InstCombineLoadStoreAlloca.cpp revision 251662
1202375Srdivacky//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2202375Srdivacky//
3202375Srdivacky//                     The LLVM Compiler Infrastructure
4202375Srdivacky//
5202375Srdivacky// This file is distributed under the University of Illinois Open Source
6202375Srdivacky// License. See LICENSE.TXT for details.
7202375Srdivacky//
8202375Srdivacky//===----------------------------------------------------------------------===//
9202375Srdivacky//
10202375Srdivacky// This file implements the visit functions for load, store and alloca.
11202375Srdivacky//
12202375Srdivacky//===----------------------------------------------------------------------===//
13202375Srdivacky
14202375Srdivacky#include "InstCombine.h"
15249423Sdim#include "llvm/ADT/Statistic.h"
16210299Sed#include "llvm/Analysis/Loads.h"
17249423Sdim#include "llvm/IR/DataLayout.h"
18249423Sdim#include "llvm/IR/IntrinsicInst.h"
19202375Srdivacky#include "llvm/Transforms/Utils/BasicBlockUtils.h"
20202375Srdivacky#include "llvm/Transforms/Utils/Local.h"
21202375Srdivackyusing namespace llvm;
22202375Srdivacky
23243830SdimSTATISTIC(NumDeadStore,    "Number of dead stores eliminated");
24243830SdimSTATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
25202375Srdivacky
26243830Sdim/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
27243830Sdim/// some part of a constant global variable.  This intentionally only accepts
28243830Sdim/// constant expressions because we can't rewrite arbitrary instructions.
29243830Sdimstatic bool pointsToConstantGlobal(Value *V) {
30243830Sdim  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
31243830Sdim    return GV->isConstant();
32243830Sdim  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
33243830Sdim    if (CE->getOpcode() == Instruction::BitCast ||
34243830Sdim        CE->getOpcode() == Instruction::GetElementPtr)
35243830Sdim      return pointsToConstantGlobal(CE->getOperand(0));
36243830Sdim  return false;
37243830Sdim}
38243830Sdim
39243830Sdim/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
40243830Sdim/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
41243830Sdim/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
42243830Sdim/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
43243830Sdim/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
44243830Sdim/// the alloca, and if the source pointer is a pointer to a constant global, we
45243830Sdim/// can optimize this.
46243830Sdimstatic bool
47243830SdimisOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
48243830Sdim                               SmallVectorImpl<Instruction *> &ToDelete,
49243830Sdim                               bool IsOffset = false) {
50243830Sdim  // We track lifetime intrinsics as we encounter them.  If we decide to go
51243830Sdim  // ahead and replace the value with the global, this lets the caller quickly
52243830Sdim  // eliminate the markers.
53243830Sdim
54243830Sdim  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
55243830Sdim    User *U = cast<Instruction>(*UI);
56243830Sdim
57243830Sdim    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
58243830Sdim      // Ignore non-volatile loads, they are always ok.
59243830Sdim      if (!LI->isSimple()) return false;
60243830Sdim      continue;
61243830Sdim    }
62243830Sdim
63243830Sdim    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
64243830Sdim      // If uses of the bitcast are ok, we are ok.
65243830Sdim      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, ToDelete, IsOffset))
66243830Sdim        return false;
67243830Sdim      continue;
68243830Sdim    }
69243830Sdim    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
70243830Sdim      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
71243830Sdim      // doesn't, it does.
72251662Sdim      if (!isOnlyCopiedFromConstantGlobal(
73251662Sdim              GEP, TheCopy, ToDelete, IsOffset || !GEP->hasAllZeroIndices()))
74243830Sdim        return false;
75243830Sdim      continue;
76243830Sdim    }
77243830Sdim
78243830Sdim    if (CallSite CS = U) {
79243830Sdim      // If this is the function being called then we treat it like a load and
80243830Sdim      // ignore it.
81243830Sdim      if (CS.isCallee(UI))
82243830Sdim        continue;
83243830Sdim
84243830Sdim      // If this is a readonly/readnone call site, then we know it is just a
85243830Sdim      // load (but one that potentially returns the value itself), so we can
86243830Sdim      // ignore it if we know that the value isn't captured.
87243830Sdim      unsigned ArgNo = CS.getArgumentNo(UI);
88243830Sdim      if (CS.onlyReadsMemory() &&
89243830Sdim          (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
90243830Sdim        continue;
91243830Sdim
92243830Sdim      // If this is being passed as a byval argument, the caller is making a
93243830Sdim      // copy, so it is only a read of the alloca.
94243830Sdim      if (CS.isByValArgument(ArgNo))
95243830Sdim        continue;
96243830Sdim    }
97243830Sdim
98243830Sdim    // Lifetime intrinsics can be handled by the caller.
99243830Sdim    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
100243830Sdim      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
101243830Sdim          II->getIntrinsicID() == Intrinsic::lifetime_end) {
102243830Sdim        assert(II->use_empty() && "Lifetime markers have no result to use!");
103243830Sdim        ToDelete.push_back(II);
104243830Sdim        continue;
105243830Sdim      }
106243830Sdim    }
107243830Sdim
108243830Sdim    // If this is isn't our memcpy/memmove, reject it as something we can't
109243830Sdim    // handle.
110243830Sdim    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
111243830Sdim    if (MI == 0)
112243830Sdim      return false;
113243830Sdim
114243830Sdim    // If the transfer is using the alloca as a source of the transfer, then
115243830Sdim    // ignore it since it is a load (unless the transfer is volatile).
116243830Sdim    if (UI.getOperandNo() == 1) {
117243830Sdim      if (MI->isVolatile()) return false;
118243830Sdim      continue;
119243830Sdim    }
120243830Sdim
121243830Sdim    // If we already have seen a copy, reject the second one.
122243830Sdim    if (TheCopy) return false;
123243830Sdim
124243830Sdim    // If the pointer has been offset from the start of the alloca, we can't
125243830Sdim    // safely handle this.
126243830Sdim    if (IsOffset) return false;
127243830Sdim
128243830Sdim    // If the memintrinsic isn't using the alloca as the dest, reject it.
129243830Sdim    if (UI.getOperandNo() != 0) return false;
130243830Sdim
131243830Sdim    // If the source of the memcpy/move is not a constant global, reject it.
132243830Sdim    if (!pointsToConstantGlobal(MI->getSource()))
133243830Sdim      return false;
134243830Sdim
135243830Sdim    // Otherwise, the transform is safe.  Remember the copy instruction.
136243830Sdim    TheCopy = MI;
137243830Sdim  }
138243830Sdim  return true;
139243830Sdim}
140243830Sdim
141243830Sdim/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
142243830Sdim/// modified by a copy from a constant global.  If we can prove this, we can
143243830Sdim/// replace any uses of the alloca with uses of the global directly.
144243830Sdimstatic MemTransferInst *
145243830SdimisOnlyCopiedFromConstantGlobal(AllocaInst *AI,
146243830Sdim                               SmallVectorImpl<Instruction *> &ToDelete) {
147243830Sdim  MemTransferInst *TheCopy = 0;
148243830Sdim  if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
149243830Sdim    return TheCopy;
150243830Sdim  return 0;
151243830Sdim}
152243830Sdim
153202375SrdivackyInstruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
154210299Sed  // Ensure that the alloca array size argument has type intptr_t, so that
155210299Sed  // any casting is exposed early.
156210299Sed  if (TD) {
157226633Sdim    Type *IntPtrTy = TD->getIntPtrType(AI.getContext());
158210299Sed    if (AI.getArraySize()->getType() != IntPtrTy) {
159210299Sed      Value *V = Builder->CreateIntCast(AI.getArraySize(),
160210299Sed                                        IntPtrTy, false);
161210299Sed      AI.setOperand(0, V);
162210299Sed      return &AI;
163210299Sed    }
164210299Sed  }
165210299Sed
166202375Srdivacky  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
167202375Srdivacky  if (AI.isArrayAllocation()) {  // Check C != 1
168202375Srdivacky    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
169251662Sdim      Type *NewTy =
170202375Srdivacky        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
171202375Srdivacky      AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
172202375Srdivacky      New->setAlignment(AI.getAlignment());
173202375Srdivacky
174202375Srdivacky      // Scan to the end of the allocation instructions, to skip over a block of
175202375Srdivacky      // allocas if possible...also skip interleaved debug info
176202375Srdivacky      //
177202375Srdivacky      BasicBlock::iterator It = New;
178202375Srdivacky      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
179202375Srdivacky
180202375Srdivacky      // Now that I is pointing to the first non-allocation-inst in the block,
181202375Srdivacky      // insert our getelementptr instruction...
182202375Srdivacky      //
183202375Srdivacky      Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
184202375Srdivacky      Value *Idx[2];
185202375Srdivacky      Idx[0] = NullIdx;
186202375Srdivacky      Idx[1] = NullIdx;
187223017Sdim      Instruction *GEP =
188226633Sdim           GetElementPtrInst::CreateInBounds(New, Idx, New->getName()+".sub");
189223017Sdim      InsertNewInstBefore(GEP, *It);
190202375Srdivacky
191202375Srdivacky      // Now make everything use the getelementptr instead of the original
192202375Srdivacky      // allocation.
193223017Sdim      return ReplaceInstUsesWith(AI, GEP);
194202375Srdivacky    } else if (isa<UndefValue>(AI.getArraySize())) {
195202375Srdivacky      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
196202375Srdivacky    }
197202375Srdivacky  }
198202375Srdivacky
199239462Sdim  if (TD && AI.getAllocatedType()->isSized()) {
200202375Srdivacky    // If the alignment is 0 (unspecified), assign it the preferred alignment.
201202375Srdivacky    if (AI.getAlignment() == 0)
202202375Srdivacky      AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
203239462Sdim
204239462Sdim    // Move all alloca's of zero byte objects to the entry block and merge them
205239462Sdim    // together.  Note that we only do this for alloca's, because malloc should
206239462Sdim    // allocate and return a unique pointer, even for a zero byte allocation.
207239462Sdim    if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) {
208239462Sdim      // For a zero sized alloca there is no point in doing an array allocation.
209239462Sdim      // This is helpful if the array size is a complicated expression not used
210239462Sdim      // elsewhere.
211239462Sdim      if (AI.isArrayAllocation()) {
212239462Sdim        AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
213239462Sdim        return &AI;
214239462Sdim      }
215239462Sdim
216239462Sdim      // Get the first instruction in the entry block.
217239462Sdim      BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
218239462Sdim      Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
219239462Sdim      if (FirstInst != &AI) {
220239462Sdim        // If the entry block doesn't start with a zero-size alloca then move
221239462Sdim        // this one to the start of the entry block.  There is no problem with
222239462Sdim        // dominance as the array size was forced to a constant earlier already.
223239462Sdim        AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
224239462Sdim        if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
225239462Sdim            TD->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
226239462Sdim          AI.moveBefore(FirstInst);
227239462Sdim          return &AI;
228239462Sdim        }
229239462Sdim
230243830Sdim        // If the alignment of the entry block alloca is 0 (unspecified),
231243830Sdim        // assign it the preferred alignment.
232243830Sdim        if (EntryAI->getAlignment() == 0)
233243830Sdim          EntryAI->setAlignment(
234243830Sdim            TD->getPrefTypeAlignment(EntryAI->getAllocatedType()));
235239462Sdim        // Replace this zero-sized alloca with the one at the start of the entry
236239462Sdim        // block after ensuring that the address will be aligned enough for both
237239462Sdim        // types.
238243830Sdim        unsigned MaxAlign = std::max(EntryAI->getAlignment(),
239243830Sdim                                     AI.getAlignment());
240239462Sdim        EntryAI->setAlignment(MaxAlign);
241239462Sdim        if (AI.getType() != EntryAI->getType())
242239462Sdim          return new BitCastInst(EntryAI, AI.getType());
243239462Sdim        return ReplaceInstUsesWith(AI, EntryAI);
244239462Sdim      }
245239462Sdim    }
246202375Srdivacky  }
247202375Srdivacky
248249423Sdim  if (AI.getAlignment()) {
249243830Sdim    // Check to see if this allocation is only modified by a memcpy/memmove from
250243830Sdim    // a constant global whose alignment is equal to or exceeds that of the
251243830Sdim    // allocation.  If this is the case, we can change all users to use
252243830Sdim    // the constant global instead.  This is commonly produced by the CFE by
253243830Sdim    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
254243830Sdim    // is only subsequently read.
255243830Sdim    SmallVector<Instruction *, 4> ToDelete;
256243830Sdim    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
257249423Sdim      unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
258249423Sdim                                                        AI.getAlignment(), TD);
259249423Sdim      if (AI.getAlignment() <= SourceAlign) {
260243830Sdim        DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
261243830Sdim        DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
262243830Sdim        for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
263243830Sdim          EraseInstFromFunction(*ToDelete[i]);
264243830Sdim        Constant *TheSrc = cast<Constant>(Copy->getSource());
265243830Sdim        Instruction *NewI
266243830Sdim          = ReplaceInstUsesWith(AI, ConstantExpr::getBitCast(TheSrc,
267243830Sdim                                                             AI.getType()));
268243830Sdim        EraseInstFromFunction(*Copy);
269243830Sdim        ++NumGlobalCopies;
270243830Sdim        return NewI;
271243830Sdim      }
272243830Sdim    }
273243830Sdim  }
274243830Sdim
275239462Sdim  // At last, use the generic allocation site handler to aggressively remove
276239462Sdim  // unused allocas.
277239462Sdim  return visitAllocSite(AI);
278202375Srdivacky}
279202375Srdivacky
280202375Srdivacky
281202375Srdivacky/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
282202375Srdivackystatic Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
283243830Sdim                                        const DataLayout *TD) {
284202375Srdivacky  User *CI = cast<User>(LI.getOperand(0));
285202375Srdivacky  Value *CastOp = CI->getOperand(0);
286202375Srdivacky
287226633Sdim  PointerType *DestTy = cast<PointerType>(CI->getType());
288226633Sdim  Type *DestPTy = DestTy->getElementType();
289226633Sdim  if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
290202375Srdivacky
291202375Srdivacky    // If the address spaces don't match, don't eliminate the cast.
292202375Srdivacky    if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
293202375Srdivacky      return 0;
294202375Srdivacky
295226633Sdim    Type *SrcPTy = SrcTy->getElementType();
296202375Srdivacky
297251662Sdim    if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
298204642Srdivacky         DestPTy->isVectorTy()) {
299202375Srdivacky      // If the source is an array, the code below will not succeed.  Check to
300202375Srdivacky      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
301202375Srdivacky      // constants.
302226633Sdim      if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
303202375Srdivacky        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
304202375Srdivacky          if (ASrcTy->getNumElements() != 0) {
305202375Srdivacky            Value *Idxs[2];
306202375Srdivacky            Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
307202375Srdivacky            Idxs[1] = Idxs[0];
308226633Sdim            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
309202375Srdivacky            SrcTy = cast<PointerType>(CastOp->getType());
310202375Srdivacky            SrcPTy = SrcTy->getElementType();
311202375Srdivacky          }
312202375Srdivacky
313243830Sdim      if (IC.getDataLayout() &&
314251662Sdim          (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
315204642Srdivacky            SrcPTy->isVectorTy()) &&
316202375Srdivacky          // Do not allow turning this into a load of an integer, which is then
317202375Srdivacky          // casted to a pointer, this pessimizes pointer analysis a lot.
318204642Srdivacky          (SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) &&
319243830Sdim          IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
320243830Sdim               IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
321202375Srdivacky
322202375Srdivacky        // Okay, we are casting from one integer or pointer type to another of
323202375Srdivacky        // the same size.  Instead of casting the pointer before the load, cast
324202375Srdivacky        // the result of the loaded value.
325251662Sdim        LoadInst *NewLoad =
326202375Srdivacky          IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
327203954Srdivacky        NewLoad->setAlignment(LI.getAlignment());
328226633Sdim        NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
329202375Srdivacky        // Now cast the result of the load.
330202375Srdivacky        return new BitCastInst(NewLoad, LI.getType());
331202375Srdivacky      }
332202375Srdivacky    }
333202375Srdivacky  }
334202375Srdivacky  return 0;
335202375Srdivacky}
336202375Srdivacky
337202375SrdivackyInstruction *InstCombiner::visitLoadInst(LoadInst &LI) {
338202375Srdivacky  Value *Op = LI.getOperand(0);
339202375Srdivacky
340202375Srdivacky  // Attempt to improve the alignment.
341202375Srdivacky  if (TD) {
342202375Srdivacky    unsigned KnownAlign =
343218893Sdim      getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
344212904Sdim    unsigned LoadAlign = LI.getAlignment();
345212904Sdim    unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
346212904Sdim      TD->getABITypeAlignment(LI.getType());
347212904Sdim
348212904Sdim    if (KnownAlign > EffectiveLoadAlign)
349202375Srdivacky      LI.setAlignment(KnownAlign);
350212904Sdim    else if (LoadAlign == 0)
351212904Sdim      LI.setAlignment(EffectiveLoadAlign);
352202375Srdivacky  }
353202375Srdivacky
354202375Srdivacky  // load (cast X) --> cast (load X) iff safe.
355202375Srdivacky  if (isa<CastInst>(Op))
356202375Srdivacky    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
357202375Srdivacky      return Res;
358202375Srdivacky
359226633Sdim  // None of the following transforms are legal for volatile/atomic loads.
360226633Sdim  // FIXME: Some of it is okay for atomic loads; needs refactoring.
361226633Sdim  if (!LI.isSimple()) return 0;
362251662Sdim
363202375Srdivacky  // Do really simple store-to-load forwarding and load CSE, to catch cases
364218893Sdim  // where there are several consecutive memory accesses to the same location,
365202375Srdivacky  // separated by a few arithmetic operations.
366202375Srdivacky  BasicBlock::iterator BBI = &LI;
367202375Srdivacky  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
368202375Srdivacky    return ReplaceInstUsesWith(LI, AvailableVal);
369202375Srdivacky
370202375Srdivacky  // load(gep null, ...) -> unreachable
371202375Srdivacky  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
372202375Srdivacky    const Value *GEPI0 = GEPI->getOperand(0);
373202375Srdivacky    // TODO: Consider a target hook for valid address spaces for this xform.
374202375Srdivacky    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
375202375Srdivacky      // Insert a new store to null instruction before the load to indicate
376202375Srdivacky      // that this code is not reachable.  We do this instead of inserting
377202375Srdivacky      // an unreachable instruction directly because we cannot modify the
378202375Srdivacky      // CFG.
379202375Srdivacky      new StoreInst(UndefValue::get(LI.getType()),
380202375Srdivacky                    Constant::getNullValue(Op->getType()), &LI);
381202375Srdivacky      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
382202375Srdivacky    }
383251662Sdim  }
384202375Srdivacky
385202375Srdivacky  // load null/undef -> unreachable
386202375Srdivacky  // TODO: Consider a target hook for valid address spaces for this xform.
387202375Srdivacky  if (isa<UndefValue>(Op) ||
388202375Srdivacky      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
389202375Srdivacky    // Insert a new store to null instruction before the load to indicate that
390202375Srdivacky    // this code is not reachable.  We do this instead of inserting an
391202375Srdivacky    // unreachable instruction directly because we cannot modify the CFG.
392202375Srdivacky    new StoreInst(UndefValue::get(LI.getType()),
393202375Srdivacky                  Constant::getNullValue(Op->getType()), &LI);
394202375Srdivacky    return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
395202375Srdivacky  }
396202375Srdivacky
397202375Srdivacky  // Instcombine load (constantexpr_cast global) -> cast (load global)
398202375Srdivacky  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
399202375Srdivacky    if (CE->isCast())
400202375Srdivacky      if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
401202375Srdivacky        return Res;
402251662Sdim
403202375Srdivacky  if (Op->hasOneUse()) {
404202375Srdivacky    // Change select and PHI nodes to select values instead of addresses: this
405202375Srdivacky    // helps alias analysis out a lot, allows many others simplifications, and
406202375Srdivacky    // exposes redundancy in the code.
407202375Srdivacky    //
408202375Srdivacky    // Note that we cannot do the transformation unless we know that the
409202375Srdivacky    // introduced loads cannot trap!  Something like this is valid as long as
410202375Srdivacky    // the condition is always false: load (select bool %C, int* null, int* %G),
411202375Srdivacky    // but it would not be valid if we transformed it to load from null
412202375Srdivacky    // unconditionally.
413202375Srdivacky    //
414202375Srdivacky    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
415202375Srdivacky      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
416203954Srdivacky      unsigned Align = LI.getAlignment();
417203954Srdivacky      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
418203954Srdivacky          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
419203954Srdivacky        LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
420203954Srdivacky                                           SI->getOperand(1)->getName()+".val");
421203954Srdivacky        LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
422203954Srdivacky                                           SI->getOperand(2)->getName()+".val");
423203954Srdivacky        V1->setAlignment(Align);
424203954Srdivacky        V2->setAlignment(Align);
425202375Srdivacky        return SelectInst::Create(SI->getCondition(), V1, V2);
426202375Srdivacky      }
427202375Srdivacky
428202375Srdivacky      // load (select (cond, null, P)) -> load P
429202375Srdivacky      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
430202375Srdivacky        if (C->isNullValue()) {
431202375Srdivacky          LI.setOperand(0, SI->getOperand(2));
432202375Srdivacky          return &LI;
433202375Srdivacky        }
434202375Srdivacky
435202375Srdivacky      // load (select (cond, P, null)) -> load P
436202375Srdivacky      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
437202375Srdivacky        if (C->isNullValue()) {
438202375Srdivacky          LI.setOperand(0, SI->getOperand(1));
439202375Srdivacky          return &LI;
440202375Srdivacky        }
441202375Srdivacky    }
442202375Srdivacky  }
443202375Srdivacky  return 0;
444202375Srdivacky}
445202375Srdivacky
446202375Srdivacky/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
447202375Srdivacky/// when possible.  This makes it generally easy to do alias analysis and/or
448202375Srdivacky/// SROA/mem2reg of the memory object.
449202375Srdivackystatic Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
450202375Srdivacky  User *CI = cast<User>(SI.getOperand(1));
451202375Srdivacky  Value *CastOp = CI->getOperand(0);
452202375Srdivacky
453226633Sdim  Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
454226633Sdim  PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
455202375Srdivacky  if (SrcTy == 0) return 0;
456251662Sdim
457226633Sdim  Type *SrcPTy = SrcTy->getElementType();
458202375Srdivacky
459204642Srdivacky  if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
460202375Srdivacky    return 0;
461251662Sdim
462202375Srdivacky  /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
463202375Srdivacky  /// to its first element.  This allows us to handle things like:
464202375Srdivacky  ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
465202375Srdivacky  /// on 32-bit hosts.
466202375Srdivacky  SmallVector<Value*, 4> NewGEPIndices;
467251662Sdim
468202375Srdivacky  // If the source is an array, the code below will not succeed.  Check to
469202375Srdivacky  // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
470202375Srdivacky  // constants.
471204642Srdivacky  if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
472202375Srdivacky    // Index through pointer.
473202375Srdivacky    Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
474202375Srdivacky    NewGEPIndices.push_back(Zero);
475251662Sdim
476202375Srdivacky    while (1) {
477226633Sdim      if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
478202375Srdivacky        if (!STy->getNumElements()) /* Struct can be empty {} */
479202375Srdivacky          break;
480202375Srdivacky        NewGEPIndices.push_back(Zero);
481202375Srdivacky        SrcPTy = STy->getElementType(0);
482226633Sdim      } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
483202375Srdivacky        NewGEPIndices.push_back(Zero);
484202375Srdivacky        SrcPTy = ATy->getElementType();
485202375Srdivacky      } else {
486202375Srdivacky        break;
487202375Srdivacky      }
488202375Srdivacky    }
489251662Sdim
490202375Srdivacky    SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
491202375Srdivacky  }
492202375Srdivacky
493204642Srdivacky  if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
494202375Srdivacky    return 0;
495251662Sdim
496202375Srdivacky  // If the pointers point into different address spaces or if they point to
497202375Srdivacky  // values with different sizes, we can't do the transformation.
498243830Sdim  if (!IC.getDataLayout() ||
499251662Sdim      SrcTy->getAddressSpace() !=
500202375Srdivacky        cast<PointerType>(CI->getType())->getAddressSpace() ||
501243830Sdim      IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
502243830Sdim      IC.getDataLayout()->getTypeSizeInBits(DestPTy))
503202375Srdivacky    return 0;
504202375Srdivacky
505202375Srdivacky  // Okay, we are casting from one integer or pointer type to another of
506251662Sdim  // the same size.  Instead of casting the pointer before
507202375Srdivacky  // the store, cast the value to be stored.
508202375Srdivacky  Value *NewCast;
509202375Srdivacky  Value *SIOp0 = SI.getOperand(0);
510202375Srdivacky  Instruction::CastOps opcode = Instruction::BitCast;
511226633Sdim  Type* CastSrcTy = SIOp0->getType();
512226633Sdim  Type* CastDstTy = SrcPTy;
513204642Srdivacky  if (CastDstTy->isPointerTy()) {
514203954Srdivacky    if (CastSrcTy->isIntegerTy())
515202375Srdivacky      opcode = Instruction::IntToPtr;
516204642Srdivacky  } else if (CastDstTy->isIntegerTy()) {
517204642Srdivacky    if (SIOp0->getType()->isPointerTy())
518202375Srdivacky      opcode = Instruction::PtrToInt;
519202375Srdivacky  }
520251662Sdim
521202375Srdivacky  // SIOp0 is a pointer to aggregate and this is a store to the first field,
522202375Srdivacky  // emit a GEP to index into its first field.
523202375Srdivacky  if (!NewGEPIndices.empty())
524226633Sdim    CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
525251662Sdim
526202375Srdivacky  NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
527202375Srdivacky                                   SIOp0->getName()+".c");
528218893Sdim  SI.setOperand(0, NewCast);
529218893Sdim  SI.setOperand(1, CastOp);
530218893Sdim  return &SI;
531202375Srdivacky}
532202375Srdivacky
533202375Srdivacky/// equivalentAddressValues - Test if A and B will obviously have the same
534202375Srdivacky/// value. This includes recognizing that %t0 and %t1 will have the same
535202375Srdivacky/// value in code like this:
536202375Srdivacky///   %t0 = getelementptr \@a, 0, 3
537202375Srdivacky///   store i32 0, i32* %t0
538202375Srdivacky///   %t1 = getelementptr \@a, 0, 3
539202375Srdivacky///   %t2 = load i32* %t1
540202375Srdivacky///
541202375Srdivackystatic bool equivalentAddressValues(Value *A, Value *B) {
542202375Srdivacky  // Test if the values are trivially equivalent.
543202375Srdivacky  if (A == B) return true;
544251662Sdim
545202375Srdivacky  // Test if the values come form identical arithmetic instructions.
546202375Srdivacky  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
547202375Srdivacky  // its only used to compare two uses within the same basic block, which
548202375Srdivacky  // means that they'll always either have the same value or one of them
549202375Srdivacky  // will have an undefined value.
550202375Srdivacky  if (isa<BinaryOperator>(A) ||
551202375Srdivacky      isa<CastInst>(A) ||
552202375Srdivacky      isa<PHINode>(A) ||
553202375Srdivacky      isa<GetElementPtrInst>(A))
554202375Srdivacky    if (Instruction *BI = dyn_cast<Instruction>(B))
555202375Srdivacky      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
556202375Srdivacky        return true;
557251662Sdim
558202375Srdivacky  // Otherwise they may not be equivalent.
559202375Srdivacky  return false;
560202375Srdivacky}
561202375Srdivacky
562202375SrdivackyInstruction *InstCombiner::visitStoreInst(StoreInst &SI) {
563202375Srdivacky  Value *Val = SI.getOperand(0);
564202375Srdivacky  Value *Ptr = SI.getOperand(1);
565202375Srdivacky
566202375Srdivacky  // Attempt to improve the alignment.
567202375Srdivacky  if (TD) {
568202375Srdivacky    unsigned KnownAlign =
569218893Sdim      getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
570218893Sdim                                 TD);
571212904Sdim    unsigned StoreAlign = SI.getAlignment();
572212904Sdim    unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
573212904Sdim      TD->getABITypeAlignment(Val->getType());
574212904Sdim
575212904Sdim    if (KnownAlign > EffectiveStoreAlign)
576202375Srdivacky      SI.setAlignment(KnownAlign);
577212904Sdim    else if (StoreAlign == 0)
578212904Sdim      SI.setAlignment(EffectiveStoreAlign);
579202375Srdivacky  }
580202375Srdivacky
581226633Sdim  // Don't hack volatile/atomic stores.
582226633Sdim  // FIXME: Some bits are legal for atomic stores; needs refactoring.
583226633Sdim  if (!SI.isSimple()) return 0;
584226633Sdim
585226633Sdim  // If the RHS is an alloca with a single use, zapify the store, making the
586226633Sdim  // alloca dead.
587226633Sdim  if (Ptr->hasOneUse()) {
588251662Sdim    if (isa<AllocaInst>(Ptr))
589226633Sdim      return EraseInstFromFunction(SI);
590226633Sdim    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
591226633Sdim      if (isa<AllocaInst>(GEP->getOperand(0))) {
592226633Sdim        if (GEP->getOperand(0)->hasOneUse())
593226633Sdim          return EraseInstFromFunction(SI);
594226633Sdim      }
595226633Sdim    }
596226633Sdim  }
597226633Sdim
598202375Srdivacky  // Do really simple DSE, to catch cases where there are several consecutive
599202375Srdivacky  // stores to the same location, separated by a few arithmetic operations. This
600202375Srdivacky  // situation often occurs with bitfield accesses.
601202375Srdivacky  BasicBlock::iterator BBI = &SI;
602202375Srdivacky  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
603202375Srdivacky       --ScanInsts) {
604202375Srdivacky    --BBI;
605202375Srdivacky    // Don't count debug info directives, lest they affect codegen,
606202375Srdivacky    // and we skip pointer-to-pointer bitcasts, which are NOPs.
607202375Srdivacky    if (isa<DbgInfoIntrinsic>(BBI) ||
608204642Srdivacky        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
609202375Srdivacky      ScanInsts++;
610202375Srdivacky      continue;
611251662Sdim    }
612251662Sdim
613202375Srdivacky    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
614202375Srdivacky      // Prev store isn't volatile, and stores to the same location?
615226633Sdim      if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
616226633Sdim                                                        SI.getOperand(1))) {
617202375Srdivacky        ++NumDeadStore;
618202375Srdivacky        ++BBI;
619202375Srdivacky        EraseInstFromFunction(*PrevSI);
620202375Srdivacky        continue;
621202375Srdivacky      }
622202375Srdivacky      break;
623202375Srdivacky    }
624251662Sdim
625202375Srdivacky    // If this is a load, we have to stop.  However, if the loaded value is from
626202375Srdivacky    // the pointer we're loading and is producing the pointer we're storing,
627202375Srdivacky    // then *this* store is dead (X = load P; store X -> P).
628202375Srdivacky    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
629202375Srdivacky      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
630226633Sdim          LI->isSimple())
631202375Srdivacky        return EraseInstFromFunction(SI);
632251662Sdim
633202375Srdivacky      // Otherwise, this is a load from some other location.  Stores before it
634202375Srdivacky      // may not be dead.
635202375Srdivacky      break;
636202375Srdivacky    }
637251662Sdim
638202375Srdivacky    // Don't skip over loads or things that can modify memory.
639202375Srdivacky    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
640202375Srdivacky      break;
641202375Srdivacky  }
642202375Srdivacky
643202375Srdivacky  // store X, null    -> turns into 'unreachable' in SimplifyCFG
644202375Srdivacky  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
645202375Srdivacky    if (!isa<UndefValue>(Val)) {
646202375Srdivacky      SI.setOperand(0, UndefValue::get(Val->getType()));
647202375Srdivacky      if (Instruction *U = dyn_cast<Instruction>(Val))
648202375Srdivacky        Worklist.Add(U);  // Dropped a use.
649202375Srdivacky    }
650202375Srdivacky    return 0;  // Do not modify these!
651202375Srdivacky  }
652202375Srdivacky
653202375Srdivacky  // store undef, Ptr -> noop
654202375Srdivacky  if (isa<UndefValue>(Val))
655202375Srdivacky    return EraseInstFromFunction(SI);
656202375Srdivacky
657202375Srdivacky  // If the pointer destination is a cast, see if we can fold the cast into the
658202375Srdivacky  // source instead.
659202375Srdivacky  if (isa<CastInst>(Ptr))
660202375Srdivacky    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
661202375Srdivacky      return Res;
662202375Srdivacky  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
663202375Srdivacky    if (CE->isCast())
664202375Srdivacky      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
665202375Srdivacky        return Res;
666202375Srdivacky
667251662Sdim
668202375Srdivacky  // If this store is the last instruction in the basic block (possibly
669202878Srdivacky  // excepting debug info instructions), and if the block ends with an
670202878Srdivacky  // unconditional branch, try to move it to the successor block.
671251662Sdim  BBI = &SI;
672202375Srdivacky  do {
673202375Srdivacky    ++BBI;
674202375Srdivacky  } while (isa<DbgInfoIntrinsic>(BBI) ||
675204642Srdivacky           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
676202375Srdivacky  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
677202375Srdivacky    if (BI->isUnconditional())
678202375Srdivacky      if (SimplifyStoreAtEndOfBlock(SI))
679202375Srdivacky        return 0;  // xform done!
680251662Sdim
681202375Srdivacky  return 0;
682202375Srdivacky}
683202375Srdivacky
684202375Srdivacky/// SimplifyStoreAtEndOfBlock - Turn things like:
685202375Srdivacky///   if () { *P = v1; } else { *P = v2 }
686202375Srdivacky/// into a phi node with a store in the successor.
687202375Srdivacky///
688202375Srdivacky/// Simplify things like:
689202375Srdivacky///   *P = v1; if () { *P = v2; }
690202375Srdivacky/// into a phi node with a store in the successor.
691202375Srdivacky///
692202375Srdivackybool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
693202375Srdivacky  BasicBlock *StoreBB = SI.getParent();
694251662Sdim
695202375Srdivacky  // Check to see if the successor block has exactly two incoming edges.  If
696202375Srdivacky  // so, see if the other predecessor contains a store to the same location.
697202375Srdivacky  // if so, insert a PHI node (if needed) and move the stores down.
698202375Srdivacky  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
699251662Sdim
700202375Srdivacky  // Determine whether Dest has exactly two predecessors and, if so, compute
701202375Srdivacky  // the other predecessor.
702202375Srdivacky  pred_iterator PI = pred_begin(DestBB);
703210299Sed  BasicBlock *P = *PI;
704202375Srdivacky  BasicBlock *OtherBB = 0;
705210299Sed
706210299Sed  if (P != StoreBB)
707210299Sed    OtherBB = P;
708210299Sed
709210299Sed  if (++PI == pred_end(DestBB))
710202375Srdivacky    return false;
711251662Sdim
712210299Sed  P = *PI;
713210299Sed  if (P != StoreBB) {
714202375Srdivacky    if (OtherBB)
715202375Srdivacky      return false;
716210299Sed    OtherBB = P;
717202375Srdivacky  }
718202375Srdivacky  if (++PI != pred_end(DestBB))
719202375Srdivacky    return false;
720202375Srdivacky
721202375Srdivacky  // Bail out if all the relevant blocks aren't distinct (this can happen,
722202375Srdivacky  // for example, if SI is in an infinite loop)
723202375Srdivacky  if (StoreBB == DestBB || OtherBB == DestBB)
724202375Srdivacky    return false;
725202375Srdivacky
726202375Srdivacky  // Verify that the other block ends in a branch and is not otherwise empty.
727202375Srdivacky  BasicBlock::iterator BBI = OtherBB->getTerminator();
728202375Srdivacky  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
729202375Srdivacky  if (!OtherBr || BBI == OtherBB->begin())
730202375Srdivacky    return false;
731251662Sdim
732202375Srdivacky  // If the other block ends in an unconditional branch, check for the 'if then
733202375Srdivacky  // else' case.  there is an instruction before the branch.
734202375Srdivacky  StoreInst *OtherStore = 0;
735202375Srdivacky  if (OtherBr->isUnconditional()) {
736202375Srdivacky    --BBI;
737202375Srdivacky    // Skip over debugging info.
738202375Srdivacky    while (isa<DbgInfoIntrinsic>(BBI) ||
739204642Srdivacky           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
740202375Srdivacky      if (BBI==OtherBB->begin())
741202375Srdivacky        return false;
742202375Srdivacky      --BBI;
743202375Srdivacky    }
744226633Sdim    // If this isn't a store, isn't a store to the same location, or is not the
745226633Sdim    // right kind of store, bail out.
746202375Srdivacky    OtherStore = dyn_cast<StoreInst>(BBI);
747202375Srdivacky    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
748226633Sdim        !SI.isSameOperationAs(OtherStore))
749202375Srdivacky      return false;
750202375Srdivacky  } else {
751202375Srdivacky    // Otherwise, the other block ended with a conditional branch. If one of the
752202375Srdivacky    // destinations is StoreBB, then we have the if/then case.
753251662Sdim    if (OtherBr->getSuccessor(0) != StoreBB &&
754202375Srdivacky        OtherBr->getSuccessor(1) != StoreBB)
755202375Srdivacky      return false;
756251662Sdim
757202375Srdivacky    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
758202375Srdivacky    // if/then triangle.  See if there is a store to the same ptr as SI that
759202375Srdivacky    // lives in OtherBB.
760202375Srdivacky    for (;; --BBI) {
761202375Srdivacky      // Check to see if we find the matching store.
762202375Srdivacky      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
763202375Srdivacky        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
764226633Sdim            !SI.isSameOperationAs(OtherStore))
765202375Srdivacky          return false;
766202375Srdivacky        break;
767202375Srdivacky      }
768202375Srdivacky      // If we find something that may be using or overwriting the stored
769202375Srdivacky      // value, or if we run out of instructions, we can't do the xform.
770202375Srdivacky      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
771202375Srdivacky          BBI == OtherBB->begin())
772202375Srdivacky        return false;
773202375Srdivacky    }
774251662Sdim
775202375Srdivacky    // In order to eliminate the store in OtherBr, we have to
776202375Srdivacky    // make sure nothing reads or overwrites the stored value in
777202375Srdivacky    // StoreBB.
778202375Srdivacky    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
779202375Srdivacky      // FIXME: This should really be AA driven.
780202375Srdivacky      if (I->mayReadFromMemory() || I->mayWriteToMemory())
781202375Srdivacky        return false;
782202375Srdivacky    }
783202375Srdivacky  }
784251662Sdim
785202375Srdivacky  // Insert a PHI node now if we need it.
786202375Srdivacky  Value *MergedVal = OtherStore->getOperand(0);
787202375Srdivacky  if (MergedVal != SI.getOperand(0)) {
788221345Sdim    PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
789202375Srdivacky    PN->addIncoming(SI.getOperand(0), SI.getParent());
790202375Srdivacky    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
791202375Srdivacky    MergedVal = InsertNewInstBefore(PN, DestBB->front());
792202375Srdivacky  }
793251662Sdim
794202375Srdivacky  // Advance to a place where it is safe to insert the new store and
795202375Srdivacky  // insert it.
796226633Sdim  BBI = DestBB->getFirstInsertionPt();
797223017Sdim  StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
798226633Sdim                                   SI.isVolatile(),
799226633Sdim                                   SI.getAlignment(),
800226633Sdim                                   SI.getOrdering(),
801226633Sdim                                   SI.getSynchScope());
802223017Sdim  InsertNewInstBefore(NewSI, *BBI);
803251662Sdim  NewSI->setDebugLoc(OtherStore->getDebugLoc());
804223017Sdim
805249423Sdim  // If the two stores had the same TBAA tag, preserve it.
806249423Sdim  if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
807249423Sdim    if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
808249423Sdim                               OtherStore->getMetadata(LLVMContext::MD_tbaa))))
809249423Sdim      NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
810249423Sdim
811251662Sdim
812202375Srdivacky  // Nuke the old stores.
813202375Srdivacky  EraseInstFromFunction(SI);
814202375Srdivacky  EraseInstFromFunction(*OtherStore);
815202375Srdivacky  return true;
816202375Srdivacky}
817