1202375Srdivacky//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2202375Srdivacky//
3202375Srdivacky//                     The LLVM Compiler Infrastructure
4202375Srdivacky//
5202375Srdivacky// This file is distributed under the University of Illinois Open Source
6202375Srdivacky// License. See LICENSE.TXT for details.
7202375Srdivacky//
8202375Srdivacky//===----------------------------------------------------------------------===//
9202375Srdivacky//
10202375Srdivacky// This file implements the visit functions for load, store and alloca.
11202375Srdivacky//
12202375Srdivacky//===----------------------------------------------------------------------===//
13202375Srdivacky
14202375Srdivacky#include "InstCombine.h"
15249423Sdim#include "llvm/ADT/Statistic.h"
16210299Sed#include "llvm/Analysis/Loads.h"
17249423Sdim#include "llvm/IR/DataLayout.h"
18249423Sdim#include "llvm/IR/IntrinsicInst.h"
19202375Srdivacky#include "llvm/Transforms/Utils/BasicBlockUtils.h"
20202375Srdivacky#include "llvm/Transforms/Utils/Local.h"
21202375Srdivackyusing namespace llvm;
22202375Srdivacky
23243830SdimSTATISTIC(NumDeadStore,    "Number of dead stores eliminated");
24243830SdimSTATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
25202375Srdivacky
26243830Sdim/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
27243830Sdim/// some part of a constant global variable.  This intentionally only accepts
28243830Sdim/// constant expressions because we can't rewrite arbitrary instructions.
29243830Sdimstatic bool pointsToConstantGlobal(Value *V) {
30243830Sdim  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
31243830Sdim    return GV->isConstant();
32243830Sdim  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
33243830Sdim    if (CE->getOpcode() == Instruction::BitCast ||
34243830Sdim        CE->getOpcode() == Instruction::GetElementPtr)
35243830Sdim      return pointsToConstantGlobal(CE->getOperand(0));
36243830Sdim  return false;
37243830Sdim}
38243830Sdim
39243830Sdim/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
40243830Sdim/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
41243830Sdim/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
42243830Sdim/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
43243830Sdim/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
44243830Sdim/// the alloca, and if the source pointer is a pointer to a constant global, we
45243830Sdim/// can optimize this.
46243830Sdimstatic bool
47243830SdimisOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
48243830Sdim                               SmallVectorImpl<Instruction *> &ToDelete,
49243830Sdim                               bool IsOffset = false) {
50243830Sdim  // We track lifetime intrinsics as we encounter them.  If we decide to go
51243830Sdim  // ahead and replace the value with the global, this lets the caller quickly
52243830Sdim  // eliminate the markers.
53243830Sdim
54243830Sdim  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
55243830Sdim    User *U = cast<Instruction>(*UI);
56243830Sdim
57243830Sdim    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
58243830Sdim      // Ignore non-volatile loads, they are always ok.
59243830Sdim      if (!LI->isSimple()) return false;
60243830Sdim      continue;
61243830Sdim    }
62243830Sdim
63243830Sdim    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
64243830Sdim      // If uses of the bitcast are ok, we are ok.
65243830Sdim      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, ToDelete, IsOffset))
66243830Sdim        return false;
67243830Sdim      continue;
68243830Sdim    }
69243830Sdim    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
70243830Sdim      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
71243830Sdim      // doesn't, it does.
72251662Sdim      if (!isOnlyCopiedFromConstantGlobal(
73251662Sdim              GEP, TheCopy, ToDelete, IsOffset || !GEP->hasAllZeroIndices()))
74243830Sdim        return false;
75243830Sdim      continue;
76243830Sdim    }
77243830Sdim
78243830Sdim    if (CallSite CS = U) {
79243830Sdim      // If this is the function being called then we treat it like a load and
80243830Sdim      // ignore it.
81243830Sdim      if (CS.isCallee(UI))
82243830Sdim        continue;
83243830Sdim
84243830Sdim      // If this is a readonly/readnone call site, then we know it is just a
85243830Sdim      // load (but one that potentially returns the value itself), so we can
86243830Sdim      // ignore it if we know that the value isn't captured.
87243830Sdim      unsigned ArgNo = CS.getArgumentNo(UI);
88243830Sdim      if (CS.onlyReadsMemory() &&
89243830Sdim          (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
90243830Sdim        continue;
91243830Sdim
92243830Sdim      // If this is being passed as a byval argument, the caller is making a
93243830Sdim      // copy, so it is only a read of the alloca.
94243830Sdim      if (CS.isByValArgument(ArgNo))
95243830Sdim        continue;
96243830Sdim    }
97243830Sdim
98243830Sdim    // Lifetime intrinsics can be handled by the caller.
99243830Sdim    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
100243830Sdim      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
101243830Sdim          II->getIntrinsicID() == Intrinsic::lifetime_end) {
102243830Sdim        assert(II->use_empty() && "Lifetime markers have no result to use!");
103243830Sdim        ToDelete.push_back(II);
104243830Sdim        continue;
105243830Sdim      }
106243830Sdim    }
107243830Sdim
108243830Sdim    // If this is isn't our memcpy/memmove, reject it as something we can't
109243830Sdim    // handle.
110243830Sdim    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
111243830Sdim    if (MI == 0)
112243830Sdim      return false;
113243830Sdim
114243830Sdim    // If the transfer is using the alloca as a source of the transfer, then
115243830Sdim    // ignore it since it is a load (unless the transfer is volatile).
116243830Sdim    if (UI.getOperandNo() == 1) {
117243830Sdim      if (MI->isVolatile()) return false;
118243830Sdim      continue;
119243830Sdim    }
120243830Sdim
121243830Sdim    // If we already have seen a copy, reject the second one.
122243830Sdim    if (TheCopy) return false;
123243830Sdim
124243830Sdim    // If the pointer has been offset from the start of the alloca, we can't
125243830Sdim    // safely handle this.
126243830Sdim    if (IsOffset) return false;
127243830Sdim
128243830Sdim    // If the memintrinsic isn't using the alloca as the dest, reject it.
129243830Sdim    if (UI.getOperandNo() != 0) return false;
130243830Sdim
131243830Sdim    // If the source of the memcpy/move is not a constant global, reject it.
132243830Sdim    if (!pointsToConstantGlobal(MI->getSource()))
133243830Sdim      return false;
134243830Sdim
135243830Sdim    // Otherwise, the transform is safe.  Remember the copy instruction.
136243830Sdim    TheCopy = MI;
137243830Sdim  }
138243830Sdim  return true;
139243830Sdim}
140243830Sdim
141243830Sdim/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
142243830Sdim/// modified by a copy from a constant global.  If we can prove this, we can
143243830Sdim/// replace any uses of the alloca with uses of the global directly.
144243830Sdimstatic MemTransferInst *
145243830SdimisOnlyCopiedFromConstantGlobal(AllocaInst *AI,
146243830Sdim                               SmallVectorImpl<Instruction *> &ToDelete) {
147243830Sdim  MemTransferInst *TheCopy = 0;
148243830Sdim  if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
149243830Sdim    return TheCopy;
150243830Sdim  return 0;
151243830Sdim}
152243830Sdim
153202375SrdivackyInstruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
154210299Sed  // Ensure that the alloca array size argument has type intptr_t, so that
155210299Sed  // any casting is exposed early.
156210299Sed  if (TD) {
157263508Sdim    Type *IntPtrTy = TD->getIntPtrType(AI.getType());
158210299Sed    if (AI.getArraySize()->getType() != IntPtrTy) {
159210299Sed      Value *V = Builder->CreateIntCast(AI.getArraySize(),
160210299Sed                                        IntPtrTy, false);
161210299Sed      AI.setOperand(0, V);
162210299Sed      return &AI;
163210299Sed    }
164210299Sed  }
165210299Sed
166202375Srdivacky  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
167202375Srdivacky  if (AI.isArrayAllocation()) {  // Check C != 1
168202375Srdivacky    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
169251662Sdim      Type *NewTy =
170202375Srdivacky        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
171202375Srdivacky      AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
172202375Srdivacky      New->setAlignment(AI.getAlignment());
173202375Srdivacky
174202375Srdivacky      // Scan to the end of the allocation instructions, to skip over a block of
175202375Srdivacky      // allocas if possible...also skip interleaved debug info
176202375Srdivacky      //
177202375Srdivacky      BasicBlock::iterator It = New;
178202375Srdivacky      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
179202375Srdivacky
180202375Srdivacky      // Now that I is pointing to the first non-allocation-inst in the block,
181202375Srdivacky      // insert our getelementptr instruction...
182202375Srdivacky      //
183263508Sdim      Type *IdxTy = TD
184263508Sdim                  ? TD->getIntPtrType(AI.getType())
185263508Sdim                  : Type::getInt64Ty(AI.getContext());
186263508Sdim      Value *NullIdx = Constant::getNullValue(IdxTy);
187263508Sdim      Value *Idx[2] = { NullIdx, NullIdx };
188223017Sdim      Instruction *GEP =
189263508Sdim        GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
190223017Sdim      InsertNewInstBefore(GEP, *It);
191202375Srdivacky
192202375Srdivacky      // Now make everything use the getelementptr instead of the original
193202375Srdivacky      // allocation.
194223017Sdim      return ReplaceInstUsesWith(AI, GEP);
195202375Srdivacky    } else if (isa<UndefValue>(AI.getArraySize())) {
196202375Srdivacky      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
197202375Srdivacky    }
198202375Srdivacky  }
199202375Srdivacky
200239462Sdim  if (TD && AI.getAllocatedType()->isSized()) {
201202375Srdivacky    // If the alignment is 0 (unspecified), assign it the preferred alignment.
202202375Srdivacky    if (AI.getAlignment() == 0)
203202375Srdivacky      AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
204239462Sdim
205239462Sdim    // Move all alloca's of zero byte objects to the entry block and merge them
206239462Sdim    // together.  Note that we only do this for alloca's, because malloc should
207239462Sdim    // allocate and return a unique pointer, even for a zero byte allocation.
208239462Sdim    if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) {
209239462Sdim      // For a zero sized alloca there is no point in doing an array allocation.
210239462Sdim      // This is helpful if the array size is a complicated expression not used
211239462Sdim      // elsewhere.
212239462Sdim      if (AI.isArrayAllocation()) {
213239462Sdim        AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
214239462Sdim        return &AI;
215239462Sdim      }
216239462Sdim
217239462Sdim      // Get the first instruction in the entry block.
218239462Sdim      BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
219239462Sdim      Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
220239462Sdim      if (FirstInst != &AI) {
221239462Sdim        // If the entry block doesn't start with a zero-size alloca then move
222239462Sdim        // this one to the start of the entry block.  There is no problem with
223239462Sdim        // dominance as the array size was forced to a constant earlier already.
224239462Sdim        AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
225239462Sdim        if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
226239462Sdim            TD->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
227239462Sdim          AI.moveBefore(FirstInst);
228239462Sdim          return &AI;
229239462Sdim        }
230239462Sdim
231243830Sdim        // If the alignment of the entry block alloca is 0 (unspecified),
232243830Sdim        // assign it the preferred alignment.
233243830Sdim        if (EntryAI->getAlignment() == 0)
234243830Sdim          EntryAI->setAlignment(
235243830Sdim            TD->getPrefTypeAlignment(EntryAI->getAllocatedType()));
236239462Sdim        // Replace this zero-sized alloca with the one at the start of the entry
237239462Sdim        // block after ensuring that the address will be aligned enough for both
238239462Sdim        // types.
239243830Sdim        unsigned MaxAlign = std::max(EntryAI->getAlignment(),
240243830Sdim                                     AI.getAlignment());
241239462Sdim        EntryAI->setAlignment(MaxAlign);
242239462Sdim        if (AI.getType() != EntryAI->getType())
243239462Sdim          return new BitCastInst(EntryAI, AI.getType());
244239462Sdim        return ReplaceInstUsesWith(AI, EntryAI);
245239462Sdim      }
246239462Sdim    }
247202375Srdivacky  }
248202375Srdivacky
249249423Sdim  if (AI.getAlignment()) {
250243830Sdim    // Check to see if this allocation is only modified by a memcpy/memmove from
251243830Sdim    // a constant global whose alignment is equal to or exceeds that of the
252243830Sdim    // allocation.  If this is the case, we can change all users to use
253243830Sdim    // the constant global instead.  This is commonly produced by the CFE by
254243830Sdim    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
255243830Sdim    // is only subsequently read.
256243830Sdim    SmallVector<Instruction *, 4> ToDelete;
257243830Sdim    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
258249423Sdim      unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
259249423Sdim                                                        AI.getAlignment(), TD);
260249423Sdim      if (AI.getAlignment() <= SourceAlign) {
261243830Sdim        DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
262243830Sdim        DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
263243830Sdim        for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
264243830Sdim          EraseInstFromFunction(*ToDelete[i]);
265243830Sdim        Constant *TheSrc = cast<Constant>(Copy->getSource());
266263508Sdim        Constant *Cast
267263508Sdim          = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
268263508Sdim        Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
269243830Sdim        EraseInstFromFunction(*Copy);
270243830Sdim        ++NumGlobalCopies;
271243830Sdim        return NewI;
272243830Sdim      }
273243830Sdim    }
274243830Sdim  }
275243830Sdim
276239462Sdim  // At last, use the generic allocation site handler to aggressively remove
277239462Sdim  // unused allocas.
278239462Sdim  return visitAllocSite(AI);
279202375Srdivacky}
280202375Srdivacky
281202375Srdivacky
282202375Srdivacky/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
283202375Srdivackystatic Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
284243830Sdim                                        const DataLayout *TD) {
285202375Srdivacky  User *CI = cast<User>(LI.getOperand(0));
286202375Srdivacky  Value *CastOp = CI->getOperand(0);
287202375Srdivacky
288226633Sdim  PointerType *DestTy = cast<PointerType>(CI->getType());
289226633Sdim  Type *DestPTy = DestTy->getElementType();
290226633Sdim  if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
291202375Srdivacky
292202375Srdivacky    // If the address spaces don't match, don't eliminate the cast.
293202375Srdivacky    if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
294202375Srdivacky      return 0;
295202375Srdivacky
296226633Sdim    Type *SrcPTy = SrcTy->getElementType();
297202375Srdivacky
298251662Sdim    if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
299204642Srdivacky         DestPTy->isVectorTy()) {
300202375Srdivacky      // If the source is an array, the code below will not succeed.  Check to
301202375Srdivacky      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
302202375Srdivacky      // constants.
303226633Sdim      if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
304202375Srdivacky        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
305202375Srdivacky          if (ASrcTy->getNumElements() != 0) {
306263508Sdim            Type *IdxTy = TD
307263508Sdim                        ? TD->getIntPtrType(SrcTy)
308263508Sdim                        : Type::getInt64Ty(SrcTy->getContext());
309263508Sdim            Value *Idx = Constant::getNullValue(IdxTy);
310263508Sdim            Value *Idxs[2] = { Idx, Idx };
311226633Sdim            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
312202375Srdivacky            SrcTy = cast<PointerType>(CastOp->getType());
313202375Srdivacky            SrcPTy = SrcTy->getElementType();
314202375Srdivacky          }
315202375Srdivacky
316243830Sdim      if (IC.getDataLayout() &&
317251662Sdim          (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
318204642Srdivacky            SrcPTy->isVectorTy()) &&
319202375Srdivacky          // Do not allow turning this into a load of an integer, which is then
320202375Srdivacky          // casted to a pointer, this pessimizes pointer analysis a lot.
321263508Sdim          (SrcPTy->isPtrOrPtrVectorTy() ==
322263508Sdim           LI.getType()->isPtrOrPtrVectorTy()) &&
323243830Sdim          IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
324243830Sdim               IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
325202375Srdivacky
326202375Srdivacky        // Okay, we are casting from one integer or pointer type to another of
327202375Srdivacky        // the same size.  Instead of casting the pointer before the load, cast
328202375Srdivacky        // the result of the loaded value.
329251662Sdim        LoadInst *NewLoad =
330202375Srdivacky          IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
331203954Srdivacky        NewLoad->setAlignment(LI.getAlignment());
332226633Sdim        NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
333202375Srdivacky        // Now cast the result of the load.
334202375Srdivacky        return new BitCastInst(NewLoad, LI.getType());
335202375Srdivacky      }
336202375Srdivacky    }
337202375Srdivacky  }
338202375Srdivacky  return 0;
339202375Srdivacky}
340202375Srdivacky
341202375SrdivackyInstruction *InstCombiner::visitLoadInst(LoadInst &LI) {
342202375Srdivacky  Value *Op = LI.getOperand(0);
343202375Srdivacky
344202375Srdivacky  // Attempt to improve the alignment.
345202375Srdivacky  if (TD) {
346202375Srdivacky    unsigned KnownAlign =
347218893Sdim      getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
348212904Sdim    unsigned LoadAlign = LI.getAlignment();
349212904Sdim    unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
350212904Sdim      TD->getABITypeAlignment(LI.getType());
351212904Sdim
352212904Sdim    if (KnownAlign > EffectiveLoadAlign)
353202375Srdivacky      LI.setAlignment(KnownAlign);
354212904Sdim    else if (LoadAlign == 0)
355212904Sdim      LI.setAlignment(EffectiveLoadAlign);
356202375Srdivacky  }
357202375Srdivacky
358202375Srdivacky  // load (cast X) --> cast (load X) iff safe.
359202375Srdivacky  if (isa<CastInst>(Op))
360202375Srdivacky    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
361202375Srdivacky      return Res;
362202375Srdivacky
363226633Sdim  // None of the following transforms are legal for volatile/atomic loads.
364226633Sdim  // FIXME: Some of it is okay for atomic loads; needs refactoring.
365226633Sdim  if (!LI.isSimple()) return 0;
366251662Sdim
367202375Srdivacky  // Do really simple store-to-load forwarding and load CSE, to catch cases
368218893Sdim  // where there are several consecutive memory accesses to the same location,
369202375Srdivacky  // separated by a few arithmetic operations.
370202375Srdivacky  BasicBlock::iterator BBI = &LI;
371202375Srdivacky  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
372202375Srdivacky    return ReplaceInstUsesWith(LI, AvailableVal);
373202375Srdivacky
374202375Srdivacky  // load(gep null, ...) -> unreachable
375202375Srdivacky  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
376202375Srdivacky    const Value *GEPI0 = GEPI->getOperand(0);
377202375Srdivacky    // TODO: Consider a target hook for valid address spaces for this xform.
378202375Srdivacky    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
379202375Srdivacky      // Insert a new store to null instruction before the load to indicate
380202375Srdivacky      // that this code is not reachable.  We do this instead of inserting
381202375Srdivacky      // an unreachable instruction directly because we cannot modify the
382202375Srdivacky      // CFG.
383202375Srdivacky      new StoreInst(UndefValue::get(LI.getType()),
384202375Srdivacky                    Constant::getNullValue(Op->getType()), &LI);
385202375Srdivacky      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
386202375Srdivacky    }
387251662Sdim  }
388202375Srdivacky
389202375Srdivacky  // load null/undef -> unreachable
390202375Srdivacky  // TODO: Consider a target hook for valid address spaces for this xform.
391202375Srdivacky  if (isa<UndefValue>(Op) ||
392202375Srdivacky      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
393202375Srdivacky    // Insert a new store to null instruction before the load to indicate that
394202375Srdivacky    // this code is not reachable.  We do this instead of inserting an
395202375Srdivacky    // unreachable instruction directly because we cannot modify the CFG.
396202375Srdivacky    new StoreInst(UndefValue::get(LI.getType()),
397202375Srdivacky                  Constant::getNullValue(Op->getType()), &LI);
398202375Srdivacky    return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
399202375Srdivacky  }
400202375Srdivacky
401202375Srdivacky  // Instcombine load (constantexpr_cast global) -> cast (load global)
402202375Srdivacky  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
403202375Srdivacky    if (CE->isCast())
404202375Srdivacky      if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
405202375Srdivacky        return Res;
406251662Sdim
407202375Srdivacky  if (Op->hasOneUse()) {
408202375Srdivacky    // Change select and PHI nodes to select values instead of addresses: this
409202375Srdivacky    // helps alias analysis out a lot, allows many others simplifications, and
410202375Srdivacky    // exposes redundancy in the code.
411202375Srdivacky    //
412202375Srdivacky    // Note that we cannot do the transformation unless we know that the
413202375Srdivacky    // introduced loads cannot trap!  Something like this is valid as long as
414202375Srdivacky    // the condition is always false: load (select bool %C, int* null, int* %G),
415202375Srdivacky    // but it would not be valid if we transformed it to load from null
416202375Srdivacky    // unconditionally.
417202375Srdivacky    //
418202375Srdivacky    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
419202375Srdivacky      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
420203954Srdivacky      unsigned Align = LI.getAlignment();
421203954Srdivacky      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
422203954Srdivacky          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
423203954Srdivacky        LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
424203954Srdivacky                                           SI->getOperand(1)->getName()+".val");
425203954Srdivacky        LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
426203954Srdivacky                                           SI->getOperand(2)->getName()+".val");
427203954Srdivacky        V1->setAlignment(Align);
428203954Srdivacky        V2->setAlignment(Align);
429202375Srdivacky        return SelectInst::Create(SI->getCondition(), V1, V2);
430202375Srdivacky      }
431202375Srdivacky
432202375Srdivacky      // load (select (cond, null, P)) -> load P
433202375Srdivacky      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
434202375Srdivacky        if (C->isNullValue()) {
435202375Srdivacky          LI.setOperand(0, SI->getOperand(2));
436202375Srdivacky          return &LI;
437202375Srdivacky        }
438202375Srdivacky
439202375Srdivacky      // load (select (cond, P, null)) -> load P
440202375Srdivacky      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
441202375Srdivacky        if (C->isNullValue()) {
442202375Srdivacky          LI.setOperand(0, SI->getOperand(1));
443202375Srdivacky          return &LI;
444202375Srdivacky        }
445202375Srdivacky    }
446202375Srdivacky  }
447202375Srdivacky  return 0;
448202375Srdivacky}
449202375Srdivacky
450202375Srdivacky/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
451202375Srdivacky/// when possible.  This makes it generally easy to do alias analysis and/or
452202375Srdivacky/// SROA/mem2reg of the memory object.
453202375Srdivackystatic Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
454202375Srdivacky  User *CI = cast<User>(SI.getOperand(1));
455202375Srdivacky  Value *CastOp = CI->getOperand(0);
456202375Srdivacky
457226633Sdim  Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
458226633Sdim  PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
459202375Srdivacky  if (SrcTy == 0) return 0;
460251662Sdim
461226633Sdim  Type *SrcPTy = SrcTy->getElementType();
462202375Srdivacky
463204642Srdivacky  if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
464202375Srdivacky    return 0;
465251662Sdim
466202375Srdivacky  /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
467202375Srdivacky  /// to its first element.  This allows us to handle things like:
468202375Srdivacky  ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
469202375Srdivacky  /// on 32-bit hosts.
470202375Srdivacky  SmallVector<Value*, 4> NewGEPIndices;
471251662Sdim
472202375Srdivacky  // If the source is an array, the code below will not succeed.  Check to
473202375Srdivacky  // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
474202375Srdivacky  // constants.
475204642Srdivacky  if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
476202375Srdivacky    // Index through pointer.
477202375Srdivacky    Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
478202375Srdivacky    NewGEPIndices.push_back(Zero);
479251662Sdim
480202375Srdivacky    while (1) {
481226633Sdim      if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
482202375Srdivacky        if (!STy->getNumElements()) /* Struct can be empty {} */
483202375Srdivacky          break;
484202375Srdivacky        NewGEPIndices.push_back(Zero);
485202375Srdivacky        SrcPTy = STy->getElementType(0);
486226633Sdim      } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
487202375Srdivacky        NewGEPIndices.push_back(Zero);
488202375Srdivacky        SrcPTy = ATy->getElementType();
489202375Srdivacky      } else {
490202375Srdivacky        break;
491202375Srdivacky      }
492202375Srdivacky    }
493251662Sdim
494202375Srdivacky    SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
495202375Srdivacky  }
496202375Srdivacky
497204642Srdivacky  if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
498202375Srdivacky    return 0;
499251662Sdim
500202375Srdivacky  // If the pointers point into different address spaces or if they point to
501202375Srdivacky  // values with different sizes, we can't do the transformation.
502243830Sdim  if (!IC.getDataLayout() ||
503251662Sdim      SrcTy->getAddressSpace() !=
504202375Srdivacky        cast<PointerType>(CI->getType())->getAddressSpace() ||
505243830Sdim      IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
506243830Sdim      IC.getDataLayout()->getTypeSizeInBits(DestPTy))
507202375Srdivacky    return 0;
508202375Srdivacky
509202375Srdivacky  // Okay, we are casting from one integer or pointer type to another of
510251662Sdim  // the same size.  Instead of casting the pointer before
511202375Srdivacky  // the store, cast the value to be stored.
512202375Srdivacky  Value *NewCast;
513202375Srdivacky  Value *SIOp0 = SI.getOperand(0);
514202375Srdivacky  Instruction::CastOps opcode = Instruction::BitCast;
515226633Sdim  Type* CastSrcTy = SIOp0->getType();
516226633Sdim  Type* CastDstTy = SrcPTy;
517204642Srdivacky  if (CastDstTy->isPointerTy()) {
518203954Srdivacky    if (CastSrcTy->isIntegerTy())
519202375Srdivacky      opcode = Instruction::IntToPtr;
520204642Srdivacky  } else if (CastDstTy->isIntegerTy()) {
521204642Srdivacky    if (SIOp0->getType()->isPointerTy())
522202375Srdivacky      opcode = Instruction::PtrToInt;
523202375Srdivacky  }
524251662Sdim
525202375Srdivacky  // SIOp0 is a pointer to aggregate and this is a store to the first field,
526202375Srdivacky  // emit a GEP to index into its first field.
527202375Srdivacky  if (!NewGEPIndices.empty())
528226633Sdim    CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
529251662Sdim
530202375Srdivacky  NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
531202375Srdivacky                                   SIOp0->getName()+".c");
532218893Sdim  SI.setOperand(0, NewCast);
533218893Sdim  SI.setOperand(1, CastOp);
534218893Sdim  return &SI;
535202375Srdivacky}
536202375Srdivacky
537202375Srdivacky/// equivalentAddressValues - Test if A and B will obviously have the same
538202375Srdivacky/// value. This includes recognizing that %t0 and %t1 will have the same
539202375Srdivacky/// value in code like this:
540202375Srdivacky///   %t0 = getelementptr \@a, 0, 3
541202375Srdivacky///   store i32 0, i32* %t0
542202375Srdivacky///   %t1 = getelementptr \@a, 0, 3
543202375Srdivacky///   %t2 = load i32* %t1
544202375Srdivacky///
545202375Srdivackystatic bool equivalentAddressValues(Value *A, Value *B) {
546202375Srdivacky  // Test if the values are trivially equivalent.
547202375Srdivacky  if (A == B) return true;
548251662Sdim
549202375Srdivacky  // Test if the values come form identical arithmetic instructions.
550202375Srdivacky  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
551202375Srdivacky  // its only used to compare two uses within the same basic block, which
552202375Srdivacky  // means that they'll always either have the same value or one of them
553202375Srdivacky  // will have an undefined value.
554202375Srdivacky  if (isa<BinaryOperator>(A) ||
555202375Srdivacky      isa<CastInst>(A) ||
556202375Srdivacky      isa<PHINode>(A) ||
557202375Srdivacky      isa<GetElementPtrInst>(A))
558202375Srdivacky    if (Instruction *BI = dyn_cast<Instruction>(B))
559202375Srdivacky      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
560202375Srdivacky        return true;
561251662Sdim
562202375Srdivacky  // Otherwise they may not be equivalent.
563202375Srdivacky  return false;
564202375Srdivacky}
565202375Srdivacky
566202375SrdivackyInstruction *InstCombiner::visitStoreInst(StoreInst &SI) {
567202375Srdivacky  Value *Val = SI.getOperand(0);
568202375Srdivacky  Value *Ptr = SI.getOperand(1);
569202375Srdivacky
570202375Srdivacky  // Attempt to improve the alignment.
571202375Srdivacky  if (TD) {
572202375Srdivacky    unsigned KnownAlign =
573218893Sdim      getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
574218893Sdim                                 TD);
575212904Sdim    unsigned StoreAlign = SI.getAlignment();
576212904Sdim    unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
577212904Sdim      TD->getABITypeAlignment(Val->getType());
578212904Sdim
579212904Sdim    if (KnownAlign > EffectiveStoreAlign)
580202375Srdivacky      SI.setAlignment(KnownAlign);
581212904Sdim    else if (StoreAlign == 0)
582212904Sdim      SI.setAlignment(EffectiveStoreAlign);
583202375Srdivacky  }
584202375Srdivacky
585226633Sdim  // Don't hack volatile/atomic stores.
586226633Sdim  // FIXME: Some bits are legal for atomic stores; needs refactoring.
587226633Sdim  if (!SI.isSimple()) return 0;
588226633Sdim
589226633Sdim  // If the RHS is an alloca with a single use, zapify the store, making the
590226633Sdim  // alloca dead.
591226633Sdim  if (Ptr->hasOneUse()) {
592251662Sdim    if (isa<AllocaInst>(Ptr))
593226633Sdim      return EraseInstFromFunction(SI);
594226633Sdim    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
595226633Sdim      if (isa<AllocaInst>(GEP->getOperand(0))) {
596226633Sdim        if (GEP->getOperand(0)->hasOneUse())
597226633Sdim          return EraseInstFromFunction(SI);
598226633Sdim      }
599226633Sdim    }
600226633Sdim  }
601226633Sdim
602202375Srdivacky  // Do really simple DSE, to catch cases where there are several consecutive
603202375Srdivacky  // stores to the same location, separated by a few arithmetic operations. This
604202375Srdivacky  // situation often occurs with bitfield accesses.
605202375Srdivacky  BasicBlock::iterator BBI = &SI;
606202375Srdivacky  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
607202375Srdivacky       --ScanInsts) {
608202375Srdivacky    --BBI;
609202375Srdivacky    // Don't count debug info directives, lest they affect codegen,
610202375Srdivacky    // and we skip pointer-to-pointer bitcasts, which are NOPs.
611202375Srdivacky    if (isa<DbgInfoIntrinsic>(BBI) ||
612204642Srdivacky        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
613202375Srdivacky      ScanInsts++;
614202375Srdivacky      continue;
615251662Sdim    }
616251662Sdim
617202375Srdivacky    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
618202375Srdivacky      // Prev store isn't volatile, and stores to the same location?
619226633Sdim      if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
620226633Sdim                                                        SI.getOperand(1))) {
621202375Srdivacky        ++NumDeadStore;
622202375Srdivacky        ++BBI;
623202375Srdivacky        EraseInstFromFunction(*PrevSI);
624202375Srdivacky        continue;
625202375Srdivacky      }
626202375Srdivacky      break;
627202375Srdivacky    }
628251662Sdim
629202375Srdivacky    // If this is a load, we have to stop.  However, if the loaded value is from
630202375Srdivacky    // the pointer we're loading and is producing the pointer we're storing,
631202375Srdivacky    // then *this* store is dead (X = load P; store X -> P).
632202375Srdivacky    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
633202375Srdivacky      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
634226633Sdim          LI->isSimple())
635202375Srdivacky        return EraseInstFromFunction(SI);
636251662Sdim
637202375Srdivacky      // Otherwise, this is a load from some other location.  Stores before it
638202375Srdivacky      // may not be dead.
639202375Srdivacky      break;
640202375Srdivacky    }
641251662Sdim
642202375Srdivacky    // Don't skip over loads or things that can modify memory.
643202375Srdivacky    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
644202375Srdivacky      break;
645202375Srdivacky  }
646202375Srdivacky
647202375Srdivacky  // store X, null    -> turns into 'unreachable' in SimplifyCFG
648202375Srdivacky  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
649202375Srdivacky    if (!isa<UndefValue>(Val)) {
650202375Srdivacky      SI.setOperand(0, UndefValue::get(Val->getType()));
651202375Srdivacky      if (Instruction *U = dyn_cast<Instruction>(Val))
652202375Srdivacky        Worklist.Add(U);  // Dropped a use.
653202375Srdivacky    }
654202375Srdivacky    return 0;  // Do not modify these!
655202375Srdivacky  }
656202375Srdivacky
657202375Srdivacky  // store undef, Ptr -> noop
658202375Srdivacky  if (isa<UndefValue>(Val))
659202375Srdivacky    return EraseInstFromFunction(SI);
660202375Srdivacky
661202375Srdivacky  // If the pointer destination is a cast, see if we can fold the cast into the
662202375Srdivacky  // source instead.
663202375Srdivacky  if (isa<CastInst>(Ptr))
664202375Srdivacky    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
665202375Srdivacky      return Res;
666202375Srdivacky  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
667202375Srdivacky    if (CE->isCast())
668202375Srdivacky      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
669202375Srdivacky        return Res;
670202375Srdivacky
671251662Sdim
672202375Srdivacky  // If this store is the last instruction in the basic block (possibly
673202878Srdivacky  // excepting debug info instructions), and if the block ends with an
674202878Srdivacky  // unconditional branch, try to move it to the successor block.
675251662Sdim  BBI = &SI;
676202375Srdivacky  do {
677202375Srdivacky    ++BBI;
678202375Srdivacky  } while (isa<DbgInfoIntrinsic>(BBI) ||
679204642Srdivacky           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
680202375Srdivacky  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
681202375Srdivacky    if (BI->isUnconditional())
682202375Srdivacky      if (SimplifyStoreAtEndOfBlock(SI))
683202375Srdivacky        return 0;  // xform done!
684251662Sdim
685202375Srdivacky  return 0;
686202375Srdivacky}
687202375Srdivacky
688202375Srdivacky/// SimplifyStoreAtEndOfBlock - Turn things like:
689202375Srdivacky///   if () { *P = v1; } else { *P = v2 }
690202375Srdivacky/// into a phi node with a store in the successor.
691202375Srdivacky///
692202375Srdivacky/// Simplify things like:
693202375Srdivacky///   *P = v1; if () { *P = v2; }
694202375Srdivacky/// into a phi node with a store in the successor.
695202375Srdivacky///
696202375Srdivackybool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
697202375Srdivacky  BasicBlock *StoreBB = SI.getParent();
698251662Sdim
699202375Srdivacky  // Check to see if the successor block has exactly two incoming edges.  If
700202375Srdivacky  // so, see if the other predecessor contains a store to the same location.
701202375Srdivacky  // if so, insert a PHI node (if needed) and move the stores down.
702202375Srdivacky  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
703251662Sdim
704202375Srdivacky  // Determine whether Dest has exactly two predecessors and, if so, compute
705202375Srdivacky  // the other predecessor.
706202375Srdivacky  pred_iterator PI = pred_begin(DestBB);
707210299Sed  BasicBlock *P = *PI;
708202375Srdivacky  BasicBlock *OtherBB = 0;
709210299Sed
710210299Sed  if (P != StoreBB)
711210299Sed    OtherBB = P;
712210299Sed
713210299Sed  if (++PI == pred_end(DestBB))
714202375Srdivacky    return false;
715251662Sdim
716210299Sed  P = *PI;
717210299Sed  if (P != StoreBB) {
718202375Srdivacky    if (OtherBB)
719202375Srdivacky      return false;
720210299Sed    OtherBB = P;
721202375Srdivacky  }
722202375Srdivacky  if (++PI != pred_end(DestBB))
723202375Srdivacky    return false;
724202375Srdivacky
725202375Srdivacky  // Bail out if all the relevant blocks aren't distinct (this can happen,
726202375Srdivacky  // for example, if SI is in an infinite loop)
727202375Srdivacky  if (StoreBB == DestBB || OtherBB == DestBB)
728202375Srdivacky    return false;
729202375Srdivacky
730202375Srdivacky  // Verify that the other block ends in a branch and is not otherwise empty.
731202375Srdivacky  BasicBlock::iterator BBI = OtherBB->getTerminator();
732202375Srdivacky  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
733202375Srdivacky  if (!OtherBr || BBI == OtherBB->begin())
734202375Srdivacky    return false;
735251662Sdim
736202375Srdivacky  // If the other block ends in an unconditional branch, check for the 'if then
737202375Srdivacky  // else' case.  there is an instruction before the branch.
738202375Srdivacky  StoreInst *OtherStore = 0;
739202375Srdivacky  if (OtherBr->isUnconditional()) {
740202375Srdivacky    --BBI;
741202375Srdivacky    // Skip over debugging info.
742202375Srdivacky    while (isa<DbgInfoIntrinsic>(BBI) ||
743204642Srdivacky           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
744202375Srdivacky      if (BBI==OtherBB->begin())
745202375Srdivacky        return false;
746202375Srdivacky      --BBI;
747202375Srdivacky    }
748226633Sdim    // If this isn't a store, isn't a store to the same location, or is not the
749226633Sdim    // right kind of store, bail out.
750202375Srdivacky    OtherStore = dyn_cast<StoreInst>(BBI);
751202375Srdivacky    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
752226633Sdim        !SI.isSameOperationAs(OtherStore))
753202375Srdivacky      return false;
754202375Srdivacky  } else {
755202375Srdivacky    // Otherwise, the other block ended with a conditional branch. If one of the
756202375Srdivacky    // destinations is StoreBB, then we have the if/then case.
757251662Sdim    if (OtherBr->getSuccessor(0) != StoreBB &&
758202375Srdivacky        OtherBr->getSuccessor(1) != StoreBB)
759202375Srdivacky      return false;
760251662Sdim
761202375Srdivacky    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
762202375Srdivacky    // if/then triangle.  See if there is a store to the same ptr as SI that
763202375Srdivacky    // lives in OtherBB.
764202375Srdivacky    for (;; --BBI) {
765202375Srdivacky      // Check to see if we find the matching store.
766202375Srdivacky      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
767202375Srdivacky        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
768226633Sdim            !SI.isSameOperationAs(OtherStore))
769202375Srdivacky          return false;
770202375Srdivacky        break;
771202375Srdivacky      }
772202375Srdivacky      // If we find something that may be using or overwriting the stored
773202375Srdivacky      // value, or if we run out of instructions, we can't do the xform.
774202375Srdivacky      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
775202375Srdivacky          BBI == OtherBB->begin())
776202375Srdivacky        return false;
777202375Srdivacky    }
778251662Sdim
779202375Srdivacky    // In order to eliminate the store in OtherBr, we have to
780202375Srdivacky    // make sure nothing reads or overwrites the stored value in
781202375Srdivacky    // StoreBB.
782202375Srdivacky    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
783202375Srdivacky      // FIXME: This should really be AA driven.
784202375Srdivacky      if (I->mayReadFromMemory() || I->mayWriteToMemory())
785202375Srdivacky        return false;
786202375Srdivacky    }
787202375Srdivacky  }
788251662Sdim
789202375Srdivacky  // Insert a PHI node now if we need it.
790202375Srdivacky  Value *MergedVal = OtherStore->getOperand(0);
791202375Srdivacky  if (MergedVal != SI.getOperand(0)) {
792221345Sdim    PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
793202375Srdivacky    PN->addIncoming(SI.getOperand(0), SI.getParent());
794202375Srdivacky    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
795202375Srdivacky    MergedVal = InsertNewInstBefore(PN, DestBB->front());
796202375Srdivacky  }
797251662Sdim
798202375Srdivacky  // Advance to a place where it is safe to insert the new store and
799202375Srdivacky  // insert it.
800226633Sdim  BBI = DestBB->getFirstInsertionPt();
801223017Sdim  StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
802226633Sdim                                   SI.isVolatile(),
803226633Sdim                                   SI.getAlignment(),
804226633Sdim                                   SI.getOrdering(),
805226633Sdim                                   SI.getSynchScope());
806223017Sdim  InsertNewInstBefore(NewSI, *BBI);
807251662Sdim  NewSI->setDebugLoc(OtherStore->getDebugLoc());
808223017Sdim
809249423Sdim  // If the two stores had the same TBAA tag, preserve it.
810249423Sdim  if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
811249423Sdim    if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
812249423Sdim                               OtherStore->getMetadata(LLVMContext::MD_tbaa))))
813249423Sdim      NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
814249423Sdim
815251662Sdim
816202375Srdivacky  // Nuke the old stores.
817202375Srdivacky  EraseInstFromFunction(SI);
818202375Srdivacky  EraseInstFromFunction(*OtherStore);
819202375Srdivacky  return true;
820202375Srdivacky}
821