType());
420    if (!ResultType->isSized()) {
421      SkippedLayout = true;
422      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
423    }
424    ResultType = llvm::ArrayType::get(ResultType, 0);
425    break;
426  }
427  case Type::ConstantArray: {
428    const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
429    llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
430
431    // Lower arrays of undefined struct type to arrays of i8 just to have a
432    // concrete type.
433    if (!EltTy->isSized()) {
434      SkippedLayout = true;
435      EltTy = llvm::Type::getInt8Ty(getLLVMContext());
436    }
437
438    ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
439    break;
440  }
441  case Type::ExtVector:
442  case Type::Vector: {
443    const VectorType *VT = cast<VectorType>(Ty);
444    ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
445                                       VT->getNumElements());
446    break;
447  }
448  case Type::FunctionNoProto:
449  case Type::FunctionProto: {
450    const FunctionType *FT = cast<FunctionType>(Ty);
451    // First, check whether we can build the full function type.  If the
452    // function type depends on an incomplete type (e.g. a struct or enum), we
453    // cannot lower the function type.
454    if (!isFuncTypeConvertible(FT)) {
455      // This function's type depends on an incomplete tag type.
456      // Return a placeholder type.
457      ResultType = llvm::StructType::get(getLLVMContext());
458
459      SkippedLayout = true;
460      break;
461    }
462
463    // While we're converting the argument types for a function, we don't want
464    // to recursively convert any pointed-to structs.  Converting directly-used
465    // structs is ok though.
466    if (!RecordsBeingLaidOut.insert(Ty)) {
467      ResultType = llvm::StructType::get(getLLVMContext());
468
469      SkippedLayout = true;
470      break;
471    }
472
473    // The function type can be built; call the appropriate routines to
474    // build it.
475    const CGFunctionInfo *FI;
476    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
477      FI = &arrangeFreeFunctionType(
478                   CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
479    } else {
480      const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
481      FI = &arrangeFreeFunctionType(
482                CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
483    }
484
485    // If there is something higher level prodding our CGFunctionInfo, then
486    // don't recurse into it again.
487    if (FunctionsBeingProcessed.count(FI)) {
488
489      ResultType = llvm::StructType::get(getLLVMContext());
490      SkippedLayout = true;
491    } else {
492
493      // Otherwise, we're good to go, go ahead and convert it.
494      ResultType = GetFunctionType(*FI);
495    }
496
497    RecordsBeingLaidOut.erase(Ty);
498
499    if (SkippedLayout)
500      TypeCache.clear();
501
502    if (RecordsBeingLaidOut.empty())
503      while (!DeferredRecords.empty())
504        ConvertRecordDeclType(DeferredRecords.pop_back_val());
505    break;
506  }
507
508  case Type::ObjCObject:
509    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
510    break;
511
512  case Type::ObjCInterface: {
513    // Objective-C interfaces are always opaque (outside of the
514    // runtime, which can do whatever it likes); we never refine
515    // these.
516    llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
517    if (!T)
518      T = llvm::StructType::create(getLLVMContext());
519    ResultType = T;
520    break;
521  }
522
523  case Type::ObjCObjectPointer: {
524    // Protocol qualifications do not influence the LLVM type, we just return a
525    // pointer to the underlying interface type. We don't need to worry about
526    // recursive conversion.
527    llvm::Type *T =
528      ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
529    ResultType = T->getPointerTo();
530    break;
531  }
532
533  case Type::Enum: {
534    const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
535    if (ED->isCompleteDefinition() || ED->isFixed())
536      return ConvertType(ED->getIntegerType());
537    // Return a placeholder 'i32' type.  This can be changed later when the
538    // type is defined (see UpdateCompletedType), but is likely to be the
539    // "right" answer.
540    ResultType = llvm::Type::getInt32Ty(getLLVMContext());
541    break;
542  }
543
544  case Type::BlockPointer: {
545    const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
546    llvm::Type *PointeeType = ConvertTypeForMem(FTy);
547    unsigned AS = Context.getTargetAddressSpace(FTy);
548    ResultType = llvm::PointerType::get(PointeeType, AS);
549    break;
550  }
551
552  case Type::MemberPointer: {
553    ResultType =
554      getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
555    break;
556  }
557
558  case Type::Atomic: {
559    ResultType = ConvertType(cast<AtomicType>(Ty)->getValueType());
560    break;
561  }
562  }
563
564  assert(ResultType && "Didn't convert a type?");
565
566  TypeCache[Ty] = ResultType;
567  return ResultType;
568}
569
570/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
571llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
572  // TagDecl's are not necessarily unique, instead use the (clang)
573  // type connected to the decl.
574  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
575
576  llvm::StructType *&Entry = RecordDeclTypes[Key];
577
578  // If we don't have a StructType at all yet, create the forward declaration.
579  if (Entry == 0) {
580    Entry = llvm::StructType::create(getLLVMContext());
581    addRecordTypeName(RD, Entry, "");
582  }
583  llvm::StructType *Ty = Entry;
584
585  // If this is still a forward declaration, or the LLVM type is already
586  // complete, there's nothing more to do.
587  RD = RD->getDefinition();
588  if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
589    return Ty;
590
591  // If converting this type would cause us to infinitely loop, don't do it!
592  if (!isSafeToConvert(RD, *this)) {
593    DeferredRecords.push_back(RD);
594    return Ty;
595  }
596
597  // Okay, this is a definition of a type.  Compile the implementation now.
598  bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
599  assert(InsertResult && "Recursively compiling a struct?");
600
601  // Force conversion of non-virtual base classes recursively.
602  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
603    for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
604         e = CRD->bases_end(); i != e; ++i) {
605      if (i->isVirtual()) continue;
606
607      ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
608    }
609  }
610
611  // Layout fields.
612  CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
613  CGRecordLayouts[Key] = Layout;
614
615  // We're done laying out this struct.
616  bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
617  assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
618
619  // If this struct blocked a FunctionType conversion, then recompute whatever
620  // was derived from that.
621  // FIXME: This is hugely overconservative.
622  if (SkippedLayout)
623    TypeCache.clear();
624
625  // If we're done converting the outer-most record, then convert any deferred
626  // structs as well.
627  if (RecordsBeingLaidOut.empty())
628    while (!DeferredRecords.empty())
629      ConvertRecordDeclType(DeferredRecords.pop_back_val());
630
631  return Ty;
632}
633
634/// getCGRecordLayout - Return record layout info for the given record decl.
635const CGRecordLayout &
636CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
637  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
638
639  const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
640  if (!Layout) {
641    // Compute the type information.
642    ConvertRecordDeclType(RD);
643
644    // Now try again.
645    Layout = CGRecordLayouts.lookup(Key);
646  }
647
648  assert(Layout && "Unable to find record layout information for type");
649  return *Layout;
650}
651
652bool CodeGenTypes::isZeroInitializable(QualType T) {
653  // No need to check for member pointers when not compiling C++.
654  if (!Context.getLangOpts().CPlusPlus)
655    return true;
656
657  T = Context.getBaseElementType(T);
658
659  // Records are non-zero-initializable if they contain any
660  // non-zero-initializable subobjects.
661  if (const RecordType *RT = T->getAs<RecordType>()) {
662    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
663    return isZeroInitializable(RD);
664  }
665
666  // We have to ask the ABI about member pointers.
667  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
668    return getCXXABI().isZeroInitializable(MPT);
669
670  // Everything else is okay.
671  return true;
672}
673
674bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
675  return getCGRecordLayout(RD).isZeroInitializable();
676}
677