CodeGenTypes.cpp revision 224145
1101267Stjr//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2127944Stjr//
3101267Stjr//                     The LLVM Compiler Infrastructure
4101267Stjr//
5101267Stjr// This file is distributed under the University of Illinois Open Source
6101267Stjr// License. See LICENSE.TXT for details.
7101267Stjr//
8101267Stjr//===----------------------------------------------------------------------===//
9101267Stjr//
10101267Stjr// This is the code that handles AST -> LLVM type lowering.
11101267Stjr//
12101267Stjr//===----------------------------------------------------------------------===//
13101267Stjr
14101267Stjr#include "CodeGenTypes.h"
15101267Stjr#include "CGCall.h"
16101267Stjr#include "CGCXXABI.h"
17101267Stjr#include "CGRecordLayout.h"
18101267Stjr#include "clang/AST/ASTContext.h"
19101267Stjr#include "clang/AST/DeclObjC.h"
20101267Stjr#include "clang/AST/DeclCXX.h"
21101267Stjr#include "clang/AST/Expr.h"
22101267Stjr#include "clang/AST/RecordLayout.h"
23101267Stjr#include "llvm/DerivedTypes.h"
24101267Stjr#include "llvm/Module.h"
25101267Stjr#include "llvm/Target/TargetData.h"
26101267Stjrusing namespace clang;
27101267Stjrusing namespace CodeGen;
28101267Stjr
29101267StjrCodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
30118589Stjr                           const llvm::TargetData &TD, const ABIInfo &Info,
31118589Stjr                           CGCXXABI &CXXABI, const CodeGenOptions &CGO)
32101267Stjr  : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
33129154Stjr    TheABIInfo(Info), TheCXXABI(CXXABI), CodeGenOpts(CGO) {
34101267Stjr  SkippedLayout = false;
35101267Stjr}
36101267Stjr
37101267StjrCodeGenTypes::~CodeGenTypes() {
38127944Stjr  for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
39127944Stjr         I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
40118589Stjr      I != E; ++I)
41101267Stjr    delete I->second;
42129154Stjr
43101267Stjr  for (llvm::FoldingSet<CGFunctionInfo>::iterator
44118589Stjr       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
45101267Stjr    delete &*I++;
46}
47
48void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
49                                     llvm::StructType *Ty,
50                                     llvm::StringRef suffix) {
51  llvm::SmallString<256> TypeName;
52  llvm::raw_svector_ostream OS(TypeName);
53  OS << RD->getKindName() << '.';
54
55  // Name the codegen type after the typedef name
56  // if there is no tag type name available
57  if (RD->getIdentifier()) {
58    // FIXME: We should not have to check for a null decl context here.
59    // Right now we do it because the implicit Obj-C decls don't have one.
60    if (RD->getDeclContext())
61      OS << RD->getQualifiedNameAsString();
62    else
63      RD->printName(OS);
64  } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
65    // FIXME: We should not have to check for a null decl context here.
66    // Right now we do it because the implicit Obj-C decls don't have one.
67    if (TDD->getDeclContext())
68      OS << TDD->getQualifiedNameAsString();
69    else
70      TDD->printName(OS);
71  } else
72    OS << "anon";
73
74  if (!suffix.empty())
75    OS << suffix;
76
77  Ty->setName(OS.str());
78}
79
80/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
81/// ConvertType in that it is used to convert to the memory representation for
82/// a type.  For example, the scalar representation for _Bool is i1, but the
83/// memory representation is usually i8 or i32, depending on the target.
84llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
85  llvm::Type *R = ConvertType(T);
86
87  // If this is a non-bool type, don't map it.
88  if (!R->isIntegerTy(1))
89    return R;
90
91  // Otherwise, return an integer of the target-specified size.
92  return llvm::IntegerType::get(getLLVMContext(),
93                                (unsigned)Context.getTypeSize(T));
94}
95
96
97/// isRecordLayoutComplete - Return true if the specified type is already
98/// completely laid out.
99bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
100  llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
101  RecordDeclTypes.find(Ty);
102  return I != RecordDeclTypes.end() && !I->second->isOpaque();
103}
104
105static bool
106isSafeToConvert(QualType T, CodeGenTypes &CGT,
107                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
108
109
110/// isSafeToConvert - Return true if it is safe to convert the specified record
111/// decl to IR and lay it out, false if doing so would cause us to get into a
112/// recursive compilation mess.
113static bool
114isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
115                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
116  // If we have already checked this type (maybe the same type is used by-value
117  // multiple times in multiple structure fields, don't check again.
118  if (!AlreadyChecked.insert(RD)) return true;
119
120  const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
121
122  // If this type is already laid out, converting it is a noop.
123  if (CGT.isRecordLayoutComplete(Key)) return true;
124
125  // If this type is currently being laid out, we can't recursively compile it.
126  if (CGT.isRecordBeingLaidOut(Key))
127    return false;
128
129  // If this type would require laying out bases that are currently being laid
130  // out, don't do it.  This includes virtual base classes which get laid out
131  // when a class is translated, even though they aren't embedded by-value into
132  // the class.
133  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
134    for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
135         E = CRD->bases_end(); I != E; ++I)
136      if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
137                           CGT, AlreadyChecked))
138        return false;
139  }
140
141  // If this type would require laying out members that are currently being laid
142  // out, don't do it.
143  for (RecordDecl::field_iterator I = RD->field_begin(),
144       E = RD->field_end(); I != E; ++I)
145    if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
146      return false;
147
148  // If there are no problems, lets do it.
149  return true;
150}
151
152/// isSafeToConvert - Return true if it is safe to convert this field type,
153/// which requires the structure elements contained by-value to all be
154/// recursively safe to convert.
155static bool
156isSafeToConvert(QualType T, CodeGenTypes &CGT,
157                llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
158  T = T.getCanonicalType();
159
160  // If this is a record, check it.
161  if (const RecordType *RT = dyn_cast<RecordType>(T))
162    return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
163
164  // If this is an array, check the elements, which are embedded inline.
165  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
166    return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
167
168  // Otherwise, there is no concern about transforming this.  We only care about
169  // things that are contained by-value in a structure that can have another
170  // structure as a member.
171  return true;
172}
173
174
175/// isSafeToConvert - Return true if it is safe to convert the specified record
176/// decl to IR and lay it out, false if doing so would cause us to get into a
177/// recursive compilation mess.
178static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
179  // If no structs are being laid out, we can certainly do this one.
180  if (CGT.noRecordsBeingLaidOut()) return true;
181
182  llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
183  return isSafeToConvert(RD, CGT, AlreadyChecked);
184}
185
186
187/// isFuncTypeArgumentConvertible - Return true if the specified type in a
188/// function argument or result position can be converted to an IR type at this
189/// point.  This boils down to being whether it is complete, as well as whether
190/// we've temporarily deferred expanding the type because we're in a recursive
191/// context.
192bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
193  // If this isn't a tagged type, we can convert it!
194  const TagType *TT = Ty->getAs<TagType>();
195  if (TT == 0) return true;
196
197
198  // If it's a tagged type used by-value, but is just a forward decl, we can't
199  // convert it.  Note that getDefinition()==0 is not the same as !isDefinition.
200  if (TT->getDecl()->getDefinition() == 0)
201    return false;
202
203  // If this is an enum, then it is always safe to convert.
204  const RecordType *RT = dyn_cast<RecordType>(TT);
205  if (RT == 0) return true;
206
207  // Otherwise, we have to be careful.  If it is a struct that we're in the
208  // process of expanding, then we can't convert the function type.  That's ok
209  // though because we must be in a pointer context under the struct, so we can
210  // just convert it to a dummy type.
211  //
212  // We decide this by checking whether ConvertRecordDeclType returns us an
213  // opaque type for a struct that we know is defined.
214  return isSafeToConvert(RT->getDecl(), *this);
215}
216
217
218/// Code to verify a given function type is complete, i.e. the return type
219/// and all of the argument types are complete.  Also check to see if we are in
220/// a RS_StructPointer context, and if so whether any struct types have been
221/// pended.  If so, we don't want to ask the ABI lowering code to handle a type
222/// that cannot be converted to an IR type.
223bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
224  if (!isFuncTypeArgumentConvertible(FT->getResultType()))
225    return false;
226
227  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
228    for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
229      if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
230        return false;
231
232  return true;
233}
234
235/// UpdateCompletedType - When we find the full definition for a TagDecl,
236/// replace the 'opaque' type we previously made for it if applicable.
237void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
238  // If this is an enum being completed, then we flush all non-struct types from
239  // the cache.  This allows function types and other things that may be derived
240  // from the enum to be recomputed.
241  if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
242    // Only flush the cache if we've actually already converted this type.
243    if (TypeCache.count(ED->getTypeForDecl())) {
244      // Okay, we formed some types based on this.  We speculated that the enum
245      // would be lowered to i32, so we only need to flush the cache if this
246      // didn't happen.
247      if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
248        TypeCache.clear();
249    }
250    return;
251  }
252
253  // If we completed a RecordDecl that we previously used and converted to an
254  // anonymous type, then go ahead and complete it now.
255  const RecordDecl *RD = cast<RecordDecl>(TD);
256  if (RD->isDependentType()) return;
257
258  // Only complete it if we converted it already.  If we haven't converted it
259  // yet, we'll just do it lazily.
260  if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
261    ConvertRecordDeclType(RD);
262}
263
264static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
265                                    const llvm::fltSemantics &format) {
266  if (&format == &llvm::APFloat::IEEEsingle)
267    return llvm::Type::getFloatTy(VMContext);
268  if (&format == &llvm::APFloat::IEEEdouble)
269    return llvm::Type::getDoubleTy(VMContext);
270  if (&format == &llvm::APFloat::IEEEquad)
271    return llvm::Type::getFP128Ty(VMContext);
272  if (&format == &llvm::APFloat::PPCDoubleDouble)
273    return llvm::Type::getPPC_FP128Ty(VMContext);
274  if (&format == &llvm::APFloat::x87DoubleExtended)
275    return llvm::Type::getX86_FP80Ty(VMContext);
276  assert(0 && "Unknown float format!");
277  return 0;
278}
279
280/// ConvertType - Convert the specified type to its LLVM form.
281llvm::Type *CodeGenTypes::ConvertType(QualType T) {
282  T = Context.getCanonicalType(T);
283
284  const Type *Ty = T.getTypePtr();
285
286  // RecordTypes are cached and processed specially.
287  if (const RecordType *RT = dyn_cast<RecordType>(Ty))
288    return ConvertRecordDeclType(RT->getDecl());
289
290  // See if type is already cached.
291  llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
292  // If type is found in map then use it. Otherwise, convert type T.
293  if (TCI != TypeCache.end())
294    return TCI->second;
295
296  // If we don't have it in the cache, convert it now.
297  llvm::Type *ResultType = 0;
298  switch (Ty->getTypeClass()) {
299  case Type::Record: // Handled above.
300#define TYPE(Class, Base)
301#define ABSTRACT_TYPE(Class, Base)
302#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
303#define DEPENDENT_TYPE(Class, Base) case Type::Class:
304#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
305#include "clang/AST/TypeNodes.def"
306    llvm_unreachable("Non-canonical or dependent types aren't possible.");
307    break;
308
309  case Type::Builtin: {
310    switch (cast<BuiltinType>(Ty)->getKind()) {
311    case BuiltinType::Void:
312    case BuiltinType::ObjCId:
313    case BuiltinType::ObjCClass:
314    case BuiltinType::ObjCSel:
315      // LLVM void type can only be used as the result of a function call.  Just
316      // map to the same as char.
317      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
318      break;
319
320    case BuiltinType::Bool:
321      // Note that we always return bool as i1 for use as a scalar type.
322      ResultType = llvm::Type::getInt1Ty(getLLVMContext());
323      break;
324
325    case BuiltinType::Char_S:
326    case BuiltinType::Char_U:
327    case BuiltinType::SChar:
328    case BuiltinType::UChar:
329    case BuiltinType::Short:
330    case BuiltinType::UShort:
331    case BuiltinType::Int:
332    case BuiltinType::UInt:
333    case BuiltinType::Long:
334    case BuiltinType::ULong:
335    case BuiltinType::LongLong:
336    case BuiltinType::ULongLong:
337    case BuiltinType::WChar_S:
338    case BuiltinType::WChar_U:
339    case BuiltinType::Char16:
340    case BuiltinType::Char32:
341      ResultType = llvm::IntegerType::get(getLLVMContext(),
342                                 static_cast<unsigned>(Context.getTypeSize(T)));
343      break;
344
345    case BuiltinType::Float:
346    case BuiltinType::Double:
347    case BuiltinType::LongDouble:
348      ResultType = getTypeForFormat(getLLVMContext(),
349                                    Context.getFloatTypeSemantics(T));
350      break;
351
352    case BuiltinType::NullPtr:
353      // Model std::nullptr_t as i8*
354      ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
355      break;
356
357    case BuiltinType::UInt128:
358    case BuiltinType::Int128:
359      ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
360      break;
361
362    case BuiltinType::Overload:
363    case BuiltinType::Dependent:
364    case BuiltinType::BoundMember:
365    case BuiltinType::UnknownAny:
366      llvm_unreachable("Unexpected placeholder builtin type!");
367      break;
368    }
369    break;
370  }
371  case Type::Complex: {
372    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
373    ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
374    break;
375  }
376  case Type::LValueReference:
377  case Type::RValueReference: {
378    const ReferenceType *RTy = cast<ReferenceType>(Ty);
379    QualType ETy = RTy->getPointeeType();
380    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
381    unsigned AS = Context.getTargetAddressSpace(ETy);
382    ResultType = llvm::PointerType::get(PointeeType, AS);
383    break;
384  }
385  case Type::Pointer: {
386    const PointerType *PTy = cast<PointerType>(Ty);
387    QualType ETy = PTy->getPointeeType();
388    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
389    if (PointeeType->isVoidTy())
390      PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
391    unsigned AS = Context.getTargetAddressSpace(ETy);
392    ResultType = llvm::PointerType::get(PointeeType, AS);
393    break;
394  }
395
396  case Type::VariableArray: {
397    const VariableArrayType *A = cast<VariableArrayType>(Ty);
398    assert(A->getIndexTypeCVRQualifiers() == 0 &&
399           "FIXME: We only handle trivial array types so far!");
400    // VLAs resolve to the innermost element type; this matches
401    // the return of alloca, and there isn't any obviously better choice.
402    ResultType = ConvertTypeForMem(A->getElementType());
403    break;
404  }
405  case Type::IncompleteArray: {
406    const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
407    assert(A->getIndexTypeCVRQualifiers() == 0 &&
408           "FIXME: We only handle trivial array types so far!");
409    // int X[] -> [0 x int], unless the element type is not sized.  If it is
410    // unsized (e.g. an incomplete struct) just use [0 x i8].
411    ResultType = ConvertTypeForMem(A->getElementType());
412    if (!ResultType->isSized()) {
413      SkippedLayout = true;
414      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
415    }
416    ResultType = llvm::ArrayType::get(ResultType, 0);
417    break;
418  }
419  case Type::ConstantArray: {
420    const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
421    const llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
422    ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
423    break;
424  }
425  case Type::ExtVector:
426  case Type::Vector: {
427    const VectorType *VT = cast<VectorType>(Ty);
428    ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
429                                       VT->getNumElements());
430    break;
431  }
432  case Type::FunctionNoProto:
433  case Type::FunctionProto: {
434    const FunctionType *FT = cast<FunctionType>(Ty);
435    // First, check whether we can build the full function type.  If the
436    // function type depends on an incomplete type (e.g. a struct or enum), we
437    // cannot lower the function type.
438    if (!isFuncTypeConvertible(FT)) {
439      // This function's type depends on an incomplete tag type.
440      // Return a placeholder type.
441      ResultType = llvm::StructType::get(getLLVMContext());
442
443      SkippedLayout = true;
444      break;
445    }
446
447    // While we're converting the argument types for a function, we don't want
448    // to recursively convert any pointed-to structs.  Converting directly-used
449    // structs is ok though.
450    if (!RecordsBeingLaidOut.insert(Ty)) {
451      ResultType = llvm::StructType::get(getLLVMContext());
452
453      SkippedLayout = true;
454      break;
455    }
456
457    // The function type can be built; call the appropriate routines to
458    // build it.
459    const CGFunctionInfo *FI;
460    bool isVariadic;
461    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
462      FI = &getFunctionInfo(
463                   CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
464      isVariadic = FPT->isVariadic();
465    } else {
466      const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
467      FI = &getFunctionInfo(
468                CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
469      isVariadic = true;
470    }
471
472    // If there is something higher level prodding our CGFunctionInfo, then
473    // don't recurse into it again.
474    if (FunctionsBeingProcessed.count(FI)) {
475
476      ResultType = llvm::StructType::get(getLLVMContext());
477      SkippedLayout = true;
478    } else {
479
480      // Otherwise, we're good to go, go ahead and convert it.
481      ResultType = GetFunctionType(*FI, isVariadic);
482    }
483
484    RecordsBeingLaidOut.erase(Ty);
485
486    if (SkippedLayout)
487      TypeCache.clear();
488
489    if (RecordsBeingLaidOut.empty())
490      while (!DeferredRecords.empty())
491        ConvertRecordDeclType(DeferredRecords.pop_back_val());
492    break;
493  }
494
495  case Type::ObjCObject:
496    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
497    break;
498
499  case Type::ObjCInterface: {
500    // Objective-C interfaces are always opaque (outside of the
501    // runtime, which can do whatever it likes); we never refine
502    // these.
503    llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
504    if (!T)
505      T = llvm::StructType::createNamed(getLLVMContext(), "");
506    ResultType = T;
507    break;
508  }
509
510  case Type::ObjCObjectPointer: {
511    // Protocol qualifications do not influence the LLVM type, we just return a
512    // pointer to the underlying interface type. We don't need to worry about
513    // recursive conversion.
514    const llvm::Type *T =
515      ConvertType(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
516    ResultType = T->getPointerTo();
517    break;
518  }
519
520  case Type::Enum: {
521    const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
522    if (ED->isDefinition() || ED->isFixed())
523      return ConvertType(ED->getIntegerType());
524    // Return a placeholder 'i32' type.  This can be changed later when the
525    // type is defined (see UpdateCompletedType), but is likely to be the
526    // "right" answer.
527    ResultType = llvm::Type::getInt32Ty(getLLVMContext());
528    break;
529  }
530
531  case Type::BlockPointer: {
532    const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
533    llvm::Type *PointeeType = ConvertTypeForMem(FTy);
534    unsigned AS = Context.getTargetAddressSpace(FTy);
535    ResultType = llvm::PointerType::get(PointeeType, AS);
536    break;
537  }
538
539  case Type::MemberPointer: {
540    ResultType =
541      getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
542    break;
543  }
544  }
545
546  assert(ResultType && "Didn't convert a type?");
547
548  TypeCache[Ty] = ResultType;
549  return ResultType;
550}
551
552/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
553llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
554  // TagDecl's are not necessarily unique, instead use the (clang)
555  // type connected to the decl.
556  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
557
558  llvm::StructType *&Entry = RecordDeclTypes[Key];
559
560  // If we don't have a StructType at all yet, create the forward declaration.
561  if (Entry == 0) {
562    Entry = llvm::StructType::createNamed(getLLVMContext(), "");
563    addRecordTypeName(RD, Entry, "");
564  }
565  llvm::StructType *Ty = Entry;
566
567  // If this is still a forward declaration, or the LLVM type is already
568  // complete, there's nothing more to do.
569  RD = RD->getDefinition();
570  if (RD == 0 || !Ty->isOpaque())
571    return Ty;
572
573  // If converting this type would cause us to infinitely loop, don't do it!
574  if (!isSafeToConvert(RD, *this)) {
575    DeferredRecords.push_back(RD);
576    return Ty;
577  }
578
579  // Okay, this is a definition of a type.  Compile the implementation now.
580  bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
581  assert(InsertResult && "Recursively compiling a struct?");
582
583  // Force conversion of non-virtual base classes recursively.
584  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
585    for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
586         e = CRD->bases_end(); i != e; ++i) {
587      if (i->isVirtual()) continue;
588
589      ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
590    }
591  }
592
593  // Layout fields.
594  CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
595  CGRecordLayouts[Key] = Layout;
596
597  // We're done laying out this struct.
598  bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
599  assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
600
601  // If this struct blocked a FunctionType conversion, then recompute whatever
602  // was derived from that.
603  // FIXME: This is hugely overconservative.
604  if (SkippedLayout)
605    TypeCache.clear();
606
607  // If we're done converting the outer-most record, then convert any deferred
608  // structs as well.
609  if (RecordsBeingLaidOut.empty())
610    while (!DeferredRecords.empty())
611      ConvertRecordDeclType(DeferredRecords.pop_back_val());
612
613  return Ty;
614}
615
616/// getCGRecordLayout - Return record layout info for the given record decl.
617const CGRecordLayout &
618CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
619  const Type *Key = Context.getTagDeclType(RD).getTypePtr();
620
621  const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
622  if (!Layout) {
623    // Compute the type information.
624    ConvertRecordDeclType(RD);
625
626    // Now try again.
627    Layout = CGRecordLayouts.lookup(Key);
628  }
629
630  assert(Layout && "Unable to find record layout information for type");
631  return *Layout;
632}
633
634bool CodeGenTypes::isZeroInitializable(QualType T) {
635  // No need to check for member pointers when not compiling C++.
636  if (!Context.getLangOptions().CPlusPlus)
637    return true;
638
639  T = Context.getBaseElementType(T);
640
641  // Records are non-zero-initializable if they contain any
642  // non-zero-initializable subobjects.
643  if (const RecordType *RT = T->getAs<RecordType>()) {
644    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
645    return isZeroInitializable(RD);
646  }
647
648  // We have to ask the ABI about member pointers.
649  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
650    return getCXXABI().isZeroInitializable(MPT);
651
652  // Everything else is okay.
653  return true;
654}
655
656bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
657  return getCGRecordLayout(RD).isZeroInitializable();
658}
659