ARMCodeEmitter.cpp revision 234353
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMBaseInstrInfo.h"
19#include "ARMRelocations.h"
20#include "ARMSubtarget.h"
21#include "ARMTargetMachine.h"
22#include "MCTargetDesc/ARMAddressingModes.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMBaseInstrInfo    *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58    bool IsThumb;
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineModuleInfo>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64
65    static char ID;
66  public:
67    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68      : MachineFunctionPass(ID), JTI(0),
69        II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
70        TD(tm.getTargetData()), TM(tm),
71        MCE(mce), MCPEs(0), MJTEs(0),
72        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74    /// getBinaryCodeForInstr - This function, generated by the
75    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76    /// machine instructions.
77    uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79    bool runOnMachineFunction(MachineFunction &MF);
80
81    virtual const char *getPassName() const {
82      return "ARM Machine Code Emitter";
83    }
84
85    void emitInstruction(const MachineInstr &MI);
86
87  private:
88
89    void emitWordLE(unsigned Binary);
90    void emitDWordLE(uint64_t Binary);
91    void emitConstPoolInstruction(const MachineInstr &MI);
92    void emitMOVi32immInstruction(const MachineInstr &MI);
93    void emitMOVi2piecesInstruction(const MachineInstr &MI);
94    void emitLEApcrelJTInstruction(const MachineInstr &MI);
95    void emitPseudoMoveInstruction(const MachineInstr &MI);
96    void addPCLabel(unsigned LabelID);
97    void emitPseudoInstruction(const MachineInstr &MI);
98    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99                                    const MCInstrDesc &MCID,
100                                    const MachineOperand &MO,
101                                    unsigned OpIdx);
102
103    unsigned getMachineSoImmOpValue(unsigned SoImm);
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const MCInstrDesc &MCID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitSaturateInstruction(const MachineInstr &MI);
127
128    void emitBranchInstruction(const MachineInstr &MI);
129
130    void emitInlineJumpTable(unsigned JTIndex);
131
132    void emitMiscBranchInstruction(const MachineInstr &MI);
133
134    void emitVFPArithInstruction(const MachineInstr &MI);
135
136    void emitVFPConversionInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
141
142    void emitNEONLaneInstruction(const MachineInstr &MI);
143    void emitNEONDupInstruction(const MachineInstr &MI);
144    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145    void emitNEON2RegInstruction(const MachineInstr &MI);
146    void emitNEON3RegInstruction(const MachineInstr &MI);
147
148    /// getMachineOpValue - Return binary encoding of operand. If the machine
149    /// operand requires relocation, record the relocation and return zero.
150    unsigned getMachineOpValue(const MachineInstr &MI,
151                               const MachineOperand &MO) const;
152    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153      return getMachineOpValue(MI, MI.getOperand(OpIdx));
154    }
155
156    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157    //  TableGen'erated getBinaryCodeForInstr() function to encode any
158    //  operand values, instead querying getMachineOpValue() directly for
159    //  each operand it needs to encode. Thus, any of the new encoder
160    //  helper functions can simply return 0 as the values the return
161    //  are already handled elsewhere. They are placeholders to allow this
162    //  encoder to continue to function until the MC encoder is sufficiently
163    //  far along that this one can be eliminated entirely.
164    unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
165      const { return 0; }
166    unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
167      const { return 0; }
168    unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
169      const { return 0; }
170    unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
171      const { return 0; }
172    unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
173      const { return 0; }
174    unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
175      const { return 0; }
176    unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
179      const { return 0; }
180    unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
181      const { return 0; }
182    unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
183      const { return 0; }
184    unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
185      const { return 0; }
186    unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
187      const { return 0; }
188    unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
189      unsigned Op) const { return 0; }
190    unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
191      const { return 0; }
192    unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
193      const { return 0; }
194    unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
195      const { return 0; }
196    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
197      const { return 0; }
198    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
199      const { return 0; }
200    unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
201      const { return 0; }
202    unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
203      const { return 0; }
204    unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
205      const { return 0; }
206    unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
207      const { return 0; }
208    unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
209      const { return 0; }
210    unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
211      const { return 0; }
212    unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
213      const { return 0; }
214    unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
215      const { return 0; }
216    unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
217      const { return 0; }
218    unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
219      const { return 0; }
220    unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
221      const { return 0; }
222    unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
223      const { return 0; }
224    unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
225      const { return 0; }
226    unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
227      const { return 0; }
228    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
229      const { return 0; }
230    unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
231                                                 unsigned Op)
232      const { return 0; }
233    unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
234      const { return 0; }
235    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
236      const { return 0; }
237    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
238                                            unsigned Op) const { return 0; }
239    unsigned getSsatBitPosValue(const MachineInstr &MI,
240                                unsigned Op) const { return 0; }
241    uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
242      const {return 0; }
243    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
244      const { return 0; }
245
246    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
247      const {
248      // {17-13} = reg
249      // {12}    = (U)nsigned (add == '1', sub == '0')
250      // {11-0}  = imm12
251      const MachineOperand &MO  = MI.getOperand(Op);
252      const MachineOperand &MO1 = MI.getOperand(Op + 1);
253      if (!MO.isReg()) {
254        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
255        return 0;
256      }
257      unsigned Reg = getARMRegisterNumbering(MO.getReg());
258      int32_t Imm12 = MO1.getImm();
259      uint32_t Binary;
260      Binary = Imm12 & 0xfff;
261      if (Imm12 >= 0)
262        Binary |= (1 << 12);
263      Binary |= (Reg << 13);
264      return Binary;
265    }
266
267    unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
268      return 0;
269    }
270
271    uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
272      const { return 0;}
273    uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
274      const { return 0;}
275    uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
276      const { return 0;}
277    uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
278      const { return 0;}
279    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
280      const { return 0; }
281    uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
282      const { return 0; }
283    uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
284      const { return 0; }
285    uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
286      const { return 0; }
287    uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
288      const { return 0; }
289    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
290      // {17-13} = reg
291      // {12}    = (U)nsigned (add == '1', sub == '0')
292      // {11-0}  = imm12
293      const MachineOperand &MO  = MI.getOperand(Op);
294      const MachineOperand &MO1 = MI.getOperand(Op + 1);
295      if (!MO.isReg()) {
296        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
297        return 0;
298      }
299      unsigned Reg = getARMRegisterNumbering(MO.getReg());
300      int32_t Imm12 = MO1.getImm();
301
302      // Special value for #-0
303      if (Imm12 == INT32_MIN)
304        Imm12 = 0;
305
306      // Immediate is always encoded as positive. The 'U' bit controls add vs
307      // sub.
308      bool isAdd = true;
309      if (Imm12 < 0) {
310        Imm12 = -Imm12;
311        isAdd = false;
312      }
313
314      uint32_t Binary = Imm12 & 0xfff;
315      if (isAdd)
316        Binary |= (1 << 12);
317      Binary |= (Reg << 13);
318      return Binary;
319    }
320    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
321      const { return 0; }
322
323    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
324      const { return 0; }
325
326    unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
327      const { return 0; }
328    unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
329      const { return 0; }
330    unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
331      const { return 0; }
332    unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
333      const { return 0; }
334
335    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
336    /// machine operand requires relocation, record the relocation and return
337    /// zero.
338    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
339                            unsigned Reloc);
340
341    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
342    ///
343    unsigned getShiftOp(unsigned Imm) const ;
344
345    /// Routines that handle operands which add machine relocations which are
346    /// fixed up by the relocation stage.
347    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
348                           bool MayNeedFarStub,  bool Indirect,
349                           intptr_t ACPV = 0) const;
350    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
351    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
352    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
353    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
354                               intptr_t JTBase = 0) const;
355  };
356}
357
358char ARMCodeEmitter::ID = 0;
359
360/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
361/// code to the specified MCE object.
362FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
363                                                JITCodeEmitter &JCE) {
364  return new ARMCodeEmitter(TM, JCE);
365}
366
367bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
368  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
369          MF.getTarget().getRelocationModel() != Reloc::Static) &&
370         "JIT relocation model must be set to static or default!");
371  JTI = ((ARMBaseTargetMachine &)MF.getTarget()).getJITInfo();
372  II = (const ARMBaseInstrInfo *)MF.getTarget().getInstrInfo();
373  TD = MF.getTarget().getTargetData();
374  Subtarget = &TM.getSubtarget<ARMSubtarget>();
375  MCPEs = &MF.getConstantPool()->getConstants();
376  MJTEs = 0;
377  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
378  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
379  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
380  JTI->Initialize(MF, IsPIC);
381  MMI = &getAnalysis<MachineModuleInfo>();
382  MCE.setModuleInfo(MMI);
383
384  do {
385    DEBUG(errs() << "JITTing function '"
386          << MF.getFunction()->getName() << "'\n");
387    MCE.startFunction(MF);
388    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
389         MBB != E; ++MBB) {
390      MCE.StartMachineBasicBlock(MBB);
391      for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
392           I != E; ++I)
393        emitInstruction(*I);
394    }
395  } while (MCE.finishFunction(MF));
396
397  return false;
398}
399
400/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
401///
402unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
403  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
404  default: llvm_unreachable("Unknown shift opc!");
405  case ARM_AM::asr: return 2;
406  case ARM_AM::lsl: return 0;
407  case ARM_AM::lsr: return 1;
408  case ARM_AM::ror:
409  case ARM_AM::rrx: return 3;
410  }
411}
412
413/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
414/// machine operand requires relocation, record the relocation and return zero.
415unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
416                                        const MachineOperand &MO,
417                                        unsigned Reloc) {
418  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
419      && "Relocation to this function should be for movt or movw");
420
421  if (MO.isImm())
422    return static_cast<unsigned>(MO.getImm());
423  else if (MO.isGlobal())
424    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
425  else if (MO.isSymbol())
426    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
427  else if (MO.isMBB())
428    emitMachineBasicBlock(MO.getMBB(), Reloc);
429  else {
430#ifndef NDEBUG
431    errs() << MO;
432#endif
433    llvm_unreachable("Unsupported operand type for movw/movt");
434  }
435  return 0;
436}
437
438/// getMachineOpValue - Return binary encoding of operand. If the machine
439/// operand requires relocation, record the relocation and return zero.
440unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
441                                           const MachineOperand &MO) const {
442  if (MO.isReg())
443    return getARMRegisterNumbering(MO.getReg());
444  else if (MO.isImm())
445    return static_cast<unsigned>(MO.getImm());
446  else if (MO.isGlobal())
447    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
448  else if (MO.isSymbol())
449    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
450  else if (MO.isCPI()) {
451    const MCInstrDesc &MCID = MI.getDesc();
452    // For VFP load, the immediate offset is multiplied by 4.
453    unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
454      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
455    emitConstPoolAddress(MO.getIndex(), Reloc);
456  } else if (MO.isJTI())
457    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
458  else if (MO.isMBB())
459    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
460  else
461    llvm_unreachable("Unable to encode MachineOperand!");
462  return 0;
463}
464
465/// emitGlobalAddress - Emit the specified address to the code stream.
466///
467void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
468                                       bool MayNeedFarStub, bool Indirect,
469                                       intptr_t ACPV) const {
470  MachineRelocation MR = Indirect
471    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
472                                           const_cast<GlobalValue *>(GV),
473                                           ACPV, MayNeedFarStub)
474    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
475                               const_cast<GlobalValue *>(GV), ACPV,
476                               MayNeedFarStub);
477  MCE.addRelocation(MR);
478}
479
480/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
481/// be emitted to the current location in the function, and allow it to be PC
482/// relative.
483void ARMCodeEmitter::
484emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
485  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
486                                                 Reloc, ES));
487}
488
489/// emitConstPoolAddress - Arrange for the address of an constant pool
490/// to be emitted to the current location in the function, and allow it to be PC
491/// relative.
492void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
493  // Tell JIT emitter we'll resolve the address.
494  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
495                                                    Reloc, CPI, 0, true));
496}
497
498/// emitJumpTableAddress - Arrange for the address of a jump table to
499/// be emitted to the current location in the function, and allow it to be PC
500/// relative.
501void ARMCodeEmitter::
502emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
503  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
504                                                    Reloc, JTIndex, 0, true));
505}
506
507/// emitMachineBasicBlock - Emit the specified address basic block.
508void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
509                                           unsigned Reloc,
510                                           intptr_t JTBase) const {
511  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
512                                             Reloc, BB, JTBase));
513}
514
515void ARMCodeEmitter::emitWordLE(unsigned Binary) {
516  DEBUG(errs() << "  0x";
517        errs().write_hex(Binary) << "\n");
518  MCE.emitWordLE(Binary);
519}
520
521void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
522  DEBUG(errs() << "  0x";
523        errs().write_hex(Binary) << "\n");
524  MCE.emitDWordLE(Binary);
525}
526
527void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
528  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
529
530  MCE.processDebugLoc(MI.getDebugLoc(), true);
531
532  ++NumEmitted;  // Keep track of the # of mi's emitted
533  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
534  default: {
535    llvm_unreachable("Unhandled instruction encoding format!");
536  }
537  case ARMII::MiscFrm:
538    if (MI.getOpcode() == ARM::LEApcrelJT) {
539      // Materialize jumptable address.
540      emitLEApcrelJTInstruction(MI);
541      break;
542    }
543    llvm_unreachable("Unhandled instruction encoding!");
544  case ARMII::Pseudo:
545    emitPseudoInstruction(MI);
546    break;
547  case ARMII::DPFrm:
548  case ARMII::DPSoRegFrm:
549    emitDataProcessingInstruction(MI);
550    break;
551  case ARMII::LdFrm:
552  case ARMII::StFrm:
553    emitLoadStoreInstruction(MI);
554    break;
555  case ARMII::LdMiscFrm:
556  case ARMII::StMiscFrm:
557    emitMiscLoadStoreInstruction(MI);
558    break;
559  case ARMII::LdStMulFrm:
560    emitLoadStoreMultipleInstruction(MI);
561    break;
562  case ARMII::MulFrm:
563    emitMulFrmInstruction(MI);
564    break;
565  case ARMII::ExtFrm:
566    emitExtendInstruction(MI);
567    break;
568  case ARMII::ArithMiscFrm:
569    emitMiscArithInstruction(MI);
570    break;
571  case ARMII::SatFrm:
572    emitSaturateInstruction(MI);
573    break;
574  case ARMII::BrFrm:
575    emitBranchInstruction(MI);
576    break;
577  case ARMII::BrMiscFrm:
578    emitMiscBranchInstruction(MI);
579    break;
580  // VFP instructions.
581  case ARMII::VFPUnaryFrm:
582  case ARMII::VFPBinaryFrm:
583    emitVFPArithInstruction(MI);
584    break;
585  case ARMII::VFPConv1Frm:
586  case ARMII::VFPConv2Frm:
587  case ARMII::VFPConv3Frm:
588  case ARMII::VFPConv4Frm:
589  case ARMII::VFPConv5Frm:
590    emitVFPConversionInstruction(MI);
591    break;
592  case ARMII::VFPLdStFrm:
593    emitVFPLoadStoreInstruction(MI);
594    break;
595  case ARMII::VFPLdStMulFrm:
596    emitVFPLoadStoreMultipleInstruction(MI);
597    break;
598
599  // NEON instructions.
600  case ARMII::NGetLnFrm:
601  case ARMII::NSetLnFrm:
602    emitNEONLaneInstruction(MI);
603    break;
604  case ARMII::NDupFrm:
605    emitNEONDupInstruction(MI);
606    break;
607  case ARMII::N1RegModImmFrm:
608    emitNEON1RegModImmInstruction(MI);
609    break;
610  case ARMII::N2RegFrm:
611    emitNEON2RegInstruction(MI);
612    break;
613  case ARMII::N3RegFrm:
614    emitNEON3RegInstruction(MI);
615    break;
616  }
617  MCE.processDebugLoc(MI.getDebugLoc(), false);
618}
619
620void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
621  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
622  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
623  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
624
625  // Remember the CONSTPOOL_ENTRY address for later relocation.
626  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
627
628  // Emit constpool island entry. In most cases, the actual values will be
629  // resolved and relocated after code emission.
630  if (MCPE.isMachineConstantPoolEntry()) {
631    ARMConstantPoolValue *ACPV =
632      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
633
634    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
635          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
636
637    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
638    const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
639    if (GV) {
640      Reloc::Model RelocM = TM.getRelocationModel();
641      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
642                        isa<Function>(GV),
643                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
644                        (intptr_t)ACPV);
645    } else  {
646      const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
647      emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
648    }
649    emitWordLE(0);
650  } else {
651    const Constant *CV = MCPE.Val.ConstVal;
652
653    DEBUG({
654        errs() << "  ** Constant pool #" << CPI << " @ "
655               << (void*)MCE.getCurrentPCValue() << " ";
656        if (const Function *F = dyn_cast<Function>(CV))
657          errs() << F->getName();
658        else
659          errs() << *CV;
660        errs() << '\n';
661      });
662
663    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
664      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
665      emitWordLE(0);
666    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
667      uint32_t Val = uint32_t(*CI->getValue().getRawData());
668      emitWordLE(Val);
669    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
670      if (CFP->getType()->isFloatTy())
671        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
672      else if (CFP->getType()->isDoubleTy())
673        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
674      else {
675        llvm_unreachable("Unable to handle this constantpool entry!");
676      }
677    } else {
678      llvm_unreachable("Unable to handle this constantpool entry!");
679    }
680  }
681}
682
683void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
684  const MachineOperand &MO0 = MI.getOperand(0);
685  const MachineOperand &MO1 = MI.getOperand(1);
686
687  // Emit the 'movw' instruction.
688  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
689
690  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
691
692  // Set the conditional execution predicate.
693  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
694
695  // Encode Rd.
696  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
697
698  // Encode imm16 as imm4:imm12
699  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
700  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
701  emitWordLE(Binary);
702
703  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
704  // Emit the 'movt' instruction.
705  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
706
707  // Set the conditional execution predicate.
708  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
709
710  // Encode Rd.
711  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
712
713  // Encode imm16 as imm4:imm1, same as movw above.
714  Binary |= Hi16 & 0xFFF;
715  Binary |= ((Hi16 >> 12) & 0xF) << 16;
716  emitWordLE(Binary);
717}
718
719void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
720  const MachineOperand &MO0 = MI.getOperand(0);
721  const MachineOperand &MO1 = MI.getOperand(1);
722  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
723                                                  "Not a valid so_imm value!");
724  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
725  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
726
727  // Emit the 'mov' instruction.
728  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
729
730  // Set the conditional execution predicate.
731  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
732
733  // Encode Rd.
734  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
735
736  // Encode so_imm.
737  // Set bit I(25) to identify this is the immediate form of <shifter_op>
738  Binary |= 1 << ARMII::I_BitShift;
739  Binary |= getMachineSoImmOpValue(V1);
740  emitWordLE(Binary);
741
742  // Now the 'orr' instruction.
743  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
744
745  // Set the conditional execution predicate.
746  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
747
748  // Encode Rd.
749  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
750
751  // Encode Rn.
752  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
753
754  // Encode so_imm.
755  // Set bit I(25) to identify this is the immediate form of <shifter_op>
756  Binary |= 1 << ARMII::I_BitShift;
757  Binary |= getMachineSoImmOpValue(V2);
758  emitWordLE(Binary);
759}
760
761void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
762  // It's basically add r, pc, (LJTI - $+8)
763
764  const MCInstrDesc &MCID = MI.getDesc();
765
766  // Emit the 'add' instruction.
767  unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
768
769  // Set the conditional execution predicate
770  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
771
772  // Encode S bit if MI modifies CPSR.
773  Binary |= getAddrModeSBit(MI, MCID);
774
775  // Encode Rd.
776  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
777
778  // Encode Rn which is PC.
779  Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
780
781  // Encode the displacement.
782  Binary |= 1 << ARMII::I_BitShift;
783  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
784
785  emitWordLE(Binary);
786}
787
788void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
789  unsigned Opcode = MI.getDesc().Opcode;
790
791  // Part of binary is determined by TableGn.
792  unsigned Binary = getBinaryCodeForInstr(MI);
793
794  // Set the conditional execution predicate
795  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
796
797  // Encode S bit if MI modifies CPSR.
798  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
799    Binary |= 1 << ARMII::S_BitShift;
800
801  // Encode register def if there is one.
802  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
803
804  // Encode the shift operation.
805  switch (Opcode) {
806  default: break;
807  case ARM::RRX:
808    // rrx
809    Binary |= 0x6 << 4;
810    break;
811  case ARM::MOVsrl_flag:
812    // lsr #1
813    Binary |= (0x2 << 4) | (1 << 7);
814    break;
815  case ARM::MOVsra_flag:
816    // asr #1
817    Binary |= (0x4 << 4) | (1 << 7);
818    break;
819  }
820
821  // Encode register Rm.
822  Binary |= getMachineOpValue(MI, 1);
823
824  emitWordLE(Binary);
825}
826
827void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
828  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
829        << (void*)MCE.getCurrentPCValue() << '\n');
830  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
831}
832
833void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
834  unsigned Opcode = MI.getDesc().Opcode;
835  switch (Opcode) {
836  default:
837    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
838  case ARM::BX_CALL:
839  case ARM::BMOVPCRX_CALL: {
840    // First emit mov lr, pc
841    unsigned Binary = 0x01a0e00f;
842    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
843    emitWordLE(Binary);
844
845    // and then emit the branch.
846    emitMiscBranchInstruction(MI);
847    break;
848  }
849  case TargetOpcode::INLINEASM: {
850    // We allow inline assembler nodes with empty bodies - they can
851    // implicitly define registers, which is ok for JIT.
852    if (MI.getOperand(0).getSymbolName()[0]) {
853      report_fatal_error("JIT does not support inline asm!");
854    }
855    break;
856  }
857  case TargetOpcode::PROLOG_LABEL:
858  case TargetOpcode::EH_LABEL:
859    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
860    break;
861  case TargetOpcode::IMPLICIT_DEF:
862  case TargetOpcode::KILL:
863    // Do nothing.
864    break;
865  case ARM::CONSTPOOL_ENTRY:
866    emitConstPoolInstruction(MI);
867    break;
868  case ARM::PICADD: {
869    // Remember of the address of the PC label for relocation later.
870    addPCLabel(MI.getOperand(2).getImm());
871    // PICADD is just an add instruction that implicitly read pc.
872    emitDataProcessingInstruction(MI, 0, ARM::PC);
873    break;
874  }
875  case ARM::PICLDR:
876  case ARM::PICLDRB:
877  case ARM::PICSTR:
878  case ARM::PICSTRB: {
879    // Remember of the address of the PC label for relocation later.
880    addPCLabel(MI.getOperand(2).getImm());
881    // These are just load / store instructions that implicitly read pc.
882    emitLoadStoreInstruction(MI, 0, ARM::PC);
883    break;
884  }
885  case ARM::PICLDRH:
886  case ARM::PICLDRSH:
887  case ARM::PICLDRSB:
888  case ARM::PICSTRH: {
889    // Remember of the address of the PC label for relocation later.
890    addPCLabel(MI.getOperand(2).getImm());
891    // These are just load / store instructions that implicitly read pc.
892    emitMiscLoadStoreInstruction(MI, ARM::PC);
893    break;
894  }
895
896  case ARM::MOVi32imm:
897    // Two instructions to materialize a constant.
898    if (Subtarget->hasV6T2Ops())
899      emitMOVi32immInstruction(MI);
900    else
901      emitMOVi2piecesInstruction(MI);
902    break;
903
904  case ARM::LEApcrelJT:
905    // Materialize jumptable address.
906    emitLEApcrelJTInstruction(MI);
907    break;
908  case ARM::RRX:
909  case ARM::MOVsrl_flag:
910  case ARM::MOVsra_flag:
911    emitPseudoMoveInstruction(MI);
912    break;
913  }
914}
915
916unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
917                                                const MCInstrDesc &MCID,
918                                                const MachineOperand &MO,
919                                                unsigned OpIdx) {
920  unsigned Binary = getMachineOpValue(MI, MO);
921
922  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
923  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
924  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
925
926  // Encode the shift opcode.
927  unsigned SBits = 0;
928  unsigned Rs = MO1.getReg();
929  if (Rs) {
930    // Set shift operand (bit[7:4]).
931    // LSL - 0001
932    // LSR - 0011
933    // ASR - 0101
934    // ROR - 0111
935    // RRX - 0110 and bit[11:8] clear.
936    switch (SOpc) {
937    default: llvm_unreachable("Unknown shift opc!");
938    case ARM_AM::lsl: SBits = 0x1; break;
939    case ARM_AM::lsr: SBits = 0x3; break;
940    case ARM_AM::asr: SBits = 0x5; break;
941    case ARM_AM::ror: SBits = 0x7; break;
942    case ARM_AM::rrx: SBits = 0x6; break;
943    }
944  } else {
945    // Set shift operand (bit[6:4]).
946    // LSL - 000
947    // LSR - 010
948    // ASR - 100
949    // ROR - 110
950    switch (SOpc) {
951    default: llvm_unreachable("Unknown shift opc!");
952    case ARM_AM::lsl: SBits = 0x0; break;
953    case ARM_AM::lsr: SBits = 0x2; break;
954    case ARM_AM::asr: SBits = 0x4; break;
955    case ARM_AM::ror: SBits = 0x6; break;
956    }
957  }
958  Binary |= SBits << 4;
959  if (SOpc == ARM_AM::rrx)
960    return Binary;
961
962  // Encode the shift operation Rs or shift_imm (except rrx).
963  if (Rs) {
964    // Encode Rs bit[11:8].
965    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
966    return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
967  }
968
969  // Encode shift_imm bit[11:7].
970  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
971}
972
973unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
974  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
975  assert(SoImmVal != -1 && "Not a valid so_imm value!");
976
977  // Encode rotate_imm.
978  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
979    << ARMII::SoRotImmShift;
980
981  // Encode immed_8.
982  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
983  return Binary;
984}
985
986unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
987                                         const MCInstrDesc &MCID) const {
988  for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
989    const MachineOperand &MO = MI.getOperand(i-1);
990    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
991      return 1 << ARMII::S_BitShift;
992  }
993  return 0;
994}
995
996void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
997                                                   unsigned ImplicitRd,
998                                                   unsigned ImplicitRn) {
999  const MCInstrDesc &MCID = MI.getDesc();
1000
1001  // Part of binary is determined by TableGn.
1002  unsigned Binary = getBinaryCodeForInstr(MI);
1003
1004  // Set the conditional execution predicate
1005  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1006
1007  // Encode S bit if MI modifies CPSR.
1008  Binary |= getAddrModeSBit(MI, MCID);
1009
1010  // Encode register def if there is one.
1011  unsigned NumDefs = MCID.getNumDefs();
1012  unsigned OpIdx = 0;
1013  if (NumDefs)
1014    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1015  else if (ImplicitRd)
1016    // Special handling for implicit use (e.g. PC).
1017    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1018
1019  if (MCID.Opcode == ARM::MOVi16) {
1020      // Get immediate from MI.
1021      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1022                      ARM::reloc_arm_movw);
1023      // Encode imm which is the same as in emitMOVi32immInstruction().
1024      Binary |= Lo16 & 0xFFF;
1025      Binary |= ((Lo16 >> 12) & 0xF) << 16;
1026      emitWordLE(Binary);
1027      return;
1028  } else if(MCID.Opcode == ARM::MOVTi16) {
1029      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1030                       ARM::reloc_arm_movt) >> 16);
1031      Binary |= Hi16 & 0xFFF;
1032      Binary |= ((Hi16 >> 12) & 0xF) << 16;
1033      emitWordLE(Binary);
1034      return;
1035  } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
1036      uint32_t v = ~MI.getOperand(2).getImm();
1037      int32_t lsb = CountTrailingZeros_32(v);
1038      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
1039      // Instr{20-16} = msb, Instr{11-7} = lsb
1040      Binary |= (msb & 0x1F) << 16;
1041      Binary |= (lsb & 0x1F) << 7;
1042      emitWordLE(Binary);
1043      return;
1044  } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
1045      // Encode Rn in Instr{0-3}
1046      Binary |= getMachineOpValue(MI, OpIdx++);
1047
1048      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1049      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1050
1051      // Instr{20-16} = widthm1, Instr{11-7} = lsb
1052      Binary |= (widthm1 & 0x1F) << 16;
1053      Binary |= (lsb & 0x1F) << 7;
1054      emitWordLE(Binary);
1055      return;
1056  }
1057
1058  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1059  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1060    ++OpIdx;
1061
1062  // Encode first non-shifter register operand if there is one.
1063  bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
1064  if (!isUnary) {
1065    if (ImplicitRn)
1066      // Special handling for implicit use (e.g. PC).
1067      Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1068    else {
1069      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1070      ++OpIdx;
1071    }
1072  }
1073
1074  // Encode shifter operand.
1075  const MachineOperand &MO = MI.getOperand(OpIdx);
1076  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1077    // Encode SoReg.
1078    emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
1079    return;
1080  }
1081
1082  if (MO.isReg()) {
1083    // Encode register Rm.
1084    emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
1085    return;
1086  }
1087
1088  // Encode so_imm.
1089  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1090
1091  emitWordLE(Binary);
1092}
1093
1094void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1095                                              unsigned ImplicitRd,
1096                                              unsigned ImplicitRn) {
1097  const MCInstrDesc &MCID = MI.getDesc();
1098  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1099  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1100
1101  // Part of binary is determined by TableGn.
1102  unsigned Binary = getBinaryCodeForInstr(MI);
1103
1104  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1105  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1106      MI.getOpcode() == ARM::STRi12) {
1107    emitWordLE(Binary);
1108    return;
1109  }
1110
1111  // Set the conditional execution predicate
1112  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1113
1114  unsigned OpIdx = 0;
1115
1116  // Operand 0 of a pre- and post-indexed store is the address base
1117  // writeback. Skip it.
1118  bool Skipped = false;
1119  if (IsPrePost && Form == ARMII::StFrm) {
1120    ++OpIdx;
1121    Skipped = true;
1122  }
1123
1124  // Set first operand
1125  if (ImplicitRd)
1126    // Special handling for implicit use (e.g. PC).
1127    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1128  else
1129    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1130
1131  // Set second operand
1132  if (ImplicitRn)
1133    // Special handling for implicit use (e.g. PC).
1134    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1135  else
1136    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1137
1138  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1139  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1140    ++OpIdx;
1141
1142  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1143  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1144    ? 0 : MI.getOperand(OpIdx+1).getImm();
1145
1146  // Set bit U(23) according to sign of immed value (positive or negative).
1147  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1148             ARMII::U_BitShift);
1149  if (!MO2.getReg()) { // is immediate
1150    if (ARM_AM::getAM2Offset(AM2Opc))
1151      // Set the value of offset_12 field
1152      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1153    emitWordLE(Binary);
1154    return;
1155  }
1156
1157  // Set bit I(25), because this is not in immediate encoding.
1158  Binary |= 1 << ARMII::I_BitShift;
1159  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1160  // Set bit[3:0] to the corresponding Rm register
1161  Binary |= getARMRegisterNumbering(MO2.getReg());
1162
1163  // If this instr is in scaled register offset/index instruction, set
1164  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1165  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1166    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1167    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1168  }
1169
1170  emitWordLE(Binary);
1171}
1172
1173void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1174                                                  unsigned ImplicitRn) {
1175  const MCInstrDesc &MCID = MI.getDesc();
1176  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1177  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1178
1179  // Part of binary is determined by TableGn.
1180  unsigned Binary = getBinaryCodeForInstr(MI);
1181
1182  // Set the conditional execution predicate
1183  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1184
1185  unsigned OpIdx = 0;
1186
1187  // Operand 0 of a pre- and post-indexed store is the address base
1188  // writeback. Skip it.
1189  bool Skipped = false;
1190  if (IsPrePost && Form == ARMII::StMiscFrm) {
1191    ++OpIdx;
1192    Skipped = true;
1193  }
1194
1195  // Set first operand
1196  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1197
1198  // Skip LDRD and STRD's second operand.
1199  if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
1200    ++OpIdx;
1201
1202  // Set second operand
1203  if (ImplicitRn)
1204    // Special handling for implicit use (e.g. PC).
1205    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1206  else
1207    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1208
1209  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1210  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1211    ++OpIdx;
1212
1213  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1214  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1215    ? 0 : MI.getOperand(OpIdx+1).getImm();
1216
1217  // Set bit U(23) according to sign of immed value (positive or negative)
1218  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1219             ARMII::U_BitShift);
1220
1221  // If this instr is in register offset/index encoding, set bit[3:0]
1222  // to the corresponding Rm register.
1223  if (MO2.getReg()) {
1224    Binary |= getARMRegisterNumbering(MO2.getReg());
1225    emitWordLE(Binary);
1226    return;
1227  }
1228
1229  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1230  Binary |= 1 << ARMII::AM3_I_BitShift;
1231  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1232    // Set operands
1233    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1234    Binary |= (ImmOffs & 0xF);                      // immedL
1235  }
1236
1237  emitWordLE(Binary);
1238}
1239
1240static unsigned getAddrModeUPBits(unsigned Mode) {
1241  unsigned Binary = 0;
1242
1243  // Set addressing mode by modifying bits U(23) and P(24)
1244  // IA - Increment after  - bit U = 1 and bit P = 0
1245  // IB - Increment before - bit U = 1 and bit P = 1
1246  // DA - Decrement after  - bit U = 0 and bit P = 0
1247  // DB - Decrement before - bit U = 0 and bit P = 1
1248  switch (Mode) {
1249  default: llvm_unreachable("Unknown addressing sub-mode!");
1250  case ARM_AM::da:                                     break;
1251  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1252  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1253  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1254  }
1255
1256  return Binary;
1257}
1258
1259void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1260  const MCInstrDesc &MCID = MI.getDesc();
1261  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1262
1263  // Part of binary is determined by TableGn.
1264  unsigned Binary = getBinaryCodeForInstr(MI);
1265
1266  // Set the conditional execution predicate
1267  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1268
1269  // Skip operand 0 of an instruction with base register update.
1270  unsigned OpIdx = 0;
1271  if (IsUpdating)
1272    ++OpIdx;
1273
1274  // Set base address operand
1275  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1276
1277  // Set addressing mode by modifying bits U(23) and P(24)
1278  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1279  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1280
1281  // Set bit W(21)
1282  if (IsUpdating)
1283    Binary |= 0x1 << ARMII::W_BitShift;
1284
1285  // Set registers
1286  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1287    const MachineOperand &MO = MI.getOperand(i);
1288    if (!MO.isReg() || MO.isImplicit())
1289      break;
1290    unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1291    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1292           RegNum < 16);
1293    Binary |= 0x1 << RegNum;
1294  }
1295
1296  emitWordLE(Binary);
1297}
1298
1299void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1300  const MCInstrDesc &MCID = MI.getDesc();
1301
1302  // Part of binary is determined by TableGn.
1303  unsigned Binary = getBinaryCodeForInstr(MI);
1304
1305  // Set the conditional execution predicate
1306  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1307
1308  // Encode S bit if MI modifies CPSR.
1309  Binary |= getAddrModeSBit(MI, MCID);
1310
1311  // 32x32->64bit operations have two destination registers. The number
1312  // of register definitions will tell us if that's what we're dealing with.
1313  unsigned OpIdx = 0;
1314  if (MCID.getNumDefs() == 2)
1315    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1316
1317  // Encode Rd
1318  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1319
1320  // Encode Rm
1321  Binary |= getMachineOpValue(MI, OpIdx++);
1322
1323  // Encode Rs
1324  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1325
1326  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1327  // it as Rn (for multiply, that's in the same offset as RdLo.
1328  if (MCID.getNumOperands() > OpIdx &&
1329      !MCID.OpInfo[OpIdx].isPredicate() &&
1330      !MCID.OpInfo[OpIdx].isOptionalDef())
1331    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1332
1333  emitWordLE(Binary);
1334}
1335
1336void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1337  const MCInstrDesc &MCID = MI.getDesc();
1338
1339  // Part of binary is determined by TableGn.
1340  unsigned Binary = getBinaryCodeForInstr(MI);
1341
1342  // Set the conditional execution predicate
1343  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1344
1345  unsigned OpIdx = 0;
1346
1347  // Encode Rd
1348  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1349
1350  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1351  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1352  if (MO2.isReg()) {
1353    // Two register operand form.
1354    // Encode Rn.
1355    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1356
1357    // Encode Rm.
1358    Binary |= getMachineOpValue(MI, MO2);
1359    ++OpIdx;
1360  } else {
1361    Binary |= getMachineOpValue(MI, MO1);
1362  }
1363
1364  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1365  if (MI.getOperand(OpIdx).isImm() &&
1366      !MCID.OpInfo[OpIdx].isPredicate() &&
1367      !MCID.OpInfo[OpIdx].isOptionalDef())
1368    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1369
1370  emitWordLE(Binary);
1371}
1372
1373void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1374  const MCInstrDesc &MCID = MI.getDesc();
1375
1376  // Part of binary is determined by TableGn.
1377  unsigned Binary = getBinaryCodeForInstr(MI);
1378
1379  // Set the conditional execution predicate
1380  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1381
1382  // PKH instructions are finished at this point
1383  if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
1384    emitWordLE(Binary);
1385    return;
1386  }
1387
1388  unsigned OpIdx = 0;
1389
1390  // Encode Rd
1391  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1392
1393  const MachineOperand &MO = MI.getOperand(OpIdx++);
1394  if (OpIdx == MCID.getNumOperands() ||
1395      MCID.OpInfo[OpIdx].isPredicate() ||
1396      MCID.OpInfo[OpIdx].isOptionalDef()) {
1397    // Encode Rm and it's done.
1398    Binary |= getMachineOpValue(MI, MO);
1399    emitWordLE(Binary);
1400    return;
1401  }
1402
1403  // Encode Rn.
1404  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1405
1406  // Encode Rm.
1407  Binary |= getMachineOpValue(MI, OpIdx++);
1408
1409  // Encode shift_imm.
1410  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1411  if (MCID.Opcode == ARM::PKHTB) {
1412    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1413    if (ShiftAmt == 32)
1414      ShiftAmt = 0;
1415  }
1416  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1417  Binary |= ShiftAmt << ARMII::ShiftShift;
1418
1419  emitWordLE(Binary);
1420}
1421
1422void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1423  const MCInstrDesc &MCID = MI.getDesc();
1424
1425  // Part of binary is determined by TableGen.
1426  unsigned Binary = getBinaryCodeForInstr(MI);
1427
1428  // Set the conditional execution predicate
1429  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1430
1431  // Encode Rd
1432  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1433
1434  // Encode saturate bit position.
1435  unsigned Pos = MI.getOperand(1).getImm();
1436  if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
1437    Pos -= 1;
1438  assert((Pos < 16 || (Pos < 32 &&
1439                       MCID.Opcode != ARM::SSAT16 &&
1440                       MCID.Opcode != ARM::USAT16)) &&
1441         "saturate bit position out of range");
1442  Binary |= Pos << 16;
1443
1444  // Encode Rm
1445  Binary |= getMachineOpValue(MI, 2);
1446
1447  // Encode shift_imm.
1448  if (MCID.getNumOperands() == 4) {
1449    unsigned ShiftOp = MI.getOperand(3).getImm();
1450    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1451    if (Opc == ARM_AM::asr)
1452      Binary |= (1 << 6);
1453    unsigned ShiftAmt = MI.getOperand(3).getImm();
1454    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1455      ShiftAmt = 0;
1456    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1457    Binary |= ShiftAmt << ARMII::ShiftShift;
1458  }
1459
1460  emitWordLE(Binary);
1461}
1462
1463void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1464  const MCInstrDesc &MCID = MI.getDesc();
1465
1466  if (MCID.Opcode == ARM::TPsoft) {
1467    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1468  }
1469
1470  // Part of binary is determined by TableGn.
1471  unsigned Binary = getBinaryCodeForInstr(MI);
1472
1473  // Set the conditional execution predicate
1474  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1475
1476  // Set signed_immed_24 field
1477  Binary |= getMachineOpValue(MI, 0);
1478
1479  emitWordLE(Binary);
1480}
1481
1482void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1483  // Remember the base address of the inline jump table.
1484  uintptr_t JTBase = MCE.getCurrentPCValue();
1485  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1486  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1487               << '\n');
1488
1489  // Now emit the jump table entries.
1490  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1491  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1492    if (IsPIC)
1493      // DestBB address - JT base.
1494      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1495    else
1496      // Absolute DestBB address.
1497      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1498    emitWordLE(0);
1499  }
1500}
1501
1502void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1503  const MCInstrDesc &MCID = MI.getDesc();
1504
1505  // Handle jump tables.
1506  if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
1507    // First emit a ldr pc, [] instruction.
1508    emitDataProcessingInstruction(MI, ARM::PC);
1509
1510    // Then emit the inline jump table.
1511    unsigned JTIndex =
1512      (MCID.Opcode == ARM::BR_JTr)
1513      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1514    emitInlineJumpTable(JTIndex);
1515    return;
1516  } else if (MCID.Opcode == ARM::BR_JTm) {
1517    // First emit a ldr pc, [] instruction.
1518    emitLoadStoreInstruction(MI, ARM::PC);
1519
1520    // Then emit the inline jump table.
1521    emitInlineJumpTable(MI.getOperand(3).getIndex());
1522    return;
1523  }
1524
1525  // Part of binary is determined by TableGn.
1526  unsigned Binary = getBinaryCodeForInstr(MI);
1527
1528  // Set the conditional execution predicate
1529  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1530
1531  if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
1532    // The return register is LR.
1533    Binary |= getARMRegisterNumbering(ARM::LR);
1534  else
1535    // otherwise, set the return register
1536    Binary |= getMachineOpValue(MI, 0);
1537
1538  emitWordLE(Binary);
1539}
1540
1541static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1542  unsigned RegD = MI.getOperand(OpIdx).getReg();
1543  unsigned Binary = 0;
1544  bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1545  RegD = getARMRegisterNumbering(RegD);
1546  if (!isSPVFP)
1547    Binary |=   RegD               << ARMII::RegRdShift;
1548  else {
1549    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1550    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1551  }
1552  return Binary;
1553}
1554
1555static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1556  unsigned RegN = MI.getOperand(OpIdx).getReg();
1557  unsigned Binary = 0;
1558  bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1559  RegN = getARMRegisterNumbering(RegN);
1560  if (!isSPVFP)
1561    Binary |=   RegN               << ARMII::RegRnShift;
1562  else {
1563    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1564    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1565  }
1566  return Binary;
1567}
1568
1569static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1570  unsigned RegM = MI.getOperand(OpIdx).getReg();
1571  unsigned Binary = 0;
1572  bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1573  RegM = getARMRegisterNumbering(RegM);
1574  if (!isSPVFP)
1575    Binary |=   RegM;
1576  else {
1577    Binary |= ((RegM & 0x1E) >> 1);
1578    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1579  }
1580  return Binary;
1581}
1582
1583void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1584  const MCInstrDesc &MCID = MI.getDesc();
1585
1586  // Part of binary is determined by TableGn.
1587  unsigned Binary = getBinaryCodeForInstr(MI);
1588
1589  // Set the conditional execution predicate
1590  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1591
1592  unsigned OpIdx = 0;
1593  assert((Binary & ARMII::D_BitShift) == 0 &&
1594         (Binary & ARMII::N_BitShift) == 0 &&
1595         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1596
1597  // Encode Dd / Sd.
1598  Binary |= encodeVFPRd(MI, OpIdx++);
1599
1600  // If this is a two-address operand, skip it, e.g. FMACD.
1601  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1602    ++OpIdx;
1603
1604  // Encode Dn / Sn.
1605  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1606    Binary |= encodeVFPRn(MI, OpIdx++);
1607
1608  if (OpIdx == MCID.getNumOperands() ||
1609      MCID.OpInfo[OpIdx].isPredicate() ||
1610      MCID.OpInfo[OpIdx].isOptionalDef()) {
1611    // FCMPEZD etc. has only one operand.
1612    emitWordLE(Binary);
1613    return;
1614  }
1615
1616  // Encode Dm / Sm.
1617  Binary |= encodeVFPRm(MI, OpIdx);
1618
1619  emitWordLE(Binary);
1620}
1621
1622void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1623  const MCInstrDesc &MCID = MI.getDesc();
1624  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1625
1626  // Part of binary is determined by TableGn.
1627  unsigned Binary = getBinaryCodeForInstr(MI);
1628
1629  // Set the conditional execution predicate
1630  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1631
1632  switch (Form) {
1633  default: break;
1634  case ARMII::VFPConv1Frm:
1635  case ARMII::VFPConv2Frm:
1636  case ARMII::VFPConv3Frm:
1637    // Encode Dd / Sd.
1638    Binary |= encodeVFPRd(MI, 0);
1639    break;
1640  case ARMII::VFPConv4Frm:
1641    // Encode Dn / Sn.
1642    Binary |= encodeVFPRn(MI, 0);
1643    break;
1644  case ARMII::VFPConv5Frm:
1645    // Encode Dm / Sm.
1646    Binary |= encodeVFPRm(MI, 0);
1647    break;
1648  }
1649
1650  switch (Form) {
1651  default: break;
1652  case ARMII::VFPConv1Frm:
1653    // Encode Dm / Sm.
1654    Binary |= encodeVFPRm(MI, 1);
1655    break;
1656  case ARMII::VFPConv2Frm:
1657  case ARMII::VFPConv3Frm:
1658    // Encode Dn / Sn.
1659    Binary |= encodeVFPRn(MI, 1);
1660    break;
1661  case ARMII::VFPConv4Frm:
1662  case ARMII::VFPConv5Frm:
1663    // Encode Dd / Sd.
1664    Binary |= encodeVFPRd(MI, 1);
1665    break;
1666  }
1667
1668  if (Form == ARMII::VFPConv5Frm)
1669    // Encode Dn / Sn.
1670    Binary |= encodeVFPRn(MI, 2);
1671  else if (Form == ARMII::VFPConv3Frm)
1672    // Encode Dm / Sm.
1673    Binary |= encodeVFPRm(MI, 2);
1674
1675  emitWordLE(Binary);
1676}
1677
1678void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1679  // Part of binary is determined by TableGn.
1680  unsigned Binary = getBinaryCodeForInstr(MI);
1681
1682  // Set the conditional execution predicate
1683  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1684
1685  unsigned OpIdx = 0;
1686
1687  // Encode Dd / Sd.
1688  Binary |= encodeVFPRd(MI, OpIdx++);
1689
1690  // Encode address base.
1691  const MachineOperand &Base = MI.getOperand(OpIdx++);
1692  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1693
1694  // If there is a non-zero immediate offset, encode it.
1695  if (Base.isReg()) {
1696    const MachineOperand &Offset = MI.getOperand(OpIdx);
1697    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1698      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1699        Binary |= 1 << ARMII::U_BitShift;
1700      Binary |= ImmOffs;
1701      emitWordLE(Binary);
1702      return;
1703    }
1704  }
1705
1706  // If immediate offset is omitted, default to +0.
1707  Binary |= 1 << ARMII::U_BitShift;
1708
1709  emitWordLE(Binary);
1710}
1711
1712void
1713ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1714  const MCInstrDesc &MCID = MI.getDesc();
1715  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1716
1717  // Part of binary is determined by TableGn.
1718  unsigned Binary = getBinaryCodeForInstr(MI);
1719
1720  // Set the conditional execution predicate
1721  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1722
1723  // Skip operand 0 of an instruction with base register update.
1724  unsigned OpIdx = 0;
1725  if (IsUpdating)
1726    ++OpIdx;
1727
1728  // Set base address operand
1729  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1730
1731  // Set addressing mode by modifying bits U(23) and P(24)
1732  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1733  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1734
1735  // Set bit W(21)
1736  if (IsUpdating)
1737    Binary |= 0x1 << ARMII::W_BitShift;
1738
1739  // First register is encoded in Dd.
1740  Binary |= encodeVFPRd(MI, OpIdx+2);
1741
1742  // Count the number of registers.
1743  unsigned NumRegs = 1;
1744  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1745    const MachineOperand &MO = MI.getOperand(i);
1746    if (!MO.isReg() || MO.isImplicit())
1747      break;
1748    ++NumRegs;
1749  }
1750  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1751  // Otherwise, it will be 0, in the case of 32-bit registers.
1752  if(Binary & 0x100)
1753    Binary |= NumRegs * 2;
1754  else
1755    Binary |= NumRegs;
1756
1757  emitWordLE(Binary);
1758}
1759
1760static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1761  unsigned RegD = MI.getOperand(OpIdx).getReg();
1762  unsigned Binary = 0;
1763  RegD = getARMRegisterNumbering(RegD);
1764  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1765  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1766  return Binary;
1767}
1768
1769static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1770  unsigned RegN = MI.getOperand(OpIdx).getReg();
1771  unsigned Binary = 0;
1772  RegN = getARMRegisterNumbering(RegN);
1773  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1774  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1775  return Binary;
1776}
1777
1778static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1779  unsigned RegM = MI.getOperand(OpIdx).getReg();
1780  unsigned Binary = 0;
1781  RegM = getARMRegisterNumbering(RegM);
1782  Binary |= (RegM & 0xf);
1783  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1784  return Binary;
1785}
1786
1787/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1788/// data-processing instruction to the corresponding Thumb encoding.
1789static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1790  assert((Binary & 0xfe000000) == 0xf2000000 &&
1791         "not an ARM NEON data-processing instruction");
1792  unsigned UBit = (Binary >> 24) & 1;
1793  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1794}
1795
1796void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1797  unsigned Binary = getBinaryCodeForInstr(MI);
1798
1799  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1800  const MCInstrDesc &MCID = MI.getDesc();
1801  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1802    RegTOpIdx = 0;
1803    RegNOpIdx = 1;
1804    LnOpIdx = 2;
1805  } else { // ARMII::NSetLnFrm
1806    RegTOpIdx = 2;
1807    RegNOpIdx = 0;
1808    LnOpIdx = 3;
1809  }
1810
1811  // Set the conditional execution predicate
1812  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1813
1814  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1815  RegT = getARMRegisterNumbering(RegT);
1816  Binary |= (RegT << ARMII::RegRdShift);
1817  Binary |= encodeNEONRn(MI, RegNOpIdx);
1818
1819  unsigned LaneShift;
1820  if ((Binary & (1 << 22)) != 0)
1821    LaneShift = 0; // 8-bit elements
1822  else if ((Binary & (1 << 5)) != 0)
1823    LaneShift = 1; // 16-bit elements
1824  else
1825    LaneShift = 2; // 32-bit elements
1826
1827  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1828  unsigned Opc1 = Lane >> 2;
1829  unsigned Opc2 = Lane & 3;
1830  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1831  Binary |= (Opc1 << 21);
1832  Binary |= (Opc2 << 5);
1833
1834  emitWordLE(Binary);
1835}
1836
1837void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1838  unsigned Binary = getBinaryCodeForInstr(MI);
1839
1840  // Set the conditional execution predicate
1841  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1842
1843  unsigned RegT = MI.getOperand(1).getReg();
1844  RegT = getARMRegisterNumbering(RegT);
1845  Binary |= (RegT << ARMII::RegRdShift);
1846  Binary |= encodeNEONRn(MI, 0);
1847  emitWordLE(Binary);
1848}
1849
1850void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1851  unsigned Binary = getBinaryCodeForInstr(MI);
1852  // Destination register is encoded in Dd.
1853  Binary |= encodeNEONRd(MI, 0);
1854  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1855  unsigned Imm = MI.getOperand(1).getImm();
1856  unsigned Op = (Imm >> 12) & 1;
1857  unsigned Cmode = (Imm >> 8) & 0xf;
1858  unsigned I = (Imm >> 7) & 1;
1859  unsigned Imm3 = (Imm >> 4) & 0x7;
1860  unsigned Imm4 = Imm & 0xf;
1861  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1862  if (IsThumb)
1863    Binary = convertNEONDataProcToThumb(Binary);
1864  emitWordLE(Binary);
1865}
1866
1867void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1868  const MCInstrDesc &MCID = MI.getDesc();
1869  unsigned Binary = getBinaryCodeForInstr(MI);
1870  // Destination register is encoded in Dd; source register in Dm.
1871  unsigned OpIdx = 0;
1872  Binary |= encodeNEONRd(MI, OpIdx++);
1873  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1874    ++OpIdx;
1875  Binary |= encodeNEONRm(MI, OpIdx);
1876  if (IsThumb)
1877    Binary = convertNEONDataProcToThumb(Binary);
1878  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1879  emitWordLE(Binary);
1880}
1881
1882void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1883  const MCInstrDesc &MCID = MI.getDesc();
1884  unsigned Binary = getBinaryCodeForInstr(MI);
1885  // Destination register is encoded in Dd; source registers in Dn and Dm.
1886  unsigned OpIdx = 0;
1887  Binary |= encodeNEONRd(MI, OpIdx++);
1888  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1889    ++OpIdx;
1890  Binary |= encodeNEONRn(MI, OpIdx++);
1891  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1892    ++OpIdx;
1893  Binary |= encodeNEONRm(MI, OpIdx);
1894  if (IsThumb)
1895    Binary = convertNEONDataProcToThumb(Binary);
1896  // FIXME: This does not handle VMOVDneon or VMOVQ.
1897  emitWordLE(Binary);
1898}
1899
1900#include "ARMGenCodeEmitter.inc"
1901