Type.cpp revision 224145
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/Type.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/PrettyPrinter.h"
22#include "clang/AST/TypeVisitor.h"
23#include "clang/Basic/Specifiers.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
31  return (*this != Other) &&
32    // CVR qualifiers superset
33    (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
34    // ObjC GC qualifiers superset
35    ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
36     (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
37    // Address space superset.
38    ((getAddressSpace() == Other.getAddressSpace()) ||
39     (hasAddressSpace()&& !Other.hasAddressSpace())) &&
40    // Lifetime qualifier superset.
41    ((getObjCLifetime() == Other.getObjCLifetime()) ||
42     (hasObjCLifetime() && !Other.hasObjCLifetime()));
43}
44
45bool QualType::isConstant(QualType T, ASTContext &Ctx) {
46  if (T.isConstQualified())
47    return true;
48
49  if (const ArrayType *AT = Ctx.getAsArrayType(T))
50    return AT->getElementType().isConstant(Ctx);
51
52  return false;
53}
54
55unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
56                                                 QualType ElementType,
57                                               const llvm::APInt &NumElements) {
58  llvm::APSInt SizeExtended(NumElements, true);
59  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
60  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
61                                              SizeExtended.getBitWidth()) * 2);
62
63  uint64_t ElementSize
64    = Context.getTypeSizeInChars(ElementType).getQuantity();
65  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
66  TotalSize *= SizeExtended;
67
68  return TotalSize.getActiveBits();
69}
70
71unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
72  unsigned Bits = Context.getTypeSize(Context.getSizeType());
73
74  // GCC appears to only allow 63 bits worth of address space when compiling
75  // for 64-bit, so we do the same.
76  if (Bits == 64)
77    --Bits;
78
79  return Bits;
80}
81
82DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
83                                                 QualType et, QualType can,
84                                                 Expr *e, ArraySizeModifier sm,
85                                                 unsigned tq,
86                                                 SourceRange brackets)
87    : ArrayType(DependentSizedArray, et, can, sm, tq,
88                (et->containsUnexpandedParameterPack() ||
89                 (e && e->containsUnexpandedParameterPack()))),
90      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
91{
92}
93
94void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
95                                      const ASTContext &Context,
96                                      QualType ET,
97                                      ArraySizeModifier SizeMod,
98                                      unsigned TypeQuals,
99                                      Expr *E) {
100  ID.AddPointer(ET.getAsOpaquePtr());
101  ID.AddInteger(SizeMod);
102  ID.AddInteger(TypeQuals);
103  E->Profile(ID, Context, true);
104}
105
106DependentSizedExtVectorType::DependentSizedExtVectorType(const
107                                                         ASTContext &Context,
108                                                         QualType ElementType,
109                                                         QualType can,
110                                                         Expr *SizeExpr,
111                                                         SourceLocation loc)
112    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
113           /*InstantiationDependent=*/true,
114           ElementType->isVariablyModifiedType(),
115           (ElementType->containsUnexpandedParameterPack() ||
116            (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
117      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
118      loc(loc)
119{
120}
121
122void
123DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
124                                     const ASTContext &Context,
125                                     QualType ElementType, Expr *SizeExpr) {
126  ID.AddPointer(ElementType.getAsOpaquePtr());
127  SizeExpr->Profile(ID, Context, true);
128}
129
130VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
131                       VectorKind vecKind)
132  : Type(Vector, canonType, vecType->isDependentType(),
133         vecType->isInstantiationDependentType(),
134         vecType->isVariablyModifiedType(),
135         vecType->containsUnexpandedParameterPack()),
136    ElementType(vecType)
137{
138  VectorTypeBits.VecKind = vecKind;
139  VectorTypeBits.NumElements = nElements;
140}
141
142VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
143                       QualType canonType, VectorKind vecKind)
144  : Type(tc, canonType, vecType->isDependentType(),
145         vecType->isInstantiationDependentType(),
146         vecType->isVariablyModifiedType(),
147         vecType->containsUnexpandedParameterPack()),
148    ElementType(vecType)
149{
150  VectorTypeBits.VecKind = vecKind;
151  VectorTypeBits.NumElements = nElements;
152}
153
154/// getArrayElementTypeNoTypeQual - If this is an array type, return the
155/// element type of the array, potentially with type qualifiers missing.
156/// This method should never be used when type qualifiers are meaningful.
157const Type *Type::getArrayElementTypeNoTypeQual() const {
158  // If this is directly an array type, return it.
159  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
160    return ATy->getElementType().getTypePtr();
161
162  // If the canonical form of this type isn't the right kind, reject it.
163  if (!isa<ArrayType>(CanonicalType))
164    return 0;
165
166  // If this is a typedef for an array type, strip the typedef off without
167  // losing all typedef information.
168  return cast<ArrayType>(getUnqualifiedDesugaredType())
169    ->getElementType().getTypePtr();
170}
171
172/// getDesugaredType - Return the specified type with any "sugar" removed from
173/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
174/// the type is already concrete, it returns it unmodified.  This is similar
175/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
176/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
177/// concrete.
178QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
179  SplitQualType split = getSplitDesugaredType(T);
180  return Context.getQualifiedType(split.first, split.second);
181}
182
183QualType QualType::getSingleStepDesugaredType(const ASTContext &Context) const {
184  QualifierCollector Qs;
185
186  const Type *CurTy = Qs.strip(*this);
187  switch (CurTy->getTypeClass()) {
188#define ABSTRACT_TYPE(Class, Parent)
189#define TYPE(Class, Parent) \
190  case Type::Class: { \
191    const Class##Type *Ty = cast<Class##Type>(CurTy); \
192    if (!Ty->isSugared()) \
193      return *this; \
194    return Context.getQualifiedType(Ty->desugar(), Qs); \
195    break; \
196  }
197#include "clang/AST/TypeNodes.def"
198  }
199
200  return *this;
201}
202
203SplitQualType QualType::getSplitDesugaredType(QualType T) {
204  QualifierCollector Qs;
205
206  QualType Cur = T;
207  while (true) {
208    const Type *CurTy = Qs.strip(Cur);
209    switch (CurTy->getTypeClass()) {
210#define ABSTRACT_TYPE(Class, Parent)
211#define TYPE(Class, Parent) \
212    case Type::Class: { \
213      const Class##Type *Ty = cast<Class##Type>(CurTy); \
214      if (!Ty->isSugared()) \
215        return SplitQualType(Ty, Qs); \
216      Cur = Ty->desugar(); \
217      break; \
218    }
219#include "clang/AST/TypeNodes.def"
220    }
221  }
222}
223
224SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
225  SplitQualType split = type.split();
226
227  // All the qualifiers we've seen so far.
228  Qualifiers quals = split.second;
229
230  // The last type node we saw with any nodes inside it.
231  const Type *lastTypeWithQuals = split.first;
232
233  while (true) {
234    QualType next;
235
236    // Do a single-step desugar, aborting the loop if the type isn't
237    // sugared.
238    switch (split.first->getTypeClass()) {
239#define ABSTRACT_TYPE(Class, Parent)
240#define TYPE(Class, Parent) \
241    case Type::Class: { \
242      const Class##Type *ty = cast<Class##Type>(split.first); \
243      if (!ty->isSugared()) goto done; \
244      next = ty->desugar(); \
245      break; \
246    }
247#include "clang/AST/TypeNodes.def"
248    }
249
250    // Otherwise, split the underlying type.  If that yields qualifiers,
251    // update the information.
252    split = next.split();
253    if (!split.second.empty()) {
254      lastTypeWithQuals = split.first;
255      quals.addConsistentQualifiers(split.second);
256    }
257  }
258
259 done:
260  return SplitQualType(lastTypeWithQuals, quals);
261}
262
263QualType QualType::IgnoreParens(QualType T) {
264  // FIXME: this seems inherently un-qualifiers-safe.
265  while (const ParenType *PT = T->getAs<ParenType>())
266    T = PT->getInnerType();
267  return T;
268}
269
270/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
271/// sugar off the given type.  This should produce an object of the
272/// same dynamic type as the canonical type.
273const Type *Type::getUnqualifiedDesugaredType() const {
274  const Type *Cur = this;
275
276  while (true) {
277    switch (Cur->getTypeClass()) {
278#define ABSTRACT_TYPE(Class, Parent)
279#define TYPE(Class, Parent) \
280    case Class: { \
281      const Class##Type *Ty = cast<Class##Type>(Cur); \
282      if (!Ty->isSugared()) return Cur; \
283      Cur = Ty->desugar().getTypePtr(); \
284      break; \
285    }
286#include "clang/AST/TypeNodes.def"
287    }
288  }
289}
290
291/// isVoidType - Helper method to determine if this is the 'void' type.
292bool Type::isVoidType() const {
293  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
294    return BT->getKind() == BuiltinType::Void;
295  return false;
296}
297
298bool Type::isDerivedType() const {
299  switch (CanonicalType->getTypeClass()) {
300  case Pointer:
301  case VariableArray:
302  case ConstantArray:
303  case IncompleteArray:
304  case FunctionProto:
305  case FunctionNoProto:
306  case LValueReference:
307  case RValueReference:
308  case Record:
309    return true;
310  default:
311    return false;
312  }
313}
314bool Type::isClassType() const {
315  if (const RecordType *RT = getAs<RecordType>())
316    return RT->getDecl()->isClass();
317  return false;
318}
319bool Type::isStructureType() const {
320  if (const RecordType *RT = getAs<RecordType>())
321    return RT->getDecl()->isStruct();
322  return false;
323}
324bool Type::isStructureOrClassType() const {
325  if (const RecordType *RT = getAs<RecordType>())
326    return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
327  return false;
328}
329bool Type::isVoidPointerType() const {
330  if (const PointerType *PT = getAs<PointerType>())
331    return PT->getPointeeType()->isVoidType();
332  return false;
333}
334
335bool Type::isUnionType() const {
336  if (const RecordType *RT = getAs<RecordType>())
337    return RT->getDecl()->isUnion();
338  return false;
339}
340
341bool Type::isComplexType() const {
342  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
343    return CT->getElementType()->isFloatingType();
344  return false;
345}
346
347bool Type::isComplexIntegerType() const {
348  // Check for GCC complex integer extension.
349  return getAsComplexIntegerType();
350}
351
352const ComplexType *Type::getAsComplexIntegerType() const {
353  if (const ComplexType *Complex = getAs<ComplexType>())
354    if (Complex->getElementType()->isIntegerType())
355      return Complex;
356  return 0;
357}
358
359QualType Type::getPointeeType() const {
360  if (const PointerType *PT = getAs<PointerType>())
361    return PT->getPointeeType();
362  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
363    return OPT->getPointeeType();
364  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
365    return BPT->getPointeeType();
366  if (const ReferenceType *RT = getAs<ReferenceType>())
367    return RT->getPointeeType();
368  return QualType();
369}
370
371const RecordType *Type::getAsStructureType() const {
372  // If this is directly a structure type, return it.
373  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
374    if (RT->getDecl()->isStruct())
375      return RT;
376  }
377
378  // If the canonical form of this type isn't the right kind, reject it.
379  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
380    if (!RT->getDecl()->isStruct())
381      return 0;
382
383    // If this is a typedef for a structure type, strip the typedef off without
384    // losing all typedef information.
385    return cast<RecordType>(getUnqualifiedDesugaredType());
386  }
387  return 0;
388}
389
390const RecordType *Type::getAsUnionType() const {
391  // If this is directly a union type, return it.
392  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
393    if (RT->getDecl()->isUnion())
394      return RT;
395  }
396
397  // If the canonical form of this type isn't the right kind, reject it.
398  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
399    if (!RT->getDecl()->isUnion())
400      return 0;
401
402    // If this is a typedef for a union type, strip the typedef off without
403    // losing all typedef information.
404    return cast<RecordType>(getUnqualifiedDesugaredType());
405  }
406
407  return 0;
408}
409
410ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
411                               ObjCProtocolDecl * const *Protocols,
412                               unsigned NumProtocols)
413  : Type(ObjCObject, Canonical, false, false, false, false),
414    BaseType(Base)
415{
416  ObjCObjectTypeBits.NumProtocols = NumProtocols;
417  assert(getNumProtocols() == NumProtocols &&
418         "bitfield overflow in protocol count");
419  if (NumProtocols)
420    memcpy(getProtocolStorage(), Protocols,
421           NumProtocols * sizeof(ObjCProtocolDecl*));
422}
423
424const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
425  // There is no sugar for ObjCObjectType's, just return the canonical
426  // type pointer if it is the right class.  There is no typedef information to
427  // return and these cannot be Address-space qualified.
428  if (const ObjCObjectType *T = getAs<ObjCObjectType>())
429    if (T->getNumProtocols() && T->getInterface())
430      return T;
431  return 0;
432}
433
434bool Type::isObjCQualifiedInterfaceType() const {
435  return getAsObjCQualifiedInterfaceType() != 0;
436}
437
438const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
439  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
440  // type pointer if it is the right class.
441  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
442    if (OPT->isObjCQualifiedIdType())
443      return OPT;
444  }
445  return 0;
446}
447
448const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
449  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
450  // type pointer if it is the right class.
451  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
452    if (OPT->isObjCQualifiedClassType())
453      return OPT;
454  }
455  return 0;
456}
457
458const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
459  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
460    if (OPT->getInterfaceType())
461      return OPT;
462  }
463  return 0;
464}
465
466const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
467  if (const PointerType *PT = getAs<PointerType>())
468    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
469      return dyn_cast<CXXRecordDecl>(RT->getDecl());
470  return 0;
471}
472
473CXXRecordDecl *Type::getAsCXXRecordDecl() const {
474  if (const RecordType *RT = getAs<RecordType>())
475    return dyn_cast<CXXRecordDecl>(RT->getDecl());
476  else if (const InjectedClassNameType *Injected
477                                  = getAs<InjectedClassNameType>())
478    return Injected->getDecl();
479
480  return 0;
481}
482
483namespace {
484  class GetContainedAutoVisitor :
485    public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
486  public:
487    using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
488    AutoType *Visit(QualType T) {
489      if (T.isNull())
490        return 0;
491      return Visit(T.getTypePtr());
492    }
493
494    // The 'auto' type itself.
495    AutoType *VisitAutoType(const AutoType *AT) {
496      return const_cast<AutoType*>(AT);
497    }
498
499    // Only these types can contain the desired 'auto' type.
500    AutoType *VisitPointerType(const PointerType *T) {
501      return Visit(T->getPointeeType());
502    }
503    AutoType *VisitBlockPointerType(const BlockPointerType *T) {
504      return Visit(T->getPointeeType());
505    }
506    AutoType *VisitReferenceType(const ReferenceType *T) {
507      return Visit(T->getPointeeTypeAsWritten());
508    }
509    AutoType *VisitMemberPointerType(const MemberPointerType *T) {
510      return Visit(T->getPointeeType());
511    }
512    AutoType *VisitArrayType(const ArrayType *T) {
513      return Visit(T->getElementType());
514    }
515    AutoType *VisitDependentSizedExtVectorType(
516      const DependentSizedExtVectorType *T) {
517      return Visit(T->getElementType());
518    }
519    AutoType *VisitVectorType(const VectorType *T) {
520      return Visit(T->getElementType());
521    }
522    AutoType *VisitFunctionType(const FunctionType *T) {
523      return Visit(T->getResultType());
524    }
525    AutoType *VisitParenType(const ParenType *T) {
526      return Visit(T->getInnerType());
527    }
528    AutoType *VisitAttributedType(const AttributedType *T) {
529      return Visit(T->getModifiedType());
530    }
531  };
532}
533
534AutoType *Type::getContainedAutoType() const {
535  return GetContainedAutoVisitor().Visit(this);
536}
537
538bool Type::isIntegerType() const {
539  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
540    return BT->getKind() >= BuiltinType::Bool &&
541           BT->getKind() <= BuiltinType::Int128;
542  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
543    // Incomplete enum types are not treated as integer types.
544    // FIXME: In C++, enum types are never integer types.
545    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
546  return false;
547}
548
549bool Type::hasIntegerRepresentation() const {
550  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
551    return VT->getElementType()->isIntegerType();
552  else
553    return isIntegerType();
554}
555
556/// \brief Determine whether this type is an integral type.
557///
558/// This routine determines whether the given type is an integral type per
559/// C++ [basic.fundamental]p7. Although the C standard does not define the
560/// term "integral type", it has a similar term "integer type", and in C++
561/// the two terms are equivalent. However, C's "integer type" includes
562/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
563/// parameter is used to determine whether we should be following the C or
564/// C++ rules when determining whether this type is an integral/integer type.
565///
566/// For cases where C permits "an integer type" and C++ permits "an integral
567/// type", use this routine.
568///
569/// For cases where C permits "an integer type" and C++ permits "an integral
570/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
571///
572/// \param Ctx The context in which this type occurs.
573///
574/// \returns true if the type is considered an integral type, false otherwise.
575bool Type::isIntegralType(ASTContext &Ctx) const {
576  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
577    return BT->getKind() >= BuiltinType::Bool &&
578    BT->getKind() <= BuiltinType::Int128;
579
580  if (!Ctx.getLangOptions().CPlusPlus)
581    if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
582      return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
583
584  return false;
585}
586
587bool Type::isIntegralOrEnumerationType() const {
588  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
589    return BT->getKind() >= BuiltinType::Bool &&
590           BT->getKind() <= BuiltinType::Int128;
591
592  // Check for a complete enum type; incomplete enum types are not properly an
593  // enumeration type in the sense required here.
594  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
595    return ET->getDecl()->isComplete();
596
597  return false;
598}
599
600bool Type::isIntegralOrUnscopedEnumerationType() const {
601  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
602    return BT->getKind() >= BuiltinType::Bool &&
603           BT->getKind() <= BuiltinType::Int128;
604
605  // Check for a complete enum type; incomplete enum types are not properly an
606  // enumeration type in the sense required here.
607  // C++0x: However, if the underlying type of the enum is fixed, it is
608  // considered complete.
609  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
610    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
611
612  return false;
613}
614
615
616bool Type::isBooleanType() const {
617  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
618    return BT->getKind() == BuiltinType::Bool;
619  return false;
620}
621
622bool Type::isCharType() const {
623  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
624    return BT->getKind() == BuiltinType::Char_U ||
625           BT->getKind() == BuiltinType::UChar ||
626           BT->getKind() == BuiltinType::Char_S ||
627           BT->getKind() == BuiltinType::SChar;
628  return false;
629}
630
631bool Type::isWideCharType() const {
632  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
633    return BT->getKind() == BuiltinType::WChar_S ||
634           BT->getKind() == BuiltinType::WChar_U;
635  return false;
636}
637
638/// \brief Determine whether this type is any of the built-in character
639/// types.
640bool Type::isAnyCharacterType() const {
641  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
642  if (BT == 0) return false;
643  switch (BT->getKind()) {
644  default: return false;
645  case BuiltinType::Char_U:
646  case BuiltinType::UChar:
647  case BuiltinType::WChar_U:
648  case BuiltinType::Char16:
649  case BuiltinType::Char32:
650  case BuiltinType::Char_S:
651  case BuiltinType::SChar:
652  case BuiltinType::WChar_S:
653    return true;
654  }
655}
656
657/// isSignedIntegerType - Return true if this is an integer type that is
658/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
659/// an enum decl which has a signed representation
660bool Type::isSignedIntegerType() const {
661  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
662    return BT->getKind() >= BuiltinType::Char_S &&
663           BT->getKind() <= BuiltinType::Int128;
664  }
665
666  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
667    // Incomplete enum types are not treated as integer types.
668    // FIXME: In C++, enum types are never integer types.
669    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
670      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
671  }
672
673  return false;
674}
675
676bool Type::isSignedIntegerOrEnumerationType() const {
677  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
678    return BT->getKind() >= BuiltinType::Char_S &&
679    BT->getKind() <= BuiltinType::Int128;
680  }
681
682  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
683    if (ET->getDecl()->isComplete())
684      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
685  }
686
687  return false;
688}
689
690bool Type::hasSignedIntegerRepresentation() const {
691  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
692    return VT->getElementType()->isSignedIntegerType();
693  else
694    return isSignedIntegerType();
695}
696
697/// isUnsignedIntegerType - Return true if this is an integer type that is
698/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
699/// decl which has an unsigned representation
700bool Type::isUnsignedIntegerType() const {
701  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
702    return BT->getKind() >= BuiltinType::Bool &&
703           BT->getKind() <= BuiltinType::UInt128;
704  }
705
706  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
707    // Incomplete enum types are not treated as integer types.
708    // FIXME: In C++, enum types are never integer types.
709    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
710      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
711  }
712
713  return false;
714}
715
716bool Type::isUnsignedIntegerOrEnumerationType() const {
717  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
718    return BT->getKind() >= BuiltinType::Bool &&
719    BT->getKind() <= BuiltinType::UInt128;
720  }
721
722  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
723    if (ET->getDecl()->isComplete())
724      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
725  }
726
727  return false;
728}
729
730bool Type::hasUnsignedIntegerRepresentation() const {
731  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
732    return VT->getElementType()->isUnsignedIntegerType();
733  else
734    return isUnsignedIntegerType();
735}
736
737bool Type::isFloatingType() const {
738  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
739    return BT->getKind() >= BuiltinType::Float &&
740           BT->getKind() <= BuiltinType::LongDouble;
741  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
742    return CT->getElementType()->isFloatingType();
743  return false;
744}
745
746bool Type::hasFloatingRepresentation() const {
747  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
748    return VT->getElementType()->isFloatingType();
749  else
750    return isFloatingType();
751}
752
753bool Type::isRealFloatingType() const {
754  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
755    return BT->isFloatingPoint();
756  return false;
757}
758
759bool Type::isRealType() const {
760  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
761    return BT->getKind() >= BuiltinType::Bool &&
762           BT->getKind() <= BuiltinType::LongDouble;
763  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
764      return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
765  return false;
766}
767
768bool Type::isArithmeticType() const {
769  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
770    return BT->getKind() >= BuiltinType::Bool &&
771           BT->getKind() <= BuiltinType::LongDouble;
772  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
773    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
774    // If a body isn't seen by the time we get here, return false.
775    //
776    // C++0x: Enumerations are not arithmetic types. For now, just return
777    // false for scoped enumerations since that will disable any
778    // unwanted implicit conversions.
779    return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
780  return isa<ComplexType>(CanonicalType);
781}
782
783bool Type::isScalarType() const {
784  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
785    return BT->getKind() > BuiltinType::Void &&
786           BT->getKind() <= BuiltinType::NullPtr;
787  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
788    // Enums are scalar types, but only if they are defined.  Incomplete enums
789    // are not treated as scalar types.
790    return ET->getDecl()->isComplete();
791  return isa<PointerType>(CanonicalType) ||
792         isa<BlockPointerType>(CanonicalType) ||
793         isa<MemberPointerType>(CanonicalType) ||
794         isa<ComplexType>(CanonicalType) ||
795         isa<ObjCObjectPointerType>(CanonicalType);
796}
797
798Type::ScalarTypeKind Type::getScalarTypeKind() const {
799  assert(isScalarType());
800
801  const Type *T = CanonicalType.getTypePtr();
802  if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
803    if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
804    if (BT->getKind() == BuiltinType::NullPtr) return STK_Pointer;
805    if (BT->isInteger()) return STK_Integral;
806    if (BT->isFloatingPoint()) return STK_Floating;
807    llvm_unreachable("unknown scalar builtin type");
808  } else if (isa<PointerType>(T) ||
809             isa<BlockPointerType>(T) ||
810             isa<ObjCObjectPointerType>(T)) {
811    return STK_Pointer;
812  } else if (isa<MemberPointerType>(T)) {
813    return STK_MemberPointer;
814  } else if (isa<EnumType>(T)) {
815    assert(cast<EnumType>(T)->getDecl()->isComplete());
816    return STK_Integral;
817  } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
818    if (CT->getElementType()->isRealFloatingType())
819      return STK_FloatingComplex;
820    return STK_IntegralComplex;
821  }
822
823  llvm_unreachable("unknown scalar type");
824  return STK_Pointer;
825}
826
827/// \brief Determines whether the type is a C++ aggregate type or C
828/// aggregate or union type.
829///
830/// An aggregate type is an array or a class type (struct, union, or
831/// class) that has no user-declared constructors, no private or
832/// protected non-static data members, no base classes, and no virtual
833/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
834/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
835/// includes union types.
836bool Type::isAggregateType() const {
837  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
838    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
839      return ClassDecl->isAggregate();
840
841    return true;
842  }
843
844  return isa<ArrayType>(CanonicalType);
845}
846
847/// isConstantSizeType - Return true if this is not a variable sized type,
848/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
849/// incomplete types or dependent types.
850bool Type::isConstantSizeType() const {
851  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
852  assert(!isDependentType() && "This doesn't make sense for dependent types");
853  // The VAT must have a size, as it is known to be complete.
854  return !isa<VariableArrayType>(CanonicalType);
855}
856
857/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
858/// - a type that can describe objects, but which lacks information needed to
859/// determine its size.
860bool Type::isIncompleteType() const {
861  switch (CanonicalType->getTypeClass()) {
862  default: return false;
863  case Builtin:
864    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
865    // be completed.
866    return isVoidType();
867  case Enum:
868    // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
869    if (cast<EnumType>(CanonicalType)->getDecl()->isFixed())
870        return false;
871    // Fall through.
872  case Record:
873    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
874    // forward declaration, but not a full definition (C99 6.2.5p22).
875    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
876  case ConstantArray:
877    // An array is incomplete if its element type is incomplete
878    // (C++ [dcl.array]p1).
879    // We don't handle variable arrays (they're not allowed in C++) or
880    // dependent-sized arrays (dependent types are never treated as incomplete).
881    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
882  case IncompleteArray:
883    // An array of unknown size is an incomplete type (C99 6.2.5p22).
884    return true;
885  case ObjCObject:
886    return cast<ObjCObjectType>(CanonicalType)->getBaseType()
887                                                         ->isIncompleteType();
888  case ObjCInterface:
889    // ObjC interfaces are incomplete if they are @class, not @interface.
890    return cast<ObjCInterfaceType>(CanonicalType)->getDecl()->isForwardDecl();
891  }
892}
893
894bool QualType::isPODType(ASTContext &Context) const {
895  // The compiler shouldn't query this for incomplete types, but the user might.
896  // We return false for that case. Except for incomplete arrays of PODs, which
897  // are PODs according to the standard.
898  if (isNull())
899    return 0;
900
901  if ((*this)->isIncompleteArrayType())
902    return Context.getBaseElementType(*this).isPODType(Context);
903
904  if ((*this)->isIncompleteType())
905    return false;
906
907  if (Context.getLangOptions().ObjCAutoRefCount) {
908    switch (getObjCLifetime()) {
909    case Qualifiers::OCL_ExplicitNone:
910      return true;
911
912    case Qualifiers::OCL_Strong:
913    case Qualifiers::OCL_Weak:
914    case Qualifiers::OCL_Autoreleasing:
915      return false;
916
917    case Qualifiers::OCL_None:
918      break;
919    }
920  }
921
922  QualType CanonicalType = getTypePtr()->CanonicalType;
923  switch (CanonicalType->getTypeClass()) {
924    // Everything not explicitly mentioned is not POD.
925  default: return false;
926  case Type::VariableArray:
927  case Type::ConstantArray:
928    // IncompleteArray is handled above.
929    return Context.getBaseElementType(*this).isPODType(Context);
930
931  case Type::ObjCObjectPointer:
932  case Type::BlockPointer:
933  case Type::Builtin:
934  case Type::Complex:
935  case Type::Pointer:
936  case Type::MemberPointer:
937  case Type::Vector:
938  case Type::ExtVector:
939    return true;
940
941  case Type::Enum:
942    return true;
943
944  case Type::Record:
945    if (CXXRecordDecl *ClassDecl
946          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
947      return ClassDecl->isPOD();
948
949    // C struct/union is POD.
950    return true;
951  }
952}
953
954bool QualType::isTrivialType(ASTContext &Context) const {
955  // The compiler shouldn't query this for incomplete types, but the user might.
956  // We return false for that case. Except for incomplete arrays of PODs, which
957  // are PODs according to the standard.
958  if (isNull())
959    return 0;
960
961  if ((*this)->isArrayType())
962    return Context.getBaseElementType(*this).isTrivialType(Context);
963
964  // Return false for incomplete types after skipping any incomplete array
965  // types which are expressly allowed by the standard and thus our API.
966  if ((*this)->isIncompleteType())
967    return false;
968
969  if (Context.getLangOptions().ObjCAutoRefCount) {
970    switch (getObjCLifetime()) {
971    case Qualifiers::OCL_ExplicitNone:
972      return true;
973
974    case Qualifiers::OCL_Strong:
975    case Qualifiers::OCL_Weak:
976    case Qualifiers::OCL_Autoreleasing:
977      return false;
978
979    case Qualifiers::OCL_None:
980      if ((*this)->isObjCLifetimeType())
981        return false;
982      break;
983    }
984  }
985
986  QualType CanonicalType = getTypePtr()->CanonicalType;
987  if (CanonicalType->isDependentType())
988    return false;
989
990  // C++0x [basic.types]p9:
991  //   Scalar types, trivial class types, arrays of such types, and
992  //   cv-qualified versions of these types are collectively called trivial
993  //   types.
994
995  // As an extension, Clang treats vector types as Scalar types.
996  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
997    return true;
998  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
999    if (const CXXRecordDecl *ClassDecl =
1000        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1001      // C++0x [class]p5:
1002      //   A trivial class is a class that has a trivial default constructor
1003      if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
1004      //   and is trivially copyable.
1005      if (!ClassDecl->isTriviallyCopyable()) return false;
1006    }
1007
1008    return true;
1009  }
1010
1011  // No other types can match.
1012  return false;
1013}
1014
1015bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
1016  if ((*this)->isArrayType())
1017    return Context.getBaseElementType(*this).isTrivialType(Context);
1018
1019  if (Context.getLangOptions().ObjCAutoRefCount) {
1020    switch (getObjCLifetime()) {
1021    case Qualifiers::OCL_ExplicitNone:
1022      return true;
1023
1024    case Qualifiers::OCL_Strong:
1025    case Qualifiers::OCL_Weak:
1026    case Qualifiers::OCL_Autoreleasing:
1027      return false;
1028
1029    case Qualifiers::OCL_None:
1030      if ((*this)->isObjCLifetimeType())
1031        return false;
1032      break;
1033    }
1034  }
1035
1036  // C++0x [basic.types]p9
1037  //   Scalar types, trivially copyable class types, arrays of such types, and
1038  //   cv-qualified versions of these types are collectively called trivial
1039  //   types.
1040
1041  QualType CanonicalType = getCanonicalType();
1042  if (CanonicalType->isDependentType())
1043    return false;
1044
1045  // Return false for incomplete types after skipping any incomplete array types
1046  // which are expressly allowed by the standard and thus our API.
1047  if (CanonicalType->isIncompleteType())
1048    return false;
1049
1050  // As an extension, Clang treats vector types as Scalar types.
1051  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1052    return true;
1053
1054  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1055    if (const CXXRecordDecl *ClassDecl =
1056          dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1057      if (!ClassDecl->isTriviallyCopyable()) return false;
1058    }
1059
1060    return true;
1061  }
1062
1063  // No other types can match.
1064  return false;
1065}
1066
1067
1068
1069bool Type::isLiteralType() const {
1070  if (isDependentType())
1071    return false;
1072
1073  // C++0x [basic.types]p10:
1074  //   A type is a literal type if it is:
1075  //   [...]
1076  //   -- an array of literal type
1077  // Extension: variable arrays cannot be literal types, since they're
1078  // runtime-sized.
1079  if (isVariableArrayType())
1080    return false;
1081  const Type *BaseTy = getBaseElementTypeUnsafe();
1082  assert(BaseTy && "NULL element type");
1083
1084  // Return false for incomplete types after skipping any incomplete array
1085  // types; those are expressly allowed by the standard and thus our API.
1086  if (BaseTy->isIncompleteType())
1087    return false;
1088
1089  // Objective-C lifetime types are not literal types.
1090  if (BaseTy->isObjCRetainableType())
1091    return false;
1092
1093  // C++0x [basic.types]p10:
1094  //   A type is a literal type if it is:
1095  //    -- a scalar type; or
1096  // As an extension, Clang treats vector types as Scalar types.
1097  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1098  //    -- a reference type; or
1099  if (BaseTy->isReferenceType()) return true;
1100  //    -- a class type that has all of the following properties:
1101  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1102    if (const CXXRecordDecl *ClassDecl =
1103        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1104      //    -- a trivial destructor,
1105      if (!ClassDecl->hasTrivialDestructor()) return false;
1106      //    -- every constructor call and full-expression in the
1107      //       brace-or-equal-initializers for non-static data members (if any)
1108      //       is a constant expression,
1109      // FIXME: C++0x: Clang doesn't yet support non-static data member
1110      // declarations with initializers, or constexprs.
1111      //    -- it is an aggregate type or has at least one constexpr
1112      //       constructor or constructor template that is not a copy or move
1113      //       constructor, and
1114      if (!ClassDecl->isAggregate() &&
1115          !ClassDecl->hasConstExprNonCopyMoveConstructor())
1116        return false;
1117      //    -- all non-static data members and base classes of literal types
1118      if (ClassDecl->hasNonLiteralTypeFieldsOrBases()) return false;
1119    }
1120
1121    return true;
1122  }
1123  return false;
1124}
1125
1126bool Type::isStandardLayoutType() const {
1127  if (isDependentType())
1128    return false;
1129
1130  // C++0x [basic.types]p9:
1131  //   Scalar types, standard-layout class types, arrays of such types, and
1132  //   cv-qualified versions of these types are collectively called
1133  //   standard-layout types.
1134  const Type *BaseTy = getBaseElementTypeUnsafe();
1135  assert(BaseTy && "NULL element type");
1136
1137  // Return false for incomplete types after skipping any incomplete array
1138  // types which are expressly allowed by the standard and thus our API.
1139  if (BaseTy->isIncompleteType())
1140    return false;
1141
1142  // As an extension, Clang treats vector types as Scalar types.
1143  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1144  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1145    if (const CXXRecordDecl *ClassDecl =
1146        dyn_cast<CXXRecordDecl>(RT->getDecl()))
1147      if (!ClassDecl->isStandardLayout())
1148        return false;
1149
1150    // Default to 'true' for non-C++ class types.
1151    // FIXME: This is a bit dubious, but plain C structs should trivially meet
1152    // all the requirements of standard layout classes.
1153    return true;
1154  }
1155
1156  // No other types can match.
1157  return false;
1158}
1159
1160// This is effectively the intersection of isTrivialType and
1161// isStandardLayoutType. We implement it dircetly to avoid redundant
1162// conversions from a type to a CXXRecordDecl.
1163bool QualType::isCXX11PODType(ASTContext &Context) const {
1164  const Type *ty = getTypePtr();
1165  if (ty->isDependentType())
1166    return false;
1167
1168  if (Context.getLangOptions().ObjCAutoRefCount) {
1169    switch (getObjCLifetime()) {
1170    case Qualifiers::OCL_ExplicitNone:
1171      return true;
1172
1173    case Qualifiers::OCL_Strong:
1174    case Qualifiers::OCL_Weak:
1175    case Qualifiers::OCL_Autoreleasing:
1176      return false;
1177
1178    case Qualifiers::OCL_None:
1179      if (ty->isObjCLifetimeType())
1180        return false;
1181      break;
1182    }
1183  }
1184
1185  // C++11 [basic.types]p9:
1186  //   Scalar types, POD classes, arrays of such types, and cv-qualified
1187  //   versions of these types are collectively called trivial types.
1188  const Type *BaseTy = ty->getBaseElementTypeUnsafe();
1189  assert(BaseTy && "NULL element type");
1190
1191  // Return false for incomplete types after skipping any incomplete array
1192  // types which are expressly allowed by the standard and thus our API.
1193  if (BaseTy->isIncompleteType())
1194    return false;
1195
1196  // As an extension, Clang treats vector types as Scalar types.
1197  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1198  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1199    if (const CXXRecordDecl *ClassDecl =
1200        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1201      // C++11 [class]p10:
1202      //   A POD struct is a non-union class that is both a trivial class [...]
1203      if (!ClassDecl->isTrivial()) return false;
1204
1205      // C++11 [class]p10:
1206      //   A POD struct is a non-union class that is both a trivial class and
1207      //   a standard-layout class [...]
1208      if (!ClassDecl->isStandardLayout()) return false;
1209
1210      // C++11 [class]p10:
1211      //   A POD struct is a non-union class that is both a trivial class and
1212      //   a standard-layout class, and has no non-static data members of type
1213      //   non-POD struct, non-POD union (or array of such types). [...]
1214      //
1215      // We don't directly query the recursive aspect as the requiremets for
1216      // both standard-layout classes and trivial classes apply recursively
1217      // already.
1218    }
1219
1220    return true;
1221  }
1222
1223  // No other types can match.
1224  return false;
1225}
1226
1227bool Type::isPromotableIntegerType() const {
1228  if (const BuiltinType *BT = getAs<BuiltinType>())
1229    switch (BT->getKind()) {
1230    case BuiltinType::Bool:
1231    case BuiltinType::Char_S:
1232    case BuiltinType::Char_U:
1233    case BuiltinType::SChar:
1234    case BuiltinType::UChar:
1235    case BuiltinType::Short:
1236    case BuiltinType::UShort:
1237      return true;
1238    default:
1239      return false;
1240    }
1241
1242  // Enumerated types are promotable to their compatible integer types
1243  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1244  if (const EnumType *ET = getAs<EnumType>()){
1245    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
1246        || ET->getDecl()->isScoped())
1247      return false;
1248
1249    const BuiltinType *BT
1250      = ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
1251    return BT->getKind() == BuiltinType::Int
1252           || BT->getKind() == BuiltinType::UInt;
1253  }
1254
1255  return false;
1256}
1257
1258bool Type::isNullPtrType() const {
1259  if (const BuiltinType *BT = getAs<BuiltinType>())
1260    return BT->getKind() == BuiltinType::NullPtr;
1261  return false;
1262}
1263
1264bool Type::isSpecifierType() const {
1265  // Note that this intentionally does not use the canonical type.
1266  switch (getTypeClass()) {
1267  case Builtin:
1268  case Record:
1269  case Enum:
1270  case Typedef:
1271  case Complex:
1272  case TypeOfExpr:
1273  case TypeOf:
1274  case TemplateTypeParm:
1275  case SubstTemplateTypeParm:
1276  case TemplateSpecialization:
1277  case Elaborated:
1278  case DependentName:
1279  case DependentTemplateSpecialization:
1280  case ObjCInterface:
1281  case ObjCObject:
1282  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
1283    return true;
1284  default:
1285    return false;
1286  }
1287}
1288
1289ElaboratedTypeKeyword
1290TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
1291  switch (TypeSpec) {
1292  default: return ETK_None;
1293  case TST_typename: return ETK_Typename;
1294  case TST_class: return ETK_Class;
1295  case TST_struct: return ETK_Struct;
1296  case TST_union: return ETK_Union;
1297  case TST_enum: return ETK_Enum;
1298  }
1299}
1300
1301TagTypeKind
1302TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1303  switch(TypeSpec) {
1304  case TST_class: return TTK_Class;
1305  case TST_struct: return TTK_Struct;
1306  case TST_union: return TTK_Union;
1307  case TST_enum: return TTK_Enum;
1308  }
1309
1310  llvm_unreachable("Type specifier is not a tag type kind.");
1311  return TTK_Union;
1312}
1313
1314ElaboratedTypeKeyword
1315TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1316  switch (Kind) {
1317  case TTK_Class: return ETK_Class;
1318  case TTK_Struct: return ETK_Struct;
1319  case TTK_Union: return ETK_Union;
1320  case TTK_Enum: return ETK_Enum;
1321  }
1322  llvm_unreachable("Unknown tag type kind.");
1323}
1324
1325TagTypeKind
1326TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1327  switch (Keyword) {
1328  case ETK_Class: return TTK_Class;
1329  case ETK_Struct: return TTK_Struct;
1330  case ETK_Union: return TTK_Union;
1331  case ETK_Enum: return TTK_Enum;
1332  case ETK_None: // Fall through.
1333  case ETK_Typename:
1334    llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1335  }
1336  llvm_unreachable("Unknown elaborated type keyword.");
1337}
1338
1339bool
1340TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1341  switch (Keyword) {
1342  case ETK_None:
1343  case ETK_Typename:
1344    return false;
1345  case ETK_Class:
1346  case ETK_Struct:
1347  case ETK_Union:
1348  case ETK_Enum:
1349    return true;
1350  }
1351  llvm_unreachable("Unknown elaborated type keyword.");
1352}
1353
1354const char*
1355TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1356  switch (Keyword) {
1357  case ETK_None: return "";
1358  case ETK_Typename: return "typename";
1359  case ETK_Class:  return "class";
1360  case ETK_Struct: return "struct";
1361  case ETK_Union:  return "union";
1362  case ETK_Enum:   return "enum";
1363  }
1364
1365  llvm_unreachable("Unknown elaborated type keyword.");
1366  return "";
1367}
1368
1369DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1370                         ElaboratedTypeKeyword Keyword,
1371                         NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1372                         unsigned NumArgs, const TemplateArgument *Args,
1373                         QualType Canon)
1374  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
1375                    /*VariablyModified=*/false,
1376                    NNS && NNS->containsUnexpandedParameterPack()),
1377    NNS(NNS), Name(Name), NumArgs(NumArgs) {
1378  assert((!NNS || NNS->isDependent()) &&
1379         "DependentTemplateSpecializatonType requires dependent qualifier");
1380  for (unsigned I = 0; I != NumArgs; ++I) {
1381    if (Args[I].containsUnexpandedParameterPack())
1382      setContainsUnexpandedParameterPack();
1383
1384    new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1385  }
1386}
1387
1388void
1389DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1390                                             const ASTContext &Context,
1391                                             ElaboratedTypeKeyword Keyword,
1392                                             NestedNameSpecifier *Qualifier,
1393                                             const IdentifierInfo *Name,
1394                                             unsigned NumArgs,
1395                                             const TemplateArgument *Args) {
1396  ID.AddInteger(Keyword);
1397  ID.AddPointer(Qualifier);
1398  ID.AddPointer(Name);
1399  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1400    Args[Idx].Profile(ID, Context);
1401}
1402
1403bool Type::isElaboratedTypeSpecifier() const {
1404  ElaboratedTypeKeyword Keyword;
1405  if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1406    Keyword = Elab->getKeyword();
1407  else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1408    Keyword = DepName->getKeyword();
1409  else if (const DependentTemplateSpecializationType *DepTST =
1410             dyn_cast<DependentTemplateSpecializationType>(this))
1411    Keyword = DepTST->getKeyword();
1412  else
1413    return false;
1414
1415  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1416}
1417
1418const char *Type::getTypeClassName() const {
1419  switch (TypeBits.TC) {
1420#define ABSTRACT_TYPE(Derived, Base)
1421#define TYPE(Derived, Base) case Derived: return #Derived;
1422#include "clang/AST/TypeNodes.def"
1423  }
1424
1425  llvm_unreachable("Invalid type class.");
1426  return 0;
1427}
1428
1429const char *BuiltinType::getName(const LangOptions &LO) const {
1430  switch (getKind()) {
1431  case Void:              return "void";
1432  case Bool:              return LO.Bool ? "bool" : "_Bool";
1433  case Char_S:            return "char";
1434  case Char_U:            return "char";
1435  case SChar:             return "signed char";
1436  case Short:             return "short";
1437  case Int:               return "int";
1438  case Long:              return "long";
1439  case LongLong:          return "long long";
1440  case Int128:            return "__int128_t";
1441  case UChar:             return "unsigned char";
1442  case UShort:            return "unsigned short";
1443  case UInt:              return "unsigned int";
1444  case ULong:             return "unsigned long";
1445  case ULongLong:         return "unsigned long long";
1446  case UInt128:           return "__uint128_t";
1447  case Float:             return "float";
1448  case Double:            return "double";
1449  case LongDouble:        return "long double";
1450  case WChar_S:
1451  case WChar_U:           return "wchar_t";
1452  case Char16:            return "char16_t";
1453  case Char32:            return "char32_t";
1454  case NullPtr:           return "nullptr_t";
1455  case Overload:          return "<overloaded function type>";
1456  case BoundMember:       return "<bound member function type>";
1457  case Dependent:         return "<dependent type>";
1458  case UnknownAny:        return "<unknown type>";
1459  case ObjCId:            return "id";
1460  case ObjCClass:         return "Class";
1461  case ObjCSel:           return "SEL";
1462  }
1463
1464  llvm_unreachable("Invalid builtin type.");
1465  return 0;
1466}
1467
1468QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1469  if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1470    return RefType->getPointeeType();
1471
1472  // C++0x [basic.lval]:
1473  //   Class prvalues can have cv-qualified types; non-class prvalues always
1474  //   have cv-unqualified types.
1475  //
1476  // See also C99 6.3.2.1p2.
1477  if (!Context.getLangOptions().CPlusPlus ||
1478      (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1479    return getUnqualifiedType();
1480
1481  return *this;
1482}
1483
1484llvm::StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1485  switch (CC) {
1486  case CC_Default:
1487    llvm_unreachable("no name for default cc");
1488    return "";
1489
1490  case CC_C: return "cdecl";
1491  case CC_X86StdCall: return "stdcall";
1492  case CC_X86FastCall: return "fastcall";
1493  case CC_X86ThisCall: return "thiscall";
1494  case CC_X86Pascal: return "pascal";
1495  case CC_AAPCS: return "aapcs";
1496  case CC_AAPCS_VFP: return "aapcs-vfp";
1497  }
1498
1499  llvm_unreachable("Invalid calling convention.");
1500  return "";
1501}
1502
1503FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1504                                     unsigned numArgs, QualType canonical,
1505                                     const ExtProtoInfo &epi)
1506  : FunctionType(FunctionProto, result, epi.Variadic, epi.TypeQuals,
1507                 epi.RefQualifier, canonical,
1508                 result->isDependentType(),
1509                 result->isInstantiationDependentType(),
1510                 result->isVariablyModifiedType(),
1511                 result->containsUnexpandedParameterPack(),
1512                 epi.ExtInfo),
1513    NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1514    ExceptionSpecType(epi.ExceptionSpecType),
1515    HasAnyConsumedArgs(epi.ConsumedArguments != 0)
1516{
1517  // Fill in the trailing argument array.
1518  QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1519  for (unsigned i = 0; i != numArgs; ++i) {
1520    if (args[i]->isDependentType())
1521      setDependent();
1522    else if (args[i]->isInstantiationDependentType())
1523      setInstantiationDependent();
1524
1525    if (args[i]->containsUnexpandedParameterPack())
1526      setContainsUnexpandedParameterPack();
1527
1528    argSlot[i] = args[i];
1529  }
1530
1531  if (getExceptionSpecType() == EST_Dynamic) {
1532    // Fill in the exception array.
1533    QualType *exnSlot = argSlot + numArgs;
1534    for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1535      if (epi.Exceptions[i]->isDependentType())
1536        setDependent();
1537      else if (epi.Exceptions[i]->isInstantiationDependentType())
1538        setInstantiationDependent();
1539
1540      if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1541        setContainsUnexpandedParameterPack();
1542
1543      exnSlot[i] = epi.Exceptions[i];
1544    }
1545  } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1546    // Store the noexcept expression and context.
1547    Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1548    *noexSlot = epi.NoexceptExpr;
1549
1550    if (epi.NoexceptExpr) {
1551      if (epi.NoexceptExpr->isValueDependent()
1552          || epi.NoexceptExpr->isTypeDependent())
1553        setDependent();
1554      else if (epi.NoexceptExpr->isInstantiationDependent())
1555        setInstantiationDependent();
1556    }
1557  }
1558
1559  if (epi.ConsumedArguments) {
1560    bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
1561    for (unsigned i = 0; i != numArgs; ++i)
1562      consumedArgs[i] = epi.ConsumedArguments[i];
1563  }
1564}
1565
1566FunctionProtoType::NoexceptResult
1567FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1568  ExceptionSpecificationType est = getExceptionSpecType();
1569  if (est == EST_BasicNoexcept)
1570    return NR_Nothrow;
1571
1572  if (est != EST_ComputedNoexcept)
1573    return NR_NoNoexcept;
1574
1575  Expr *noexceptExpr = getNoexceptExpr();
1576  if (!noexceptExpr)
1577    return NR_BadNoexcept;
1578  if (noexceptExpr->isValueDependent())
1579    return NR_Dependent;
1580
1581  llvm::APSInt value;
1582  bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1583                                                   /*evaluated*/false);
1584  (void)isICE;
1585  assert(isICE && "AST should not contain bad noexcept expressions.");
1586
1587  return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1588}
1589
1590bool FunctionProtoType::isTemplateVariadic() const {
1591  for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1592    if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1593      return true;
1594
1595  return false;
1596}
1597
1598void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1599                                const QualType *ArgTys, unsigned NumArgs,
1600                                const ExtProtoInfo &epi,
1601                                const ASTContext &Context) {
1602
1603  // We have to be careful not to get ambiguous profile encodings.
1604  // Note that valid type pointers are never ambiguous with anything else.
1605  //
1606  // The encoding grammar begins:
1607  //      type type* bool int bool
1608  // If that final bool is true, then there is a section for the EH spec:
1609  //      bool type*
1610  // This is followed by an optional "consumed argument" section of the
1611  // same length as the first type sequence:
1612  //      bool*
1613  // Finally, we have the ext info:
1614  //      int
1615  //
1616  // There is no ambiguity between the consumed arguments and an empty EH
1617  // spec because of the leading 'bool' which unambiguously indicates
1618  // whether the following bool is the EH spec or part of the arguments.
1619
1620  ID.AddPointer(Result.getAsOpaquePtr());
1621  for (unsigned i = 0; i != NumArgs; ++i)
1622    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1623  // This method is relatively performance sensitive, so as a performance
1624  // shortcut, use one AddInteger call instead of four for the next four
1625  // fields.
1626  assert(!(unsigned(epi.Variadic) & ~1) &&
1627         !(unsigned(epi.TypeQuals) & ~255) &&
1628         !(unsigned(epi.RefQualifier) & ~3) &&
1629         !(unsigned(epi.ExceptionSpecType) & ~7) &&
1630         "Values larger than expected.");
1631  ID.AddInteger(unsigned(epi.Variadic) +
1632                (epi.TypeQuals << 1) +
1633                (epi.RefQualifier << 9) +
1634                (epi.ExceptionSpecType << 11));
1635  if (epi.ExceptionSpecType == EST_Dynamic) {
1636    for (unsigned i = 0; i != epi.NumExceptions; ++i)
1637      ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1638  } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1639    epi.NoexceptExpr->Profile(ID, Context, false);
1640  }
1641  if (epi.ConsumedArguments) {
1642    for (unsigned i = 0; i != NumArgs; ++i)
1643      ID.AddBoolean(epi.ConsumedArguments[i]);
1644  }
1645  epi.ExtInfo.Profile(ID);
1646}
1647
1648void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1649                                const ASTContext &Ctx) {
1650  Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1651          Ctx);
1652}
1653
1654QualType TypedefType::desugar() const {
1655  return getDecl()->getUnderlyingType();
1656}
1657
1658TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1659  : Type(TypeOfExpr, can, E->isTypeDependent(),
1660         E->isInstantiationDependent(),
1661         E->getType()->isVariablyModifiedType(),
1662         E->containsUnexpandedParameterPack()),
1663    TOExpr(E) {
1664}
1665
1666bool TypeOfExprType::isSugared() const {
1667  return !TOExpr->isTypeDependent();
1668}
1669
1670QualType TypeOfExprType::desugar() const {
1671  if (isSugared())
1672    return getUnderlyingExpr()->getType();
1673
1674  return QualType(this, 0);
1675}
1676
1677void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1678                                      const ASTContext &Context, Expr *E) {
1679  E->Profile(ID, Context, true);
1680}
1681
1682DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1683  : Type(Decltype, can, E->isTypeDependent(),
1684         E->isInstantiationDependent(),
1685         E->getType()->isVariablyModifiedType(),
1686         E->containsUnexpandedParameterPack()),
1687    E(E),
1688  UnderlyingType(underlyingType) {
1689}
1690
1691bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
1692
1693QualType DecltypeType::desugar() const {
1694  if (isSugared())
1695    return getUnderlyingType();
1696
1697  return QualType(this, 0);
1698}
1699
1700DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1701  : DecltypeType(E, Context.DependentTy), Context(Context) { }
1702
1703void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1704                                    const ASTContext &Context, Expr *E) {
1705  E->Profile(ID, Context, true);
1706}
1707
1708TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1709  : Type(TC, can, D->isDependentType(),
1710         /*InstantiationDependent=*/D->isDependentType(),
1711         /*VariablyModified=*/false,
1712         /*ContainsUnexpandedParameterPack=*/false),
1713    decl(const_cast<TagDecl*>(D)) {}
1714
1715static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1716  for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1717                                E = decl->redecls_end();
1718       I != E; ++I) {
1719    if (I->isDefinition() || I->isBeingDefined())
1720      return *I;
1721  }
1722  // If there's no definition (not even in progress), return what we have.
1723  return decl;
1724}
1725
1726UnaryTransformType::UnaryTransformType(QualType BaseType,
1727                                       QualType UnderlyingType,
1728                                       UTTKind UKind,
1729                                       QualType CanonicalType)
1730  : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
1731         UnderlyingType->isInstantiationDependentType(),
1732         UnderlyingType->isVariablyModifiedType(),
1733         BaseType->containsUnexpandedParameterPack())
1734  , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
1735{}
1736
1737TagDecl *TagType::getDecl() const {
1738  return getInterestingTagDecl(decl);
1739}
1740
1741bool TagType::isBeingDefined() const {
1742  return getDecl()->isBeingDefined();
1743}
1744
1745CXXRecordDecl *InjectedClassNameType::getDecl() const {
1746  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1747}
1748
1749bool RecordType::classof(const TagType *TT) {
1750  return isa<RecordDecl>(TT->getDecl());
1751}
1752
1753bool EnumType::classof(const TagType *TT) {
1754  return isa<EnumDecl>(TT->getDecl());
1755}
1756
1757IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
1758  return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
1759}
1760
1761SubstTemplateTypeParmPackType::
1762SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1763                              QualType Canon,
1764                              const TemplateArgument &ArgPack)
1765  : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
1766    Replaced(Param),
1767    Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1768{
1769}
1770
1771TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1772  return TemplateArgument(Arguments, NumArguments);
1773}
1774
1775void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1776  Profile(ID, getReplacedParameter(), getArgumentPack());
1777}
1778
1779void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1780                                           const TemplateTypeParmType *Replaced,
1781                                            const TemplateArgument &ArgPack) {
1782  ID.AddPointer(Replaced);
1783  ID.AddInteger(ArgPack.pack_size());
1784  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1785                                    PEnd = ArgPack.pack_end();
1786       P != PEnd; ++P)
1787    ID.AddPointer(P->getAsType().getAsOpaquePtr());
1788}
1789
1790bool TemplateSpecializationType::
1791anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
1792                              bool &InstantiationDependent) {
1793  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
1794                                       InstantiationDependent);
1795}
1796
1797bool TemplateSpecializationType::
1798anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
1799                              bool &InstantiationDependent) {
1800  for (unsigned i = 0; i != N; ++i) {
1801    if (Args[i].getArgument().isDependent()) {
1802      InstantiationDependent = true;
1803      return true;
1804    }
1805
1806    if (Args[i].getArgument().isInstantiationDependent())
1807      InstantiationDependent = true;
1808  }
1809  return false;
1810}
1811
1812bool TemplateSpecializationType::
1813anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
1814                              bool &InstantiationDependent) {
1815  for (unsigned i = 0; i != N; ++i) {
1816    if (Args[i].isDependent()) {
1817      InstantiationDependent = true;
1818      return true;
1819    }
1820
1821    if (Args[i].isInstantiationDependent())
1822      InstantiationDependent = true;
1823  }
1824  return false;
1825}
1826
1827TemplateSpecializationType::
1828TemplateSpecializationType(TemplateName T,
1829                           const TemplateArgument *Args, unsigned NumArgs,
1830                           QualType Canon, QualType AliasedType)
1831  : Type(TemplateSpecialization,
1832         Canon.isNull()? QualType(this, 0) : Canon,
1833         Canon.isNull()? T.isDependent() : Canon->isDependentType(),
1834         Canon.isNull()? T.isDependent()
1835                       : Canon->isInstantiationDependentType(),
1836         false, T.containsUnexpandedParameterPack()),
1837    Template(T), NumArgs(NumArgs) {
1838  assert(!T.getAsDependentTemplateName() &&
1839         "Use DependentTemplateSpecializationType for dependent template-name");
1840  assert((T.getKind() == TemplateName::Template ||
1841          T.getKind() == TemplateName::SubstTemplateTemplateParm ||
1842          T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
1843         "Unexpected template name for TemplateSpecializationType");
1844  bool InstantiationDependent;
1845  (void)InstantiationDependent;
1846  assert((!Canon.isNull() ||
1847          T.isDependent() ||
1848          anyDependentTemplateArguments(Args, NumArgs,
1849                                        InstantiationDependent)) &&
1850         "No canonical type for non-dependent class template specialization");
1851
1852  TemplateArgument *TemplateArgs
1853    = reinterpret_cast<TemplateArgument *>(this + 1);
1854  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1855    // Update dependent and variably-modified bits.
1856    // If the canonical type exists and is non-dependent, the template
1857    // specialization type can be non-dependent even if one of the type
1858    // arguments is. Given:
1859    //   template<typename T> using U = int;
1860    // U<T> is always non-dependent, irrespective of the type T.
1861    if (Canon.isNull() && Args[Arg].isDependent())
1862      setDependent();
1863    else if (Args[Arg].isInstantiationDependent())
1864      setInstantiationDependent();
1865
1866    if (Args[Arg].getKind() == TemplateArgument::Type &&
1867        Args[Arg].getAsType()->isVariablyModifiedType())
1868      setVariablyModified();
1869    if (Args[Arg].containsUnexpandedParameterPack())
1870      setContainsUnexpandedParameterPack();
1871
1872    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1873  }
1874
1875  // Store the aliased type if this is a type alias template specialization.
1876  bool IsTypeAlias = !AliasedType.isNull();
1877  assert(IsTypeAlias == isTypeAlias() &&
1878         "allocated wrong size for type alias");
1879  if (IsTypeAlias) {
1880    TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
1881    *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
1882  }
1883}
1884
1885void
1886TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1887                                    TemplateName T,
1888                                    const TemplateArgument *Args,
1889                                    unsigned NumArgs,
1890                                    const ASTContext &Context) {
1891  T.Profile(ID);
1892  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1893    Args[Idx].Profile(ID, Context);
1894}
1895
1896bool TemplateSpecializationType::isTypeAlias() const {
1897  TemplateDecl *D = Template.getAsTemplateDecl();
1898  return D && isa<TypeAliasTemplateDecl>(D);
1899}
1900
1901QualType
1902QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1903  if (!hasNonFastQualifiers())
1904    return QT.withFastQualifiers(getFastQualifiers());
1905
1906  return Context.getQualifiedType(QT, *this);
1907}
1908
1909QualType
1910QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1911  if (!hasNonFastQualifiers())
1912    return QualType(T, getFastQualifiers());
1913
1914  return Context.getQualifiedType(T, *this);
1915}
1916
1917void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1918                                 QualType BaseType,
1919                                 ObjCProtocolDecl * const *Protocols,
1920                                 unsigned NumProtocols) {
1921  ID.AddPointer(BaseType.getAsOpaquePtr());
1922  for (unsigned i = 0; i != NumProtocols; i++)
1923    ID.AddPointer(Protocols[i]);
1924}
1925
1926void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1927  Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1928}
1929
1930namespace {
1931
1932/// \brief The cached properties of a type.
1933class CachedProperties {
1934  char linkage;
1935  char visibility;
1936  bool local;
1937
1938public:
1939  CachedProperties(Linkage linkage, Visibility visibility, bool local)
1940    : linkage(linkage), visibility(visibility), local(local) {}
1941
1942  Linkage getLinkage() const { return (Linkage) linkage; }
1943  Visibility getVisibility() const { return (Visibility) visibility; }
1944  bool hasLocalOrUnnamedType() const { return local; }
1945
1946  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1947    return CachedProperties(minLinkage(L.getLinkage(), R.getLinkage()),
1948                            minVisibility(L.getVisibility(), R.getVisibility()),
1949                         L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1950  }
1951};
1952}
1953
1954static CachedProperties computeCachedProperties(const Type *T);
1955
1956namespace clang {
1957/// The type-property cache.  This is templated so as to be
1958/// instantiated at an internal type to prevent unnecessary symbol
1959/// leakage.
1960template <class Private> class TypePropertyCache {
1961public:
1962  static CachedProperties get(QualType T) {
1963    return get(T.getTypePtr());
1964  }
1965
1966  static CachedProperties get(const Type *T) {
1967    ensure(T);
1968    return CachedProperties(T->TypeBits.getLinkage(),
1969                            T->TypeBits.getVisibility(),
1970                            T->TypeBits.hasLocalOrUnnamedType());
1971  }
1972
1973  static void ensure(const Type *T) {
1974    // If the cache is valid, we're okay.
1975    if (T->TypeBits.isCacheValid()) return;
1976
1977    // If this type is non-canonical, ask its canonical type for the
1978    // relevant information.
1979    if (!T->isCanonicalUnqualified()) {
1980      const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
1981      ensure(CT);
1982      T->TypeBits.CacheValidAndVisibility =
1983        CT->TypeBits.CacheValidAndVisibility;
1984      T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
1985      T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
1986      return;
1987    }
1988
1989    // Compute the cached properties and then set the cache.
1990    CachedProperties Result = computeCachedProperties(T);
1991    T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
1992    assert(T->TypeBits.isCacheValid() &&
1993           T->TypeBits.getVisibility() == Result.getVisibility());
1994    T->TypeBits.CachedLinkage = Result.getLinkage();
1995    T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
1996  }
1997};
1998}
1999
2000// Instantiate the friend template at a private class.  In a
2001// reasonable implementation, these symbols will be internal.
2002// It is terrible that this is the best way to accomplish this.
2003namespace { class Private {}; }
2004typedef TypePropertyCache<Private> Cache;
2005
2006static CachedProperties computeCachedProperties(const Type *T) {
2007  switch (T->getTypeClass()) {
2008#define TYPE(Class,Base)
2009#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
2010#include "clang/AST/TypeNodes.def"
2011    llvm_unreachable("didn't expect a non-canonical type here");
2012
2013#define TYPE(Class,Base)
2014#define DEPENDENT_TYPE(Class,Base) case Type::Class:
2015#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
2016#include "clang/AST/TypeNodes.def"
2017    // Treat instantiation-dependent types as external.
2018    assert(T->isInstantiationDependentType());
2019    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
2020
2021  case Type::Builtin:
2022    // C++ [basic.link]p8:
2023    //   A type is said to have linkage if and only if:
2024    //     - it is a fundamental type (3.9.1); or
2025    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
2026
2027  case Type::Record:
2028  case Type::Enum: {
2029    const TagDecl *Tag = cast<TagType>(T)->getDecl();
2030
2031    // C++ [basic.link]p8:
2032    //     - it is a class or enumeration type that is named (or has a name
2033    //       for linkage purposes (7.1.3)) and the name has linkage; or
2034    //     -  it is a specialization of a class template (14); or
2035    NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
2036    bool IsLocalOrUnnamed =
2037      Tag->getDeclContext()->isFunctionOrMethod() ||
2038      (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
2039    return CachedProperties(LV.linkage(), LV.visibility(), IsLocalOrUnnamed);
2040  }
2041
2042    // C++ [basic.link]p8:
2043    //   - it is a compound type (3.9.2) other than a class or enumeration,
2044    //     compounded exclusively from types that have linkage; or
2045  case Type::Complex:
2046    return Cache::get(cast<ComplexType>(T)->getElementType());
2047  case Type::Pointer:
2048    return Cache::get(cast<PointerType>(T)->getPointeeType());
2049  case Type::BlockPointer:
2050    return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
2051  case Type::LValueReference:
2052  case Type::RValueReference:
2053    return Cache::get(cast<ReferenceType>(T)->getPointeeType());
2054  case Type::MemberPointer: {
2055    const MemberPointerType *MPT = cast<MemberPointerType>(T);
2056    return merge(Cache::get(MPT->getClass()),
2057                 Cache::get(MPT->getPointeeType()));
2058  }
2059  case Type::ConstantArray:
2060  case Type::IncompleteArray:
2061  case Type::VariableArray:
2062    return Cache::get(cast<ArrayType>(T)->getElementType());
2063  case Type::Vector:
2064  case Type::ExtVector:
2065    return Cache::get(cast<VectorType>(T)->getElementType());
2066  case Type::FunctionNoProto:
2067    return Cache::get(cast<FunctionType>(T)->getResultType());
2068  case Type::FunctionProto: {
2069    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2070    CachedProperties result = Cache::get(FPT->getResultType());
2071    for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
2072           ae = FPT->arg_type_end(); ai != ae; ++ai)
2073      result = merge(result, Cache::get(*ai));
2074    return result;
2075  }
2076  case Type::ObjCInterface: {
2077    NamedDecl::LinkageInfo LV =
2078      cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
2079    return CachedProperties(LV.linkage(), LV.visibility(), false);
2080  }
2081  case Type::ObjCObject:
2082    return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
2083  case Type::ObjCObjectPointer:
2084    return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
2085  }
2086
2087  llvm_unreachable("unhandled type class");
2088
2089  // C++ [basic.link]p8:
2090  //   Names not covered by these rules have no linkage.
2091  return CachedProperties(NoLinkage, DefaultVisibility, false);
2092}
2093
2094/// \brief Determine the linkage of this type.
2095Linkage Type::getLinkage() const {
2096  Cache::ensure(this);
2097  return TypeBits.getLinkage();
2098}
2099
2100/// \brief Determine the linkage of this type.
2101Visibility Type::getVisibility() const {
2102  Cache::ensure(this);
2103  return TypeBits.getVisibility();
2104}
2105
2106bool Type::hasUnnamedOrLocalType() const {
2107  Cache::ensure(this);
2108  return TypeBits.hasLocalOrUnnamedType();
2109}
2110
2111std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
2112  Cache::ensure(this);
2113  return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
2114}
2115
2116void Type::ClearLinkageCache() {
2117  TypeBits.CacheValidAndVisibility = 0;
2118  if (QualType(this, 0) != CanonicalType)
2119    CanonicalType->TypeBits.CacheValidAndVisibility = 0;
2120}
2121
2122Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
2123  if (isObjCARCImplicitlyUnretainedType())
2124    return Qualifiers::OCL_ExplicitNone;
2125  return Qualifiers::OCL_Strong;
2126}
2127
2128bool Type::isObjCARCImplicitlyUnretainedType() const {
2129  assert(isObjCLifetimeType() &&
2130         "cannot query implicit lifetime for non-inferrable type");
2131
2132  const Type *canon = getCanonicalTypeInternal().getTypePtr();
2133
2134  // Walk down to the base type.  We don't care about qualifiers for this.
2135  while (const ArrayType *array = dyn_cast<ArrayType>(canon))
2136    canon = array->getElementType().getTypePtr();
2137
2138  if (const ObjCObjectPointerType *opt
2139        = dyn_cast<ObjCObjectPointerType>(canon)) {
2140    // Class and Class<Protocol> don't require retension.
2141    if (opt->getObjectType()->isObjCClass())
2142      return true;
2143  }
2144
2145  return false;
2146}
2147
2148bool Type::isObjCNSObjectType() const {
2149  if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
2150    return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
2151  return false;
2152}
2153bool Type::isObjCRetainableType() const {
2154  return isObjCObjectPointerType() ||
2155         isBlockPointerType() ||
2156         isObjCNSObjectType();
2157}
2158bool Type::isObjCIndirectLifetimeType() const {
2159  if (isObjCLifetimeType())
2160    return true;
2161  if (const PointerType *OPT = getAs<PointerType>())
2162    return OPT->getPointeeType()->isObjCIndirectLifetimeType();
2163  if (const ReferenceType *Ref = getAs<ReferenceType>())
2164    return Ref->getPointeeType()->isObjCIndirectLifetimeType();
2165  if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
2166    return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
2167  return false;
2168}
2169
2170/// Returns true if objects of this type have lifetime semantics under
2171/// ARC.
2172bool Type::isObjCLifetimeType() const {
2173  const Type *type = this;
2174  while (const ArrayType *array = type->getAsArrayTypeUnsafe())
2175    type = array->getElementType().getTypePtr();
2176  return type->isObjCRetainableType();
2177}
2178
2179/// \brief Determine whether the given type T is a "bridgable" Objective-C type,
2180/// which is either an Objective-C object pointer type or an
2181bool Type::isObjCARCBridgableType() const {
2182  return isObjCObjectPointerType() || isBlockPointerType();
2183}
2184
2185/// \brief Determine whether the given type T is a "bridgeable" C type.
2186bool Type::isCARCBridgableType() const {
2187  const PointerType *Pointer = getAs<PointerType>();
2188  if (!Pointer)
2189    return false;
2190
2191  QualType Pointee = Pointer->getPointeeType();
2192  return Pointee->isVoidType() || Pointee->isRecordType();
2193}
2194
2195bool Type::hasSizedVLAType() const {
2196  if (!isVariablyModifiedType()) return false;
2197
2198  if (const PointerType *ptr = getAs<PointerType>())
2199    return ptr->getPointeeType()->hasSizedVLAType();
2200  if (const ReferenceType *ref = getAs<ReferenceType>())
2201    return ref->getPointeeType()->hasSizedVLAType();
2202  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
2203    if (isa<VariableArrayType>(arr) &&
2204        cast<VariableArrayType>(arr)->getSizeExpr())
2205      return true;
2206
2207    return arr->getElementType()->hasSizedVLAType();
2208  }
2209
2210  return false;
2211}
2212
2213QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
2214  switch (type.getObjCLifetime()) {
2215  case Qualifiers::OCL_None:
2216  case Qualifiers::OCL_ExplicitNone:
2217  case Qualifiers::OCL_Autoreleasing:
2218    break;
2219
2220  case Qualifiers::OCL_Strong:
2221    return DK_objc_strong_lifetime;
2222  case Qualifiers::OCL_Weak:
2223    return DK_objc_weak_lifetime;
2224  }
2225
2226  /// Currently, the only destruction kind we recognize is C++ objects
2227  /// with non-trivial destructors.
2228  const CXXRecordDecl *record =
2229    type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2230  if (record && !record->hasTrivialDestructor())
2231    return DK_cxx_destructor;
2232
2233  return DK_none;
2234}
2235
2236bool QualType::hasTrivialCopyAssignment(ASTContext &Context) const {
2237  switch (getObjCLifetime()) {
2238  case Qualifiers::OCL_None:
2239    break;
2240
2241  case Qualifiers::OCL_ExplicitNone:
2242    return true;
2243
2244  case Qualifiers::OCL_Autoreleasing:
2245  case Qualifiers::OCL_Strong:
2246  case Qualifiers::OCL_Weak:
2247    return !Context.getLangOptions().ObjCAutoRefCount;
2248  }
2249
2250  if (const CXXRecordDecl *Record
2251            = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
2252    return Record->hasTrivialCopyAssignment();
2253
2254  return true;
2255}
2256