Type.cpp revision 202879
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Type.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24
25bool QualType::isConstant(QualType T, ASTContext &Ctx) {
26  if (T.isConstQualified())
27    return true;
28
29  if (const ArrayType *AT = Ctx.getAsArrayType(T))
30    return AT->getElementType().isConstant(Ctx);
31
32  return false;
33}
34
35void Type::Destroy(ASTContext& C) {
36  this->~Type();
37  C.Deallocate(this);
38}
39
40void VariableArrayType::Destroy(ASTContext& C) {
41  if (SizeExpr)
42    SizeExpr->Destroy(C);
43  this->~VariableArrayType();
44  C.Deallocate(this);
45}
46
47void DependentSizedArrayType::Destroy(ASTContext& C) {
48  // FIXME: Resource contention like in ConstantArrayWithExprType ?
49  // May crash, depending on platform or a particular build.
50  // SizeExpr->Destroy(C);
51  this->~DependentSizedArrayType();
52  C.Deallocate(this);
53}
54
55void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
56                                      ASTContext &Context,
57                                      QualType ET,
58                                      ArraySizeModifier SizeMod,
59                                      unsigned TypeQuals,
60                                      Expr *E) {
61  ID.AddPointer(ET.getAsOpaquePtr());
62  ID.AddInteger(SizeMod);
63  ID.AddInteger(TypeQuals);
64  E->Profile(ID, Context, true);
65}
66
67void
68DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
69                                     ASTContext &Context,
70                                     QualType ElementType, Expr *SizeExpr) {
71  ID.AddPointer(ElementType.getAsOpaquePtr());
72  SizeExpr->Profile(ID, Context, true);
73}
74
75void DependentSizedExtVectorType::Destroy(ASTContext& C) {
76  // FIXME: Deallocate size expression, once we're cloning properly.
77//  if (SizeExpr)
78//    SizeExpr->Destroy(C);
79  this->~DependentSizedExtVectorType();
80  C.Deallocate(this);
81}
82
83/// getArrayElementTypeNoTypeQual - If this is an array type, return the
84/// element type of the array, potentially with type qualifiers missing.
85/// This method should never be used when type qualifiers are meaningful.
86const Type *Type::getArrayElementTypeNoTypeQual() const {
87  // If this is directly an array type, return it.
88  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
89    return ATy->getElementType().getTypePtr();
90
91  // If the canonical form of this type isn't the right kind, reject it.
92  if (!isa<ArrayType>(CanonicalType))
93    return 0;
94
95  // If this is a typedef for an array type, strip the typedef off without
96  // losing all typedef information.
97  return cast<ArrayType>(getUnqualifiedDesugaredType())
98    ->getElementType().getTypePtr();
99}
100
101/// \brief Retrieve the unqualified variant of the given type, removing as
102/// little sugar as possible.
103///
104/// This routine looks through various kinds of sugar to find the
105/// least-desuraged type that is unqualified. For example, given:
106///
107/// \code
108/// typedef int Integer;
109/// typedef const Integer CInteger;
110/// typedef CInteger DifferenceType;
111/// \endcode
112///
113/// Executing \c getUnqualifiedTypeSlow() on the type \c DifferenceType will
114/// desugar until we hit the type \c Integer, which has no qualifiers on it.
115QualType QualType::getUnqualifiedTypeSlow() const {
116  QualType Cur = *this;
117  while (true) {
118    if (!Cur.hasQualifiers())
119      return Cur;
120
121    const Type *CurTy = Cur.getTypePtr();
122    switch (CurTy->getTypeClass()) {
123#define ABSTRACT_TYPE(Class, Parent)
124#define TYPE(Class, Parent)                                  \
125    case Type::Class: {                                      \
126      const Class##Type *Ty = cast<Class##Type>(CurTy);      \
127      if (!Ty->isSugared())                                  \
128        return Cur.getLocalUnqualifiedType();                \
129      Cur = Ty->desugar();                                   \
130      break;                                                 \
131    }
132#include "clang/AST/TypeNodes.def"
133    }
134  }
135
136  return Cur.getUnqualifiedType();
137}
138
139/// getDesugaredType - Return the specified type with any "sugar" removed from
140/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
141/// the type is already concrete, it returns it unmodified.  This is similar
142/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
143/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
144/// concrete.
145QualType QualType::getDesugaredType(QualType T) {
146  QualifierCollector Qs;
147
148  QualType Cur = T;
149  while (true) {
150    const Type *CurTy = Qs.strip(Cur);
151    switch (CurTy->getTypeClass()) {
152#define ABSTRACT_TYPE(Class, Parent)
153#define TYPE(Class, Parent) \
154    case Type::Class: { \
155      const Class##Type *Ty = cast<Class##Type>(CurTy); \
156      if (!Ty->isSugared()) \
157        return Qs.apply(Cur); \
158      Cur = Ty->desugar(); \
159      break; \
160    }
161#include "clang/AST/TypeNodes.def"
162    }
163  }
164}
165
166/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
167/// sugar off the given type.  This should produce an object of the
168/// same dynamic type as the canonical type.
169const Type *Type::getUnqualifiedDesugaredType() const {
170  const Type *Cur = this;
171
172  while (true) {
173    switch (Cur->getTypeClass()) {
174#define ABSTRACT_TYPE(Class, Parent)
175#define TYPE(Class, Parent) \
176    case Class: { \
177      const Class##Type *Ty = cast<Class##Type>(Cur); \
178      if (!Ty->isSugared()) return Cur; \
179      Cur = Ty->desugar().getTypePtr(); \
180      break; \
181    }
182#include "clang/AST/TypeNodes.def"
183    }
184  }
185}
186
187/// isVoidType - Helper method to determine if this is the 'void' type.
188bool Type::isVoidType() const {
189  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
190    return BT->getKind() == BuiltinType::Void;
191  return false;
192}
193
194bool Type::isObjectType() const {
195  if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType) ||
196      isa<IncompleteArrayType>(CanonicalType) || isVoidType())
197    return false;
198  return true;
199}
200
201bool Type::isDerivedType() const {
202  switch (CanonicalType->getTypeClass()) {
203  case Pointer:
204  case VariableArray:
205  case ConstantArray:
206  case IncompleteArray:
207  case FunctionProto:
208  case FunctionNoProto:
209  case LValueReference:
210  case RValueReference:
211  case Record:
212    return true;
213  default:
214    return false;
215  }
216}
217
218bool Type::isClassType() const {
219  if (const RecordType *RT = getAs<RecordType>())
220    return RT->getDecl()->isClass();
221  return false;
222}
223bool Type::isStructureType() const {
224  if (const RecordType *RT = getAs<RecordType>())
225    return RT->getDecl()->isStruct();
226  return false;
227}
228bool Type::isVoidPointerType() const {
229  if (const PointerType *PT = getAs<PointerType>())
230    return PT->getPointeeType()->isVoidType();
231  return false;
232}
233
234bool Type::isUnionType() const {
235  if (const RecordType *RT = getAs<RecordType>())
236    return RT->getDecl()->isUnion();
237  return false;
238}
239
240bool Type::isComplexType() const {
241  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
242    return CT->getElementType()->isFloatingType();
243  return false;
244}
245
246bool Type::isComplexIntegerType() const {
247  // Check for GCC complex integer extension.
248  return getAsComplexIntegerType();
249}
250
251const ComplexType *Type::getAsComplexIntegerType() const {
252  if (const ComplexType *Complex = getAs<ComplexType>())
253    if (Complex->getElementType()->isIntegerType())
254      return Complex;
255  return 0;
256}
257
258QualType Type::getPointeeType() const {
259  if (const PointerType *PT = getAs<PointerType>())
260    return PT->getPointeeType();
261  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
262    return OPT->getPointeeType();
263  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
264    return BPT->getPointeeType();
265  if (const ReferenceType *RT = getAs<ReferenceType>())
266    return RT->getPointeeType();
267  return QualType();
268}
269
270/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
271/// array types and types that contain variable array types in their
272/// declarator
273bool Type::isVariablyModifiedType() const {
274  // A VLA is a variably modified type.
275  if (isVariableArrayType())
276    return true;
277
278  // An array can contain a variably modified type
279  if (const Type *T = getArrayElementTypeNoTypeQual())
280    return T->isVariablyModifiedType();
281
282  // A pointer can point to a variably modified type.
283  // Also, C++ references and member pointers can point to a variably modified
284  // type, where VLAs appear as an extension to C++, and should be treated
285  // correctly.
286  if (const PointerType *PT = getAs<PointerType>())
287    return PT->getPointeeType()->isVariablyModifiedType();
288  if (const ReferenceType *RT = getAs<ReferenceType>())
289    return RT->getPointeeType()->isVariablyModifiedType();
290  if (const MemberPointerType *PT = getAs<MemberPointerType>())
291    return PT->getPointeeType()->isVariablyModifiedType();
292
293  // A function can return a variably modified type
294  // This one isn't completely obvious, but it follows from the
295  // definition in C99 6.7.5p3. Because of this rule, it's
296  // illegal to declare a function returning a variably modified type.
297  if (const FunctionType *FT = getAs<FunctionType>())
298    return FT->getResultType()->isVariablyModifiedType();
299
300  return false;
301}
302
303const RecordType *Type::getAsStructureType() const {
304  // If this is directly a structure type, return it.
305  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
306    if (RT->getDecl()->isStruct())
307      return RT;
308  }
309
310  // If the canonical form of this type isn't the right kind, reject it.
311  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
312    if (!RT->getDecl()->isStruct())
313      return 0;
314
315    // If this is a typedef for a structure type, strip the typedef off without
316    // losing all typedef information.
317    return cast<RecordType>(getUnqualifiedDesugaredType());
318  }
319  return 0;
320}
321
322const RecordType *Type::getAsUnionType() const {
323  // If this is directly a union type, return it.
324  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
325    if (RT->getDecl()->isUnion())
326      return RT;
327  }
328
329  // If the canonical form of this type isn't the right kind, reject it.
330  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
331    if (!RT->getDecl()->isUnion())
332      return 0;
333
334    // If this is a typedef for a union type, strip the typedef off without
335    // losing all typedef information.
336    return cast<RecordType>(getUnqualifiedDesugaredType());
337  }
338
339  return 0;
340}
341
342ObjCInterfaceType::ObjCInterfaceType(ASTContext &Ctx, QualType Canonical,
343                                     ObjCInterfaceDecl *D,
344                                     ObjCProtocolDecl **Protos, unsigned NumP) :
345  Type(ObjCInterface, Canonical, /*Dependent=*/false),
346  Decl(D), Protocols(0), NumProtocols(NumP)
347{
348  if (NumProtocols) {
349    Protocols = new (Ctx) ObjCProtocolDecl*[NumProtocols];
350    memcpy(Protocols, Protos, NumProtocols * sizeof(*Protocols));
351  }
352}
353
354void ObjCInterfaceType::Destroy(ASTContext& C) {
355  if (Protocols)
356    C.Deallocate(Protocols);
357  this->~ObjCInterfaceType();
358  C.Deallocate(this);
359}
360
361const ObjCInterfaceType *Type::getAsObjCQualifiedInterfaceType() const {
362  // There is no sugar for ObjCInterfaceType's, just return the canonical
363  // type pointer if it is the right class.  There is no typedef information to
364  // return and these cannot be Address-space qualified.
365  if (const ObjCInterfaceType *OIT = getAs<ObjCInterfaceType>())
366    if (OIT->getNumProtocols())
367      return OIT;
368  return 0;
369}
370
371bool Type::isObjCQualifiedInterfaceType() const {
372  return getAsObjCQualifiedInterfaceType() != 0;
373}
374
375ObjCObjectPointerType::ObjCObjectPointerType(ASTContext &Ctx,
376                                             QualType Canonical, QualType T,
377                                             ObjCProtocolDecl **Protos,
378                                             unsigned NumP) :
379  Type(ObjCObjectPointer, Canonical, /*Dependent=*/false),
380  PointeeType(T), Protocols(NULL), NumProtocols(NumP)
381{
382  if (NumProtocols) {
383    Protocols = new (Ctx) ObjCProtocolDecl*[NumProtocols];
384    memcpy(Protocols, Protos, NumProtocols * sizeof(*Protocols));
385  }
386}
387
388void ObjCObjectPointerType::Destroy(ASTContext& C) {
389  if (Protocols)
390    C.Deallocate(Protocols);
391  this->~ObjCObjectPointerType();
392  C.Deallocate(this);
393}
394
395const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
396  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
397  // type pointer if it is the right class.
398  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
399    if (OPT->isObjCQualifiedIdType())
400      return OPT;
401  }
402  return 0;
403}
404
405const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
406  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
407    if (OPT->getInterfaceType())
408      return OPT;
409  }
410  return 0;
411}
412
413const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
414  if (const PointerType *PT = getAs<PointerType>())
415    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
416      return dyn_cast<CXXRecordDecl>(RT->getDecl());
417  return 0;
418}
419
420bool Type::isIntegerType() const {
421  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
422    return BT->getKind() >= BuiltinType::Bool &&
423           BT->getKind() <= BuiltinType::Int128;
424  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
425    // Incomplete enum types are not treated as integer types.
426    // FIXME: In C++, enum types are never integer types.
427    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
428      return true;
429  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
430    return VT->getElementType()->isIntegerType();
431  return false;
432}
433
434bool Type::isIntegralType() const {
435  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
436    return BT->getKind() >= BuiltinType::Bool &&
437    BT->getKind() <= BuiltinType::Int128;
438  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
439    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
440      return true;  // Complete enum types are integral.
441                    // FIXME: In C++, enum types are never integral.
442  return false;
443}
444
445bool Type::isEnumeralType() const {
446  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
447    return TT->getDecl()->isEnum();
448  return false;
449}
450
451bool Type::isBooleanType() const {
452  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
453    return BT->getKind() == BuiltinType::Bool;
454  return false;
455}
456
457bool Type::isCharType() const {
458  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
459    return BT->getKind() == BuiltinType::Char_U ||
460           BT->getKind() == BuiltinType::UChar ||
461           BT->getKind() == BuiltinType::Char_S ||
462           BT->getKind() == BuiltinType::SChar;
463  return false;
464}
465
466bool Type::isWideCharType() const {
467  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
468    return BT->getKind() == BuiltinType::WChar;
469  return false;
470}
471
472/// \brief Determine whether this type is any of the built-in character
473/// types.
474bool Type::isAnyCharacterType() const {
475  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
476    return (BT->getKind() >= BuiltinType::Char_U &&
477            BT->getKind() <= BuiltinType::Char32) ||
478           (BT->getKind() >= BuiltinType::Char_S &&
479            BT->getKind() <= BuiltinType::WChar);
480
481  return false;
482}
483
484/// isSignedIntegerType - Return true if this is an integer type that is
485/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
486/// an enum decl which has a signed representation, or a vector of signed
487/// integer element type.
488bool Type::isSignedIntegerType() const {
489  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
490    return BT->getKind() >= BuiltinType::Char_S &&
491           BT->getKind() <= BuiltinType::Int128;
492  }
493
494  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
495    return ET->getDecl()->getIntegerType()->isSignedIntegerType();
496
497  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
498    return VT->getElementType()->isSignedIntegerType();
499  return false;
500}
501
502/// isUnsignedIntegerType - Return true if this is an integer type that is
503/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
504/// decl which has an unsigned representation, or a vector of unsigned integer
505/// element type.
506bool Type::isUnsignedIntegerType() const {
507  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
508    return BT->getKind() >= BuiltinType::Bool &&
509           BT->getKind() <= BuiltinType::UInt128;
510  }
511
512  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
513    return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
514
515  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
516    return VT->getElementType()->isUnsignedIntegerType();
517  return false;
518}
519
520bool Type::isFloatingType() const {
521  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
522    return BT->getKind() >= BuiltinType::Float &&
523           BT->getKind() <= BuiltinType::LongDouble;
524  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
525    return CT->getElementType()->isFloatingType();
526  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
527    return VT->getElementType()->isFloatingType();
528  return false;
529}
530
531bool Type::isRealFloatingType() const {
532  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
533    return BT->isFloatingPoint();
534  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
535    return VT->getElementType()->isRealFloatingType();
536  return false;
537}
538
539bool Type::isRealType() const {
540  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
541    return BT->getKind() >= BuiltinType::Bool &&
542           BT->getKind() <= BuiltinType::LongDouble;
543  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
544    return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
545  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
546    return VT->getElementType()->isRealType();
547  return false;
548}
549
550bool Type::isArithmeticType() const {
551  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
552    return BT->getKind() >= BuiltinType::Bool &&
553           BT->getKind() <= BuiltinType::LongDouble;
554  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
555    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
556    // If a body isn't seen by the time we get here, return false.
557    return ET->getDecl()->isDefinition();
558  return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
559}
560
561bool Type::isScalarType() const {
562  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
563    return BT->getKind() != BuiltinType::Void;
564  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
565    // Enums are scalar types, but only if they are defined.  Incomplete enums
566    // are not treated as scalar types.
567    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
568      return true;
569    return false;
570  }
571  return isa<PointerType>(CanonicalType) ||
572         isa<BlockPointerType>(CanonicalType) ||
573         isa<MemberPointerType>(CanonicalType) ||
574         isa<ComplexType>(CanonicalType) ||
575         isa<ObjCObjectPointerType>(CanonicalType);
576}
577
578/// \brief Determines whether the type is a C++ aggregate type or C
579/// aggregate or union type.
580///
581/// An aggregate type is an array or a class type (struct, union, or
582/// class) that has no user-declared constructors, no private or
583/// protected non-static data members, no base classes, and no virtual
584/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
585/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
586/// includes union types.
587bool Type::isAggregateType() const {
588  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
589    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
590      return ClassDecl->isAggregate();
591
592    return true;
593  }
594
595  return isa<ArrayType>(CanonicalType);
596}
597
598/// isConstantSizeType - Return true if this is not a variable sized type,
599/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
600/// incomplete types or dependent types.
601bool Type::isConstantSizeType() const {
602  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
603  assert(!isDependentType() && "This doesn't make sense for dependent types");
604  // The VAT must have a size, as it is known to be complete.
605  return !isa<VariableArrayType>(CanonicalType);
606}
607
608/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
609/// - a type that can describe objects, but which lacks information needed to
610/// determine its size.
611bool Type::isIncompleteType() const {
612  switch (CanonicalType->getTypeClass()) {
613  default: return false;
614  case Builtin:
615    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
616    // be completed.
617    return isVoidType();
618  case Record:
619  case Enum:
620    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
621    // forward declaration, but not a full definition (C99 6.2.5p22).
622    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
623  case ConstantArray:
624    // An array is incomplete if its element type is incomplete
625    // (C++ [dcl.array]p1).
626    // We don't handle variable arrays (they're not allowed in C++) or
627    // dependent-sized arrays (dependent types are never treated as incomplete).
628    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
629  case IncompleteArray:
630    // An array of unknown size is an incomplete type (C99 6.2.5p22).
631    return true;
632  case ObjCInterface:
633    // ObjC interfaces are incomplete if they are @class, not @interface.
634    return cast<ObjCInterfaceType>(this)->getDecl()->isForwardDecl();
635  }
636}
637
638/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
639bool Type::isPODType() const {
640  // The compiler shouldn't query this for incomplete types, but the user might.
641  // We return false for that case.
642  if (isIncompleteType())
643    return false;
644
645  switch (CanonicalType->getTypeClass()) {
646    // Everything not explicitly mentioned is not POD.
647  default: return false;
648  case VariableArray:
649  case ConstantArray:
650    // IncompleteArray is caught by isIncompleteType() above.
651    return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
652
653  case Builtin:
654  case Complex:
655  case Pointer:
656  case MemberPointer:
657  case Vector:
658  case ExtVector:
659  case ObjCObjectPointer:
660    return true;
661
662  case Enum:
663    return true;
664
665  case Record:
666    if (CXXRecordDecl *ClassDecl
667          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
668      return ClassDecl->isPOD();
669
670    // C struct/union is POD.
671    return true;
672  }
673}
674
675bool Type::isLiteralType() const {
676  if (isIncompleteType())
677    return false;
678
679  // C++0x [basic.types]p10:
680  //   A type is a literal type if it is:
681  switch (CanonicalType->getTypeClass()) {
682    // We're whitelisting
683  default: return false;
684
685    //   -- a scalar type
686  case Builtin:
687  case Complex:
688  case Pointer:
689  case MemberPointer:
690  case Vector:
691  case ExtVector:
692  case ObjCObjectPointer:
693  case Enum:
694    return true;
695
696    //   -- a class type with ...
697  case Record:
698    // FIXME: Do the tests
699    return false;
700
701    //   -- an array of literal type
702    // Extension: variable arrays cannot be literal types, since they're
703    // runtime-sized.
704  case ConstantArray:
705    return cast<ArrayType>(CanonicalType)->getElementType()->isLiteralType();
706  }
707}
708
709bool Type::isPromotableIntegerType() const {
710  if (const BuiltinType *BT = getAs<BuiltinType>())
711    switch (BT->getKind()) {
712    case BuiltinType::Bool:
713    case BuiltinType::Char_S:
714    case BuiltinType::Char_U:
715    case BuiltinType::SChar:
716    case BuiltinType::UChar:
717    case BuiltinType::Short:
718    case BuiltinType::UShort:
719      return true;
720    default:
721      return false;
722    }
723  return false;
724}
725
726bool Type::isNullPtrType() const {
727  if (const BuiltinType *BT = getAs<BuiltinType>())
728    return BT->getKind() == BuiltinType::NullPtr;
729  return false;
730}
731
732bool Type::isSpecifierType() const {
733  // Note that this intentionally does not use the canonical type.
734  switch (getTypeClass()) {
735  case Builtin:
736  case Record:
737  case Enum:
738  case Typedef:
739  case Complex:
740  case TypeOfExpr:
741  case TypeOf:
742  case TemplateTypeParm:
743  case SubstTemplateTypeParm:
744  case TemplateSpecialization:
745  case QualifiedName:
746  case Typename:
747  case ObjCInterface:
748  case ObjCObjectPointer:
749  case Elaborated:
750    return true;
751  default:
752    return false;
753  }
754}
755
756const char *Type::getTypeClassName() const {
757  switch (TC) {
758  default: assert(0 && "Type class not in TypeNodes.def!");
759#define ABSTRACT_TYPE(Derived, Base)
760#define TYPE(Derived, Base) case Derived: return #Derived;
761#include "clang/AST/TypeNodes.def"
762  }
763}
764
765const char *BuiltinType::getName(const LangOptions &LO) const {
766  switch (getKind()) {
767  default: assert(0 && "Unknown builtin type!");
768  case Void:              return "void";
769  case Bool:              return LO.Bool ? "bool" : "_Bool";
770  case Char_S:            return "char";
771  case Char_U:            return "char";
772  case SChar:             return "signed char";
773  case Short:             return "short";
774  case Int:               return "int";
775  case Long:              return "long";
776  case LongLong:          return "long long";
777  case Int128:            return "__int128_t";
778  case UChar:             return "unsigned char";
779  case UShort:            return "unsigned short";
780  case UInt:              return "unsigned int";
781  case ULong:             return "unsigned long";
782  case ULongLong:         return "unsigned long long";
783  case UInt128:           return "__uint128_t";
784  case Float:             return "float";
785  case Double:            return "double";
786  case LongDouble:        return "long double";
787  case WChar:             return "wchar_t";
788  case Char16:            return "char16_t";
789  case Char32:            return "char32_t";
790  case NullPtr:           return "nullptr_t";
791  case Overload:          return "<overloaded function type>";
792  case Dependent:         return "<dependent type>";
793  case UndeducedAuto:     return "auto";
794  case ObjCId:            return "id";
795  case ObjCClass:         return "Class";
796  case ObjCSel:         return "SEL";
797  }
798}
799
800void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
801                                arg_type_iterator ArgTys,
802                                unsigned NumArgs, bool isVariadic,
803                                unsigned TypeQuals, bool hasExceptionSpec,
804                                bool anyExceptionSpec, unsigned NumExceptions,
805                                exception_iterator Exs, bool NoReturn) {
806  ID.AddPointer(Result.getAsOpaquePtr());
807  for (unsigned i = 0; i != NumArgs; ++i)
808    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
809  ID.AddInteger(isVariadic);
810  ID.AddInteger(TypeQuals);
811  ID.AddInteger(hasExceptionSpec);
812  if (hasExceptionSpec) {
813    ID.AddInteger(anyExceptionSpec);
814    for (unsigned i = 0; i != NumExceptions; ++i)
815      ID.AddPointer(Exs[i].getAsOpaquePtr());
816  }
817  ID.AddInteger(NoReturn);
818}
819
820void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
821  Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
822          getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
823          getNumExceptions(), exception_begin(), getNoReturnAttr());
824}
825
826void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID,
827                                    QualType OIT, ObjCProtocolDecl **protocols,
828                                    unsigned NumProtocols) {
829  ID.AddPointer(OIT.getAsOpaquePtr());
830  for (unsigned i = 0; i != NumProtocols; i++)
831    ID.AddPointer(protocols[i]);
832}
833
834void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID) {
835  if (getNumProtocols())
836    Profile(ID, getPointeeType(), &Protocols[0], getNumProtocols());
837  else
838    Profile(ID, getPointeeType(), 0, 0);
839}
840
841/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
842/// potentially looking through *all* consequtive typedefs.  This returns the
843/// sum of the type qualifiers, so if you have:
844///   typedef const int A;
845///   typedef volatile A B;
846/// looking through the typedefs for B will give you "const volatile A".
847///
848QualType TypedefType::LookThroughTypedefs() const {
849  // Usually, there is only a single level of typedefs, be fast in that case.
850  QualType FirstType = getDecl()->getUnderlyingType();
851  if (!isa<TypedefType>(FirstType))
852    return FirstType;
853
854  // Otherwise, do the fully general loop.
855  QualifierCollector Qs;
856
857  QualType CurType;
858  const TypedefType *TDT = this;
859  do {
860    CurType = TDT->getDecl()->getUnderlyingType();
861    TDT = dyn_cast<TypedefType>(Qs.strip(CurType));
862  } while (TDT);
863
864  return Qs.apply(CurType);
865}
866
867QualType TypedefType::desugar() const {
868  return getDecl()->getUnderlyingType();
869}
870
871TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
872  : Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
873}
874
875QualType TypeOfExprType::desugar() const {
876  return getUnderlyingExpr()->getType();
877}
878
879void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
880                                      ASTContext &Context, Expr *E) {
881  E->Profile(ID, Context, true);
882}
883
884DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
885  : Type(Decltype, can, E->isTypeDependent()), E(E),
886  UnderlyingType(underlyingType) {
887}
888
889DependentDecltypeType::DependentDecltypeType(ASTContext &Context, Expr *E)
890  : DecltypeType(E, Context.DependentTy), Context(Context) { }
891
892void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
893                                    ASTContext &Context, Expr *E) {
894  E->Profile(ID, Context, true);
895}
896
897TagType::TagType(TypeClass TC, TagDecl *D, QualType can)
898  : Type(TC, can, D->isDependentType()), decl(D, 0) {}
899
900bool RecordType::classof(const TagType *TT) {
901  return isa<RecordDecl>(TT->getDecl());
902}
903
904bool EnumType::classof(const TagType *TT) {
905  return isa<EnumDecl>(TT->getDecl());
906}
907
908static bool isDependent(const TemplateArgument &Arg) {
909  switch (Arg.getKind()) {
910  case TemplateArgument::Null:
911    assert(false && "Should not have a NULL template argument");
912    return false;
913
914  case TemplateArgument::Type:
915    return Arg.getAsType()->isDependentType();
916
917  case TemplateArgument::Template:
918    return Arg.getAsTemplate().isDependent();
919
920  case TemplateArgument::Declaration:
921  case TemplateArgument::Integral:
922    // Never dependent
923    return false;
924
925  case TemplateArgument::Expression:
926    return (Arg.getAsExpr()->isTypeDependent() ||
927            Arg.getAsExpr()->isValueDependent());
928
929  case TemplateArgument::Pack:
930    assert(0 && "FIXME: Implement!");
931    return false;
932  }
933
934  return false;
935}
936
937bool TemplateSpecializationType::
938anyDependentTemplateArguments(const TemplateArgumentListInfo &Args) {
939  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size());
940}
941
942bool TemplateSpecializationType::
943anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
944  for (unsigned i = 0; i != N; ++i)
945    if (isDependent(Args[i].getArgument()))
946      return true;
947  return false;
948}
949
950bool TemplateSpecializationType::
951anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
952  for (unsigned i = 0; i != N; ++i)
953    if (isDependent(Args[i]))
954      return true;
955  return false;
956}
957
958TemplateSpecializationType::
959TemplateSpecializationType(ASTContext &Context, TemplateName T,
960                           const TemplateArgument *Args,
961                           unsigned NumArgs, QualType Canon)
962  : Type(TemplateSpecialization,
963         Canon.isNull()? QualType(this, 0) : Canon,
964         T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
965    Context(Context),
966    Template(T), NumArgs(NumArgs) {
967  assert((!Canon.isNull() ||
968          T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
969         "No canonical type for non-dependent class template specialization");
970
971  TemplateArgument *TemplateArgs
972    = reinterpret_cast<TemplateArgument *>(this + 1);
973  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
974    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
975}
976
977void TemplateSpecializationType::Destroy(ASTContext& C) {
978  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
979    // FIXME: Not all expressions get cloned, so we can't yet perform
980    // this destruction.
981    //    if (Expr *E = getArg(Arg).getAsExpr())
982    //      E->Destroy(C);
983  }
984}
985
986TemplateSpecializationType::iterator
987TemplateSpecializationType::end() const {
988  return begin() + getNumArgs();
989}
990
991const TemplateArgument &
992TemplateSpecializationType::getArg(unsigned Idx) const {
993  assert(Idx < getNumArgs() && "Template argument out of range");
994  return getArgs()[Idx];
995}
996
997void
998TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
999                                    TemplateName T,
1000                                    const TemplateArgument *Args,
1001                                    unsigned NumArgs,
1002                                    ASTContext &Context) {
1003  T.Profile(ID);
1004  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1005    Args[Idx].Profile(ID, Context);
1006}
1007
1008QualType QualifierCollector::apply(QualType QT) const {
1009  if (!hasNonFastQualifiers())
1010    return QT.withFastQualifiers(getFastQualifiers());
1011
1012  assert(Context && "extended qualifiers but no context!");
1013  return Context->getQualifiedType(QT, *this);
1014}
1015
1016QualType QualifierCollector::apply(const Type *T) const {
1017  if (!hasNonFastQualifiers())
1018    return QualType(T, getFastQualifiers());
1019
1020  assert(Context && "extended qualifiers but no context!");
1021  return Context->getQualifiedType(T, *this);
1022}
1023
1024void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
1025                                         const ObjCInterfaceDecl *Decl,
1026                                         ObjCProtocolDecl **protocols,
1027                                         unsigned NumProtocols) {
1028  ID.AddPointer(Decl);
1029  for (unsigned i = 0; i != NumProtocols; i++)
1030    ID.AddPointer(protocols[i]);
1031}
1032
1033void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
1034  if (getNumProtocols())
1035    Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
1036  else
1037    Profile(ID, getDecl(), 0, 0);
1038}
1039