Type.cpp revision 200583
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Type.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24
25bool QualType::isConstant(QualType T, ASTContext &Ctx) {
26  if (T.isConstQualified())
27    return true;
28
29  if (const ArrayType *AT = Ctx.getAsArrayType(T))
30    return AT->getElementType().isConstant(Ctx);
31
32  return false;
33}
34
35void Type::Destroy(ASTContext& C) {
36  this->~Type();
37  C.Deallocate(this);
38}
39
40void VariableArrayType::Destroy(ASTContext& C) {
41  if (SizeExpr)
42    SizeExpr->Destroy(C);
43  this->~VariableArrayType();
44  C.Deallocate(this);
45}
46
47void DependentSizedArrayType::Destroy(ASTContext& C) {
48  // FIXME: Resource contention like in ConstantArrayWithExprType ?
49  // May crash, depending on platform or a particular build.
50  // SizeExpr->Destroy(C);
51  this->~DependentSizedArrayType();
52  C.Deallocate(this);
53}
54
55void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
56                                      ASTContext &Context,
57                                      QualType ET,
58                                      ArraySizeModifier SizeMod,
59                                      unsigned TypeQuals,
60                                      Expr *E) {
61  ID.AddPointer(ET.getAsOpaquePtr());
62  ID.AddInteger(SizeMod);
63  ID.AddInteger(TypeQuals);
64  E->Profile(ID, Context, true);
65}
66
67void
68DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
69                                     ASTContext &Context,
70                                     QualType ElementType, Expr *SizeExpr) {
71  ID.AddPointer(ElementType.getAsOpaquePtr());
72  SizeExpr->Profile(ID, Context, true);
73}
74
75void DependentSizedExtVectorType::Destroy(ASTContext& C) {
76  // FIXME: Deallocate size expression, once we're cloning properly.
77//  if (SizeExpr)
78//    SizeExpr->Destroy(C);
79  this->~DependentSizedExtVectorType();
80  C.Deallocate(this);
81}
82
83/// getArrayElementTypeNoTypeQual - If this is an array type, return the
84/// element type of the array, potentially with type qualifiers missing.
85/// This method should never be used when type qualifiers are meaningful.
86const Type *Type::getArrayElementTypeNoTypeQual() const {
87  // If this is directly an array type, return it.
88  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
89    return ATy->getElementType().getTypePtr();
90
91  // If the canonical form of this type isn't the right kind, reject it.
92  if (!isa<ArrayType>(CanonicalType))
93    return 0;
94
95  // If this is a typedef for an array type, strip the typedef off without
96  // losing all typedef information.
97  return cast<ArrayType>(getUnqualifiedDesugaredType())
98    ->getElementType().getTypePtr();
99}
100
101/// \brief Retrieve the unqualified variant of the given type, removing as
102/// little sugar as possible.
103///
104/// This routine looks through various kinds of sugar to find the
105/// least-desuraged type that is unqualified. For example, given:
106///
107/// \code
108/// typedef int Integer;
109/// typedef const Integer CInteger;
110/// typedef CInteger DifferenceType;
111/// \endcode
112///
113/// Executing \c getUnqualifiedTypeSlow() on the type \c DifferenceType will
114/// desugar until we hit the type \c Integer, which has no qualifiers on it.
115QualType QualType::getUnqualifiedTypeSlow() const {
116  QualType Cur = *this;
117  while (true) {
118    if (!Cur.hasQualifiers())
119      return Cur;
120
121    const Type *CurTy = Cur.getTypePtr();
122    switch (CurTy->getTypeClass()) {
123#define ABSTRACT_TYPE(Class, Parent)
124#define TYPE(Class, Parent)                                  \
125    case Type::Class: {                                      \
126      const Class##Type *Ty = cast<Class##Type>(CurTy);      \
127      if (!Ty->isSugared())                                  \
128        return Cur.getLocalUnqualifiedType();                \
129      Cur = Ty->desugar();                                   \
130      break;                                                 \
131    }
132#include "clang/AST/TypeNodes.def"
133    }
134  }
135
136  return Cur.getUnqualifiedType();
137}
138
139/// getDesugaredType - Return the specified type with any "sugar" removed from
140/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
141/// the type is already concrete, it returns it unmodified.  This is similar
142/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
143/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
144/// concrete.
145QualType QualType::getDesugaredType(QualType T) {
146  QualifierCollector Qs;
147
148  QualType Cur = T;
149  while (true) {
150    const Type *CurTy = Qs.strip(Cur);
151    switch (CurTy->getTypeClass()) {
152#define ABSTRACT_TYPE(Class, Parent)
153#define TYPE(Class, Parent) \
154    case Type::Class: { \
155      const Class##Type *Ty = cast<Class##Type>(CurTy); \
156      if (!Ty->isSugared()) \
157        return Qs.apply(Cur); \
158      Cur = Ty->desugar(); \
159      break; \
160    }
161#include "clang/AST/TypeNodes.def"
162    }
163  }
164}
165
166/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
167/// sugar off the given type.  This should produce an object of the
168/// same dynamic type as the canonical type.
169const Type *Type::getUnqualifiedDesugaredType() const {
170  const Type *Cur = this;
171
172  while (true) {
173    switch (Cur->getTypeClass()) {
174#define ABSTRACT_TYPE(Class, Parent)
175#define TYPE(Class, Parent) \
176    case Class: { \
177      const Class##Type *Ty = cast<Class##Type>(Cur); \
178      if (!Ty->isSugared()) return Cur; \
179      Cur = Ty->desugar().getTypePtr(); \
180      break; \
181    }
182#include "clang/AST/TypeNodes.def"
183    }
184  }
185}
186
187/// isVoidType - Helper method to determine if this is the 'void' type.
188bool Type::isVoidType() const {
189  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
190    return BT->getKind() == BuiltinType::Void;
191  return false;
192}
193
194bool Type::isObjectType() const {
195  if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType) ||
196      isa<IncompleteArrayType>(CanonicalType) || isVoidType())
197    return false;
198  return true;
199}
200
201bool Type::isDerivedType() const {
202  switch (CanonicalType->getTypeClass()) {
203  case Pointer:
204  case VariableArray:
205  case ConstantArray:
206  case IncompleteArray:
207  case FunctionProto:
208  case FunctionNoProto:
209  case LValueReference:
210  case RValueReference:
211  case Record:
212    return true;
213  default:
214    return false;
215  }
216}
217
218bool Type::isClassType() const {
219  if (const RecordType *RT = getAs<RecordType>())
220    return RT->getDecl()->isClass();
221  return false;
222}
223bool Type::isStructureType() const {
224  if (const RecordType *RT = getAs<RecordType>())
225    return RT->getDecl()->isStruct();
226  return false;
227}
228bool Type::isVoidPointerType() const {
229  if (const PointerType *PT = getAs<PointerType>())
230    return PT->getPointeeType()->isVoidType();
231  return false;
232}
233
234bool Type::isUnionType() const {
235  if (const RecordType *RT = getAs<RecordType>())
236    return RT->getDecl()->isUnion();
237  return false;
238}
239
240bool Type::isComplexType() const {
241  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
242    return CT->getElementType()->isFloatingType();
243  return false;
244}
245
246bool Type::isComplexIntegerType() const {
247  // Check for GCC complex integer extension.
248  return getAsComplexIntegerType();
249}
250
251const ComplexType *Type::getAsComplexIntegerType() const {
252  if (const ComplexType *Complex = getAs<ComplexType>())
253    if (Complex->getElementType()->isIntegerType())
254      return Complex;
255  return 0;
256}
257
258QualType Type::getPointeeType() const {
259  if (const PointerType *PT = getAs<PointerType>())
260    return PT->getPointeeType();
261  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
262    return OPT->getPointeeType();
263  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
264    return BPT->getPointeeType();
265  if (const ReferenceType *RT = getAs<ReferenceType>())
266    return RT->getPointeeType();
267  return QualType();
268}
269
270/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
271/// array types and types that contain variable array types in their
272/// declarator
273bool Type::isVariablyModifiedType() const {
274  // A VLA is a variably modified type.
275  if (isVariableArrayType())
276    return true;
277
278  // An array can contain a variably modified type
279  if (const Type *T = getArrayElementTypeNoTypeQual())
280    return T->isVariablyModifiedType();
281
282  // A pointer can point to a variably modified type.
283  // Also, C++ references and member pointers can point to a variably modified
284  // type, where VLAs appear as an extension to C++, and should be treated
285  // correctly.
286  if (const PointerType *PT = getAs<PointerType>())
287    return PT->getPointeeType()->isVariablyModifiedType();
288  if (const ReferenceType *RT = getAs<ReferenceType>())
289    return RT->getPointeeType()->isVariablyModifiedType();
290  if (const MemberPointerType *PT = getAs<MemberPointerType>())
291    return PT->getPointeeType()->isVariablyModifiedType();
292
293  // A function can return a variably modified type
294  // This one isn't completely obvious, but it follows from the
295  // definition in C99 6.7.5p3. Because of this rule, it's
296  // illegal to declare a function returning a variably modified type.
297  if (const FunctionType *FT = getAs<FunctionType>())
298    return FT->getResultType()->isVariablyModifiedType();
299
300  return false;
301}
302
303const RecordType *Type::getAsStructureType() const {
304  // If this is directly a structure type, return it.
305  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
306    if (RT->getDecl()->isStruct())
307      return RT;
308  }
309
310  // If the canonical form of this type isn't the right kind, reject it.
311  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
312    if (!RT->getDecl()->isStruct())
313      return 0;
314
315    // If this is a typedef for a structure type, strip the typedef off without
316    // losing all typedef information.
317    return cast<RecordType>(getUnqualifiedDesugaredType());
318  }
319  return 0;
320}
321
322const RecordType *Type::getAsUnionType() const {
323  // If this is directly a union type, return it.
324  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
325    if (RT->getDecl()->isUnion())
326      return RT;
327  }
328
329  // If the canonical form of this type isn't the right kind, reject it.
330  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
331    if (!RT->getDecl()->isUnion())
332      return 0;
333
334    // If this is a typedef for a union type, strip the typedef off without
335    // losing all typedef information.
336    return cast<RecordType>(getUnqualifiedDesugaredType());
337  }
338
339  return 0;
340}
341
342const ObjCInterfaceType *Type::getAsObjCQualifiedInterfaceType() const {
343  // There is no sugar for ObjCInterfaceType's, just return the canonical
344  // type pointer if it is the right class.  There is no typedef information to
345  // return and these cannot be Address-space qualified.
346  if (const ObjCInterfaceType *OIT = getAs<ObjCInterfaceType>())
347    if (OIT->getNumProtocols())
348      return OIT;
349  return 0;
350}
351
352bool Type::isObjCQualifiedInterfaceType() const {
353  return getAsObjCQualifiedInterfaceType() != 0;
354}
355
356const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
357  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
358  // type pointer if it is the right class.
359  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
360    if (OPT->isObjCQualifiedIdType())
361      return OPT;
362  }
363  return 0;
364}
365
366const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
367  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
368    if (OPT->getInterfaceType())
369      return OPT;
370  }
371  return 0;
372}
373
374const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
375  if (const PointerType *PT = getAs<PointerType>())
376    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
377      return dyn_cast<CXXRecordDecl>(RT->getDecl());
378  return 0;
379}
380
381bool Type::isIntegerType() const {
382  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
383    return BT->getKind() >= BuiltinType::Bool &&
384           BT->getKind() <= BuiltinType::Int128;
385  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
386    // Incomplete enum types are not treated as integer types.
387    // FIXME: In C++, enum types are never integer types.
388    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
389      return true;
390  if (isa<FixedWidthIntType>(CanonicalType))
391    return true;
392  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
393    return VT->getElementType()->isIntegerType();
394  return false;
395}
396
397bool Type::isIntegralType() const {
398  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
399    return BT->getKind() >= BuiltinType::Bool &&
400    BT->getKind() <= BuiltinType::LongLong;
401  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
402    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
403      return true;  // Complete enum types are integral.
404                    // FIXME: In C++, enum types are never integral.
405  if (isa<FixedWidthIntType>(CanonicalType))
406    return true;
407  return false;
408}
409
410bool Type::isEnumeralType() const {
411  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
412    return TT->getDecl()->isEnum();
413  return false;
414}
415
416bool Type::isBooleanType() const {
417  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
418    return BT->getKind() == BuiltinType::Bool;
419  return false;
420}
421
422bool Type::isCharType() const {
423  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
424    return BT->getKind() == BuiltinType::Char_U ||
425           BT->getKind() == BuiltinType::UChar ||
426           BT->getKind() == BuiltinType::Char_S ||
427           BT->getKind() == BuiltinType::SChar;
428  return false;
429}
430
431bool Type::isWideCharType() const {
432  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
433    return BT->getKind() == BuiltinType::WChar;
434  return false;
435}
436
437/// \brief Determine whether this type is any of the built-in character
438/// types.
439bool Type::isAnyCharacterType() const {
440  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
441    return (BT->getKind() >= BuiltinType::Char_U &&
442            BT->getKind() <= BuiltinType::Char32) ||
443           (BT->getKind() >= BuiltinType::Char_S &&
444            BT->getKind() <= BuiltinType::WChar);
445
446  return false;
447}
448
449/// isSignedIntegerType - Return true if this is an integer type that is
450/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
451/// an enum decl which has a signed representation, or a vector of signed
452/// integer element type.
453bool Type::isSignedIntegerType() const {
454  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
455    return BT->getKind() >= BuiltinType::Char_S &&
456           BT->getKind() <= BuiltinType::LongLong;
457  }
458
459  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
460    return ET->getDecl()->getIntegerType()->isSignedIntegerType();
461
462  if (const FixedWidthIntType *FWIT =
463          dyn_cast<FixedWidthIntType>(CanonicalType))
464    return FWIT->isSigned();
465
466  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
467    return VT->getElementType()->isSignedIntegerType();
468  return false;
469}
470
471/// isUnsignedIntegerType - Return true if this is an integer type that is
472/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
473/// decl which has an unsigned representation, or a vector of unsigned integer
474/// element type.
475bool Type::isUnsignedIntegerType() const {
476  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
477    return BT->getKind() >= BuiltinType::Bool &&
478           BT->getKind() <= BuiltinType::UInt128;
479  }
480
481  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
482    return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
483
484  if (const FixedWidthIntType *FWIT =
485          dyn_cast<FixedWidthIntType>(CanonicalType))
486    return !FWIT->isSigned();
487
488  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
489    return VT->getElementType()->isUnsignedIntegerType();
490  return false;
491}
492
493bool Type::isFloatingType() const {
494  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
495    return BT->getKind() >= BuiltinType::Float &&
496           BT->getKind() <= BuiltinType::LongDouble;
497  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
498    return CT->getElementType()->isFloatingType();
499  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
500    return VT->getElementType()->isFloatingType();
501  return false;
502}
503
504bool Type::isRealFloatingType() const {
505  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
506    return BT->isFloatingPoint();
507  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
508    return VT->getElementType()->isRealFloatingType();
509  return false;
510}
511
512bool Type::isRealType() const {
513  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
514    return BT->getKind() >= BuiltinType::Bool &&
515           BT->getKind() <= BuiltinType::LongDouble;
516  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
517    return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
518  if (isa<FixedWidthIntType>(CanonicalType))
519    return true;
520  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
521    return VT->getElementType()->isRealType();
522  return false;
523}
524
525bool Type::isArithmeticType() const {
526  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
527    return BT->getKind() >= BuiltinType::Bool &&
528           BT->getKind() <= BuiltinType::LongDouble;
529  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
530    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
531    // If a body isn't seen by the time we get here, return false.
532    return ET->getDecl()->isDefinition();
533  if (isa<FixedWidthIntType>(CanonicalType))
534    return true;
535  return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
536}
537
538bool Type::isScalarType() const {
539  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
540    return BT->getKind() != BuiltinType::Void;
541  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
542    // Enums are scalar types, but only if they are defined.  Incomplete enums
543    // are not treated as scalar types.
544    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
545      return true;
546    return false;
547  }
548  if (isa<FixedWidthIntType>(CanonicalType))
549    return true;
550  return isa<PointerType>(CanonicalType) ||
551         isa<BlockPointerType>(CanonicalType) ||
552         isa<MemberPointerType>(CanonicalType) ||
553         isa<ComplexType>(CanonicalType) ||
554         isa<ObjCObjectPointerType>(CanonicalType);
555}
556
557/// \brief Determines whether the type is a C++ aggregate type or C
558/// aggregate or union type.
559///
560/// An aggregate type is an array or a class type (struct, union, or
561/// class) that has no user-declared constructors, no private or
562/// protected non-static data members, no base classes, and no virtual
563/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
564/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
565/// includes union types.
566bool Type::isAggregateType() const {
567  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
568    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
569      return ClassDecl->isAggregate();
570
571    return true;
572  }
573
574  return isa<ArrayType>(CanonicalType);
575}
576
577/// isConstantSizeType - Return true if this is not a variable sized type,
578/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
579/// incomplete types or dependent types.
580bool Type::isConstantSizeType() const {
581  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
582  assert(!isDependentType() && "This doesn't make sense for dependent types");
583  // The VAT must have a size, as it is known to be complete.
584  return !isa<VariableArrayType>(CanonicalType);
585}
586
587/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
588/// - a type that can describe objects, but which lacks information needed to
589/// determine its size.
590bool Type::isIncompleteType() const {
591  switch (CanonicalType->getTypeClass()) {
592  default: return false;
593  case Builtin:
594    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
595    // be completed.
596    return isVoidType();
597  case Record:
598  case Enum:
599    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
600    // forward declaration, but not a full definition (C99 6.2.5p22).
601    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
602  case ConstantArray:
603    // An array is incomplete if its element type is incomplete
604    // (C++ [dcl.array]p1).
605    // We don't handle variable arrays (they're not allowed in C++) or
606    // dependent-sized arrays (dependent types are never treated as incomplete).
607    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
608  case IncompleteArray:
609    // An array of unknown size is an incomplete type (C99 6.2.5p22).
610    return true;
611  case ObjCInterface:
612    // ObjC interfaces are incomplete if they are @class, not @interface.
613    return cast<ObjCInterfaceType>(this)->getDecl()->isForwardDecl();
614  }
615}
616
617/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
618bool Type::isPODType() const {
619  // The compiler shouldn't query this for incomplete types, but the user might.
620  // We return false for that case.
621  if (isIncompleteType())
622    return false;
623
624  switch (CanonicalType->getTypeClass()) {
625    // Everything not explicitly mentioned is not POD.
626  default: return false;
627  case VariableArray:
628  case ConstantArray:
629    // IncompleteArray is caught by isIncompleteType() above.
630    return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
631
632  case Builtin:
633  case Complex:
634  case Pointer:
635  case MemberPointer:
636  case Vector:
637  case ExtVector:
638  case ObjCObjectPointer:
639    return true;
640
641  case Enum:
642    return true;
643
644  case Record:
645    if (CXXRecordDecl *ClassDecl
646          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
647      return ClassDecl->isPOD();
648
649    // C struct/union is POD.
650    return true;
651  }
652}
653
654bool Type::isLiteralType() const {
655  if (isIncompleteType())
656    return false;
657
658  // C++0x [basic.types]p10:
659  //   A type is a literal type if it is:
660  switch (CanonicalType->getTypeClass()) {
661    // We're whitelisting
662  default: return false;
663
664    //   -- a scalar type
665  case Builtin:
666  case Complex:
667  case Pointer:
668  case MemberPointer:
669  case Vector:
670  case ExtVector:
671  case ObjCObjectPointer:
672  case Enum:
673    return true;
674
675    //   -- a class type with ...
676  case Record:
677    // FIXME: Do the tests
678    return false;
679
680    //   -- an array of literal type
681    // Extension: variable arrays cannot be literal types, since they're
682    // runtime-sized.
683  case ConstantArray:
684    return cast<ArrayType>(CanonicalType)->getElementType()->isLiteralType();
685  }
686}
687
688bool Type::isPromotableIntegerType() const {
689  if (const BuiltinType *BT = getAs<BuiltinType>())
690    switch (BT->getKind()) {
691    case BuiltinType::Bool:
692    case BuiltinType::Char_S:
693    case BuiltinType::Char_U:
694    case BuiltinType::SChar:
695    case BuiltinType::UChar:
696    case BuiltinType::Short:
697    case BuiltinType::UShort:
698      return true;
699    default:
700      return false;
701    }
702  return false;
703}
704
705bool Type::isNullPtrType() const {
706  if (const BuiltinType *BT = getAs<BuiltinType>())
707    return BT->getKind() == BuiltinType::NullPtr;
708  return false;
709}
710
711bool Type::isSpecifierType() const {
712  // Note that this intentionally does not use the canonical type.
713  switch (getTypeClass()) {
714  case Builtin:
715  case Record:
716  case Enum:
717  case Typedef:
718  case Complex:
719  case TypeOfExpr:
720  case TypeOf:
721  case TemplateTypeParm:
722  case SubstTemplateTypeParm:
723  case TemplateSpecialization:
724  case QualifiedName:
725  case Typename:
726  case ObjCInterface:
727  case ObjCObjectPointer:
728    return true;
729  default:
730    return false;
731  }
732}
733
734const char *Type::getTypeClassName() const {
735  switch (TC) {
736  default: assert(0 && "Type class not in TypeNodes.def!");
737#define ABSTRACT_TYPE(Derived, Base)
738#define TYPE(Derived, Base) case Derived: return #Derived;
739#include "clang/AST/TypeNodes.def"
740  }
741}
742
743const char *BuiltinType::getName(const LangOptions &LO) const {
744  switch (getKind()) {
745  default: assert(0 && "Unknown builtin type!");
746  case Void:              return "void";
747  case Bool:              return LO.Bool ? "bool" : "_Bool";
748  case Char_S:            return "char";
749  case Char_U:            return "char";
750  case SChar:             return "signed char";
751  case Short:             return "short";
752  case Int:               return "int";
753  case Long:              return "long";
754  case LongLong:          return "long long";
755  case Int128:            return "__int128_t";
756  case UChar:             return "unsigned char";
757  case UShort:            return "unsigned short";
758  case UInt:              return "unsigned int";
759  case ULong:             return "unsigned long";
760  case ULongLong:         return "unsigned long long";
761  case UInt128:           return "__uint128_t";
762  case Float:             return "float";
763  case Double:            return "double";
764  case LongDouble:        return "long double";
765  case WChar:             return "wchar_t";
766  case Char16:            return "char16_t";
767  case Char32:            return "char32_t";
768  case NullPtr:           return "nullptr_t";
769  case Overload:          return "<overloaded function type>";
770  case Dependent:         return "<dependent type>";
771  case UndeducedAuto:     return "auto";
772  case ObjCId:            return "id";
773  case ObjCClass:         return "Class";
774  case ObjCSel:         return "SEL";
775  }
776}
777
778void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
779                                arg_type_iterator ArgTys,
780                                unsigned NumArgs, bool isVariadic,
781                                unsigned TypeQuals, bool hasExceptionSpec,
782                                bool anyExceptionSpec, unsigned NumExceptions,
783                                exception_iterator Exs, bool NoReturn) {
784  ID.AddPointer(Result.getAsOpaquePtr());
785  for (unsigned i = 0; i != NumArgs; ++i)
786    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
787  ID.AddInteger(isVariadic);
788  ID.AddInteger(TypeQuals);
789  ID.AddInteger(hasExceptionSpec);
790  if (hasExceptionSpec) {
791    ID.AddInteger(anyExceptionSpec);
792    for (unsigned i = 0; i != NumExceptions; ++i)
793      ID.AddPointer(Exs[i].getAsOpaquePtr());
794  }
795  ID.AddInteger(NoReturn);
796}
797
798void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
799  Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
800          getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
801          getNumExceptions(), exception_begin(), getNoReturnAttr());
802}
803
804void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID,
805                                    QualType OIT, ObjCProtocolDecl **protocols,
806                                    unsigned NumProtocols) {
807  ID.AddPointer(OIT.getAsOpaquePtr());
808  for (unsigned i = 0; i != NumProtocols; i++)
809    ID.AddPointer(protocols[i]);
810}
811
812void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID) {
813  if (getNumProtocols())
814    Profile(ID, getPointeeType(), &Protocols[0], getNumProtocols());
815  else
816    Profile(ID, getPointeeType(), 0, 0);
817}
818
819/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
820/// potentially looking through *all* consequtive typedefs.  This returns the
821/// sum of the type qualifiers, so if you have:
822///   typedef const int A;
823///   typedef volatile A B;
824/// looking through the typedefs for B will give you "const volatile A".
825///
826QualType TypedefType::LookThroughTypedefs() const {
827  // Usually, there is only a single level of typedefs, be fast in that case.
828  QualType FirstType = getDecl()->getUnderlyingType();
829  if (!isa<TypedefType>(FirstType))
830    return FirstType;
831
832  // Otherwise, do the fully general loop.
833  QualifierCollector Qs;
834
835  QualType CurType;
836  const TypedefType *TDT = this;
837  do {
838    CurType = TDT->getDecl()->getUnderlyingType();
839    TDT = dyn_cast<TypedefType>(Qs.strip(CurType));
840  } while (TDT);
841
842  return Qs.apply(CurType);
843}
844
845QualType TypedefType::desugar() const {
846  return getDecl()->getUnderlyingType();
847}
848
849TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
850  : Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
851}
852
853QualType TypeOfExprType::desugar() const {
854  return getUnderlyingExpr()->getType();
855}
856
857void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
858                                      ASTContext &Context, Expr *E) {
859  E->Profile(ID, Context, true);
860}
861
862DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
863  : Type(Decltype, can, E->isTypeDependent()), E(E),
864  UnderlyingType(underlyingType) {
865}
866
867DependentDecltypeType::DependentDecltypeType(ASTContext &Context, Expr *E)
868  : DecltypeType(E, Context.DependentTy), Context(Context) { }
869
870void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
871                                    ASTContext &Context, Expr *E) {
872  E->Profile(ID, Context, true);
873}
874
875TagType::TagType(TypeClass TC, TagDecl *D, QualType can)
876  : Type(TC, can, D->isDependentType()), decl(D, 0) {}
877
878bool RecordType::classof(const TagType *TT) {
879  return isa<RecordDecl>(TT->getDecl());
880}
881
882bool EnumType::classof(const TagType *TT) {
883  return isa<EnumDecl>(TT->getDecl());
884}
885
886static bool isDependent(const TemplateArgument &Arg) {
887  switch (Arg.getKind()) {
888  case TemplateArgument::Null:
889    assert(false && "Should not have a NULL template argument");
890    return false;
891
892  case TemplateArgument::Type:
893    return Arg.getAsType()->isDependentType();
894
895  case TemplateArgument::Template:
896    return Arg.getAsTemplate().isDependent();
897
898  case TemplateArgument::Declaration:
899  case TemplateArgument::Integral:
900    // Never dependent
901    return false;
902
903  case TemplateArgument::Expression:
904    return (Arg.getAsExpr()->isTypeDependent() ||
905            Arg.getAsExpr()->isValueDependent());
906
907  case TemplateArgument::Pack:
908    assert(0 && "FIXME: Implement!");
909    return false;
910  }
911
912  return false;
913}
914
915bool TemplateSpecializationType::
916anyDependentTemplateArguments(const TemplateArgumentListInfo &Args) {
917  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size());
918}
919
920bool TemplateSpecializationType::
921anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
922  for (unsigned i = 0; i != N; ++i)
923    if (isDependent(Args[i].getArgument()))
924      return true;
925  return false;
926}
927
928bool TemplateSpecializationType::
929anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
930  for (unsigned i = 0; i != N; ++i)
931    if (isDependent(Args[i]))
932      return true;
933  return false;
934}
935
936TemplateSpecializationType::
937TemplateSpecializationType(ASTContext &Context, TemplateName T,
938                           const TemplateArgument *Args,
939                           unsigned NumArgs, QualType Canon)
940  : Type(TemplateSpecialization,
941         Canon.isNull()? QualType(this, 0) : Canon,
942         T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
943    Context(Context),
944    Template(T), NumArgs(NumArgs) {
945  assert((!Canon.isNull() ||
946          T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
947         "No canonical type for non-dependent class template specialization");
948
949  TemplateArgument *TemplateArgs
950    = reinterpret_cast<TemplateArgument *>(this + 1);
951  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
952    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
953}
954
955void TemplateSpecializationType::Destroy(ASTContext& C) {
956  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
957    // FIXME: Not all expressions get cloned, so we can't yet perform
958    // this destruction.
959    //    if (Expr *E = getArg(Arg).getAsExpr())
960    //      E->Destroy(C);
961  }
962}
963
964TemplateSpecializationType::iterator
965TemplateSpecializationType::end() const {
966  return begin() + getNumArgs();
967}
968
969const TemplateArgument &
970TemplateSpecializationType::getArg(unsigned Idx) const {
971  assert(Idx < getNumArgs() && "Template argument out of range");
972  return getArgs()[Idx];
973}
974
975void
976TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
977                                    TemplateName T,
978                                    const TemplateArgument *Args,
979                                    unsigned NumArgs,
980                                    ASTContext &Context) {
981  T.Profile(ID);
982  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
983    Args[Idx].Profile(ID, Context);
984}
985
986QualType QualifierCollector::apply(QualType QT) const {
987  if (!hasNonFastQualifiers())
988    return QT.withFastQualifiers(getFastQualifiers());
989
990  assert(Context && "extended qualifiers but no context!");
991  return Context->getQualifiedType(QT, *this);
992}
993
994QualType QualifierCollector::apply(const Type *T) const {
995  if (!hasNonFastQualifiers())
996    return QualType(T, getFastQualifiers());
997
998  assert(Context && "extended qualifiers but no context!");
999  return Context->getQualifiedType(T, *this);
1000}
1001
1002void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
1003                                         const ObjCInterfaceDecl *Decl,
1004                                         ObjCProtocolDecl **protocols,
1005                                         unsigned NumProtocols) {
1006  ID.AddPointer(Decl);
1007  for (unsigned i = 0; i != NumProtocols; i++)
1008    ID.AddPointer(protocols[i]);
1009}
1010
1011void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
1012  if (getNumProtocols())
1013    Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
1014  else
1015    Profile(ID, getDecl(), 0, 0);
1016}
1017