InstCombineLoadStoreAlloca.cpp revision 243830
1202375Srdivacky//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2202375Srdivacky//
3202375Srdivacky//                     The LLVM Compiler Infrastructure
4202375Srdivacky//
5202375Srdivacky// This file is distributed under the University of Illinois Open Source
6202375Srdivacky// License. See LICENSE.TXT for details.
7202375Srdivacky//
8202375Srdivacky//===----------------------------------------------------------------------===//
9202375Srdivacky//
10202375Srdivacky// This file implements the visit functions for load, store and alloca.
11202375Srdivacky//
12202375Srdivacky//===----------------------------------------------------------------------===//
13202375Srdivacky
14202375Srdivacky#include "InstCombine.h"
15202375Srdivacky#include "llvm/IntrinsicInst.h"
16210299Sed#include "llvm/Analysis/Loads.h"
17243830Sdim#include "llvm/DataLayout.h"
18202375Srdivacky#include "llvm/Transforms/Utils/BasicBlockUtils.h"
19202375Srdivacky#include "llvm/Transforms/Utils/Local.h"
20202375Srdivacky#include "llvm/ADT/Statistic.h"
21202375Srdivackyusing namespace llvm;
22202375Srdivacky
23243830SdimSTATISTIC(NumDeadStore,    "Number of dead stores eliminated");
24243830SdimSTATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
25202375Srdivacky
26243830Sdim/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
27243830Sdim/// some part of a constant global variable.  This intentionally only accepts
28243830Sdim/// constant expressions because we can't rewrite arbitrary instructions.
29243830Sdimstatic bool pointsToConstantGlobal(Value *V) {
30243830Sdim  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
31243830Sdim    return GV->isConstant();
32243830Sdim  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
33243830Sdim    if (CE->getOpcode() == Instruction::BitCast ||
34243830Sdim        CE->getOpcode() == Instruction::GetElementPtr)
35243830Sdim      return pointsToConstantGlobal(CE->getOperand(0));
36243830Sdim  return false;
37243830Sdim}
38243830Sdim
39243830Sdim/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
40243830Sdim/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
41243830Sdim/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
42243830Sdim/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
43243830Sdim/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
44243830Sdim/// the alloca, and if the source pointer is a pointer to a constant global, we
45243830Sdim/// can optimize this.
46243830Sdimstatic bool
47243830SdimisOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
48243830Sdim                               SmallVectorImpl<Instruction *> &ToDelete,
49243830Sdim                               bool IsOffset = false) {
50243830Sdim  // We track lifetime intrinsics as we encounter them.  If we decide to go
51243830Sdim  // ahead and replace the value with the global, this lets the caller quickly
52243830Sdim  // eliminate the markers.
53243830Sdim
54243830Sdim  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
55243830Sdim    User *U = cast<Instruction>(*UI);
56243830Sdim
57243830Sdim    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
58243830Sdim      // Ignore non-volatile loads, they are always ok.
59243830Sdim      if (!LI->isSimple()) return false;
60243830Sdim      continue;
61243830Sdim    }
62243830Sdim
63243830Sdim    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
64243830Sdim      // If uses of the bitcast are ok, we are ok.
65243830Sdim      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, ToDelete, IsOffset))
66243830Sdim        return false;
67243830Sdim      continue;
68243830Sdim    }
69243830Sdim    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
70243830Sdim      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
71243830Sdim      // doesn't, it does.
72243830Sdim      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy, ToDelete,
73243830Sdim                                          IsOffset || !GEP->hasAllZeroIndices()))
74243830Sdim        return false;
75243830Sdim      continue;
76243830Sdim    }
77243830Sdim
78243830Sdim    if (CallSite CS = U) {
79243830Sdim      // If this is the function being called then we treat it like a load and
80243830Sdim      // ignore it.
81243830Sdim      if (CS.isCallee(UI))
82243830Sdim        continue;
83243830Sdim
84243830Sdim      // If this is a readonly/readnone call site, then we know it is just a
85243830Sdim      // load (but one that potentially returns the value itself), so we can
86243830Sdim      // ignore it if we know that the value isn't captured.
87243830Sdim      unsigned ArgNo = CS.getArgumentNo(UI);
88243830Sdim      if (CS.onlyReadsMemory() &&
89243830Sdim          (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
90243830Sdim        continue;
91243830Sdim
92243830Sdim      // If this is being passed as a byval argument, the caller is making a
93243830Sdim      // copy, so it is only a read of the alloca.
94243830Sdim      if (CS.isByValArgument(ArgNo))
95243830Sdim        continue;
96243830Sdim    }
97243830Sdim
98243830Sdim    // Lifetime intrinsics can be handled by the caller.
99243830Sdim    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
100243830Sdim      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
101243830Sdim          II->getIntrinsicID() == Intrinsic::lifetime_end) {
102243830Sdim        assert(II->use_empty() && "Lifetime markers have no result to use!");
103243830Sdim        ToDelete.push_back(II);
104243830Sdim        continue;
105243830Sdim      }
106243830Sdim    }
107243830Sdim
108243830Sdim    // If this is isn't our memcpy/memmove, reject it as something we can't
109243830Sdim    // handle.
110243830Sdim    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
111243830Sdim    if (MI == 0)
112243830Sdim      return false;
113243830Sdim
114243830Sdim    // If the transfer is using the alloca as a source of the transfer, then
115243830Sdim    // ignore it since it is a load (unless the transfer is volatile).
116243830Sdim    if (UI.getOperandNo() == 1) {
117243830Sdim      if (MI->isVolatile()) return false;
118243830Sdim      continue;
119243830Sdim    }
120243830Sdim
121243830Sdim    // If we already have seen a copy, reject the second one.
122243830Sdim    if (TheCopy) return false;
123243830Sdim
124243830Sdim    // If the pointer has been offset from the start of the alloca, we can't
125243830Sdim    // safely handle this.
126243830Sdim    if (IsOffset) return false;
127243830Sdim
128243830Sdim    // If the memintrinsic isn't using the alloca as the dest, reject it.
129243830Sdim    if (UI.getOperandNo() != 0) return false;
130243830Sdim
131243830Sdim    // If the source of the memcpy/move is not a constant global, reject it.
132243830Sdim    if (!pointsToConstantGlobal(MI->getSource()))
133243830Sdim      return false;
134243830Sdim
135243830Sdim    // Otherwise, the transform is safe.  Remember the copy instruction.
136243830Sdim    TheCopy = MI;
137243830Sdim  }
138243830Sdim  return true;
139243830Sdim}
140243830Sdim
141243830Sdim/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
142243830Sdim/// modified by a copy from a constant global.  If we can prove this, we can
143243830Sdim/// replace any uses of the alloca with uses of the global directly.
144243830Sdimstatic MemTransferInst *
145243830SdimisOnlyCopiedFromConstantGlobal(AllocaInst *AI,
146243830Sdim                               SmallVectorImpl<Instruction *> &ToDelete) {
147243830Sdim  MemTransferInst *TheCopy = 0;
148243830Sdim  if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
149243830Sdim    return TheCopy;
150243830Sdim  return 0;
151243830Sdim}
152243830Sdim
153243830Sdim/// getPointeeAlignment - Compute the minimum alignment of the value pointed
154243830Sdim/// to by the given pointer.
155243830Sdimstatic unsigned getPointeeAlignment(Value *V, const DataLayout &TD) {
156243830Sdim  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
157243830Sdim    if (CE->getOpcode() == Instruction::BitCast ||
158243830Sdim        (CE->getOpcode() == Instruction::GetElementPtr &&
159243830Sdim         cast<GEPOperator>(CE)->hasAllZeroIndices()))
160243830Sdim      return getPointeeAlignment(CE->getOperand(0), TD);
161243830Sdim
162243830Sdim  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
163243830Sdim    if (!GV->isDeclaration())
164243830Sdim      return TD.getPreferredAlignment(GV);
165243830Sdim
166243830Sdim  if (PointerType *PT = dyn_cast<PointerType>(V->getType()))
167243830Sdim    if (PT->getElementType()->isSized())
168243830Sdim      return TD.getABITypeAlignment(PT->getElementType());
169243830Sdim
170243830Sdim  return 0;
171243830Sdim}
172243830Sdim
173202375SrdivackyInstruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
174210299Sed  // Ensure that the alloca array size argument has type intptr_t, so that
175210299Sed  // any casting is exposed early.
176210299Sed  if (TD) {
177226633Sdim    Type *IntPtrTy = TD->getIntPtrType(AI.getContext());
178210299Sed    if (AI.getArraySize()->getType() != IntPtrTy) {
179210299Sed      Value *V = Builder->CreateIntCast(AI.getArraySize(),
180210299Sed                                        IntPtrTy, false);
181210299Sed      AI.setOperand(0, V);
182210299Sed      return &AI;
183210299Sed    }
184210299Sed  }
185210299Sed
186202375Srdivacky  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
187202375Srdivacky  if (AI.isArrayAllocation()) {  // Check C != 1
188202375Srdivacky    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
189226633Sdim      Type *NewTy =
190202375Srdivacky        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
191202375Srdivacky      AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
192202375Srdivacky      New->setAlignment(AI.getAlignment());
193202375Srdivacky
194202375Srdivacky      // Scan to the end of the allocation instructions, to skip over a block of
195202375Srdivacky      // allocas if possible...also skip interleaved debug info
196202375Srdivacky      //
197202375Srdivacky      BasicBlock::iterator It = New;
198202375Srdivacky      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
199202375Srdivacky
200202375Srdivacky      // Now that I is pointing to the first non-allocation-inst in the block,
201202375Srdivacky      // insert our getelementptr instruction...
202202375Srdivacky      //
203202375Srdivacky      Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
204202375Srdivacky      Value *Idx[2];
205202375Srdivacky      Idx[0] = NullIdx;
206202375Srdivacky      Idx[1] = NullIdx;
207223017Sdim      Instruction *GEP =
208226633Sdim           GetElementPtrInst::CreateInBounds(New, Idx, New->getName()+".sub");
209223017Sdim      InsertNewInstBefore(GEP, *It);
210202375Srdivacky
211202375Srdivacky      // Now make everything use the getelementptr instead of the original
212202375Srdivacky      // allocation.
213223017Sdim      return ReplaceInstUsesWith(AI, GEP);
214202375Srdivacky    } else if (isa<UndefValue>(AI.getArraySize())) {
215202375Srdivacky      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
216202375Srdivacky    }
217202375Srdivacky  }
218202375Srdivacky
219239462Sdim  if (TD && AI.getAllocatedType()->isSized()) {
220202375Srdivacky    // If the alignment is 0 (unspecified), assign it the preferred alignment.
221202375Srdivacky    if (AI.getAlignment() == 0)
222202375Srdivacky      AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
223239462Sdim
224239462Sdim    // Move all alloca's of zero byte objects to the entry block and merge them
225239462Sdim    // together.  Note that we only do this for alloca's, because malloc should
226239462Sdim    // allocate and return a unique pointer, even for a zero byte allocation.
227239462Sdim    if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) {
228239462Sdim      // For a zero sized alloca there is no point in doing an array allocation.
229239462Sdim      // This is helpful if the array size is a complicated expression not used
230239462Sdim      // elsewhere.
231239462Sdim      if (AI.isArrayAllocation()) {
232239462Sdim        AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
233239462Sdim        return &AI;
234239462Sdim      }
235239462Sdim
236239462Sdim      // Get the first instruction in the entry block.
237239462Sdim      BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
238239462Sdim      Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
239239462Sdim      if (FirstInst != &AI) {
240239462Sdim        // If the entry block doesn't start with a zero-size alloca then move
241239462Sdim        // this one to the start of the entry block.  There is no problem with
242239462Sdim        // dominance as the array size was forced to a constant earlier already.
243239462Sdim        AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
244239462Sdim        if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
245239462Sdim            TD->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
246239462Sdim          AI.moveBefore(FirstInst);
247239462Sdim          return &AI;
248239462Sdim        }
249239462Sdim
250243830Sdim        // If the alignment of the entry block alloca is 0 (unspecified),
251243830Sdim        // assign it the preferred alignment.
252243830Sdim        if (EntryAI->getAlignment() == 0)
253243830Sdim          EntryAI->setAlignment(
254243830Sdim            TD->getPrefTypeAlignment(EntryAI->getAllocatedType()));
255239462Sdim        // Replace this zero-sized alloca with the one at the start of the entry
256239462Sdim        // block after ensuring that the address will be aligned enough for both
257239462Sdim        // types.
258243830Sdim        unsigned MaxAlign = std::max(EntryAI->getAlignment(),
259243830Sdim                                     AI.getAlignment());
260239462Sdim        EntryAI->setAlignment(MaxAlign);
261239462Sdim        if (AI.getType() != EntryAI->getType())
262239462Sdim          return new BitCastInst(EntryAI, AI.getType());
263239462Sdim        return ReplaceInstUsesWith(AI, EntryAI);
264239462Sdim      }
265239462Sdim    }
266202375Srdivacky  }
267202375Srdivacky
268243830Sdim  if (TD) {
269243830Sdim    // Check to see if this allocation is only modified by a memcpy/memmove from
270243830Sdim    // a constant global whose alignment is equal to or exceeds that of the
271243830Sdim    // allocation.  If this is the case, we can change all users to use
272243830Sdim    // the constant global instead.  This is commonly produced by the CFE by
273243830Sdim    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
274243830Sdim    // is only subsequently read.
275243830Sdim    SmallVector<Instruction *, 4> ToDelete;
276243830Sdim    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
277243830Sdim      if (AI.getAlignment() <= getPointeeAlignment(Copy->getSource(), *TD)) {
278243830Sdim        DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
279243830Sdim        DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
280243830Sdim        for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
281243830Sdim          EraseInstFromFunction(*ToDelete[i]);
282243830Sdim        Constant *TheSrc = cast<Constant>(Copy->getSource());
283243830Sdim        Instruction *NewI
284243830Sdim          = ReplaceInstUsesWith(AI, ConstantExpr::getBitCast(TheSrc,
285243830Sdim                                                             AI.getType()));
286243830Sdim        EraseInstFromFunction(*Copy);
287243830Sdim        ++NumGlobalCopies;
288243830Sdim        return NewI;
289243830Sdim      }
290243830Sdim    }
291243830Sdim  }
292243830Sdim
293239462Sdim  // At last, use the generic allocation site handler to aggressively remove
294239462Sdim  // unused allocas.
295239462Sdim  return visitAllocSite(AI);
296202375Srdivacky}
297202375Srdivacky
298202375Srdivacky
299202375Srdivacky/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
300202375Srdivackystatic Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
301243830Sdim                                        const DataLayout *TD) {
302202375Srdivacky  User *CI = cast<User>(LI.getOperand(0));
303202375Srdivacky  Value *CastOp = CI->getOperand(0);
304202375Srdivacky
305226633Sdim  PointerType *DestTy = cast<PointerType>(CI->getType());
306226633Sdim  Type *DestPTy = DestTy->getElementType();
307226633Sdim  if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
308202375Srdivacky
309202375Srdivacky    // If the address spaces don't match, don't eliminate the cast.
310202375Srdivacky    if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
311202375Srdivacky      return 0;
312202375Srdivacky
313226633Sdim    Type *SrcPTy = SrcTy->getElementType();
314202375Srdivacky
315204642Srdivacky    if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
316204642Srdivacky         DestPTy->isVectorTy()) {
317202375Srdivacky      // If the source is an array, the code below will not succeed.  Check to
318202375Srdivacky      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
319202375Srdivacky      // constants.
320226633Sdim      if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
321202375Srdivacky        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
322202375Srdivacky          if (ASrcTy->getNumElements() != 0) {
323202375Srdivacky            Value *Idxs[2];
324202375Srdivacky            Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
325202375Srdivacky            Idxs[1] = Idxs[0];
326226633Sdim            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
327202375Srdivacky            SrcTy = cast<PointerType>(CastOp->getType());
328202375Srdivacky            SrcPTy = SrcTy->getElementType();
329202375Srdivacky          }
330202375Srdivacky
331243830Sdim      if (IC.getDataLayout() &&
332204642Srdivacky          (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
333204642Srdivacky            SrcPTy->isVectorTy()) &&
334202375Srdivacky          // Do not allow turning this into a load of an integer, which is then
335202375Srdivacky          // casted to a pointer, this pessimizes pointer analysis a lot.
336204642Srdivacky          (SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) &&
337243830Sdim          IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
338243830Sdim               IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
339202375Srdivacky
340202375Srdivacky        // Okay, we are casting from one integer or pointer type to another of
341202375Srdivacky        // the same size.  Instead of casting the pointer before the load, cast
342202375Srdivacky        // the result of the loaded value.
343203954Srdivacky        LoadInst *NewLoad =
344202375Srdivacky          IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
345203954Srdivacky        NewLoad->setAlignment(LI.getAlignment());
346226633Sdim        NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
347202375Srdivacky        // Now cast the result of the load.
348202375Srdivacky        return new BitCastInst(NewLoad, LI.getType());
349202375Srdivacky      }
350202375Srdivacky    }
351202375Srdivacky  }
352202375Srdivacky  return 0;
353202375Srdivacky}
354202375Srdivacky
355202375SrdivackyInstruction *InstCombiner::visitLoadInst(LoadInst &LI) {
356202375Srdivacky  Value *Op = LI.getOperand(0);
357202375Srdivacky
358202375Srdivacky  // Attempt to improve the alignment.
359202375Srdivacky  if (TD) {
360202375Srdivacky    unsigned KnownAlign =
361218893Sdim      getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
362212904Sdim    unsigned LoadAlign = LI.getAlignment();
363212904Sdim    unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
364212904Sdim      TD->getABITypeAlignment(LI.getType());
365212904Sdim
366212904Sdim    if (KnownAlign > EffectiveLoadAlign)
367202375Srdivacky      LI.setAlignment(KnownAlign);
368212904Sdim    else if (LoadAlign == 0)
369212904Sdim      LI.setAlignment(EffectiveLoadAlign);
370202375Srdivacky  }
371202375Srdivacky
372202375Srdivacky  // load (cast X) --> cast (load X) iff safe.
373202375Srdivacky  if (isa<CastInst>(Op))
374202375Srdivacky    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
375202375Srdivacky      return Res;
376202375Srdivacky
377226633Sdim  // None of the following transforms are legal for volatile/atomic loads.
378226633Sdim  // FIXME: Some of it is okay for atomic loads; needs refactoring.
379226633Sdim  if (!LI.isSimple()) return 0;
380202375Srdivacky
381202375Srdivacky  // Do really simple store-to-load forwarding and load CSE, to catch cases
382218893Sdim  // where there are several consecutive memory accesses to the same location,
383202375Srdivacky  // separated by a few arithmetic operations.
384202375Srdivacky  BasicBlock::iterator BBI = &LI;
385202375Srdivacky  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
386202375Srdivacky    return ReplaceInstUsesWith(LI, AvailableVal);
387202375Srdivacky
388202375Srdivacky  // load(gep null, ...) -> unreachable
389202375Srdivacky  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
390202375Srdivacky    const Value *GEPI0 = GEPI->getOperand(0);
391202375Srdivacky    // TODO: Consider a target hook for valid address spaces for this xform.
392202375Srdivacky    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
393202375Srdivacky      // Insert a new store to null instruction before the load to indicate
394202375Srdivacky      // that this code is not reachable.  We do this instead of inserting
395202375Srdivacky      // an unreachable instruction directly because we cannot modify the
396202375Srdivacky      // CFG.
397202375Srdivacky      new StoreInst(UndefValue::get(LI.getType()),
398202375Srdivacky                    Constant::getNullValue(Op->getType()), &LI);
399202375Srdivacky      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
400202375Srdivacky    }
401202375Srdivacky  }
402202375Srdivacky
403202375Srdivacky  // load null/undef -> unreachable
404202375Srdivacky  // TODO: Consider a target hook for valid address spaces for this xform.
405202375Srdivacky  if (isa<UndefValue>(Op) ||
406202375Srdivacky      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
407202375Srdivacky    // Insert a new store to null instruction before the load to indicate that
408202375Srdivacky    // this code is not reachable.  We do this instead of inserting an
409202375Srdivacky    // unreachable instruction directly because we cannot modify the CFG.
410202375Srdivacky    new StoreInst(UndefValue::get(LI.getType()),
411202375Srdivacky                  Constant::getNullValue(Op->getType()), &LI);
412202375Srdivacky    return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
413202375Srdivacky  }
414202375Srdivacky
415202375Srdivacky  // Instcombine load (constantexpr_cast global) -> cast (load global)
416202375Srdivacky  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
417202375Srdivacky    if (CE->isCast())
418202375Srdivacky      if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
419202375Srdivacky        return Res;
420202375Srdivacky
421202375Srdivacky  if (Op->hasOneUse()) {
422202375Srdivacky    // Change select and PHI nodes to select values instead of addresses: this
423202375Srdivacky    // helps alias analysis out a lot, allows many others simplifications, and
424202375Srdivacky    // exposes redundancy in the code.
425202375Srdivacky    //
426202375Srdivacky    // Note that we cannot do the transformation unless we know that the
427202375Srdivacky    // introduced loads cannot trap!  Something like this is valid as long as
428202375Srdivacky    // the condition is always false: load (select bool %C, int* null, int* %G),
429202375Srdivacky    // but it would not be valid if we transformed it to load from null
430202375Srdivacky    // unconditionally.
431202375Srdivacky    //
432202375Srdivacky    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
433202375Srdivacky      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
434203954Srdivacky      unsigned Align = LI.getAlignment();
435203954Srdivacky      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
436203954Srdivacky          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
437203954Srdivacky        LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
438203954Srdivacky                                           SI->getOperand(1)->getName()+".val");
439203954Srdivacky        LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
440203954Srdivacky                                           SI->getOperand(2)->getName()+".val");
441203954Srdivacky        V1->setAlignment(Align);
442203954Srdivacky        V2->setAlignment(Align);
443202375Srdivacky        return SelectInst::Create(SI->getCondition(), V1, V2);
444202375Srdivacky      }
445202375Srdivacky
446202375Srdivacky      // load (select (cond, null, P)) -> load P
447202375Srdivacky      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
448202375Srdivacky        if (C->isNullValue()) {
449202375Srdivacky          LI.setOperand(0, SI->getOperand(2));
450202375Srdivacky          return &LI;
451202375Srdivacky        }
452202375Srdivacky
453202375Srdivacky      // load (select (cond, P, null)) -> load P
454202375Srdivacky      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
455202375Srdivacky        if (C->isNullValue()) {
456202375Srdivacky          LI.setOperand(0, SI->getOperand(1));
457202375Srdivacky          return &LI;
458202375Srdivacky        }
459202375Srdivacky    }
460202375Srdivacky  }
461202375Srdivacky  return 0;
462202375Srdivacky}
463202375Srdivacky
464202375Srdivacky/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
465202375Srdivacky/// when possible.  This makes it generally easy to do alias analysis and/or
466202375Srdivacky/// SROA/mem2reg of the memory object.
467202375Srdivackystatic Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
468202375Srdivacky  User *CI = cast<User>(SI.getOperand(1));
469202375Srdivacky  Value *CastOp = CI->getOperand(0);
470202375Srdivacky
471226633Sdim  Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
472226633Sdim  PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
473202375Srdivacky  if (SrcTy == 0) return 0;
474202375Srdivacky
475226633Sdim  Type *SrcPTy = SrcTy->getElementType();
476202375Srdivacky
477204642Srdivacky  if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
478202375Srdivacky    return 0;
479202375Srdivacky
480202375Srdivacky  /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
481202375Srdivacky  /// to its first element.  This allows us to handle things like:
482202375Srdivacky  ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
483202375Srdivacky  /// on 32-bit hosts.
484202375Srdivacky  SmallVector<Value*, 4> NewGEPIndices;
485202375Srdivacky
486202375Srdivacky  // If the source is an array, the code below will not succeed.  Check to
487202375Srdivacky  // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
488202375Srdivacky  // constants.
489204642Srdivacky  if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
490202375Srdivacky    // Index through pointer.
491202375Srdivacky    Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
492202375Srdivacky    NewGEPIndices.push_back(Zero);
493202375Srdivacky
494202375Srdivacky    while (1) {
495226633Sdim      if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
496202375Srdivacky        if (!STy->getNumElements()) /* Struct can be empty {} */
497202375Srdivacky          break;
498202375Srdivacky        NewGEPIndices.push_back(Zero);
499202375Srdivacky        SrcPTy = STy->getElementType(0);
500226633Sdim      } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
501202375Srdivacky        NewGEPIndices.push_back(Zero);
502202375Srdivacky        SrcPTy = ATy->getElementType();
503202375Srdivacky      } else {
504202375Srdivacky        break;
505202375Srdivacky      }
506202375Srdivacky    }
507202375Srdivacky
508202375Srdivacky    SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
509202375Srdivacky  }
510202375Srdivacky
511204642Srdivacky  if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
512202375Srdivacky    return 0;
513202375Srdivacky
514202375Srdivacky  // If the pointers point into different address spaces or if they point to
515202375Srdivacky  // values with different sizes, we can't do the transformation.
516243830Sdim  if (!IC.getDataLayout() ||
517202375Srdivacky      SrcTy->getAddressSpace() !=
518202375Srdivacky        cast<PointerType>(CI->getType())->getAddressSpace() ||
519243830Sdim      IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
520243830Sdim      IC.getDataLayout()->getTypeSizeInBits(DestPTy))
521202375Srdivacky    return 0;
522202375Srdivacky
523202375Srdivacky  // Okay, we are casting from one integer or pointer type to another of
524202375Srdivacky  // the same size.  Instead of casting the pointer before
525202375Srdivacky  // the store, cast the value to be stored.
526202375Srdivacky  Value *NewCast;
527202375Srdivacky  Value *SIOp0 = SI.getOperand(0);
528202375Srdivacky  Instruction::CastOps opcode = Instruction::BitCast;
529226633Sdim  Type* CastSrcTy = SIOp0->getType();
530226633Sdim  Type* CastDstTy = SrcPTy;
531204642Srdivacky  if (CastDstTy->isPointerTy()) {
532203954Srdivacky    if (CastSrcTy->isIntegerTy())
533202375Srdivacky      opcode = Instruction::IntToPtr;
534204642Srdivacky  } else if (CastDstTy->isIntegerTy()) {
535204642Srdivacky    if (SIOp0->getType()->isPointerTy())
536202375Srdivacky      opcode = Instruction::PtrToInt;
537202375Srdivacky  }
538202375Srdivacky
539202375Srdivacky  // SIOp0 is a pointer to aggregate and this is a store to the first field,
540202375Srdivacky  // emit a GEP to index into its first field.
541202375Srdivacky  if (!NewGEPIndices.empty())
542226633Sdim    CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
543202375Srdivacky
544202375Srdivacky  NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
545202375Srdivacky                                   SIOp0->getName()+".c");
546218893Sdim  SI.setOperand(0, NewCast);
547218893Sdim  SI.setOperand(1, CastOp);
548218893Sdim  return &SI;
549202375Srdivacky}
550202375Srdivacky
551202375Srdivacky/// equivalentAddressValues - Test if A and B will obviously have the same
552202375Srdivacky/// value. This includes recognizing that %t0 and %t1 will have the same
553202375Srdivacky/// value in code like this:
554202375Srdivacky///   %t0 = getelementptr \@a, 0, 3
555202375Srdivacky///   store i32 0, i32* %t0
556202375Srdivacky///   %t1 = getelementptr \@a, 0, 3
557202375Srdivacky///   %t2 = load i32* %t1
558202375Srdivacky///
559202375Srdivackystatic bool equivalentAddressValues(Value *A, Value *B) {
560202375Srdivacky  // Test if the values are trivially equivalent.
561202375Srdivacky  if (A == B) return true;
562202375Srdivacky
563202375Srdivacky  // Test if the values come form identical arithmetic instructions.
564202375Srdivacky  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
565202375Srdivacky  // its only used to compare two uses within the same basic block, which
566202375Srdivacky  // means that they'll always either have the same value or one of them
567202375Srdivacky  // will have an undefined value.
568202375Srdivacky  if (isa<BinaryOperator>(A) ||
569202375Srdivacky      isa<CastInst>(A) ||
570202375Srdivacky      isa<PHINode>(A) ||
571202375Srdivacky      isa<GetElementPtrInst>(A))
572202375Srdivacky    if (Instruction *BI = dyn_cast<Instruction>(B))
573202375Srdivacky      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
574202375Srdivacky        return true;
575202375Srdivacky
576202375Srdivacky  // Otherwise they may not be equivalent.
577202375Srdivacky  return false;
578202375Srdivacky}
579202375Srdivacky
580202375SrdivackyInstruction *InstCombiner::visitStoreInst(StoreInst &SI) {
581202375Srdivacky  Value *Val = SI.getOperand(0);
582202375Srdivacky  Value *Ptr = SI.getOperand(1);
583202375Srdivacky
584202375Srdivacky  // Attempt to improve the alignment.
585202375Srdivacky  if (TD) {
586202375Srdivacky    unsigned KnownAlign =
587218893Sdim      getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
588218893Sdim                                 TD);
589212904Sdim    unsigned StoreAlign = SI.getAlignment();
590212904Sdim    unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
591212904Sdim      TD->getABITypeAlignment(Val->getType());
592212904Sdim
593212904Sdim    if (KnownAlign > EffectiveStoreAlign)
594202375Srdivacky      SI.setAlignment(KnownAlign);
595212904Sdim    else if (StoreAlign == 0)
596212904Sdim      SI.setAlignment(EffectiveStoreAlign);
597202375Srdivacky  }
598202375Srdivacky
599226633Sdim  // Don't hack volatile/atomic stores.
600226633Sdim  // FIXME: Some bits are legal for atomic stores; needs refactoring.
601226633Sdim  if (!SI.isSimple()) return 0;
602226633Sdim
603226633Sdim  // If the RHS is an alloca with a single use, zapify the store, making the
604226633Sdim  // alloca dead.
605226633Sdim  if (Ptr->hasOneUse()) {
606226633Sdim    if (isa<AllocaInst>(Ptr))
607226633Sdim      return EraseInstFromFunction(SI);
608226633Sdim    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
609226633Sdim      if (isa<AllocaInst>(GEP->getOperand(0))) {
610226633Sdim        if (GEP->getOperand(0)->hasOneUse())
611226633Sdim          return EraseInstFromFunction(SI);
612226633Sdim      }
613226633Sdim    }
614226633Sdim  }
615226633Sdim
616202375Srdivacky  // Do really simple DSE, to catch cases where there are several consecutive
617202375Srdivacky  // stores to the same location, separated by a few arithmetic operations. This
618202375Srdivacky  // situation often occurs with bitfield accesses.
619202375Srdivacky  BasicBlock::iterator BBI = &SI;
620202375Srdivacky  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
621202375Srdivacky       --ScanInsts) {
622202375Srdivacky    --BBI;
623202375Srdivacky    // Don't count debug info directives, lest they affect codegen,
624202375Srdivacky    // and we skip pointer-to-pointer bitcasts, which are NOPs.
625202375Srdivacky    if (isa<DbgInfoIntrinsic>(BBI) ||
626204642Srdivacky        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
627202375Srdivacky      ScanInsts++;
628202375Srdivacky      continue;
629202375Srdivacky    }
630202375Srdivacky
631202375Srdivacky    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
632202375Srdivacky      // Prev store isn't volatile, and stores to the same location?
633226633Sdim      if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
634226633Sdim                                                        SI.getOperand(1))) {
635202375Srdivacky        ++NumDeadStore;
636202375Srdivacky        ++BBI;
637202375Srdivacky        EraseInstFromFunction(*PrevSI);
638202375Srdivacky        continue;
639202375Srdivacky      }
640202375Srdivacky      break;
641202375Srdivacky    }
642202375Srdivacky
643202375Srdivacky    // If this is a load, we have to stop.  However, if the loaded value is from
644202375Srdivacky    // the pointer we're loading and is producing the pointer we're storing,
645202375Srdivacky    // then *this* store is dead (X = load P; store X -> P).
646202375Srdivacky    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
647202375Srdivacky      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
648226633Sdim          LI->isSimple())
649202375Srdivacky        return EraseInstFromFunction(SI);
650202375Srdivacky
651202375Srdivacky      // Otherwise, this is a load from some other location.  Stores before it
652202375Srdivacky      // may not be dead.
653202375Srdivacky      break;
654202375Srdivacky    }
655202375Srdivacky
656202375Srdivacky    // Don't skip over loads or things that can modify memory.
657202375Srdivacky    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
658202375Srdivacky      break;
659202375Srdivacky  }
660202375Srdivacky
661202375Srdivacky  // store X, null    -> turns into 'unreachable' in SimplifyCFG
662202375Srdivacky  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
663202375Srdivacky    if (!isa<UndefValue>(Val)) {
664202375Srdivacky      SI.setOperand(0, UndefValue::get(Val->getType()));
665202375Srdivacky      if (Instruction *U = dyn_cast<Instruction>(Val))
666202375Srdivacky        Worklist.Add(U);  // Dropped a use.
667202375Srdivacky    }
668202375Srdivacky    return 0;  // Do not modify these!
669202375Srdivacky  }
670202375Srdivacky
671202375Srdivacky  // store undef, Ptr -> noop
672202375Srdivacky  if (isa<UndefValue>(Val))
673202375Srdivacky    return EraseInstFromFunction(SI);
674202375Srdivacky
675202375Srdivacky  // If the pointer destination is a cast, see if we can fold the cast into the
676202375Srdivacky  // source instead.
677202375Srdivacky  if (isa<CastInst>(Ptr))
678202375Srdivacky    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
679202375Srdivacky      return Res;
680202375Srdivacky  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
681202375Srdivacky    if (CE->isCast())
682202375Srdivacky      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
683202375Srdivacky        return Res;
684202375Srdivacky
685202375Srdivacky
686202375Srdivacky  // If this store is the last instruction in the basic block (possibly
687202878Srdivacky  // excepting debug info instructions), and if the block ends with an
688202878Srdivacky  // unconditional branch, try to move it to the successor block.
689202375Srdivacky  BBI = &SI;
690202375Srdivacky  do {
691202375Srdivacky    ++BBI;
692202375Srdivacky  } while (isa<DbgInfoIntrinsic>(BBI) ||
693204642Srdivacky           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
694202375Srdivacky  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
695202375Srdivacky    if (BI->isUnconditional())
696202375Srdivacky      if (SimplifyStoreAtEndOfBlock(SI))
697202375Srdivacky        return 0;  // xform done!
698202375Srdivacky
699202375Srdivacky  return 0;
700202375Srdivacky}
701202375Srdivacky
702202375Srdivacky/// SimplifyStoreAtEndOfBlock - Turn things like:
703202375Srdivacky///   if () { *P = v1; } else { *P = v2 }
704202375Srdivacky/// into a phi node with a store in the successor.
705202375Srdivacky///
706202375Srdivacky/// Simplify things like:
707202375Srdivacky///   *P = v1; if () { *P = v2; }
708202375Srdivacky/// into a phi node with a store in the successor.
709202375Srdivacky///
710202375Srdivackybool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
711202375Srdivacky  BasicBlock *StoreBB = SI.getParent();
712202375Srdivacky
713202375Srdivacky  // Check to see if the successor block has exactly two incoming edges.  If
714202375Srdivacky  // so, see if the other predecessor contains a store to the same location.
715202375Srdivacky  // if so, insert a PHI node (if needed) and move the stores down.
716202375Srdivacky  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
717202375Srdivacky
718202375Srdivacky  // Determine whether Dest has exactly two predecessors and, if so, compute
719202375Srdivacky  // the other predecessor.
720202375Srdivacky  pred_iterator PI = pred_begin(DestBB);
721210299Sed  BasicBlock *P = *PI;
722202375Srdivacky  BasicBlock *OtherBB = 0;
723210299Sed
724210299Sed  if (P != StoreBB)
725210299Sed    OtherBB = P;
726210299Sed
727210299Sed  if (++PI == pred_end(DestBB))
728202375Srdivacky    return false;
729202375Srdivacky
730210299Sed  P = *PI;
731210299Sed  if (P != StoreBB) {
732202375Srdivacky    if (OtherBB)
733202375Srdivacky      return false;
734210299Sed    OtherBB = P;
735202375Srdivacky  }
736202375Srdivacky  if (++PI != pred_end(DestBB))
737202375Srdivacky    return false;
738202375Srdivacky
739202375Srdivacky  // Bail out if all the relevant blocks aren't distinct (this can happen,
740202375Srdivacky  // for example, if SI is in an infinite loop)
741202375Srdivacky  if (StoreBB == DestBB || OtherBB == DestBB)
742202375Srdivacky    return false;
743202375Srdivacky
744202375Srdivacky  // Verify that the other block ends in a branch and is not otherwise empty.
745202375Srdivacky  BasicBlock::iterator BBI = OtherBB->getTerminator();
746202375Srdivacky  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
747202375Srdivacky  if (!OtherBr || BBI == OtherBB->begin())
748202375Srdivacky    return false;
749202375Srdivacky
750202375Srdivacky  // If the other block ends in an unconditional branch, check for the 'if then
751202375Srdivacky  // else' case.  there is an instruction before the branch.
752202375Srdivacky  StoreInst *OtherStore = 0;
753202375Srdivacky  if (OtherBr->isUnconditional()) {
754202375Srdivacky    --BBI;
755202375Srdivacky    // Skip over debugging info.
756202375Srdivacky    while (isa<DbgInfoIntrinsic>(BBI) ||
757204642Srdivacky           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
758202375Srdivacky      if (BBI==OtherBB->begin())
759202375Srdivacky        return false;
760202375Srdivacky      --BBI;
761202375Srdivacky    }
762226633Sdim    // If this isn't a store, isn't a store to the same location, or is not the
763226633Sdim    // right kind of store, bail out.
764202375Srdivacky    OtherStore = dyn_cast<StoreInst>(BBI);
765202375Srdivacky    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
766226633Sdim        !SI.isSameOperationAs(OtherStore))
767202375Srdivacky      return false;
768202375Srdivacky  } else {
769202375Srdivacky    // Otherwise, the other block ended with a conditional branch. If one of the
770202375Srdivacky    // destinations is StoreBB, then we have the if/then case.
771202375Srdivacky    if (OtherBr->getSuccessor(0) != StoreBB &&
772202375Srdivacky        OtherBr->getSuccessor(1) != StoreBB)
773202375Srdivacky      return false;
774202375Srdivacky
775202375Srdivacky    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
776202375Srdivacky    // if/then triangle.  See if there is a store to the same ptr as SI that
777202375Srdivacky    // lives in OtherBB.
778202375Srdivacky    for (;; --BBI) {
779202375Srdivacky      // Check to see if we find the matching store.
780202375Srdivacky      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
781202375Srdivacky        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
782226633Sdim            !SI.isSameOperationAs(OtherStore))
783202375Srdivacky          return false;
784202375Srdivacky        break;
785202375Srdivacky      }
786202375Srdivacky      // If we find something that may be using or overwriting the stored
787202375Srdivacky      // value, or if we run out of instructions, we can't do the xform.
788202375Srdivacky      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
789202375Srdivacky          BBI == OtherBB->begin())
790202375Srdivacky        return false;
791202375Srdivacky    }
792202375Srdivacky
793202375Srdivacky    // In order to eliminate the store in OtherBr, we have to
794202375Srdivacky    // make sure nothing reads or overwrites the stored value in
795202375Srdivacky    // StoreBB.
796202375Srdivacky    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
797202375Srdivacky      // FIXME: This should really be AA driven.
798202375Srdivacky      if (I->mayReadFromMemory() || I->mayWriteToMemory())
799202375Srdivacky        return false;
800202375Srdivacky    }
801202375Srdivacky  }
802202375Srdivacky
803202375Srdivacky  // Insert a PHI node now if we need it.
804202375Srdivacky  Value *MergedVal = OtherStore->getOperand(0);
805202375Srdivacky  if (MergedVal != SI.getOperand(0)) {
806221345Sdim    PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
807202375Srdivacky    PN->addIncoming(SI.getOperand(0), SI.getParent());
808202375Srdivacky    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
809202375Srdivacky    MergedVal = InsertNewInstBefore(PN, DestBB->front());
810202375Srdivacky  }
811202375Srdivacky
812202375Srdivacky  // Advance to a place where it is safe to insert the new store and
813202375Srdivacky  // insert it.
814226633Sdim  BBI = DestBB->getFirstInsertionPt();
815223017Sdim  StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
816226633Sdim                                   SI.isVolatile(),
817226633Sdim                                   SI.getAlignment(),
818226633Sdim                                   SI.getOrdering(),
819226633Sdim                                   SI.getSynchScope());
820223017Sdim  InsertNewInstBefore(NewSI, *BBI);
821223017Sdim  NewSI->setDebugLoc(OtherStore->getDebugLoc());
822223017Sdim
823202375Srdivacky  // Nuke the old stores.
824202375Srdivacky  EraseInstFromFunction(SI);
825202375Srdivacky  EraseInstFromFunction(*OtherStore);
826202375Srdivacky  return true;
827202375Srdivacky}
828