SpillPlacement.cpp revision 218885
1//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the spill code placement analysis.
11//
12// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
13// basic blocks are weighted by the block frequency and added to become the node
14// bias.
15//
16// Transparent basic blocks have the variable live through, but don't care if it
17// is spilled or in a register. These blocks become connections in the Hopfield
18// network, again weighted by block frequency.
19//
20// The Hopfield network minimizes (possibly locally) its energy function:
21//
22//   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
23//
24// The energy function represents the expected spill code execution frequency,
25// or the cost of spilling. This is a Lyapunov function which never increases
26// when a node is updated. It is guaranteed to converge to a local minimum.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "spillplacement"
31#include "SpillPlacement.h"
32#include "llvm/CodeGen/EdgeBundles.h"
33#include "llvm/CodeGen/LiveIntervalAnalysis.h"
34#include "llvm/CodeGen/MachineBasicBlock.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/Format.h"
40
41using namespace llvm;
42
43char SpillPlacement::ID = 0;
44INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
45                      "Spill Code Placement Analysis", true, true)
46INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
47INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
48INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
49                    "Spill Code Placement Analysis", true, true)
50
51char &llvm::SpillPlacementID = SpillPlacement::ID;
52
53void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
54  AU.setPreservesAll();
55  AU.addRequiredTransitive<EdgeBundles>();
56  AU.addRequiredTransitive<MachineLoopInfo>();
57  MachineFunctionPass::getAnalysisUsage(AU);
58}
59
60/// Node - Each edge bundle corresponds to a Hopfield node.
61///
62/// The node contains precomputed frequency data that only depends on the CFG,
63/// but Bias and Links are computed each time placeSpills is called.
64///
65/// The node Value is positive when the variable should be in a register. The
66/// value can change when linked nodes change, but convergence is very fast
67/// because all weights are positive.
68///
69struct SpillPlacement::Node {
70  /// Frequency - Total block frequency feeding into[0] or out of[1] the bundle.
71  /// Ideally, these two numbers should be identical, but inaccuracies in the
72  /// block frequency estimates means that we need to normalize ingoing and
73  /// outgoing frequencies separately so they are commensurate.
74  float Frequency[2];
75
76  /// Bias - Normalized contributions from non-transparent blocks.
77  /// A bundle connected to a MustSpill block has a huge negative bias,
78  /// otherwise it is a number in the range [-2;2].
79  float Bias;
80
81  /// Value - Output value of this node computed from the Bias and links.
82  /// This is always in the range [-1;1]. A positive number means the variable
83  /// should go in a register through this bundle.
84  float Value;
85
86  typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector;
87
88  /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
89  /// bundles. The weights are all positive and add up to at most 2, weights
90  /// from ingoing and outgoing nodes separately add up to a most 1. The weight
91  /// sum can be less than 2 when the variable is not live into / out of some
92  /// connected basic blocks.
93  LinkVector Links;
94
95  /// preferReg - Return true when this node prefers to be in a register.
96  bool preferReg() const {
97    // Undecided nodes (Value==0) go on the stack.
98    return Value > 0;
99  }
100
101  /// mustSpill - Return True if this node is so biased that it must spill.
102  bool mustSpill() const {
103    // Actually, we must spill if Bias < sum(weights).
104    // It may be worth it to compute the weight sum here?
105    return Bias < -2.0f;
106  }
107
108  /// Node - Create a blank Node.
109  Node() {
110    Frequency[0] = Frequency[1] = 0;
111  }
112
113  /// clear - Reset per-query data, but preserve frequencies that only depend on
114  // the CFG.
115  void clear() {
116    Bias = Value = 0;
117    Links.clear();
118  }
119
120  /// addLink - Add a link to bundle b with weight w.
121  /// out=0 for an ingoing link, and 1 for an outgoing link.
122  void addLink(unsigned b, float w, bool out) {
123    // Normalize w relative to all connected blocks from that direction.
124    w /= Frequency[out];
125
126    // There can be multiple links to the same bundle, add them up.
127    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
128      if (I->second == b) {
129        I->first += w;
130        return;
131      }
132    // This must be the first link to b.
133    Links.push_back(std::make_pair(w, b));
134  }
135
136  /// addBias - Bias this node from an ingoing[0] or outgoing[1] link.
137  void addBias(float w, bool out) {
138    // Normalize w relative to all connected blocks from that direction.
139    w /= Frequency[out];
140    Bias += w;
141  }
142
143  /// update - Recompute Value from Bias and Links. Return true when node
144  /// preference changes.
145  bool update(const Node nodes[]) {
146    // Compute the weighted sum of inputs.
147    float Sum = Bias;
148    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
149      Sum += I->first * nodes[I->second].Value;
150
151    // The weighted sum is going to be in the range [-2;2]. Ideally, we should
152    // simply set Value = sign(Sum), but we will add a dead zone around 0 for
153    // two reasons:
154    //  1. It avoids arbitrary bias when all links are 0 as is possible during
155    //     initial iterations.
156    //  2. It helps tame rounding errors when the links nominally sum to 0.
157    const float Thres = 1e-4f;
158    bool Before = preferReg();
159    if (Sum < -Thres)
160      Value = -1;
161    else if (Sum > Thres)
162      Value = 1;
163    else
164      Value = 0;
165    return Before != preferReg();
166  }
167};
168
169bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
170  MF = &mf;
171  bundles = &getAnalysis<EdgeBundles>();
172  loops = &getAnalysis<MachineLoopInfo>();
173
174  assert(!nodes && "Leaking node array");
175  nodes = new Node[bundles->getNumBundles()];
176
177  // Compute total ingoing and outgoing block frequencies for all bundles.
178  for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
179    float Freq = getBlockFrequency(I);
180    unsigned Num = I->getNumber();
181    nodes[bundles->getBundle(Num, 1)].Frequency[0] += Freq;
182    nodes[bundles->getBundle(Num, 0)].Frequency[1] += Freq;
183  }
184
185  // We never change the function.
186  return false;
187}
188
189void SpillPlacement::releaseMemory() {
190  delete[] nodes;
191  nodes = 0;
192}
193
194/// activate - mark node n as active if it wasn't already.
195void SpillPlacement::activate(unsigned n) {
196  if (ActiveNodes->test(n))
197    return;
198  ActiveNodes->set(n);
199  nodes[n].clear();
200}
201
202
203/// prepareNodes - Compute node biases and weights from a set of constraints.
204/// Set a bit in NodeMask for each active node.
205void SpillPlacement::
206prepareNodes(const SmallVectorImpl<BlockConstraint> &LiveBlocks) {
207  for (SmallVectorImpl<BlockConstraint>::const_iterator I = LiveBlocks.begin(),
208       E = LiveBlocks.end(); I != E; ++I) {
209    MachineBasicBlock *MBB = MF->getBlockNumbered(I->Number);
210    float Freq = getBlockFrequency(MBB);
211
212    // Is this a transparent block? Link ingoing and outgoing bundles.
213    if (I->Entry == DontCare && I->Exit == DontCare) {
214      unsigned ib = bundles->getBundle(I->Number, 0);
215      unsigned ob = bundles->getBundle(I->Number, 1);
216
217      // Ignore self-loops.
218      if (ib == ob)
219        continue;
220      activate(ib);
221      activate(ob);
222      nodes[ib].addLink(ob, Freq, 1);
223      nodes[ob].addLink(ib, Freq, 0);
224      continue;
225    }
226
227    // This block is not transparent, but it can still add bias.
228    const float Bias[] = {
229      0,           // DontCare,
230      1,           // PrefReg,
231      -1,          // PrefSpill
232      -HUGE_VALF   // MustSpill
233    };
234
235    // Live-in to block?
236    if (I->Entry != DontCare) {
237      unsigned ib = bundles->getBundle(I->Number, 0);
238      activate(ib);
239      nodes[ib].addBias(Freq * Bias[I->Entry], 1);
240    }
241
242    // Live-out from block?
243    if (I->Exit != DontCare) {
244      unsigned ob = bundles->getBundle(I->Number, 1);
245      activate(ob);
246      nodes[ob].addBias(Freq * Bias[I->Exit], 0);
247    }
248  }
249}
250
251/// iterate - Repeatedly update the Hopfield nodes until stability or the
252/// maximum number of iterations is reached.
253/// @param Linked - Numbers of linked nodes that need updating.
254void SpillPlacement::iterate(const SmallVectorImpl<unsigned> &Linked) {
255  if (Linked.empty())
256    return;
257
258  // Run up to 10 iterations. The edge bundle numbering is closely related to
259  // basic block numbering, so there is a strong tendency towards chains of
260  // linked nodes with sequential numbers. By scanning the linked nodes
261  // backwards and forwards, we make it very likely that a single node can
262  // affect the entire network in a single iteration. That means very fast
263  // convergence, usually in a single iteration.
264  for (unsigned iteration = 0; iteration != 10; ++iteration) {
265    // Scan backwards, skipping the last node which was just updated.
266    bool Changed = false;
267    for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
268           llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
269      unsigned n = *I;
270      bool C = nodes[n].update(nodes);
271      Changed |= C;
272    }
273    if (!Changed)
274      return;
275
276    // Scan forwards, skipping the first node which was just updated.
277    Changed = false;
278    for (SmallVectorImpl<unsigned>::const_iterator I =
279           llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
280      unsigned n = *I;
281      bool C = nodes[n].update(nodes);
282      Changed |= C;
283    }
284    if (!Changed)
285      return;
286  }
287}
288
289bool
290SpillPlacement::placeSpills(const SmallVectorImpl<BlockConstraint> &LiveBlocks,
291                            BitVector &RegBundles) {
292  // Reuse RegBundles as our ActiveNodes vector.
293  ActiveNodes = &RegBundles;
294  ActiveNodes->clear();
295  ActiveNodes->resize(bundles->getNumBundles());
296
297  // Compute active nodes, links and biases.
298  prepareNodes(LiveBlocks);
299
300  // Update all active nodes, and find the ones that are actually linked to
301  // something so their value may change when iterating.
302  SmallVector<unsigned, 8> Linked;
303  for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n)) {
304    nodes[n].update(nodes);
305    // A node that must spill, or a node without any links is not going to
306    // change its value ever again, so exclude it from iterations.
307    if (!nodes[n].Links.empty() && !nodes[n].mustSpill())
308      Linked.push_back(n);
309  }
310
311  // Iterate the network to convergence.
312  iterate(Linked);
313
314  // Write preferences back to RegBundles.
315  bool Perfect = true;
316  for (int n = RegBundles.find_first(); n>=0; n = RegBundles.find_next(n))
317    if (!nodes[n].preferReg()) {
318      RegBundles.reset(n);
319      Perfect = false;
320    }
321  return Perfect;
322}
323
324/// getBlockFrequency - Return our best estimate of the block frequency which is
325/// the expected number of block executions per function invocation.
326float SpillPlacement::getBlockFrequency(const MachineBasicBlock *MBB) {
327  // Use the unnormalized spill weight for real block frequencies.
328  return LiveIntervals::getSpillWeight(true, false, loops->getLoopDepth(MBB));
329}
330
331