Type.cpp revision 201361
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Type.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24
25bool QualType::isConstant(QualType T, ASTContext &Ctx) {
26  if (T.isConstQualified())
27    return true;
28
29  if (const ArrayType *AT = Ctx.getAsArrayType(T))
30    return AT->getElementType().isConstant(Ctx);
31
32  return false;
33}
34
35void Type::Destroy(ASTContext& C) {
36  this->~Type();
37  C.Deallocate(this);
38}
39
40void VariableArrayType::Destroy(ASTContext& C) {
41  if (SizeExpr)
42    SizeExpr->Destroy(C);
43  this->~VariableArrayType();
44  C.Deallocate(this);
45}
46
47void DependentSizedArrayType::Destroy(ASTContext& C) {
48  // FIXME: Resource contention like in ConstantArrayWithExprType ?
49  // May crash, depending on platform or a particular build.
50  // SizeExpr->Destroy(C);
51  this->~DependentSizedArrayType();
52  C.Deallocate(this);
53}
54
55void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
56                                      ASTContext &Context,
57                                      QualType ET,
58                                      ArraySizeModifier SizeMod,
59                                      unsigned TypeQuals,
60                                      Expr *E) {
61  ID.AddPointer(ET.getAsOpaquePtr());
62  ID.AddInteger(SizeMod);
63  ID.AddInteger(TypeQuals);
64  E->Profile(ID, Context, true);
65}
66
67void
68DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
69                                     ASTContext &Context,
70                                     QualType ElementType, Expr *SizeExpr) {
71  ID.AddPointer(ElementType.getAsOpaquePtr());
72  SizeExpr->Profile(ID, Context, true);
73}
74
75void DependentSizedExtVectorType::Destroy(ASTContext& C) {
76  // FIXME: Deallocate size expression, once we're cloning properly.
77//  if (SizeExpr)
78//    SizeExpr->Destroy(C);
79  this->~DependentSizedExtVectorType();
80  C.Deallocate(this);
81}
82
83/// getArrayElementTypeNoTypeQual - If this is an array type, return the
84/// element type of the array, potentially with type qualifiers missing.
85/// This method should never be used when type qualifiers are meaningful.
86const Type *Type::getArrayElementTypeNoTypeQual() const {
87  // If this is directly an array type, return it.
88  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
89    return ATy->getElementType().getTypePtr();
90
91  // If the canonical form of this type isn't the right kind, reject it.
92  if (!isa<ArrayType>(CanonicalType))
93    return 0;
94
95  // If this is a typedef for an array type, strip the typedef off without
96  // losing all typedef information.
97  return cast<ArrayType>(getUnqualifiedDesugaredType())
98    ->getElementType().getTypePtr();
99}
100
101/// \brief Retrieve the unqualified variant of the given type, removing as
102/// little sugar as possible.
103///
104/// This routine looks through various kinds of sugar to find the
105/// least-desuraged type that is unqualified. For example, given:
106///
107/// \code
108/// typedef int Integer;
109/// typedef const Integer CInteger;
110/// typedef CInteger DifferenceType;
111/// \endcode
112///
113/// Executing \c getUnqualifiedTypeSlow() on the type \c DifferenceType will
114/// desugar until we hit the type \c Integer, which has no qualifiers on it.
115QualType QualType::getUnqualifiedTypeSlow() const {
116  QualType Cur = *this;
117  while (true) {
118    if (!Cur.hasQualifiers())
119      return Cur;
120
121    const Type *CurTy = Cur.getTypePtr();
122    switch (CurTy->getTypeClass()) {
123#define ABSTRACT_TYPE(Class, Parent)
124#define TYPE(Class, Parent)                                  \
125    case Type::Class: {                                      \
126      const Class##Type *Ty = cast<Class##Type>(CurTy);      \
127      if (!Ty->isSugared())                                  \
128        return Cur.getLocalUnqualifiedType();                \
129      Cur = Ty->desugar();                                   \
130      break;                                                 \
131    }
132#include "clang/AST/TypeNodes.def"
133    }
134  }
135
136  return Cur.getUnqualifiedType();
137}
138
139/// getDesugaredType - Return the specified type with any "sugar" removed from
140/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
141/// the type is already concrete, it returns it unmodified.  This is similar
142/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
143/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
144/// concrete.
145QualType QualType::getDesugaredType(QualType T) {
146  QualifierCollector Qs;
147
148  QualType Cur = T;
149  while (true) {
150    const Type *CurTy = Qs.strip(Cur);
151    switch (CurTy->getTypeClass()) {
152#define ABSTRACT_TYPE(Class, Parent)
153#define TYPE(Class, Parent) \
154    case Type::Class: { \
155      const Class##Type *Ty = cast<Class##Type>(CurTy); \
156      if (!Ty->isSugared()) \
157        return Qs.apply(Cur); \
158      Cur = Ty->desugar(); \
159      break; \
160    }
161#include "clang/AST/TypeNodes.def"
162    }
163  }
164}
165
166/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
167/// sugar off the given type.  This should produce an object of the
168/// same dynamic type as the canonical type.
169const Type *Type::getUnqualifiedDesugaredType() const {
170  const Type *Cur = this;
171
172  while (true) {
173    switch (Cur->getTypeClass()) {
174#define ABSTRACT_TYPE(Class, Parent)
175#define TYPE(Class, Parent) \
176    case Class: { \
177      const Class##Type *Ty = cast<Class##Type>(Cur); \
178      if (!Ty->isSugared()) return Cur; \
179      Cur = Ty->desugar().getTypePtr(); \
180      break; \
181    }
182#include "clang/AST/TypeNodes.def"
183    }
184  }
185}
186
187/// isVoidType - Helper method to determine if this is the 'void' type.
188bool Type::isVoidType() const {
189  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
190    return BT->getKind() == BuiltinType::Void;
191  return false;
192}
193
194bool Type::isObjectType() const {
195  if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType) ||
196      isa<IncompleteArrayType>(CanonicalType) || isVoidType())
197    return false;
198  return true;
199}
200
201bool Type::isDerivedType() const {
202  switch (CanonicalType->getTypeClass()) {
203  case Pointer:
204  case VariableArray:
205  case ConstantArray:
206  case IncompleteArray:
207  case FunctionProto:
208  case FunctionNoProto:
209  case LValueReference:
210  case RValueReference:
211  case Record:
212    return true;
213  default:
214    return false;
215  }
216}
217
218bool Type::isClassType() const {
219  if (const RecordType *RT = getAs<RecordType>())
220    return RT->getDecl()->isClass();
221  return false;
222}
223bool Type::isStructureType() const {
224  if (const RecordType *RT = getAs<RecordType>())
225    return RT->getDecl()->isStruct();
226  return false;
227}
228bool Type::isVoidPointerType() const {
229  if (const PointerType *PT = getAs<PointerType>())
230    return PT->getPointeeType()->isVoidType();
231  return false;
232}
233
234bool Type::isUnionType() const {
235  if (const RecordType *RT = getAs<RecordType>())
236    return RT->getDecl()->isUnion();
237  return false;
238}
239
240bool Type::isComplexType() const {
241  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
242    return CT->getElementType()->isFloatingType();
243  return false;
244}
245
246bool Type::isComplexIntegerType() const {
247  // Check for GCC complex integer extension.
248  return getAsComplexIntegerType();
249}
250
251const ComplexType *Type::getAsComplexIntegerType() const {
252  if (const ComplexType *Complex = getAs<ComplexType>())
253    if (Complex->getElementType()->isIntegerType())
254      return Complex;
255  return 0;
256}
257
258QualType Type::getPointeeType() const {
259  if (const PointerType *PT = getAs<PointerType>())
260    return PT->getPointeeType();
261  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
262    return OPT->getPointeeType();
263  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
264    return BPT->getPointeeType();
265  if (const ReferenceType *RT = getAs<ReferenceType>())
266    return RT->getPointeeType();
267  return QualType();
268}
269
270/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
271/// array types and types that contain variable array types in their
272/// declarator
273bool Type::isVariablyModifiedType() const {
274  // A VLA is a variably modified type.
275  if (isVariableArrayType())
276    return true;
277
278  // An array can contain a variably modified type
279  if (const Type *T = getArrayElementTypeNoTypeQual())
280    return T->isVariablyModifiedType();
281
282  // A pointer can point to a variably modified type.
283  // Also, C++ references and member pointers can point to a variably modified
284  // type, where VLAs appear as an extension to C++, and should be treated
285  // correctly.
286  if (const PointerType *PT = getAs<PointerType>())
287    return PT->getPointeeType()->isVariablyModifiedType();
288  if (const ReferenceType *RT = getAs<ReferenceType>())
289    return RT->getPointeeType()->isVariablyModifiedType();
290  if (const MemberPointerType *PT = getAs<MemberPointerType>())
291    return PT->getPointeeType()->isVariablyModifiedType();
292
293  // A function can return a variably modified type
294  // This one isn't completely obvious, but it follows from the
295  // definition in C99 6.7.5p3. Because of this rule, it's
296  // illegal to declare a function returning a variably modified type.
297  if (const FunctionType *FT = getAs<FunctionType>())
298    return FT->getResultType()->isVariablyModifiedType();
299
300  return false;
301}
302
303const RecordType *Type::getAsStructureType() const {
304  // If this is directly a structure type, return it.
305  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
306    if (RT->getDecl()->isStruct())
307      return RT;
308  }
309
310  // If the canonical form of this type isn't the right kind, reject it.
311  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
312    if (!RT->getDecl()->isStruct())
313      return 0;
314
315    // If this is a typedef for a structure type, strip the typedef off without
316    // losing all typedef information.
317    return cast<RecordType>(getUnqualifiedDesugaredType());
318  }
319  return 0;
320}
321
322const RecordType *Type::getAsUnionType() const {
323  // If this is directly a union type, return it.
324  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
325    if (RT->getDecl()->isUnion())
326      return RT;
327  }
328
329  // If the canonical form of this type isn't the right kind, reject it.
330  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
331    if (!RT->getDecl()->isUnion())
332      return 0;
333
334    // If this is a typedef for a union type, strip the typedef off without
335    // losing all typedef information.
336    return cast<RecordType>(getUnqualifiedDesugaredType());
337  }
338
339  return 0;
340}
341
342const ObjCInterfaceType *Type::getAsObjCQualifiedInterfaceType() const {
343  // There is no sugar for ObjCInterfaceType's, just return the canonical
344  // type pointer if it is the right class.  There is no typedef information to
345  // return and these cannot be Address-space qualified.
346  if (const ObjCInterfaceType *OIT = getAs<ObjCInterfaceType>())
347    if (OIT->getNumProtocols())
348      return OIT;
349  return 0;
350}
351
352bool Type::isObjCQualifiedInterfaceType() const {
353  return getAsObjCQualifiedInterfaceType() != 0;
354}
355
356const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
357  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
358  // type pointer if it is the right class.
359  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
360    if (OPT->isObjCQualifiedIdType())
361      return OPT;
362  }
363  return 0;
364}
365
366const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
367  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
368    if (OPT->getInterfaceType())
369      return OPT;
370  }
371  return 0;
372}
373
374const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
375  if (const PointerType *PT = getAs<PointerType>())
376    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
377      return dyn_cast<CXXRecordDecl>(RT->getDecl());
378  return 0;
379}
380
381bool Type::isIntegerType() const {
382  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
383    return BT->getKind() >= BuiltinType::Bool &&
384           BT->getKind() <= BuiltinType::Int128;
385  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
386    // Incomplete enum types are not treated as integer types.
387    // FIXME: In C++, enum types are never integer types.
388    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
389      return true;
390  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
391    return VT->getElementType()->isIntegerType();
392  return false;
393}
394
395bool Type::isIntegralType() const {
396  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
397    return BT->getKind() >= BuiltinType::Bool &&
398    BT->getKind() <= BuiltinType::Int128;
399  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
400    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
401      return true;  // Complete enum types are integral.
402                    // FIXME: In C++, enum types are never integral.
403  return false;
404}
405
406bool Type::isEnumeralType() const {
407  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
408    return TT->getDecl()->isEnum();
409  return false;
410}
411
412bool Type::isBooleanType() const {
413  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
414    return BT->getKind() == BuiltinType::Bool;
415  return false;
416}
417
418bool Type::isCharType() const {
419  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
420    return BT->getKind() == BuiltinType::Char_U ||
421           BT->getKind() == BuiltinType::UChar ||
422           BT->getKind() == BuiltinType::Char_S ||
423           BT->getKind() == BuiltinType::SChar;
424  return false;
425}
426
427bool Type::isWideCharType() const {
428  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
429    return BT->getKind() == BuiltinType::WChar;
430  return false;
431}
432
433/// \brief Determine whether this type is any of the built-in character
434/// types.
435bool Type::isAnyCharacterType() const {
436  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
437    return (BT->getKind() >= BuiltinType::Char_U &&
438            BT->getKind() <= BuiltinType::Char32) ||
439           (BT->getKind() >= BuiltinType::Char_S &&
440            BT->getKind() <= BuiltinType::WChar);
441
442  return false;
443}
444
445/// isSignedIntegerType - Return true if this is an integer type that is
446/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
447/// an enum decl which has a signed representation, or a vector of signed
448/// integer element type.
449bool Type::isSignedIntegerType() const {
450  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
451    return BT->getKind() >= BuiltinType::Char_S &&
452           BT->getKind() <= BuiltinType::Int128;
453  }
454
455  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
456    return ET->getDecl()->getIntegerType()->isSignedIntegerType();
457
458  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
459    return VT->getElementType()->isSignedIntegerType();
460  return false;
461}
462
463/// isUnsignedIntegerType - Return true if this is an integer type that is
464/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
465/// decl which has an unsigned representation, or a vector of unsigned integer
466/// element type.
467bool Type::isUnsignedIntegerType() const {
468  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
469    return BT->getKind() >= BuiltinType::Bool &&
470           BT->getKind() <= BuiltinType::UInt128;
471  }
472
473  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
474    return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
475
476  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
477    return VT->getElementType()->isUnsignedIntegerType();
478  return false;
479}
480
481bool Type::isFloatingType() const {
482  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
483    return BT->getKind() >= BuiltinType::Float &&
484           BT->getKind() <= BuiltinType::LongDouble;
485  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
486    return CT->getElementType()->isFloatingType();
487  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
488    return VT->getElementType()->isFloatingType();
489  return false;
490}
491
492bool Type::isRealFloatingType() const {
493  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
494    return BT->isFloatingPoint();
495  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
496    return VT->getElementType()->isRealFloatingType();
497  return false;
498}
499
500bool Type::isRealType() const {
501  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
502    return BT->getKind() >= BuiltinType::Bool &&
503           BT->getKind() <= BuiltinType::LongDouble;
504  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
505    return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
506  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
507    return VT->getElementType()->isRealType();
508  return false;
509}
510
511bool Type::isArithmeticType() const {
512  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
513    return BT->getKind() >= BuiltinType::Bool &&
514           BT->getKind() <= BuiltinType::LongDouble;
515  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
516    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
517    // If a body isn't seen by the time we get here, return false.
518    return ET->getDecl()->isDefinition();
519  return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
520}
521
522bool Type::isScalarType() const {
523  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
524    return BT->getKind() != BuiltinType::Void;
525  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
526    // Enums are scalar types, but only if they are defined.  Incomplete enums
527    // are not treated as scalar types.
528    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
529      return true;
530    return false;
531  }
532  return isa<PointerType>(CanonicalType) ||
533         isa<BlockPointerType>(CanonicalType) ||
534         isa<MemberPointerType>(CanonicalType) ||
535         isa<ComplexType>(CanonicalType) ||
536         isa<ObjCObjectPointerType>(CanonicalType);
537}
538
539/// \brief Determines whether the type is a C++ aggregate type or C
540/// aggregate or union type.
541///
542/// An aggregate type is an array or a class type (struct, union, or
543/// class) that has no user-declared constructors, no private or
544/// protected non-static data members, no base classes, and no virtual
545/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
546/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
547/// includes union types.
548bool Type::isAggregateType() const {
549  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
550    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
551      return ClassDecl->isAggregate();
552
553    return true;
554  }
555
556  return isa<ArrayType>(CanonicalType);
557}
558
559/// isConstantSizeType - Return true if this is not a variable sized type,
560/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
561/// incomplete types or dependent types.
562bool Type::isConstantSizeType() const {
563  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
564  assert(!isDependentType() && "This doesn't make sense for dependent types");
565  // The VAT must have a size, as it is known to be complete.
566  return !isa<VariableArrayType>(CanonicalType);
567}
568
569/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
570/// - a type that can describe objects, but which lacks information needed to
571/// determine its size.
572bool Type::isIncompleteType() const {
573  switch (CanonicalType->getTypeClass()) {
574  default: return false;
575  case Builtin:
576    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
577    // be completed.
578    return isVoidType();
579  case Record:
580  case Enum:
581    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
582    // forward declaration, but not a full definition (C99 6.2.5p22).
583    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
584  case ConstantArray:
585    // An array is incomplete if its element type is incomplete
586    // (C++ [dcl.array]p1).
587    // We don't handle variable arrays (they're not allowed in C++) or
588    // dependent-sized arrays (dependent types are never treated as incomplete).
589    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
590  case IncompleteArray:
591    // An array of unknown size is an incomplete type (C99 6.2.5p22).
592    return true;
593  case ObjCInterface:
594    // ObjC interfaces are incomplete if they are @class, not @interface.
595    return cast<ObjCInterfaceType>(this)->getDecl()->isForwardDecl();
596  }
597}
598
599/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
600bool Type::isPODType() const {
601  // The compiler shouldn't query this for incomplete types, but the user might.
602  // We return false for that case.
603  if (isIncompleteType())
604    return false;
605
606  switch (CanonicalType->getTypeClass()) {
607    // Everything not explicitly mentioned is not POD.
608  default: return false;
609  case VariableArray:
610  case ConstantArray:
611    // IncompleteArray is caught by isIncompleteType() above.
612    return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
613
614  case Builtin:
615  case Complex:
616  case Pointer:
617  case MemberPointer:
618  case Vector:
619  case ExtVector:
620  case ObjCObjectPointer:
621    return true;
622
623  case Enum:
624    return true;
625
626  case Record:
627    if (CXXRecordDecl *ClassDecl
628          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
629      return ClassDecl->isPOD();
630
631    // C struct/union is POD.
632    return true;
633  }
634}
635
636bool Type::isLiteralType() const {
637  if (isIncompleteType())
638    return false;
639
640  // C++0x [basic.types]p10:
641  //   A type is a literal type if it is:
642  switch (CanonicalType->getTypeClass()) {
643    // We're whitelisting
644  default: return false;
645
646    //   -- a scalar type
647  case Builtin:
648  case Complex:
649  case Pointer:
650  case MemberPointer:
651  case Vector:
652  case ExtVector:
653  case ObjCObjectPointer:
654  case Enum:
655    return true;
656
657    //   -- a class type with ...
658  case Record:
659    // FIXME: Do the tests
660    return false;
661
662    //   -- an array of literal type
663    // Extension: variable arrays cannot be literal types, since they're
664    // runtime-sized.
665  case ConstantArray:
666    return cast<ArrayType>(CanonicalType)->getElementType()->isLiteralType();
667  }
668}
669
670bool Type::isPromotableIntegerType() const {
671  if (const BuiltinType *BT = getAs<BuiltinType>())
672    switch (BT->getKind()) {
673    case BuiltinType::Bool:
674    case BuiltinType::Char_S:
675    case BuiltinType::Char_U:
676    case BuiltinType::SChar:
677    case BuiltinType::UChar:
678    case BuiltinType::Short:
679    case BuiltinType::UShort:
680      return true;
681    default:
682      return false;
683    }
684  return false;
685}
686
687bool Type::isNullPtrType() const {
688  if (const BuiltinType *BT = getAs<BuiltinType>())
689    return BT->getKind() == BuiltinType::NullPtr;
690  return false;
691}
692
693bool Type::isSpecifierType() const {
694  // Note that this intentionally does not use the canonical type.
695  switch (getTypeClass()) {
696  case Builtin:
697  case Record:
698  case Enum:
699  case Typedef:
700  case Complex:
701  case TypeOfExpr:
702  case TypeOf:
703  case TemplateTypeParm:
704  case SubstTemplateTypeParm:
705  case TemplateSpecialization:
706  case QualifiedName:
707  case Typename:
708  case ObjCInterface:
709  case ObjCObjectPointer:
710  case Elaborated:
711    return true;
712  default:
713    return false;
714  }
715}
716
717const char *Type::getTypeClassName() const {
718  switch (TC) {
719  default: assert(0 && "Type class not in TypeNodes.def!");
720#define ABSTRACT_TYPE(Derived, Base)
721#define TYPE(Derived, Base) case Derived: return #Derived;
722#include "clang/AST/TypeNodes.def"
723  }
724}
725
726const char *BuiltinType::getName(const LangOptions &LO) const {
727  switch (getKind()) {
728  default: assert(0 && "Unknown builtin type!");
729  case Void:              return "void";
730  case Bool:              return LO.Bool ? "bool" : "_Bool";
731  case Char_S:            return "char";
732  case Char_U:            return "char";
733  case SChar:             return "signed char";
734  case Short:             return "short";
735  case Int:               return "int";
736  case Long:              return "long";
737  case LongLong:          return "long long";
738  case Int128:            return "__int128_t";
739  case UChar:             return "unsigned char";
740  case UShort:            return "unsigned short";
741  case UInt:              return "unsigned int";
742  case ULong:             return "unsigned long";
743  case ULongLong:         return "unsigned long long";
744  case UInt128:           return "__uint128_t";
745  case Float:             return "float";
746  case Double:            return "double";
747  case LongDouble:        return "long double";
748  case WChar:             return "wchar_t";
749  case Char16:            return "char16_t";
750  case Char32:            return "char32_t";
751  case NullPtr:           return "nullptr_t";
752  case Overload:          return "<overloaded function type>";
753  case Dependent:         return "<dependent type>";
754  case UndeducedAuto:     return "auto";
755  case ObjCId:            return "id";
756  case ObjCClass:         return "Class";
757  case ObjCSel:         return "SEL";
758  }
759}
760
761void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
762                                arg_type_iterator ArgTys,
763                                unsigned NumArgs, bool isVariadic,
764                                unsigned TypeQuals, bool hasExceptionSpec,
765                                bool anyExceptionSpec, unsigned NumExceptions,
766                                exception_iterator Exs, bool NoReturn) {
767  ID.AddPointer(Result.getAsOpaquePtr());
768  for (unsigned i = 0; i != NumArgs; ++i)
769    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
770  ID.AddInteger(isVariadic);
771  ID.AddInteger(TypeQuals);
772  ID.AddInteger(hasExceptionSpec);
773  if (hasExceptionSpec) {
774    ID.AddInteger(anyExceptionSpec);
775    for (unsigned i = 0; i != NumExceptions; ++i)
776      ID.AddPointer(Exs[i].getAsOpaquePtr());
777  }
778  ID.AddInteger(NoReturn);
779}
780
781void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
782  Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
783          getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
784          getNumExceptions(), exception_begin(), getNoReturnAttr());
785}
786
787void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID,
788                                    QualType OIT, ObjCProtocolDecl **protocols,
789                                    unsigned NumProtocols) {
790  ID.AddPointer(OIT.getAsOpaquePtr());
791  for (unsigned i = 0; i != NumProtocols; i++)
792    ID.AddPointer(protocols[i]);
793}
794
795void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID) {
796  if (getNumProtocols())
797    Profile(ID, getPointeeType(), &Protocols[0], getNumProtocols());
798  else
799    Profile(ID, getPointeeType(), 0, 0);
800}
801
802/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
803/// potentially looking through *all* consequtive typedefs.  This returns the
804/// sum of the type qualifiers, so if you have:
805///   typedef const int A;
806///   typedef volatile A B;
807/// looking through the typedefs for B will give you "const volatile A".
808///
809QualType TypedefType::LookThroughTypedefs() const {
810  // Usually, there is only a single level of typedefs, be fast in that case.
811  QualType FirstType = getDecl()->getUnderlyingType();
812  if (!isa<TypedefType>(FirstType))
813    return FirstType;
814
815  // Otherwise, do the fully general loop.
816  QualifierCollector Qs;
817
818  QualType CurType;
819  const TypedefType *TDT = this;
820  do {
821    CurType = TDT->getDecl()->getUnderlyingType();
822    TDT = dyn_cast<TypedefType>(Qs.strip(CurType));
823  } while (TDT);
824
825  return Qs.apply(CurType);
826}
827
828QualType TypedefType::desugar() const {
829  return getDecl()->getUnderlyingType();
830}
831
832TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
833  : Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
834}
835
836QualType TypeOfExprType::desugar() const {
837  return getUnderlyingExpr()->getType();
838}
839
840void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
841                                      ASTContext &Context, Expr *E) {
842  E->Profile(ID, Context, true);
843}
844
845DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
846  : Type(Decltype, can, E->isTypeDependent()), E(E),
847  UnderlyingType(underlyingType) {
848}
849
850DependentDecltypeType::DependentDecltypeType(ASTContext &Context, Expr *E)
851  : DecltypeType(E, Context.DependentTy), Context(Context) { }
852
853void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
854                                    ASTContext &Context, Expr *E) {
855  E->Profile(ID, Context, true);
856}
857
858TagType::TagType(TypeClass TC, TagDecl *D, QualType can)
859  : Type(TC, can, D->isDependentType()), decl(D, 0) {}
860
861bool RecordType::classof(const TagType *TT) {
862  return isa<RecordDecl>(TT->getDecl());
863}
864
865bool EnumType::classof(const TagType *TT) {
866  return isa<EnumDecl>(TT->getDecl());
867}
868
869static bool isDependent(const TemplateArgument &Arg) {
870  switch (Arg.getKind()) {
871  case TemplateArgument::Null:
872    assert(false && "Should not have a NULL template argument");
873    return false;
874
875  case TemplateArgument::Type:
876    return Arg.getAsType()->isDependentType();
877
878  case TemplateArgument::Template:
879    return Arg.getAsTemplate().isDependent();
880
881  case TemplateArgument::Declaration:
882  case TemplateArgument::Integral:
883    // Never dependent
884    return false;
885
886  case TemplateArgument::Expression:
887    return (Arg.getAsExpr()->isTypeDependent() ||
888            Arg.getAsExpr()->isValueDependent());
889
890  case TemplateArgument::Pack:
891    assert(0 && "FIXME: Implement!");
892    return false;
893  }
894
895  return false;
896}
897
898bool TemplateSpecializationType::
899anyDependentTemplateArguments(const TemplateArgumentListInfo &Args) {
900  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size());
901}
902
903bool TemplateSpecializationType::
904anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
905  for (unsigned i = 0; i != N; ++i)
906    if (isDependent(Args[i].getArgument()))
907      return true;
908  return false;
909}
910
911bool TemplateSpecializationType::
912anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
913  for (unsigned i = 0; i != N; ++i)
914    if (isDependent(Args[i]))
915      return true;
916  return false;
917}
918
919TemplateSpecializationType::
920TemplateSpecializationType(ASTContext &Context, TemplateName T,
921                           const TemplateArgument *Args,
922                           unsigned NumArgs, QualType Canon)
923  : Type(TemplateSpecialization,
924         Canon.isNull()? QualType(this, 0) : Canon,
925         T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
926    Context(Context),
927    Template(T), NumArgs(NumArgs) {
928  assert((!Canon.isNull() ||
929          T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
930         "No canonical type for non-dependent class template specialization");
931
932  TemplateArgument *TemplateArgs
933    = reinterpret_cast<TemplateArgument *>(this + 1);
934  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
935    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
936}
937
938void TemplateSpecializationType::Destroy(ASTContext& C) {
939  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
940    // FIXME: Not all expressions get cloned, so we can't yet perform
941    // this destruction.
942    //    if (Expr *E = getArg(Arg).getAsExpr())
943    //      E->Destroy(C);
944  }
945}
946
947TemplateSpecializationType::iterator
948TemplateSpecializationType::end() const {
949  return begin() + getNumArgs();
950}
951
952const TemplateArgument &
953TemplateSpecializationType::getArg(unsigned Idx) const {
954  assert(Idx < getNumArgs() && "Template argument out of range");
955  return getArgs()[Idx];
956}
957
958void
959TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
960                                    TemplateName T,
961                                    const TemplateArgument *Args,
962                                    unsigned NumArgs,
963                                    ASTContext &Context) {
964  T.Profile(ID);
965  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
966    Args[Idx].Profile(ID, Context);
967}
968
969QualType QualifierCollector::apply(QualType QT) const {
970  if (!hasNonFastQualifiers())
971    return QT.withFastQualifiers(getFastQualifiers());
972
973  assert(Context && "extended qualifiers but no context!");
974  return Context->getQualifiedType(QT, *this);
975}
976
977QualType QualifierCollector::apply(const Type *T) const {
978  if (!hasNonFastQualifiers())
979    return QualType(T, getFastQualifiers());
980
981  assert(Context && "extended qualifiers but no context!");
982  return Context->getQualifiedType(T, *this);
983}
984
985void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
986                                         const ObjCInterfaceDecl *Decl,
987                                         ObjCProtocolDecl **protocols,
988                                         unsigned NumProtocols) {
989  ID.AddPointer(Decl);
990  for (unsigned i = 0; i != NumProtocols; i++)
991    ID.AddPointer(protocols[i]);
992}
993
994void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
995  if (getNumProtocols())
996    Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
997  else
998    Profile(ID, getDecl(), 0, 0);
999}
1000