CodeGenTypes.cpp revision 199990
1//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the code that handles AST -> LLVM type lowering.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenTypes.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/RecordLayout.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Module.h"
22#include "llvm/Target/TargetData.h"
23
24#include "CGCall.h"
25#include "CGRecordLayoutBuilder.h"
26
27using namespace clang;
28using namespace CodeGen;
29
30CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
31                           const llvm::TargetData &TD)
32  : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
33    TheABIInfo(0) {
34}
35
36CodeGenTypes::~CodeGenTypes() {
37  for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
38         I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
39      I != E; ++I)
40    delete I->second;
41  {
42    llvm::FoldingSet<CGFunctionInfo>::iterator
43         I = FunctionInfos.begin(), E = FunctionInfos.end();
44    while (I != E)
45      delete &*I++;
46  }
47  delete TheABIInfo;
48}
49
50/// ConvertType - Convert the specified type to its LLVM form.
51const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
52  llvm::PATypeHolder Result = ConvertTypeRecursive(T);
53
54  // Any pointers that were converted defered evaluation of their pointee type,
55  // creating an opaque type instead.  This is in order to avoid problems with
56  // circular types.  Loop through all these defered pointees, if any, and
57  // resolve them now.
58  while (!PointersToResolve.empty()) {
59    std::pair<QualType, llvm::OpaqueType*> P =
60      PointersToResolve.back();
61    PointersToResolve.pop_back();
62    // We can handle bare pointers here because we know that the only pointers
63    // to the Opaque type are P.second and from other types.  Refining the
64    // opqaue type away will invalidate P.second, but we don't mind :).
65    const llvm::Type *NT = ConvertTypeForMemRecursive(P.first);
66    P.second->refineAbstractTypeTo(NT);
67  }
68
69  return Result;
70}
71
72const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
73  T = Context.getCanonicalType(T);
74
75  // See if type is already cached.
76  llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
77    I = TypeCache.find(T.getTypePtr());
78  // If type is found in map and this is not a definition for a opaque
79  // place holder type then use it. Otherwise, convert type T.
80  if (I != TypeCache.end())
81    return I->second.get();
82
83  const llvm::Type *ResultType = ConvertNewType(T);
84  TypeCache.insert(std::make_pair(T.getTypePtr(),
85                                  llvm::PATypeHolder(ResultType)));
86  return ResultType;
87}
88
89const llvm::Type *CodeGenTypes::ConvertTypeForMemRecursive(QualType T) {
90  const llvm::Type *ResultType = ConvertTypeRecursive(T);
91  if (ResultType == llvm::Type::getInt1Ty(getLLVMContext()))
92    return llvm::IntegerType::get(getLLVMContext(),
93                                  (unsigned)Context.getTypeSize(T));
94  return ResultType;
95}
96
97/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
98/// ConvertType in that it is used to convert to the memory representation for
99/// a type.  For example, the scalar representation for _Bool is i1, but the
100/// memory representation is usually i8 or i32, depending on the target.
101const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
102  const llvm::Type *R = ConvertType(T);
103
104  // If this is a non-bool type, don't map it.
105  if (R != llvm::Type::getInt1Ty(getLLVMContext()))
106    return R;
107
108  // Otherwise, return an integer of the target-specified size.
109  return llvm::IntegerType::get(getLLVMContext(),
110                                (unsigned)Context.getTypeSize(T));
111
112}
113
114// Code to verify a given function type is complete, i.e. the return type
115// and all of the argument types are complete.
116static const TagType *VerifyFuncTypeComplete(const Type* T) {
117  const FunctionType *FT = cast<FunctionType>(T);
118  if (const TagType* TT = FT->getResultType()->getAs<TagType>())
119    if (!TT->getDecl()->isDefinition())
120      return TT;
121  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(T))
122    for (unsigned i = 0; i < FPT->getNumArgs(); i++)
123      if (const TagType* TT = FPT->getArgType(i)->getAs<TagType>())
124        if (!TT->getDecl()->isDefinition())
125          return TT;
126  return 0;
127}
128
129/// UpdateCompletedType - When we find the full definition for a TagDecl,
130/// replace the 'opaque' type we previously made for it if applicable.
131void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
132  const Type *Key = Context.getTagDeclType(TD).getTypePtr();
133  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
134    TagDeclTypes.find(Key);
135  if (TDTI == TagDeclTypes.end()) return;
136
137  // Remember the opaque LLVM type for this tagdecl.
138  llvm::PATypeHolder OpaqueHolder = TDTI->second;
139  assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
140         "Updating compilation of an already non-opaque type?");
141
142  // Remove it from TagDeclTypes so that it will be regenerated.
143  TagDeclTypes.erase(TDTI);
144
145  // Generate the new type.
146  const llvm::Type *NT = ConvertTagDeclType(TD);
147
148  // Refine the old opaque type to its new definition.
149  cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);
150
151  // Since we just completed a tag type, check to see if any function types
152  // were completed along with the tag type.
153  // FIXME: This is very inefficient; if we track which function types depend
154  // on which tag types, though, it should be reasonably efficient.
155  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator i;
156  for (i = FunctionTypes.begin(); i != FunctionTypes.end(); ++i) {
157    if (const TagType* TT = VerifyFuncTypeComplete(i->first)) {
158      // This function type still depends on an incomplete tag type; make sure
159      // that tag type has an associated opaque type.
160      ConvertTagDeclType(TT->getDecl());
161    } else {
162      // This function no longer depends on an incomplete tag type; create the
163      // function type, and refine the opaque type to the new function type.
164      llvm::PATypeHolder OpaqueHolder = i->second;
165      const llvm::Type *NFT = ConvertNewType(QualType(i->first, 0));
166      cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NFT);
167      FunctionTypes.erase(i);
168    }
169  }
170}
171
172static const llvm::Type* getTypeForFormat(llvm::LLVMContext &VMContext,
173                                          const llvm::fltSemantics &format) {
174  if (&format == &llvm::APFloat::IEEEsingle)
175    return llvm::Type::getFloatTy(VMContext);
176  if (&format == &llvm::APFloat::IEEEdouble)
177    return llvm::Type::getDoubleTy(VMContext);
178  if (&format == &llvm::APFloat::IEEEquad)
179    return llvm::Type::getFP128Ty(VMContext);
180  if (&format == &llvm::APFloat::PPCDoubleDouble)
181    return llvm::Type::getPPC_FP128Ty(VMContext);
182  if (&format == &llvm::APFloat::x87DoubleExtended)
183    return llvm::Type::getX86_FP80Ty(VMContext);
184  assert(0 && "Unknown float format!");
185  return 0;
186}
187
188const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
189  const clang::Type &Ty = *Context.getCanonicalType(T).getTypePtr();
190
191  switch (Ty.getTypeClass()) {
192#define TYPE(Class, Base)
193#define ABSTRACT_TYPE(Class, Base)
194#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
195#define DEPENDENT_TYPE(Class, Base) case Type::Class:
196#include "clang/AST/TypeNodes.def"
197    assert(false && "Non-canonical or dependent types aren't possible.");
198    break;
199
200  case Type::Builtin: {
201    switch (cast<BuiltinType>(Ty).getKind()) {
202    default: assert(0 && "Unknown builtin type!");
203    case BuiltinType::Void:
204    case BuiltinType::ObjCId:
205    case BuiltinType::ObjCClass:
206    case BuiltinType::ObjCSel:
207      // LLVM void type can only be used as the result of a function call.  Just
208      // map to the same as char.
209      return llvm::IntegerType::get(getLLVMContext(), 8);
210
211    case BuiltinType::Bool:
212      // Note that we always return bool as i1 for use as a scalar type.
213      return llvm::Type::getInt1Ty(getLLVMContext());
214
215    case BuiltinType::Char_S:
216    case BuiltinType::Char_U:
217    case BuiltinType::SChar:
218    case BuiltinType::UChar:
219    case BuiltinType::Short:
220    case BuiltinType::UShort:
221    case BuiltinType::Int:
222    case BuiltinType::UInt:
223    case BuiltinType::Long:
224    case BuiltinType::ULong:
225    case BuiltinType::LongLong:
226    case BuiltinType::ULongLong:
227    case BuiltinType::WChar:
228    case BuiltinType::Char16:
229    case BuiltinType::Char32:
230      return llvm::IntegerType::get(getLLVMContext(),
231        static_cast<unsigned>(Context.getTypeSize(T)));
232
233    case BuiltinType::Float:
234    case BuiltinType::Double:
235    case BuiltinType::LongDouble:
236      return getTypeForFormat(getLLVMContext(),
237                              Context.getFloatTypeSemantics(T));
238
239    case BuiltinType::NullPtr: {
240      // Model std::nullptr_t as i8*
241      const llvm::Type *Ty = llvm::IntegerType::get(getLLVMContext(), 8);
242      return llvm::PointerType::getUnqual(Ty);
243    }
244
245    case BuiltinType::UInt128:
246    case BuiltinType::Int128:
247      return llvm::IntegerType::get(getLLVMContext(), 128);
248    }
249    break;
250  }
251  case Type::FixedWidthInt:
252    return llvm::IntegerType::get(getLLVMContext(),
253                                  cast<FixedWidthIntType>(T)->getWidth());
254  case Type::Complex: {
255    const llvm::Type *EltTy =
256      ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType());
257    return llvm::StructType::get(TheModule.getContext(), EltTy, EltTy, NULL);
258  }
259  case Type::LValueReference:
260  case Type::RValueReference: {
261    const ReferenceType &RTy = cast<ReferenceType>(Ty);
262    QualType ETy = RTy.getPointeeType();
263    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
264    PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
265    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
266  }
267  case Type::Pointer: {
268    const PointerType &PTy = cast<PointerType>(Ty);
269    QualType ETy = PTy.getPointeeType();
270    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
271    PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
272    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
273  }
274
275  case Type::VariableArray: {
276    const VariableArrayType &A = cast<VariableArrayType>(Ty);
277    assert(A.getIndexTypeCVRQualifiers() == 0 &&
278           "FIXME: We only handle trivial array types so far!");
279    // VLAs resolve to the innermost element type; this matches
280    // the return of alloca, and there isn't any obviously better choice.
281    return ConvertTypeForMemRecursive(A.getElementType());
282  }
283  case Type::IncompleteArray: {
284    const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
285    assert(A.getIndexTypeCVRQualifiers() == 0 &&
286           "FIXME: We only handle trivial array types so far!");
287    // int X[] -> [0 x int]
288    return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()), 0);
289  }
290  case Type::ConstantArray: {
291    const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
292    const llvm::Type *EltTy = ConvertTypeForMemRecursive(A.getElementType());
293    return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
294  }
295  case Type::ExtVector:
296  case Type::Vector: {
297    const VectorType &VT = cast<VectorType>(Ty);
298    return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()),
299                                 VT.getNumElements());
300  }
301  case Type::FunctionNoProto:
302  case Type::FunctionProto: {
303    // First, check whether we can build the full function type.
304    if (const TagType* TT = VerifyFuncTypeComplete(&Ty)) {
305      // This function's type depends on an incomplete tag type; make sure
306      // we have an opaque type corresponding to the tag type.
307      ConvertTagDeclType(TT->getDecl());
308      // Create an opaque type for this function type, save it, and return it.
309      llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext());
310      FunctionTypes.insert(std::make_pair(&Ty, ResultType));
311      return ResultType;
312    }
313    // The function type can be built; call the appropriate routines to
314    // build it.
315    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(&Ty))
316      return GetFunctionType(getFunctionInfo(FPT), FPT->isVariadic());
317
318    const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(&Ty);
319    return GetFunctionType(getFunctionInfo(FNPT), true);
320  }
321
322  case Type::ObjCInterface: {
323    // Objective-C interfaces are always opaque (outside of the
324    // runtime, which can do whatever it likes); we never refine
325    // these.
326    const llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(&Ty)];
327    if (!T)
328        T = llvm::OpaqueType::get(getLLVMContext());
329    return T;
330  }
331
332  case Type::ObjCObjectPointer: {
333    // Protocol qualifications do not influence the LLVM type, we just return a
334    // pointer to the underlying interface type. We don't need to worry about
335    // recursive conversion.
336    const llvm::Type *T =
337      ConvertTypeRecursive(cast<ObjCObjectPointerType>(Ty).getPointeeType());
338    return llvm::PointerType::getUnqual(T);
339  }
340
341  case Type::Record:
342  case Type::Enum: {
343    const TagDecl *TD = cast<TagType>(Ty).getDecl();
344    const llvm::Type *Res = ConvertTagDeclType(TD);
345
346    std::string TypeName(TD->getKindName());
347    TypeName += '.';
348
349    // Name the codegen type after the typedef name
350    // if there is no tag type name available
351    if (TD->getIdentifier())
352      // FIXME: We should not have to check for a null decl context here.
353      // Right now we do it because the implicit Obj-C decls don't have one.
354      TypeName += TD->getDeclContext() ? TD->getQualifiedNameAsString() :
355        TD->getNameAsString();
356    else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
357      // FIXME: We should not have to check for a null decl context here.
358      // Right now we do it because the implicit Obj-C decls don't have one.
359      TypeName += TdT->getDecl()->getDeclContext() ?
360        TdT->getDecl()->getQualifiedNameAsString() :
361        TdT->getDecl()->getNameAsString();
362    else
363      TypeName += "anon";
364
365    TheModule.addTypeName(TypeName, Res);
366    return Res;
367  }
368
369  case Type::BlockPointer: {
370    const QualType FTy = cast<BlockPointerType>(Ty).getPointeeType();
371    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
372    PointersToResolve.push_back(std::make_pair(FTy, PointeeType));
373    return llvm::PointerType::get(PointeeType, FTy.getAddressSpace());
374  }
375
376  case Type::MemberPointer: {
377    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
378    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
379    // If we ever want to support other ABIs this needs to be abstracted.
380
381    QualType ETy = cast<MemberPointerType>(Ty).getPointeeType();
382    if (ETy->isFunctionType()) {
383      return llvm::StructType::get(TheModule.getContext(),
384                                   ConvertType(Context.getPointerDiffType()),
385                                   ConvertType(Context.getPointerDiffType()),
386                                   NULL);
387    } else
388      return ConvertType(Context.getPointerDiffType());
389  }
390
391  case Type::TemplateSpecialization:
392    assert(false && "Dependent types can't get here");
393  }
394
395  // FIXME: implement.
396  return llvm::OpaqueType::get(getLLVMContext());
397}
398
399/// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
400/// enum.
401const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
402
403  // FIXME. This may have to move to a better place.
404  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
405    for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
406         e = RD->bases_end(); i != e; ++i) {
407      if (!i->isVirtual()) {
408        const CXXRecordDecl *Base =
409          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
410        ConvertTagDeclType(Base);
411      }
412    }
413  }
414
415  // TagDecl's are not necessarily unique, instead use the (clang)
416  // type connected to the decl.
417  const Type *Key =
418    Context.getTagDeclType(TD).getTypePtr();
419  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
420    TagDeclTypes.find(Key);
421
422  // If we've already compiled this tag type, use the previous definition.
423  if (TDTI != TagDeclTypes.end())
424    return TDTI->second;
425
426  // If this is still a forward definition, just define an opaque type to use
427  // for this tagged decl.
428  if (!TD->isDefinition()) {
429    llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext());
430    TagDeclTypes.insert(std::make_pair(Key, ResultType));
431    return ResultType;
432  }
433
434  // Okay, this is a definition of a type.  Compile the implementation now.
435
436  if (TD->isEnum()) {
437    // Don't bother storing enums in TagDeclTypes.
438    return ConvertTypeRecursive(cast<EnumDecl>(TD)->getIntegerType());
439  }
440
441  // This decl could well be recursive.  In this case, insert an opaque
442  // definition of this type, which the recursive uses will get.  We will then
443  // refine this opaque version later.
444
445  // Create new OpaqueType now for later use in case this is a recursive
446  // type.  This will later be refined to the actual type.
447  llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get(getLLVMContext());
448  TagDeclTypes.insert(std::make_pair(Key, ResultHolder));
449
450  const llvm::Type *ResultType;
451  const RecordDecl *RD = cast<const RecordDecl>(TD);
452
453  // Layout fields.
454  CGRecordLayout *Layout =
455    CGRecordLayoutBuilder::ComputeLayout(*this, RD);
456
457  CGRecordLayouts[Key] = Layout;
458  ResultType = Layout->getLLVMType();
459
460  // Refine our Opaque type to ResultType.  This can invalidate ResultType, so
461  // make sure to read the result out of the holder.
462  cast<llvm::OpaqueType>(ResultHolder.get())
463    ->refineAbstractTypeTo(ResultType);
464
465  return ResultHolder.get();
466}
467
468/// getLLVMFieldNo - Return llvm::StructType element number
469/// that corresponds to the field FD.
470unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
471  assert(!FD->isBitField() && "Don't use getLLVMFieldNo on bit fields!");
472
473  llvm::DenseMap<const FieldDecl*, unsigned>::iterator I = FieldInfo.find(FD);
474  assert (I != FieldInfo.end()  && "Unable to find field info");
475  return I->second;
476}
477
478/// addFieldInfo - Assign field number to field FD.
479void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
480  FieldInfo[FD] = No;
481}
482
483/// getBitFieldInfo - Return the BitFieldInfo  that corresponds to the field FD.
484CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) {
485  llvm::DenseMap<const FieldDecl *, BitFieldInfo>::iterator
486    I = BitFields.find(FD);
487  assert (I != BitFields.end()  && "Unable to find bitfield info");
488  return I->second;
489}
490
491/// addBitFieldInfo - Assign a start bit and a size to field FD.
492void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned FieldNo,
493                                   unsigned Start, unsigned Size) {
494  BitFields.insert(std::make_pair(FD, BitFieldInfo(FieldNo, Start, Size)));
495}
496
497/// getCGRecordLayout - Return record layout info for the given llvm::Type.
498const CGRecordLayout &
499CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const {
500  const Type *Key =
501    Context.getTagDeclType(TD).getTypePtr();
502  llvm::DenseMap<const Type*, CGRecordLayout *>::const_iterator I
503    = CGRecordLayouts.find(Key);
504  assert (I != CGRecordLayouts.end()
505          && "Unable to find record layout information for type");
506  return *I->second;
507}
508