Type.cpp revision 198893
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Type.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24
25bool QualType::isConstant(QualType T, ASTContext &Ctx) {
26  if (T.isConstQualified())
27    return true;
28
29  if (const ArrayType *AT = Ctx.getAsArrayType(T))
30    return AT->getElementType().isConstant(Ctx);
31
32  return false;
33}
34
35void Type::Destroy(ASTContext& C) {
36  this->~Type();
37  C.Deallocate(this);
38}
39
40void VariableArrayType::Destroy(ASTContext& C) {
41  if (SizeExpr)
42    SizeExpr->Destroy(C);
43  this->~VariableArrayType();
44  C.Deallocate(this);
45}
46
47void DependentSizedArrayType::Destroy(ASTContext& C) {
48  // FIXME: Resource contention like in ConstantArrayWithExprType ?
49  // May crash, depending on platform or a particular build.
50  // SizeExpr->Destroy(C);
51  this->~DependentSizedArrayType();
52  C.Deallocate(this);
53}
54
55void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
56                                      ASTContext &Context,
57                                      QualType ET,
58                                      ArraySizeModifier SizeMod,
59                                      unsigned TypeQuals,
60                                      Expr *E) {
61  ID.AddPointer(ET.getAsOpaquePtr());
62  ID.AddInteger(SizeMod);
63  ID.AddInteger(TypeQuals);
64  E->Profile(ID, Context, true);
65}
66
67void
68DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
69                                     ASTContext &Context,
70                                     QualType ElementType, Expr *SizeExpr) {
71  ID.AddPointer(ElementType.getAsOpaquePtr());
72  SizeExpr->Profile(ID, Context, true);
73}
74
75void DependentSizedExtVectorType::Destroy(ASTContext& C) {
76  // FIXME: Deallocate size expression, once we're cloning properly.
77//  if (SizeExpr)
78//    SizeExpr->Destroy(C);
79  this->~DependentSizedExtVectorType();
80  C.Deallocate(this);
81}
82
83/// getArrayElementTypeNoTypeQual - If this is an array type, return the
84/// element type of the array, potentially with type qualifiers missing.
85/// This method should never be used when type qualifiers are meaningful.
86const Type *Type::getArrayElementTypeNoTypeQual() const {
87  // If this is directly an array type, return it.
88  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
89    return ATy->getElementType().getTypePtr();
90
91  // If the canonical form of this type isn't the right kind, reject it.
92  if (!isa<ArrayType>(CanonicalType))
93    return 0;
94
95  // If this is a typedef for an array type, strip the typedef off without
96  // losing all typedef information.
97  return cast<ArrayType>(getUnqualifiedDesugaredType())
98    ->getElementType().getTypePtr();
99}
100
101/// getDesugaredType - Return the specified type with any "sugar" removed from
102/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
103/// the type is already concrete, it returns it unmodified.  This is similar
104/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
105/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
106/// concrete.
107QualType QualType::getDesugaredType(QualType T) {
108  QualifierCollector Qs;
109
110  QualType Cur = T;
111  while (true) {
112    const Type *CurTy = Qs.strip(Cur);
113    switch (CurTy->getTypeClass()) {
114#define ABSTRACT_TYPE(Class, Parent)
115#define TYPE(Class, Parent) \
116    case Type::Class: { \
117      const Class##Type *Ty = cast<Class##Type>(CurTy); \
118      if (!Ty->isSugared()) \
119        return Qs.apply(Cur); \
120      Cur = Ty->desugar(); \
121      break; \
122    }
123#include "clang/AST/TypeNodes.def"
124    }
125  }
126}
127
128/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
129/// sugar off the given type.  This should produce an object of the
130/// same dynamic type as the canonical type.
131const Type *Type::getUnqualifiedDesugaredType() const {
132  const Type *Cur = this;
133
134  while (true) {
135    switch (Cur->getTypeClass()) {
136#define ABSTRACT_TYPE(Class, Parent)
137#define TYPE(Class, Parent) \
138    case Class: { \
139      const Class##Type *Ty = cast<Class##Type>(Cur); \
140      if (!Ty->isSugared()) return Cur; \
141      Cur = Ty->desugar().getTypePtr(); \
142      break; \
143    }
144#include "clang/AST/TypeNodes.def"
145    }
146  }
147}
148
149/// isVoidType - Helper method to determine if this is the 'void' type.
150bool Type::isVoidType() const {
151  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
152    return BT->getKind() == BuiltinType::Void;
153  return false;
154}
155
156bool Type::isObjectType() const {
157  if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType) ||
158      isa<IncompleteArrayType>(CanonicalType) || isVoidType())
159    return false;
160  return true;
161}
162
163bool Type::isDerivedType() const {
164  switch (CanonicalType->getTypeClass()) {
165  case Pointer:
166  case VariableArray:
167  case ConstantArray:
168  case IncompleteArray:
169  case FunctionProto:
170  case FunctionNoProto:
171  case LValueReference:
172  case RValueReference:
173  case Record:
174    return true;
175  default:
176    return false;
177  }
178}
179
180bool Type::isClassType() const {
181  if (const RecordType *RT = getAs<RecordType>())
182    return RT->getDecl()->isClass();
183  return false;
184}
185bool Type::isStructureType() const {
186  if (const RecordType *RT = getAs<RecordType>())
187    return RT->getDecl()->isStruct();
188  return false;
189}
190bool Type::isVoidPointerType() const {
191  if (const PointerType *PT = getAs<PointerType>())
192    return PT->getPointeeType()->isVoidType();
193  return false;
194}
195
196bool Type::isUnionType() const {
197  if (const RecordType *RT = getAs<RecordType>())
198    return RT->getDecl()->isUnion();
199  return false;
200}
201
202bool Type::isComplexType() const {
203  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
204    return CT->getElementType()->isFloatingType();
205  return false;
206}
207
208bool Type::isComplexIntegerType() const {
209  // Check for GCC complex integer extension.
210  return getAsComplexIntegerType();
211}
212
213const ComplexType *Type::getAsComplexIntegerType() const {
214  if (const ComplexType *Complex = getAs<ComplexType>())
215    if (Complex->getElementType()->isIntegerType())
216      return Complex;
217  return 0;
218}
219
220QualType Type::getPointeeType() const {
221  if (const PointerType *PT = getAs<PointerType>())
222    return PT->getPointeeType();
223  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
224    return OPT->getPointeeType();
225  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
226    return BPT->getPointeeType();
227  if (const ReferenceType *RT = getAs<ReferenceType>())
228    return RT->getPointeeType();
229  return QualType();
230}
231
232/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
233/// array types and types that contain variable array types in their
234/// declarator
235bool Type::isVariablyModifiedType() const {
236  // A VLA is a variably modified type.
237  if (isVariableArrayType())
238    return true;
239
240  // An array can contain a variably modified type
241  if (const Type *T = getArrayElementTypeNoTypeQual())
242    return T->isVariablyModifiedType();
243
244  // A pointer can point to a variably modified type.
245  // Also, C++ references and member pointers can point to a variably modified
246  // type, where VLAs appear as an extension to C++, and should be treated
247  // correctly.
248  if (const PointerType *PT = getAs<PointerType>())
249    return PT->getPointeeType()->isVariablyModifiedType();
250  if (const ReferenceType *RT = getAs<ReferenceType>())
251    return RT->getPointeeType()->isVariablyModifiedType();
252  if (const MemberPointerType *PT = getAs<MemberPointerType>())
253    return PT->getPointeeType()->isVariablyModifiedType();
254
255  // A function can return a variably modified type
256  // This one isn't completely obvious, but it follows from the
257  // definition in C99 6.7.5p3. Because of this rule, it's
258  // illegal to declare a function returning a variably modified type.
259  if (const FunctionType *FT = getAs<FunctionType>())
260    return FT->getResultType()->isVariablyModifiedType();
261
262  return false;
263}
264
265const RecordType *Type::getAsStructureType() const {
266  // If this is directly a structure type, return it.
267  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
268    if (RT->getDecl()->isStruct())
269      return RT;
270  }
271
272  // If the canonical form of this type isn't the right kind, reject it.
273  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
274    if (!RT->getDecl()->isStruct())
275      return 0;
276
277    // If this is a typedef for a structure type, strip the typedef off without
278    // losing all typedef information.
279    return cast<RecordType>(getUnqualifiedDesugaredType());
280  }
281  return 0;
282}
283
284const RecordType *Type::getAsUnionType() const {
285  // If this is directly a union type, return it.
286  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
287    if (RT->getDecl()->isUnion())
288      return RT;
289  }
290
291  // If the canonical form of this type isn't the right kind, reject it.
292  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
293    if (!RT->getDecl()->isUnion())
294      return 0;
295
296    // If this is a typedef for a union type, strip the typedef off without
297    // losing all typedef information.
298    return cast<RecordType>(getUnqualifiedDesugaredType());
299  }
300
301  return 0;
302}
303
304const ObjCInterfaceType *Type::getAsObjCQualifiedInterfaceType() const {
305  // There is no sugar for ObjCInterfaceType's, just return the canonical
306  // type pointer if it is the right class.  There is no typedef information to
307  // return and these cannot be Address-space qualified.
308  if (const ObjCInterfaceType *OIT = getAs<ObjCInterfaceType>())
309    if (OIT->getNumProtocols())
310      return OIT;
311  return 0;
312}
313
314bool Type::isObjCQualifiedInterfaceType() const {
315  return getAsObjCQualifiedInterfaceType() != 0;
316}
317
318const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
319  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
320  // type pointer if it is the right class.
321  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
322    if (OPT->isObjCQualifiedIdType())
323      return OPT;
324  }
325  return 0;
326}
327
328const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
329  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
330    if (OPT->getInterfaceType())
331      return OPT;
332  }
333  return 0;
334}
335
336const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
337  if (const PointerType *PT = getAs<PointerType>())
338    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
339      return dyn_cast<CXXRecordDecl>(RT->getDecl());
340  return 0;
341}
342
343bool Type::isIntegerType() const {
344  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
345    return BT->getKind() >= BuiltinType::Bool &&
346           BT->getKind() <= BuiltinType::Int128;
347  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
348    // Incomplete enum types are not treated as integer types.
349    // FIXME: In C++, enum types are never integer types.
350    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
351      return true;
352  if (isa<FixedWidthIntType>(CanonicalType))
353    return true;
354  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
355    return VT->getElementType()->isIntegerType();
356  return false;
357}
358
359bool Type::isIntegralType() const {
360  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
361    return BT->getKind() >= BuiltinType::Bool &&
362    BT->getKind() <= BuiltinType::LongLong;
363  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
364    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
365      return true;  // Complete enum types are integral.
366                    // FIXME: In C++, enum types are never integral.
367  if (isa<FixedWidthIntType>(CanonicalType))
368    return true;
369  return false;
370}
371
372bool Type::isEnumeralType() const {
373  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
374    return TT->getDecl()->isEnum();
375  return false;
376}
377
378bool Type::isBooleanType() const {
379  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
380    return BT->getKind() == BuiltinType::Bool;
381  return false;
382}
383
384bool Type::isCharType() const {
385  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
386    return BT->getKind() == BuiltinType::Char_U ||
387           BT->getKind() == BuiltinType::UChar ||
388           BT->getKind() == BuiltinType::Char_S ||
389           BT->getKind() == BuiltinType::SChar;
390  return false;
391}
392
393bool Type::isWideCharType() const {
394  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
395    return BT->getKind() == BuiltinType::WChar;
396  return false;
397}
398
399/// isSignedIntegerType - Return true if this is an integer type that is
400/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
401/// an enum decl which has a signed representation, or a vector of signed
402/// integer element type.
403bool Type::isSignedIntegerType() const {
404  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
405    return BT->getKind() >= BuiltinType::Char_S &&
406           BT->getKind() <= BuiltinType::LongLong;
407  }
408
409  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
410    return ET->getDecl()->getIntegerType()->isSignedIntegerType();
411
412  if (const FixedWidthIntType *FWIT =
413          dyn_cast<FixedWidthIntType>(CanonicalType))
414    return FWIT->isSigned();
415
416  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
417    return VT->getElementType()->isSignedIntegerType();
418  return false;
419}
420
421/// isUnsignedIntegerType - Return true if this is an integer type that is
422/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
423/// decl which has an unsigned representation, or a vector of unsigned integer
424/// element type.
425bool Type::isUnsignedIntegerType() const {
426  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
427    return BT->getKind() >= BuiltinType::Bool &&
428           BT->getKind() <= BuiltinType::ULongLong;
429  }
430
431  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
432    return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
433
434  if (const FixedWidthIntType *FWIT =
435          dyn_cast<FixedWidthIntType>(CanonicalType))
436    return !FWIT->isSigned();
437
438  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
439    return VT->getElementType()->isUnsignedIntegerType();
440  return false;
441}
442
443bool Type::isFloatingType() const {
444  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
445    return BT->getKind() >= BuiltinType::Float &&
446           BT->getKind() <= BuiltinType::LongDouble;
447  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
448    return CT->getElementType()->isFloatingType();
449  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
450    return VT->getElementType()->isFloatingType();
451  return false;
452}
453
454bool Type::isRealFloatingType() const {
455  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
456    return BT->getKind() >= BuiltinType::Float &&
457           BT->getKind() <= BuiltinType::LongDouble;
458  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
459    return VT->getElementType()->isRealFloatingType();
460  return false;
461}
462
463bool Type::isRealType() const {
464  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
465    return BT->getKind() >= BuiltinType::Bool &&
466           BT->getKind() <= BuiltinType::LongDouble;
467  if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
468    return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
469  if (isa<FixedWidthIntType>(CanonicalType))
470    return true;
471  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
472    return VT->getElementType()->isRealType();
473  return false;
474}
475
476bool Type::isArithmeticType() const {
477  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
478    return BT->getKind() >= BuiltinType::Bool &&
479           BT->getKind() <= BuiltinType::LongDouble;
480  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
481    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
482    // If a body isn't seen by the time we get here, return false.
483    return ET->getDecl()->isDefinition();
484  if (isa<FixedWidthIntType>(CanonicalType))
485    return true;
486  return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
487}
488
489bool Type::isScalarType() const {
490  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
491    return BT->getKind() != BuiltinType::Void;
492  if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
493    // Enums are scalar types, but only if they are defined.  Incomplete enums
494    // are not treated as scalar types.
495    if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
496      return true;
497    return false;
498  }
499  if (isa<FixedWidthIntType>(CanonicalType))
500    return true;
501  return isa<PointerType>(CanonicalType) ||
502         isa<BlockPointerType>(CanonicalType) ||
503         isa<MemberPointerType>(CanonicalType) ||
504         isa<ComplexType>(CanonicalType) ||
505         isa<ObjCObjectPointerType>(CanonicalType);
506}
507
508/// \brief Determines whether the type is a C++ aggregate type or C
509/// aggregate or union type.
510///
511/// An aggregate type is an array or a class type (struct, union, or
512/// class) that has no user-declared constructors, no private or
513/// protected non-static data members, no base classes, and no virtual
514/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
515/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
516/// includes union types.
517bool Type::isAggregateType() const {
518  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
519    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
520      return ClassDecl->isAggregate();
521
522    return true;
523  }
524
525  return isa<ArrayType>(CanonicalType);
526}
527
528/// isConstantSizeType - Return true if this is not a variable sized type,
529/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
530/// incomplete types or dependent types.
531bool Type::isConstantSizeType() const {
532  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
533  assert(!isDependentType() && "This doesn't make sense for dependent types");
534  // The VAT must have a size, as it is known to be complete.
535  return !isa<VariableArrayType>(CanonicalType);
536}
537
538/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
539/// - a type that can describe objects, but which lacks information needed to
540/// determine its size.
541bool Type::isIncompleteType() const {
542  switch (CanonicalType->getTypeClass()) {
543  default: return false;
544  case Builtin:
545    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
546    // be completed.
547    return isVoidType();
548  case Record:
549  case Enum:
550    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
551    // forward declaration, but not a full definition (C99 6.2.5p22).
552    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
553  case IncompleteArray:
554    // An array of unknown size is an incomplete type (C99 6.2.5p22).
555    return true;
556  case ObjCInterface:
557    // ObjC interfaces are incomplete if they are @class, not @interface.
558    return cast<ObjCInterfaceType>(this)->getDecl()->isForwardDecl();
559  }
560}
561
562/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
563bool Type::isPODType() const {
564  // The compiler shouldn't query this for incomplete types, but the user might.
565  // We return false for that case.
566  if (isIncompleteType())
567    return false;
568
569  switch (CanonicalType->getTypeClass()) {
570    // Everything not explicitly mentioned is not POD.
571  default: return false;
572  case VariableArray:
573  case ConstantArray:
574    // IncompleteArray is caught by isIncompleteType() above.
575    return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
576
577  case Builtin:
578  case Complex:
579  case Pointer:
580  case MemberPointer:
581  case Vector:
582  case ExtVector:
583  case ObjCObjectPointer:
584    return true;
585
586  case Enum:
587    return true;
588
589  case Record:
590    if (CXXRecordDecl *ClassDecl
591          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
592      return ClassDecl->isPOD();
593
594    // C struct/union is POD.
595    return true;
596  }
597}
598
599bool Type::isPromotableIntegerType() const {
600  if (const BuiltinType *BT = getAs<BuiltinType>())
601    switch (BT->getKind()) {
602    case BuiltinType::Bool:
603    case BuiltinType::Char_S:
604    case BuiltinType::Char_U:
605    case BuiltinType::SChar:
606    case BuiltinType::UChar:
607    case BuiltinType::Short:
608    case BuiltinType::UShort:
609      return true;
610    default:
611      return false;
612    }
613  return false;
614}
615
616bool Type::isNullPtrType() const {
617  if (const BuiltinType *BT = getAs<BuiltinType>())
618    return BT->getKind() == BuiltinType::NullPtr;
619  return false;
620}
621
622bool Type::isSpecifierType() const {
623  // Note that this intentionally does not use the canonical type.
624  switch (getTypeClass()) {
625  case Builtin:
626  case Record:
627  case Enum:
628  case Typedef:
629  case Complex:
630  case TypeOfExpr:
631  case TypeOf:
632  case TemplateTypeParm:
633  case SubstTemplateTypeParm:
634  case TemplateSpecialization:
635  case QualifiedName:
636  case Typename:
637  case ObjCInterface:
638  case ObjCObjectPointer:
639    return true;
640  default:
641    return false;
642  }
643}
644
645const char *Type::getTypeClassName() const {
646  switch (TC) {
647  default: assert(0 && "Type class not in TypeNodes.def!");
648#define ABSTRACT_TYPE(Derived, Base)
649#define TYPE(Derived, Base) case Derived: return #Derived;
650#include "clang/AST/TypeNodes.def"
651  }
652}
653
654const char *BuiltinType::getName(const LangOptions &LO) const {
655  switch (getKind()) {
656  default: assert(0 && "Unknown builtin type!");
657  case Void:              return "void";
658  case Bool:              return LO.Bool ? "bool" : "_Bool";
659  case Char_S:            return "char";
660  case Char_U:            return "char";
661  case SChar:             return "signed char";
662  case Short:             return "short";
663  case Int:               return "int";
664  case Long:              return "long";
665  case LongLong:          return "long long";
666  case Int128:            return "__int128_t";
667  case UChar:             return "unsigned char";
668  case UShort:            return "unsigned short";
669  case UInt:              return "unsigned int";
670  case ULong:             return "unsigned long";
671  case ULongLong:         return "unsigned long long";
672  case UInt128:           return "__uint128_t";
673  case Float:             return "float";
674  case Double:            return "double";
675  case LongDouble:        return "long double";
676  case WChar:             return "wchar_t";
677  case Char16:            return "char16_t";
678  case Char32:            return "char32_t";
679  case NullPtr:           return "nullptr_t";
680  case Overload:          return "<overloaded function type>";
681  case Dependent:         return "<dependent type>";
682  case UndeducedAuto:     return "auto";
683  case ObjCId:            return "id";
684  case ObjCClass:         return "Class";
685  }
686}
687
688void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
689                                arg_type_iterator ArgTys,
690                                unsigned NumArgs, bool isVariadic,
691                                unsigned TypeQuals, bool hasExceptionSpec,
692                                bool anyExceptionSpec, unsigned NumExceptions,
693                                exception_iterator Exs, bool NoReturn) {
694  ID.AddPointer(Result.getAsOpaquePtr());
695  for (unsigned i = 0; i != NumArgs; ++i)
696    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
697  ID.AddInteger(isVariadic);
698  ID.AddInteger(TypeQuals);
699  ID.AddInteger(hasExceptionSpec);
700  if (hasExceptionSpec) {
701    ID.AddInteger(anyExceptionSpec);
702    for (unsigned i = 0; i != NumExceptions; ++i)
703      ID.AddPointer(Exs[i].getAsOpaquePtr());
704  }
705  ID.AddInteger(NoReturn);
706}
707
708void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID) {
709  Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
710          getTypeQuals(), hasExceptionSpec(), hasAnyExceptionSpec(),
711          getNumExceptions(), exception_begin(), getNoReturnAttr());
712}
713
714void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID,
715                                    QualType OIT, ObjCProtocolDecl **protocols,
716                                    unsigned NumProtocols) {
717  ID.AddPointer(OIT.getAsOpaquePtr());
718  for (unsigned i = 0; i != NumProtocols; i++)
719    ID.AddPointer(protocols[i]);
720}
721
722void ObjCObjectPointerType::Profile(llvm::FoldingSetNodeID &ID) {
723  if (getNumProtocols())
724    Profile(ID, getPointeeType(), &Protocols[0], getNumProtocols());
725  else
726    Profile(ID, getPointeeType(), 0, 0);
727}
728
729/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
730/// potentially looking through *all* consequtive typedefs.  This returns the
731/// sum of the type qualifiers, so if you have:
732///   typedef const int A;
733///   typedef volatile A B;
734/// looking through the typedefs for B will give you "const volatile A".
735///
736QualType TypedefType::LookThroughTypedefs() const {
737  // Usually, there is only a single level of typedefs, be fast in that case.
738  QualType FirstType = getDecl()->getUnderlyingType();
739  if (!isa<TypedefType>(FirstType))
740    return FirstType;
741
742  // Otherwise, do the fully general loop.
743  QualifierCollector Qs;
744
745  QualType CurType;
746  const TypedefType *TDT = this;
747  do {
748    CurType = TDT->getDecl()->getUnderlyingType();
749    TDT = dyn_cast<TypedefType>(Qs.strip(CurType));
750  } while (TDT);
751
752  return Qs.apply(CurType);
753}
754
755QualType TypedefType::desugar() const {
756  return getDecl()->getUnderlyingType();
757}
758
759TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
760  : Type(TypeOfExpr, can, E->isTypeDependent()), TOExpr(E) {
761}
762
763QualType TypeOfExprType::desugar() const {
764  return getUnderlyingExpr()->getType();
765}
766
767void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
768                                      ASTContext &Context, Expr *E) {
769  E->Profile(ID, Context, true);
770}
771
772DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
773  : Type(Decltype, can, E->isTypeDependent()), E(E),
774  UnderlyingType(underlyingType) {
775}
776
777DependentDecltypeType::DependentDecltypeType(ASTContext &Context, Expr *E)
778  : DecltypeType(E, Context.DependentTy), Context(Context) { }
779
780void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
781                                    ASTContext &Context, Expr *E) {
782  E->Profile(ID, Context, true);
783}
784
785TagType::TagType(TypeClass TC, TagDecl *D, QualType can)
786  : Type(TC, can, D->isDependentType()), decl(D, 0) {}
787
788bool RecordType::classof(const TagType *TT) {
789  return isa<RecordDecl>(TT->getDecl());
790}
791
792bool EnumType::classof(const TagType *TT) {
793  return isa<EnumDecl>(TT->getDecl());
794}
795
796static bool isDependent(const TemplateArgument &Arg) {
797  switch (Arg.getKind()) {
798  case TemplateArgument::Null:
799    assert(false && "Should not have a NULL template argument");
800    return false;
801
802  case TemplateArgument::Type:
803    return Arg.getAsType()->isDependentType();
804
805  case TemplateArgument::Declaration:
806  case TemplateArgument::Integral:
807    // Never dependent
808    return false;
809
810  case TemplateArgument::Expression:
811    return (Arg.getAsExpr()->isTypeDependent() ||
812            Arg.getAsExpr()->isValueDependent());
813
814  case TemplateArgument::Pack:
815    assert(0 && "FIXME: Implement!");
816    return false;
817  }
818
819  return false;
820}
821
822bool TemplateSpecializationType::
823anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N) {
824  for (unsigned i = 0; i != N; ++i)
825    if (isDependent(Args[i].getArgument()))
826      return true;
827  return false;
828}
829
830bool TemplateSpecializationType::
831anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N) {
832  for (unsigned i = 0; i != N; ++i)
833    if (isDependent(Args[i]))
834      return true;
835  return false;
836}
837
838TemplateSpecializationType::
839TemplateSpecializationType(ASTContext &Context, TemplateName T,
840                           const TemplateArgument *Args,
841                           unsigned NumArgs, QualType Canon)
842  : Type(TemplateSpecialization,
843         Canon.isNull()? QualType(this, 0) : Canon,
844         T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)),
845    Context(Context),
846    Template(T), NumArgs(NumArgs) {
847  assert((!Canon.isNull() ||
848          T.isDependent() || anyDependentTemplateArguments(Args, NumArgs)) &&
849         "No canonical type for non-dependent class template specialization");
850
851  TemplateArgument *TemplateArgs
852    = reinterpret_cast<TemplateArgument *>(this + 1);
853  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
854    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
855}
856
857void TemplateSpecializationType::Destroy(ASTContext& C) {
858  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
859    // FIXME: Not all expressions get cloned, so we can't yet perform
860    // this destruction.
861    //    if (Expr *E = getArg(Arg).getAsExpr())
862    //      E->Destroy(C);
863  }
864}
865
866TemplateSpecializationType::iterator
867TemplateSpecializationType::end() const {
868  return begin() + getNumArgs();
869}
870
871const TemplateArgument &
872TemplateSpecializationType::getArg(unsigned Idx) const {
873  assert(Idx < getNumArgs() && "Template argument out of range");
874  return getArgs()[Idx];
875}
876
877void
878TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
879                                    TemplateName T,
880                                    const TemplateArgument *Args,
881                                    unsigned NumArgs,
882                                    ASTContext &Context) {
883  T.Profile(ID);
884  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
885    Args[Idx].Profile(ID, Context);
886}
887
888QualType QualifierCollector::apply(QualType QT) const {
889  if (!hasNonFastQualifiers())
890    return QT.withFastQualifiers(getFastQualifiers());
891
892  assert(Context && "extended qualifiers but no context!");
893  return Context->getQualifiedType(QT, *this);
894}
895
896QualType QualifierCollector::apply(const Type *T) const {
897  if (!hasNonFastQualifiers())
898    return QualType(T, getFastQualifiers());
899
900  assert(Context && "extended qualifiers but no context!");
901  return Context->getQualifiedType(T, *this);
902}
903
904
905//===----------------------------------------------------------------------===//
906// Type Printing
907//===----------------------------------------------------------------------===//
908
909void QualType::dump(const char *msg) const {
910  std::string R = "identifier";
911  LangOptions LO;
912  getAsStringInternal(R, PrintingPolicy(LO));
913  if (msg)
914    fprintf(stderr, "%s: %s\n", msg, R.c_str());
915  else
916    fprintf(stderr, "%s\n", R.c_str());
917}
918void QualType::dump() const {
919  dump("");
920}
921
922void Type::dump() const {
923  std::string S = "identifier";
924  LangOptions LO;
925  getAsStringInternal(S, PrintingPolicy(LO));
926  fprintf(stderr, "%s\n", S.c_str());
927}
928
929
930
931static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
932  if (TypeQuals & Qualifiers::Const) {
933    if (!S.empty()) S += ' ';
934    S += "const";
935  }
936  if (TypeQuals & Qualifiers::Volatile) {
937    if (!S.empty()) S += ' ';
938    S += "volatile";
939  }
940  if (TypeQuals & Qualifiers::Restrict) {
941    if (!S.empty()) S += ' ';
942    S += "restrict";
943  }
944}
945
946std::string Qualifiers::getAsString() const {
947  LangOptions LO;
948  return getAsString(PrintingPolicy(LO));
949}
950
951// Appends qualifiers to the given string, separated by spaces.  Will
952// prefix a space if the string is non-empty.  Will not append a final
953// space.
954void Qualifiers::getAsStringInternal(std::string &S,
955                                     const PrintingPolicy&) const {
956  AppendTypeQualList(S, getCVRQualifiers());
957  if (unsigned AddressSpace = getAddressSpace()) {
958    if (!S.empty()) S += ' ';
959    S += "__attribute__((address_space(";
960    S += llvm::utostr_32(AddressSpace);
961    S += ")))";
962  }
963  if (Qualifiers::GC GCAttrType = getObjCGCAttr()) {
964    if (!S.empty()) S += ' ';
965    S += "__attribute__((objc_gc(";
966    if (GCAttrType == Qualifiers::Weak)
967      S += "weak";
968    else
969      S += "strong";
970    S += ")))";
971  }
972}
973
974std::string QualType::getAsString() const {
975  std::string S;
976  LangOptions LO;
977  getAsStringInternal(S, PrintingPolicy(LO));
978  return S;
979}
980
981void
982QualType::getAsStringInternal(std::string &S,
983                              const PrintingPolicy &Policy) const {
984  if (isNull()) {
985    S += "NULL TYPE";
986    return;
987  }
988
989  if (Policy.SuppressSpecifiers && getTypePtr()->isSpecifierType())
990    return;
991
992  // Print qualifiers as appropriate.
993  Qualifiers Quals = getQualifiers();
994  if (!Quals.empty()) {
995    std::string TQS;
996    Quals.getAsStringInternal(TQS, Policy);
997
998    if (!S.empty()) {
999      TQS += ' ';
1000      TQS += S;
1001    }
1002    std::swap(S, TQS);
1003  }
1004
1005  getTypePtr()->getAsStringInternal(S, Policy);
1006}
1007
1008void BuiltinType::getAsStringInternal(std::string &S,
1009                                      const PrintingPolicy &Policy) const {
1010  if (S.empty()) {
1011    S = getName(Policy.LangOpts);
1012  } else {
1013    // Prefix the basic type, e.g. 'int X'.
1014    S = ' ' + S;
1015    S = getName(Policy.LangOpts) + S;
1016  }
1017}
1018
1019void FixedWidthIntType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1020  // FIXME: Once we get bitwidth attribute, write as
1021  // "int __attribute__((bitwidth(x)))".
1022  std::string prefix = "__clang_fixedwidth";
1023  prefix += llvm::utostr_32(Width);
1024  prefix += (char)(Signed ? 'S' : 'U');
1025  if (S.empty()) {
1026    S = prefix;
1027  } else {
1028    // Prefix the basic type, e.g. 'int X'.
1029    S = prefix + S;
1030  }
1031}
1032
1033
1034void ComplexType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1035  ElementType->getAsStringInternal(S, Policy);
1036  S = "_Complex " + S;
1037}
1038
1039void PointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1040  S = '*' + S;
1041
1042  // Handle things like 'int (*A)[4];' correctly.
1043  // FIXME: this should include vectors, but vectors use attributes I guess.
1044  if (isa<ArrayType>(getPointeeType()))
1045    S = '(' + S + ')';
1046
1047  getPointeeType().getAsStringInternal(S, Policy);
1048}
1049
1050void BlockPointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1051  S = '^' + S;
1052  PointeeType.getAsStringInternal(S, Policy);
1053}
1054
1055void LValueReferenceType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1056  S = '&' + S;
1057
1058  // Handle things like 'int (&A)[4];' correctly.
1059  // FIXME: this should include vectors, but vectors use attributes I guess.
1060  if (isa<ArrayType>(getPointeeTypeAsWritten()))
1061    S = '(' + S + ')';
1062
1063  getPointeeTypeAsWritten().getAsStringInternal(S, Policy);
1064}
1065
1066void RValueReferenceType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1067  S = "&&" + S;
1068
1069  // Handle things like 'int (&&A)[4];' correctly.
1070  // FIXME: this should include vectors, but vectors use attributes I guess.
1071  if (isa<ArrayType>(getPointeeTypeAsWritten()))
1072    S = '(' + S + ')';
1073
1074  getPointeeTypeAsWritten().getAsStringInternal(S, Policy);
1075}
1076
1077void MemberPointerType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1078  std::string C;
1079  Class->getAsStringInternal(C, Policy);
1080  C += "::*";
1081  S = C + S;
1082
1083  // Handle things like 'int (Cls::*A)[4];' correctly.
1084  // FIXME: this should include vectors, but vectors use attributes I guess.
1085  if (isa<ArrayType>(getPointeeType()))
1086    S = '(' + S + ')';
1087
1088  getPointeeType().getAsStringInternal(S, Policy);
1089}
1090
1091void ConstantArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1092  S += '[';
1093  S += llvm::utostr(getSize().getZExtValue());
1094  S += ']';
1095
1096  getElementType().getAsStringInternal(S, Policy);
1097}
1098
1099void IncompleteArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1100  S += "[]";
1101
1102  getElementType().getAsStringInternal(S, Policy);
1103}
1104
1105void VariableArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1106  S += '[';
1107
1108  if (getIndexTypeQualifiers().hasQualifiers()) {
1109    AppendTypeQualList(S, getIndexTypeCVRQualifiers());
1110    S += ' ';
1111  }
1112
1113  if (getSizeModifier() == Static)
1114    S += "static";
1115  else if (getSizeModifier() == Star)
1116    S += '*';
1117
1118  if (getSizeExpr()) {
1119    std::string SStr;
1120    llvm::raw_string_ostream s(SStr);
1121    getSizeExpr()->printPretty(s, 0, Policy);
1122    S += s.str();
1123  }
1124  S += ']';
1125
1126  getElementType().getAsStringInternal(S, Policy);
1127}
1128
1129void DependentSizedArrayType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1130  S += '[';
1131
1132  if (getIndexTypeQualifiers().hasQualifiers()) {
1133    AppendTypeQualList(S, getIndexTypeCVRQualifiers());
1134    S += ' ';
1135  }
1136
1137  if (getSizeModifier() == Static)
1138    S += "static";
1139  else if (getSizeModifier() == Star)
1140    S += '*';
1141
1142  if (getSizeExpr()) {
1143    std::string SStr;
1144    llvm::raw_string_ostream s(SStr);
1145    getSizeExpr()->printPretty(s, 0, Policy);
1146    S += s.str();
1147  }
1148  S += ']';
1149
1150  getElementType().getAsStringInternal(S, Policy);
1151}
1152
1153void DependentSizedExtVectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1154  getElementType().getAsStringInternal(S, Policy);
1155
1156  S += " __attribute__((ext_vector_type(";
1157  if (getSizeExpr()) {
1158    std::string SStr;
1159    llvm::raw_string_ostream s(SStr);
1160    getSizeExpr()->printPretty(s, 0, Policy);
1161    S += s.str();
1162  }
1163  S += ")))";
1164}
1165
1166void VectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1167  // FIXME: We prefer to print the size directly here, but have no way
1168  // to get the size of the type.
1169  S += " __attribute__((__vector_size__(";
1170  S += llvm::utostr_32(NumElements); // convert back to bytes.
1171  S += " * sizeof(" + ElementType.getAsString() + "))))";
1172  ElementType.getAsStringInternal(S, Policy);
1173}
1174
1175void ExtVectorType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1176  S += " __attribute__((ext_vector_type(";
1177  S += llvm::utostr_32(NumElements);
1178  S += ")))";
1179  ElementType.getAsStringInternal(S, Policy);
1180}
1181
1182void TypeOfExprType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1183  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typeof(e) X'.
1184    InnerString = ' ' + InnerString;
1185  std::string Str;
1186  llvm::raw_string_ostream s(Str);
1187  getUnderlyingExpr()->printPretty(s, 0, Policy);
1188  InnerString = "typeof " + s.str() + InnerString;
1189}
1190
1191void TypeOfType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1192  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typeof(t) X'.
1193    InnerString = ' ' + InnerString;
1194  std::string Tmp;
1195  getUnderlyingType().getAsStringInternal(Tmp, Policy);
1196  InnerString = "typeof(" + Tmp + ")" + InnerString;
1197}
1198
1199void DecltypeType::getAsStringInternal(std::string &InnerString,
1200                                       const PrintingPolicy &Policy) const {
1201  if (!InnerString.empty())    // Prefix the basic type, e.g. 'decltype(t) X'.
1202    InnerString = ' ' + InnerString;
1203  std::string Str;
1204  llvm::raw_string_ostream s(Str);
1205  getUnderlyingExpr()->printPretty(s, 0, Policy);
1206  InnerString = "decltype(" + s.str() + ")" + InnerString;
1207}
1208
1209void FunctionNoProtoType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1210  // If needed for precedence reasons, wrap the inner part in grouping parens.
1211  if (!S.empty())
1212    S = "(" + S + ")";
1213
1214  S += "()";
1215  if (getNoReturnAttr())
1216    S += " __attribute__((noreturn))";
1217  getResultType().getAsStringInternal(S, Policy);
1218}
1219
1220void FunctionProtoType::getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const {
1221  // If needed for precedence reasons, wrap the inner part in grouping parens.
1222  if (!S.empty())
1223    S = "(" + S + ")";
1224
1225  S += "(";
1226  std::string Tmp;
1227  PrintingPolicy ParamPolicy(Policy);
1228  ParamPolicy.SuppressSpecifiers = false;
1229  for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
1230    if (i) S += ", ";
1231    getArgType(i).getAsStringInternal(Tmp, ParamPolicy);
1232    S += Tmp;
1233    Tmp.clear();
1234  }
1235
1236  if (isVariadic()) {
1237    if (getNumArgs())
1238      S += ", ";
1239    S += "...";
1240  } else if (getNumArgs() == 0 && !Policy.LangOpts.CPlusPlus) {
1241    // Do not emit int() if we have a proto, emit 'int(void)'.
1242    S += "void";
1243  }
1244
1245  S += ")";
1246  if (getNoReturnAttr())
1247    S += " __attribute__((noreturn))";
1248  getResultType().getAsStringInternal(S, Policy);
1249}
1250
1251
1252void TypedefType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1253  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typedefname X'.
1254    InnerString = ' ' + InnerString;
1255  InnerString = getDecl()->getIdentifier()->getName().str() + InnerString;
1256}
1257
1258void TemplateTypeParmType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1259  if (!InnerString.empty())    // Prefix the basic type, e.g. 'parmname X'.
1260    InnerString = ' ' + InnerString;
1261
1262  if (!Name)
1263    InnerString = "type-parameter-" + llvm::utostr_32(Depth) + '-' +
1264      llvm::utostr_32(Index) + InnerString;
1265  else
1266    InnerString = Name->getName().str() + InnerString;
1267}
1268
1269void SubstTemplateTypeParmType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1270  getReplacementType().getAsStringInternal(InnerString, Policy);
1271}
1272
1273static void PrintTemplateArgument(std::string &Buffer,
1274                                  const TemplateArgument &Arg,
1275                                  const PrintingPolicy &Policy) {
1276  switch (Arg.getKind()) {
1277  case TemplateArgument::Null:
1278    assert(false && "Null template argument");
1279    break;
1280
1281  case TemplateArgument::Type:
1282    Arg.getAsType().getAsStringInternal(Buffer, Policy);
1283    break;
1284
1285  case TemplateArgument::Declaration:
1286    Buffer = cast<NamedDecl>(Arg.getAsDecl())->getNameAsString();
1287    break;
1288
1289  case TemplateArgument::Integral:
1290    Buffer = Arg.getAsIntegral()->toString(10, true);
1291    break;
1292
1293  case TemplateArgument::Expression: {
1294    llvm::raw_string_ostream s(Buffer);
1295    Arg.getAsExpr()->printPretty(s, 0, Policy);
1296    break;
1297  }
1298
1299  case TemplateArgument::Pack:
1300    assert(0 && "FIXME: Implement!");
1301    break;
1302  }
1303}
1304
1305std::string
1306TemplateSpecializationType::PrintTemplateArgumentList(
1307                                                  const TemplateArgument *Args,
1308                                                  unsigned NumArgs,
1309                                                  const PrintingPolicy &Policy) {
1310  std::string SpecString;
1311  SpecString += '<';
1312  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1313    if (Arg)
1314      SpecString += ", ";
1315
1316    // Print the argument into a string.
1317    std::string ArgString;
1318    PrintTemplateArgument(ArgString, Args[Arg], Policy);
1319
1320    // If this is the first argument and its string representation
1321    // begins with the global scope specifier ('::foo'), add a space
1322    // to avoid printing the diagraph '<:'.
1323    if (!Arg && !ArgString.empty() && ArgString[0] == ':')
1324      SpecString += ' ';
1325
1326    SpecString += ArgString;
1327  }
1328
1329  // If the last character of our string is '>', add another space to
1330  // keep the two '>''s separate tokens. We don't *have* to do this in
1331  // C++0x, but it's still good hygiene.
1332  if (SpecString[SpecString.size() - 1] == '>')
1333    SpecString += ' ';
1334
1335  SpecString += '>';
1336
1337  return SpecString;
1338}
1339
1340// Sadly, repeat all that with TemplateArgLoc.
1341std::string TemplateSpecializationType::
1342PrintTemplateArgumentList(const TemplateArgumentLoc *Args, unsigned NumArgs,
1343                          const PrintingPolicy &Policy) {
1344  std::string SpecString;
1345  SpecString += '<';
1346  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1347    if (Arg)
1348      SpecString += ", ";
1349
1350    // Print the argument into a string.
1351    std::string ArgString;
1352    PrintTemplateArgument(ArgString, Args[Arg].getArgument(), Policy);
1353
1354    // If this is the first argument and its string representation
1355    // begins with the global scope specifier ('::foo'), add a space
1356    // to avoid printing the diagraph '<:'.
1357    if (!Arg && !ArgString.empty() && ArgString[0] == ':')
1358      SpecString += ' ';
1359
1360    SpecString += ArgString;
1361  }
1362
1363  // If the last character of our string is '>', add another space to
1364  // keep the two '>''s separate tokens. We don't *have* to do this in
1365  // C++0x, but it's still good hygiene.
1366  if (SpecString[SpecString.size() - 1] == '>')
1367    SpecString += ' ';
1368
1369  SpecString += '>';
1370
1371  return SpecString;
1372}
1373
1374void
1375TemplateSpecializationType::
1376getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1377  std::string SpecString;
1378
1379  {
1380    llvm::raw_string_ostream OS(SpecString);
1381    Template.print(OS, Policy);
1382  }
1383
1384  SpecString += PrintTemplateArgumentList(getArgs(), getNumArgs(), Policy);
1385  if (InnerString.empty())
1386    InnerString.swap(SpecString);
1387  else
1388    InnerString = SpecString + ' ' + InnerString;
1389}
1390
1391void QualifiedNameType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1392  std::string MyString;
1393
1394  {
1395    llvm::raw_string_ostream OS(MyString);
1396    NNS->print(OS, Policy);
1397  }
1398
1399  std::string TypeStr;
1400  PrintingPolicy InnerPolicy(Policy);
1401  InnerPolicy.SuppressTagKind = true;
1402  InnerPolicy.SuppressScope = true;
1403  NamedType.getAsStringInternal(TypeStr, InnerPolicy);
1404
1405  MyString += TypeStr;
1406  if (InnerString.empty())
1407    InnerString.swap(MyString);
1408  else
1409    InnerString = MyString + ' ' + InnerString;
1410}
1411
1412void TypenameType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1413  std::string MyString;
1414
1415  {
1416    llvm::raw_string_ostream OS(MyString);
1417    OS << "typename ";
1418    NNS->print(OS, Policy);
1419
1420    if (const IdentifierInfo *Ident = getIdentifier())
1421      OS << Ident->getName();
1422    else if (const TemplateSpecializationType *Spec = getTemplateId()) {
1423      Spec->getTemplateName().print(OS, Policy, true);
1424      OS << TemplateSpecializationType::PrintTemplateArgumentList(
1425                                                               Spec->getArgs(),
1426                                                            Spec->getNumArgs(),
1427                                                               Policy);
1428    }
1429  }
1430
1431  if (InnerString.empty())
1432    InnerString.swap(MyString);
1433  else
1434    InnerString = MyString + ' ' + InnerString;
1435}
1436
1437void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
1438                                         const ObjCInterfaceDecl *Decl,
1439                                         ObjCProtocolDecl **protocols,
1440                                         unsigned NumProtocols) {
1441  ID.AddPointer(Decl);
1442  for (unsigned i = 0; i != NumProtocols; i++)
1443    ID.AddPointer(protocols[i]);
1444}
1445
1446void ObjCInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
1447  if (getNumProtocols())
1448    Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
1449  else
1450    Profile(ID, getDecl(), 0, 0);
1451}
1452
1453void ObjCInterfaceType::getAsStringInternal(std::string &InnerString,
1454                                           const PrintingPolicy &Policy) const {
1455  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typedefname X'.
1456    InnerString = ' ' + InnerString;
1457
1458  std::string ObjCQIString = getDecl()->getNameAsString();
1459  if (getNumProtocols()) {
1460    ObjCQIString += '<';
1461    bool isFirst = true;
1462    for (qual_iterator I = qual_begin(), E = qual_end(); I != E; ++I) {
1463      if (isFirst)
1464        isFirst = false;
1465      else
1466        ObjCQIString += ',';
1467      ObjCQIString += (*I)->getNameAsString();
1468    }
1469    ObjCQIString += '>';
1470  }
1471  InnerString = ObjCQIString + InnerString;
1472}
1473
1474void ObjCObjectPointerType::getAsStringInternal(std::string &InnerString,
1475                                                const PrintingPolicy &Policy) const {
1476  std::string ObjCQIString;
1477
1478  if (isObjCIdType() || isObjCQualifiedIdType())
1479    ObjCQIString = "id";
1480  else if (isObjCClassType() || isObjCQualifiedClassType())
1481    ObjCQIString = "Class";
1482  else
1483    ObjCQIString = getInterfaceDecl()->getNameAsString();
1484
1485  if (!qual_empty()) {
1486    ObjCQIString += '<';
1487    for (qual_iterator I = qual_begin(), E = qual_end(); I != E; ++I) {
1488      ObjCQIString += (*I)->getNameAsString();
1489      if (I+1 != E)
1490        ObjCQIString += ',';
1491    }
1492    ObjCQIString += '>';
1493  }
1494
1495  PointeeType.getQualifiers().getAsStringInternal(ObjCQIString, Policy);
1496
1497  if (!isObjCIdType() && !isObjCQualifiedIdType())
1498    ObjCQIString += " *"; // Don't forget the implicit pointer.
1499  else if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
1500    InnerString = ' ' + InnerString;
1501
1502  InnerString = ObjCQIString + InnerString;
1503}
1504
1505void ElaboratedType::getAsStringInternal(std::string &InnerString,
1506                                         const PrintingPolicy &Policy) const {
1507  std::string TypeStr;
1508  PrintingPolicy InnerPolicy(Policy);
1509  InnerPolicy.SuppressTagKind = true;
1510  UnderlyingType.getAsStringInternal(InnerString, InnerPolicy);
1511
1512  InnerString = std::string(getNameForTagKind(getTagKind())) + ' ' + InnerString;
1513}
1514
1515void TagType::getAsStringInternal(std::string &InnerString, const PrintingPolicy &Policy) const {
1516  if (Policy.SuppressTag)
1517    return;
1518
1519  if (!InnerString.empty())    // Prefix the basic type, e.g. 'typedefname X'.
1520    InnerString = ' ' + InnerString;
1521
1522  const char *Kind = Policy.SuppressTagKind? 0 : getDecl()->getKindName();
1523  const char *ID;
1524  if (const IdentifierInfo *II = getDecl()->getIdentifier())
1525    ID = II->getNameStart();
1526  else if (TypedefDecl *Typedef = getDecl()->getTypedefForAnonDecl()) {
1527    Kind = 0;
1528    assert(Typedef->getIdentifier() && "Typedef without identifier?");
1529    ID = Typedef->getIdentifier()->getNameStart();
1530  } else
1531    ID = "<anonymous>";
1532
1533  // If this is a class template specialization, print the template
1534  // arguments.
1535  if (ClassTemplateSpecializationDecl *Spec
1536        = dyn_cast<ClassTemplateSpecializationDecl>(getDecl())) {
1537    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1538    std::string TemplateArgsStr
1539      = TemplateSpecializationType::PrintTemplateArgumentList(
1540                                            TemplateArgs.getFlatArgumentList(),
1541                                            TemplateArgs.flat_size(),
1542                                                              Policy);
1543    InnerString = TemplateArgsStr + InnerString;
1544  }
1545
1546  if (!Policy.SuppressScope) {
1547    // Compute the full nested-name-specifier for this type. In C,
1548    // this will always be empty.
1549    std::string ContextStr;
1550    for (DeclContext *DC = getDecl()->getDeclContext();
1551         !DC->isTranslationUnit(); DC = DC->getParent()) {
1552      std::string MyPart;
1553      if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(DC)) {
1554        if (NS->getIdentifier())
1555          MyPart = NS->getNameAsString();
1556      } else if (ClassTemplateSpecializationDecl *Spec
1557                   = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1558        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1559        std::string TemplateArgsStr
1560          = TemplateSpecializationType::PrintTemplateArgumentList(
1561                                           TemplateArgs.getFlatArgumentList(),
1562                                           TemplateArgs.flat_size(),
1563                                           Policy);
1564        MyPart = Spec->getIdentifier()->getName().str() + TemplateArgsStr;
1565      } else if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
1566        if (TypedefDecl *Typedef = Tag->getTypedefForAnonDecl())
1567          MyPart = Typedef->getIdentifier()->getName();
1568        else if (Tag->getIdentifier())
1569          MyPart = Tag->getIdentifier()->getName();
1570      }
1571
1572      if (!MyPart.empty())
1573        ContextStr = MyPart + "::" + ContextStr;
1574    }
1575
1576    if (Kind)
1577      InnerString = std::string(Kind) + ' ' + ContextStr + ID + InnerString;
1578    else
1579      InnerString = ContextStr + ID + InnerString;
1580  } else
1581    InnerString = ID + InnerString;
1582}
1583