TargetLowering.cpp revision 234982
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include <cctype>
33using namespace llvm;
34
35/// We are in the process of implementing a new TypeLegalization action
36/// - the promotion of vector elements. This feature is disabled by default
37/// and only enabled using this flag.
38static cl::opt<bool>
39AllowPromoteIntElem("promote-elements", cl::Hidden, cl::init(true),
40  cl::desc("Allow promotion of integer vector element types"));
41
42/// InitLibcallNames - Set default libcall names.
43///
44static void InitLibcallNames(const char **Names) {
45  Names[RTLIB::SHL_I16] = "__ashlhi3";
46  Names[RTLIB::SHL_I32] = "__ashlsi3";
47  Names[RTLIB::SHL_I64] = "__ashldi3";
48  Names[RTLIB::SHL_I128] = "__ashlti3";
49  Names[RTLIB::SRL_I16] = "__lshrhi3";
50  Names[RTLIB::SRL_I32] = "__lshrsi3";
51  Names[RTLIB::SRL_I64] = "__lshrdi3";
52  Names[RTLIB::SRL_I128] = "__lshrti3";
53  Names[RTLIB::SRA_I16] = "__ashrhi3";
54  Names[RTLIB::SRA_I32] = "__ashrsi3";
55  Names[RTLIB::SRA_I64] = "__ashrdi3";
56  Names[RTLIB::SRA_I128] = "__ashrti3";
57  Names[RTLIB::MUL_I8] = "__mulqi3";
58  Names[RTLIB::MUL_I16] = "__mulhi3";
59  Names[RTLIB::MUL_I32] = "__mulsi3";
60  Names[RTLIB::MUL_I64] = "__muldi3";
61  Names[RTLIB::MUL_I128] = "__multi3";
62  Names[RTLIB::MULO_I32] = "__mulosi4";
63  Names[RTLIB::MULO_I64] = "__mulodi4";
64  Names[RTLIB::MULO_I128] = "__muloti4";
65  Names[RTLIB::SDIV_I8] = "__divqi3";
66  Names[RTLIB::SDIV_I16] = "__divhi3";
67  Names[RTLIB::SDIV_I32] = "__divsi3";
68  Names[RTLIB::SDIV_I64] = "__divdi3";
69  Names[RTLIB::SDIV_I128] = "__divti3";
70  Names[RTLIB::UDIV_I8] = "__udivqi3";
71  Names[RTLIB::UDIV_I16] = "__udivhi3";
72  Names[RTLIB::UDIV_I32] = "__udivsi3";
73  Names[RTLIB::UDIV_I64] = "__udivdi3";
74  Names[RTLIB::UDIV_I128] = "__udivti3";
75  Names[RTLIB::SREM_I8] = "__modqi3";
76  Names[RTLIB::SREM_I16] = "__modhi3";
77  Names[RTLIB::SREM_I32] = "__modsi3";
78  Names[RTLIB::SREM_I64] = "__moddi3";
79  Names[RTLIB::SREM_I128] = "__modti3";
80  Names[RTLIB::UREM_I8] = "__umodqi3";
81  Names[RTLIB::UREM_I16] = "__umodhi3";
82  Names[RTLIB::UREM_I32] = "__umodsi3";
83  Names[RTLIB::UREM_I64] = "__umoddi3";
84  Names[RTLIB::UREM_I128] = "__umodti3";
85
86  // These are generally not available.
87  Names[RTLIB::SDIVREM_I8] = 0;
88  Names[RTLIB::SDIVREM_I16] = 0;
89  Names[RTLIB::SDIVREM_I32] = 0;
90  Names[RTLIB::SDIVREM_I64] = 0;
91  Names[RTLIB::SDIVREM_I128] = 0;
92  Names[RTLIB::UDIVREM_I8] = 0;
93  Names[RTLIB::UDIVREM_I16] = 0;
94  Names[RTLIB::UDIVREM_I32] = 0;
95  Names[RTLIB::UDIVREM_I64] = 0;
96  Names[RTLIB::UDIVREM_I128] = 0;
97
98  Names[RTLIB::NEG_I32] = "__negsi2";
99  Names[RTLIB::NEG_I64] = "__negdi2";
100  Names[RTLIB::ADD_F32] = "__addsf3";
101  Names[RTLIB::ADD_F64] = "__adddf3";
102  Names[RTLIB::ADD_F80] = "__addxf3";
103  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
104  Names[RTLIB::SUB_F32] = "__subsf3";
105  Names[RTLIB::SUB_F64] = "__subdf3";
106  Names[RTLIB::SUB_F80] = "__subxf3";
107  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
108  Names[RTLIB::MUL_F32] = "__mulsf3";
109  Names[RTLIB::MUL_F64] = "__muldf3";
110  Names[RTLIB::MUL_F80] = "__mulxf3";
111  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
112  Names[RTLIB::DIV_F32] = "__divsf3";
113  Names[RTLIB::DIV_F64] = "__divdf3";
114  Names[RTLIB::DIV_F80] = "__divxf3";
115  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
116  Names[RTLIB::REM_F32] = "fmodf";
117  Names[RTLIB::REM_F64] = "fmod";
118  Names[RTLIB::REM_F80] = "fmodl";
119  Names[RTLIB::REM_PPCF128] = "fmodl";
120  Names[RTLIB::FMA_F32] = "fmaf";
121  Names[RTLIB::FMA_F64] = "fma";
122  Names[RTLIB::FMA_F80] = "fmal";
123  Names[RTLIB::FMA_PPCF128] = "fmal";
124  Names[RTLIB::POWI_F32] = "__powisf2";
125  Names[RTLIB::POWI_F64] = "__powidf2";
126  Names[RTLIB::POWI_F80] = "__powixf2";
127  Names[RTLIB::POWI_PPCF128] = "__powitf2";
128  Names[RTLIB::SQRT_F32] = "sqrtf";
129  Names[RTLIB::SQRT_F64] = "sqrt";
130  Names[RTLIB::SQRT_F80] = "sqrtl";
131  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
132  Names[RTLIB::LOG_F32] = "logf";
133  Names[RTLIB::LOG_F64] = "log";
134  Names[RTLIB::LOG_F80] = "logl";
135  Names[RTLIB::LOG_PPCF128] = "logl";
136  Names[RTLIB::LOG2_F32] = "log2f";
137  Names[RTLIB::LOG2_F64] = "log2";
138  Names[RTLIB::LOG2_F80] = "log2l";
139  Names[RTLIB::LOG2_PPCF128] = "log2l";
140  Names[RTLIB::LOG10_F32] = "log10f";
141  Names[RTLIB::LOG10_F64] = "log10";
142  Names[RTLIB::LOG10_F80] = "log10l";
143  Names[RTLIB::LOG10_PPCF128] = "log10l";
144  Names[RTLIB::EXP_F32] = "expf";
145  Names[RTLIB::EXP_F64] = "exp";
146  Names[RTLIB::EXP_F80] = "expl";
147  Names[RTLIB::EXP_PPCF128] = "expl";
148  Names[RTLIB::EXP2_F32] = "exp2f";
149  Names[RTLIB::EXP2_F64] = "exp2";
150  Names[RTLIB::EXP2_F80] = "exp2l";
151  Names[RTLIB::EXP2_PPCF128] = "exp2l";
152  Names[RTLIB::SIN_F32] = "sinf";
153  Names[RTLIB::SIN_F64] = "sin";
154  Names[RTLIB::SIN_F80] = "sinl";
155  Names[RTLIB::SIN_PPCF128] = "sinl";
156  Names[RTLIB::COS_F32] = "cosf";
157  Names[RTLIB::COS_F64] = "cos";
158  Names[RTLIB::COS_F80] = "cosl";
159  Names[RTLIB::COS_PPCF128] = "cosl";
160  Names[RTLIB::POW_F32] = "powf";
161  Names[RTLIB::POW_F64] = "pow";
162  Names[RTLIB::POW_F80] = "powl";
163  Names[RTLIB::POW_PPCF128] = "powl";
164  Names[RTLIB::CEIL_F32] = "ceilf";
165  Names[RTLIB::CEIL_F64] = "ceil";
166  Names[RTLIB::CEIL_F80] = "ceill";
167  Names[RTLIB::CEIL_PPCF128] = "ceill";
168  Names[RTLIB::TRUNC_F32] = "truncf";
169  Names[RTLIB::TRUNC_F64] = "trunc";
170  Names[RTLIB::TRUNC_F80] = "truncl";
171  Names[RTLIB::TRUNC_PPCF128] = "truncl";
172  Names[RTLIB::RINT_F32] = "rintf";
173  Names[RTLIB::RINT_F64] = "rint";
174  Names[RTLIB::RINT_F80] = "rintl";
175  Names[RTLIB::RINT_PPCF128] = "rintl";
176  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
177  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
178  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
179  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
180  Names[RTLIB::FLOOR_F32] = "floorf";
181  Names[RTLIB::FLOOR_F64] = "floor";
182  Names[RTLIB::FLOOR_F80] = "floorl";
183  Names[RTLIB::FLOOR_PPCF128] = "floorl";
184  Names[RTLIB::COPYSIGN_F32] = "copysignf";
185  Names[RTLIB::COPYSIGN_F64] = "copysign";
186  Names[RTLIB::COPYSIGN_F80] = "copysignl";
187  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
188  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
189  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
190  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
191  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
192  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
193  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
194  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
195  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
196  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
197  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
198  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
199  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
200  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
201  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
202  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
203  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
204  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
205  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
206  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
207  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
208  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
209  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
210  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
211  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
212  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
213  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
214  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
215  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
216  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
217  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
218  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
219  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
220  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
221  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
222  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
223  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
224  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
225  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
226  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
227  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
228  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
229  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
230  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
231  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
232  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
233  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
234  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
235  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
236  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
237  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
238  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
239  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
240  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
241  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
242  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
243  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
244  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
245  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
246  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
247  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
248  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
249  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
250  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
251  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
252  Names[RTLIB::OEQ_F32] = "__eqsf2";
253  Names[RTLIB::OEQ_F64] = "__eqdf2";
254  Names[RTLIB::UNE_F32] = "__nesf2";
255  Names[RTLIB::UNE_F64] = "__nedf2";
256  Names[RTLIB::OGE_F32] = "__gesf2";
257  Names[RTLIB::OGE_F64] = "__gedf2";
258  Names[RTLIB::OLT_F32] = "__ltsf2";
259  Names[RTLIB::OLT_F64] = "__ltdf2";
260  Names[RTLIB::OLE_F32] = "__lesf2";
261  Names[RTLIB::OLE_F64] = "__ledf2";
262  Names[RTLIB::OGT_F32] = "__gtsf2";
263  Names[RTLIB::OGT_F64] = "__gtdf2";
264  Names[RTLIB::UO_F32] = "__unordsf2";
265  Names[RTLIB::UO_F64] = "__unorddf2";
266  Names[RTLIB::O_F32] = "__unordsf2";
267  Names[RTLIB::O_F64] = "__unorddf2";
268  Names[RTLIB::MEMCPY] = "memcpy";
269  Names[RTLIB::MEMMOVE] = "memmove";
270  Names[RTLIB::MEMSET] = "memset";
271  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
272  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
273  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
274  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
275  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
276  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
277  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
278  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
279  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
280  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
281  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
282  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
283  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
284  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
285  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
286  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
287  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
288  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
289  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
290  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
291  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
292  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
293  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
294  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
295  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
296  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
297  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
298  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
299  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
300  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
301  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
302  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
303  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
304}
305
306/// InitLibcallCallingConvs - Set default libcall CallingConvs.
307///
308static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
309  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
310    CCs[i] = CallingConv::C;
311  }
312}
313
314/// getFPEXT - Return the FPEXT_*_* value for the given types, or
315/// UNKNOWN_LIBCALL if there is none.
316RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
317  if (OpVT == MVT::f32) {
318    if (RetVT == MVT::f64)
319      return FPEXT_F32_F64;
320  }
321
322  return UNKNOWN_LIBCALL;
323}
324
325/// getFPROUND - Return the FPROUND_*_* value for the given types, or
326/// UNKNOWN_LIBCALL if there is none.
327RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
328  if (RetVT == MVT::f32) {
329    if (OpVT == MVT::f64)
330      return FPROUND_F64_F32;
331    if (OpVT == MVT::f80)
332      return FPROUND_F80_F32;
333    if (OpVT == MVT::ppcf128)
334      return FPROUND_PPCF128_F32;
335  } else if (RetVT == MVT::f64) {
336    if (OpVT == MVT::f80)
337      return FPROUND_F80_F64;
338    if (OpVT == MVT::ppcf128)
339      return FPROUND_PPCF128_F64;
340  }
341
342  return UNKNOWN_LIBCALL;
343}
344
345/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
346/// UNKNOWN_LIBCALL if there is none.
347RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
348  if (OpVT == MVT::f32) {
349    if (RetVT == MVT::i8)
350      return FPTOSINT_F32_I8;
351    if (RetVT == MVT::i16)
352      return FPTOSINT_F32_I16;
353    if (RetVT == MVT::i32)
354      return FPTOSINT_F32_I32;
355    if (RetVT == MVT::i64)
356      return FPTOSINT_F32_I64;
357    if (RetVT == MVT::i128)
358      return FPTOSINT_F32_I128;
359  } else if (OpVT == MVT::f64) {
360    if (RetVT == MVT::i8)
361      return FPTOSINT_F64_I8;
362    if (RetVT == MVT::i16)
363      return FPTOSINT_F64_I16;
364    if (RetVT == MVT::i32)
365      return FPTOSINT_F64_I32;
366    if (RetVT == MVT::i64)
367      return FPTOSINT_F64_I64;
368    if (RetVT == MVT::i128)
369      return FPTOSINT_F64_I128;
370  } else if (OpVT == MVT::f80) {
371    if (RetVT == MVT::i32)
372      return FPTOSINT_F80_I32;
373    if (RetVT == MVT::i64)
374      return FPTOSINT_F80_I64;
375    if (RetVT == MVT::i128)
376      return FPTOSINT_F80_I128;
377  } else if (OpVT == MVT::ppcf128) {
378    if (RetVT == MVT::i32)
379      return FPTOSINT_PPCF128_I32;
380    if (RetVT == MVT::i64)
381      return FPTOSINT_PPCF128_I64;
382    if (RetVT == MVT::i128)
383      return FPTOSINT_PPCF128_I128;
384  }
385  return UNKNOWN_LIBCALL;
386}
387
388/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
389/// UNKNOWN_LIBCALL if there is none.
390RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
391  if (OpVT == MVT::f32) {
392    if (RetVT == MVT::i8)
393      return FPTOUINT_F32_I8;
394    if (RetVT == MVT::i16)
395      return FPTOUINT_F32_I16;
396    if (RetVT == MVT::i32)
397      return FPTOUINT_F32_I32;
398    if (RetVT == MVT::i64)
399      return FPTOUINT_F32_I64;
400    if (RetVT == MVT::i128)
401      return FPTOUINT_F32_I128;
402  } else if (OpVT == MVT::f64) {
403    if (RetVT == MVT::i8)
404      return FPTOUINT_F64_I8;
405    if (RetVT == MVT::i16)
406      return FPTOUINT_F64_I16;
407    if (RetVT == MVT::i32)
408      return FPTOUINT_F64_I32;
409    if (RetVT == MVT::i64)
410      return FPTOUINT_F64_I64;
411    if (RetVT == MVT::i128)
412      return FPTOUINT_F64_I128;
413  } else if (OpVT == MVT::f80) {
414    if (RetVT == MVT::i32)
415      return FPTOUINT_F80_I32;
416    if (RetVT == MVT::i64)
417      return FPTOUINT_F80_I64;
418    if (RetVT == MVT::i128)
419      return FPTOUINT_F80_I128;
420  } else if (OpVT == MVT::ppcf128) {
421    if (RetVT == MVT::i32)
422      return FPTOUINT_PPCF128_I32;
423    if (RetVT == MVT::i64)
424      return FPTOUINT_PPCF128_I64;
425    if (RetVT == MVT::i128)
426      return FPTOUINT_PPCF128_I128;
427  }
428  return UNKNOWN_LIBCALL;
429}
430
431/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
432/// UNKNOWN_LIBCALL if there is none.
433RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
434  if (OpVT == MVT::i32) {
435    if (RetVT == MVT::f32)
436      return SINTTOFP_I32_F32;
437    else if (RetVT == MVT::f64)
438      return SINTTOFP_I32_F64;
439    else if (RetVT == MVT::f80)
440      return SINTTOFP_I32_F80;
441    else if (RetVT == MVT::ppcf128)
442      return SINTTOFP_I32_PPCF128;
443  } else if (OpVT == MVT::i64) {
444    if (RetVT == MVT::f32)
445      return SINTTOFP_I64_F32;
446    else if (RetVT == MVT::f64)
447      return SINTTOFP_I64_F64;
448    else if (RetVT == MVT::f80)
449      return SINTTOFP_I64_F80;
450    else if (RetVT == MVT::ppcf128)
451      return SINTTOFP_I64_PPCF128;
452  } else if (OpVT == MVT::i128) {
453    if (RetVT == MVT::f32)
454      return SINTTOFP_I128_F32;
455    else if (RetVT == MVT::f64)
456      return SINTTOFP_I128_F64;
457    else if (RetVT == MVT::f80)
458      return SINTTOFP_I128_F80;
459    else if (RetVT == MVT::ppcf128)
460      return SINTTOFP_I128_PPCF128;
461  }
462  return UNKNOWN_LIBCALL;
463}
464
465/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
466/// UNKNOWN_LIBCALL if there is none.
467RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
468  if (OpVT == MVT::i32) {
469    if (RetVT == MVT::f32)
470      return UINTTOFP_I32_F32;
471    else if (RetVT == MVT::f64)
472      return UINTTOFP_I32_F64;
473    else if (RetVT == MVT::f80)
474      return UINTTOFP_I32_F80;
475    else if (RetVT == MVT::ppcf128)
476      return UINTTOFP_I32_PPCF128;
477  } else if (OpVT == MVT::i64) {
478    if (RetVT == MVT::f32)
479      return UINTTOFP_I64_F32;
480    else if (RetVT == MVT::f64)
481      return UINTTOFP_I64_F64;
482    else if (RetVT == MVT::f80)
483      return UINTTOFP_I64_F80;
484    else if (RetVT == MVT::ppcf128)
485      return UINTTOFP_I64_PPCF128;
486  } else if (OpVT == MVT::i128) {
487    if (RetVT == MVT::f32)
488      return UINTTOFP_I128_F32;
489    else if (RetVT == MVT::f64)
490      return UINTTOFP_I128_F64;
491    else if (RetVT == MVT::f80)
492      return UINTTOFP_I128_F80;
493    else if (RetVT == MVT::ppcf128)
494      return UINTTOFP_I128_PPCF128;
495  }
496  return UNKNOWN_LIBCALL;
497}
498
499/// InitCmpLibcallCCs - Set default comparison libcall CC.
500///
501static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
502  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
503  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
504  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
505  CCs[RTLIB::UNE_F32] = ISD::SETNE;
506  CCs[RTLIB::UNE_F64] = ISD::SETNE;
507  CCs[RTLIB::OGE_F32] = ISD::SETGE;
508  CCs[RTLIB::OGE_F64] = ISD::SETGE;
509  CCs[RTLIB::OLT_F32] = ISD::SETLT;
510  CCs[RTLIB::OLT_F64] = ISD::SETLT;
511  CCs[RTLIB::OLE_F32] = ISD::SETLE;
512  CCs[RTLIB::OLE_F64] = ISD::SETLE;
513  CCs[RTLIB::OGT_F32] = ISD::SETGT;
514  CCs[RTLIB::OGT_F64] = ISD::SETGT;
515  CCs[RTLIB::UO_F32] = ISD::SETNE;
516  CCs[RTLIB::UO_F64] = ISD::SETNE;
517  CCs[RTLIB::O_F32] = ISD::SETEQ;
518  CCs[RTLIB::O_F64] = ISD::SETEQ;
519}
520
521/// NOTE: The constructor takes ownership of TLOF.
522TargetLowering::TargetLowering(const TargetMachine &tm,
523                               const TargetLoweringObjectFile *tlof)
524  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
525  mayPromoteElements(AllowPromoteIntElem) {
526  // All operations default to being supported.
527  memset(OpActions, 0, sizeof(OpActions));
528  memset(LoadExtActions, 0, sizeof(LoadExtActions));
529  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
530  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
531  memset(CondCodeActions, 0, sizeof(CondCodeActions));
532
533  // Set default actions for various operations.
534  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
535    // Default all indexed load / store to expand.
536    for (unsigned IM = (unsigned)ISD::PRE_INC;
537         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
538      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
539      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
540    }
541
542    // These operations default to expand.
543    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
545  }
546
547  // Most targets ignore the @llvm.prefetch intrinsic.
548  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
549
550  // ConstantFP nodes default to expand.  Targets can either change this to
551  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
552  // to optimize expansions for certain constants.
553  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
554  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
555  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
556  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
557
558  // These library functions default to expand.
559  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
560  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
561  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
562  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
563  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
564  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
565  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
566  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
567  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
568  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
569  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
570  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
571  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
572  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
573  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
574  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
575  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
576  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
577  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
578  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
579  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
580  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
581  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
582  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
583  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
584  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
585  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
586  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
587  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
588  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
589
590  // Default ISD::TRAP to expand (which turns it into abort).
591  setOperationAction(ISD::TRAP, MVT::Other, Expand);
592
593  IsLittleEndian = TD->isLittleEndian();
594  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
595  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
596  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
597  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
598  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
599    = maxStoresPerMemmoveOptSize = 4;
600  benefitFromCodePlacementOpt = false;
601  UseUnderscoreSetJmp = false;
602  UseUnderscoreLongJmp = false;
603  SelectIsExpensive = false;
604  IntDivIsCheap = false;
605  Pow2DivIsCheap = false;
606  JumpIsExpensive = false;
607  StackPointerRegisterToSaveRestore = 0;
608  ExceptionPointerRegister = 0;
609  ExceptionSelectorRegister = 0;
610  BooleanContents = UndefinedBooleanContent;
611  BooleanVectorContents = UndefinedBooleanContent;
612  SchedPreferenceInfo = Sched::ILP;
613  JumpBufSize = 0;
614  JumpBufAlignment = 0;
615  MinFunctionAlignment = 0;
616  PrefFunctionAlignment = 0;
617  PrefLoopAlignment = 0;
618  MinStackArgumentAlignment = 1;
619  ShouldFoldAtomicFences = false;
620  InsertFencesForAtomic = false;
621
622  InitLibcallNames(LibcallRoutineNames);
623  InitCmpLibcallCCs(CmpLibcallCCs);
624  InitLibcallCallingConvs(LibcallCallingConvs);
625}
626
627TargetLowering::~TargetLowering() {
628  delete &TLOF;
629}
630
631MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
632  return MVT::getIntegerVT(8*TD->getPointerSize());
633}
634
635/// canOpTrap - Returns true if the operation can trap for the value type.
636/// VT must be a legal type.
637bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
638  assert(isTypeLegal(VT));
639  switch (Op) {
640  default:
641    return false;
642  case ISD::FDIV:
643  case ISD::FREM:
644  case ISD::SDIV:
645  case ISD::UDIV:
646  case ISD::SREM:
647  case ISD::UREM:
648    return true;
649  }
650}
651
652
653static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
654                                          unsigned &NumIntermediates,
655                                          EVT &RegisterVT,
656                                          TargetLowering *TLI) {
657  // Figure out the right, legal destination reg to copy into.
658  unsigned NumElts = VT.getVectorNumElements();
659  MVT EltTy = VT.getVectorElementType();
660
661  unsigned NumVectorRegs = 1;
662
663  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
664  // could break down into LHS/RHS like LegalizeDAG does.
665  if (!isPowerOf2_32(NumElts)) {
666    NumVectorRegs = NumElts;
667    NumElts = 1;
668  }
669
670  // Divide the input until we get to a supported size.  This will always
671  // end with a scalar if the target doesn't support vectors.
672  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
673    NumElts >>= 1;
674    NumVectorRegs <<= 1;
675  }
676
677  NumIntermediates = NumVectorRegs;
678
679  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
680  if (!TLI->isTypeLegal(NewVT))
681    NewVT = EltTy;
682  IntermediateVT = NewVT;
683
684  unsigned NewVTSize = NewVT.getSizeInBits();
685
686  // Convert sizes such as i33 to i64.
687  if (!isPowerOf2_32(NewVTSize))
688    NewVTSize = NextPowerOf2(NewVTSize);
689
690  EVT DestVT = TLI->getRegisterType(NewVT);
691  RegisterVT = DestVT;
692  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
693    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
694
695  // Otherwise, promotion or legal types use the same number of registers as
696  // the vector decimated to the appropriate level.
697  return NumVectorRegs;
698}
699
700/// isLegalRC - Return true if the value types that can be represented by the
701/// specified register class are all legal.
702bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
703  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
704       I != E; ++I) {
705    if (isTypeLegal(*I))
706      return true;
707  }
708  return false;
709}
710
711/// hasLegalSuperRegRegClasses - Return true if the specified register class
712/// has one or more super-reg register classes that are legal.
713bool
714TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
715  if (*RC->superregclasses_begin() == 0)
716    return false;
717  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
718         E = RC->superregclasses_end(); I != E; ++I) {
719    const TargetRegisterClass *RRC = *I;
720    if (isLegalRC(RRC))
721      return true;
722  }
723  return false;
724}
725
726/// findRepresentativeClass - Return the largest legal super-reg register class
727/// of the register class for the specified type and its associated "cost".
728std::pair<const TargetRegisterClass*, uint8_t>
729TargetLowering::findRepresentativeClass(EVT VT) const {
730  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
731  if (!RC)
732    return std::make_pair(RC, 0);
733  const TargetRegisterClass *BestRC = RC;
734  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
735         E = RC->superregclasses_end(); I != E; ++I) {
736    const TargetRegisterClass *RRC = *I;
737    if (RRC->isASubClass() || !isLegalRC(RRC))
738      continue;
739    if (!hasLegalSuperRegRegClasses(RRC))
740      return std::make_pair(RRC, 1);
741    BestRC = RRC;
742  }
743  return std::make_pair(BestRC, 1);
744}
745
746
747/// computeRegisterProperties - Once all of the register classes are added,
748/// this allows us to compute derived properties we expose.
749void TargetLowering::computeRegisterProperties() {
750  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
751         "Too many value types for ValueTypeActions to hold!");
752
753  // Everything defaults to needing one register.
754  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
755    NumRegistersForVT[i] = 1;
756    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
757  }
758  // ...except isVoid, which doesn't need any registers.
759  NumRegistersForVT[MVT::isVoid] = 0;
760
761  // Find the largest integer register class.
762  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
763  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
764    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
765
766  // Every integer value type larger than this largest register takes twice as
767  // many registers to represent as the previous ValueType.
768  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
769    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
770    if (!ExpandedVT.isInteger())
771      break;
772    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
773    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
774    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
775    ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
776  }
777
778  // Inspect all of the ValueType's smaller than the largest integer
779  // register to see which ones need promotion.
780  unsigned LegalIntReg = LargestIntReg;
781  for (unsigned IntReg = LargestIntReg - 1;
782       IntReg >= (unsigned)MVT::i1; --IntReg) {
783    EVT IVT = (MVT::SimpleValueType)IntReg;
784    if (isTypeLegal(IVT)) {
785      LegalIntReg = IntReg;
786    } else {
787      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
788        (MVT::SimpleValueType)LegalIntReg;
789      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
790    }
791  }
792
793  // ppcf128 type is really two f64's.
794  if (!isTypeLegal(MVT::ppcf128)) {
795    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
796    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
797    TransformToType[MVT::ppcf128] = MVT::f64;
798    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
799  }
800
801  // Decide how to handle f64. If the target does not have native f64 support,
802  // expand it to i64 and we will be generating soft float library calls.
803  if (!isTypeLegal(MVT::f64)) {
804    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
805    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
806    TransformToType[MVT::f64] = MVT::i64;
807    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
808  }
809
810  // Decide how to handle f32. If the target does not have native support for
811  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
812  if (!isTypeLegal(MVT::f32)) {
813    if (isTypeLegal(MVT::f64)) {
814      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
815      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
816      TransformToType[MVT::f32] = MVT::f64;
817      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
818    } else {
819      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
820      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
821      TransformToType[MVT::f32] = MVT::i32;
822      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
823    }
824  }
825
826  // Loop over all of the vector value types to see which need transformations.
827  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
828       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
829    MVT VT = (MVT::SimpleValueType)i;
830    if (isTypeLegal(VT)) continue;
831
832    // Determine if there is a legal wider type.  If so, we should promote to
833    // that wider vector type.
834    EVT EltVT = VT.getVectorElementType();
835    unsigned NElts = VT.getVectorNumElements();
836    if (NElts != 1) {
837      bool IsLegalWiderType = false;
838      // If we allow the promotion of vector elements using a flag,
839      // then return TypePromoteInteger on vector elements.
840      // First try to promote the elements of integer vectors. If no legal
841      // promotion was found, fallback to the widen-vector method.
842      if (mayPromoteElements)
843      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
844        EVT SVT = (MVT::SimpleValueType)nVT;
845        // Promote vectors of integers to vectors with the same number
846        // of elements, with a wider element type.
847        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
848            && SVT.getVectorNumElements() == NElts &&
849            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
850          TransformToType[i] = SVT;
851          RegisterTypeForVT[i] = SVT;
852          NumRegistersForVT[i] = 1;
853          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
854          IsLegalWiderType = true;
855          break;
856        }
857      }
858
859      if (IsLegalWiderType) continue;
860
861      // Try to widen the vector.
862      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
863        EVT SVT = (MVT::SimpleValueType)nVT;
864        if (SVT.getVectorElementType() == EltVT &&
865            SVT.getVectorNumElements() > NElts &&
866            isTypeLegal(SVT)) {
867          TransformToType[i] = SVT;
868          RegisterTypeForVT[i] = SVT;
869          NumRegistersForVT[i] = 1;
870          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
871          IsLegalWiderType = true;
872          break;
873        }
874      }
875      if (IsLegalWiderType) continue;
876    }
877
878    MVT IntermediateVT;
879    EVT RegisterVT;
880    unsigned NumIntermediates;
881    NumRegistersForVT[i] =
882      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
883                                RegisterVT, this);
884    RegisterTypeForVT[i] = RegisterVT;
885
886    EVT NVT = VT.getPow2VectorType();
887    if (NVT == VT) {
888      // Type is already a power of 2.  The default action is to split.
889      TransformToType[i] = MVT::Other;
890      unsigned NumElts = VT.getVectorNumElements();
891      ValueTypeActions.setTypeAction(VT,
892            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
893    } else {
894      TransformToType[i] = NVT;
895      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
896    }
897  }
898
899  // Determine the 'representative' register class for each value type.
900  // An representative register class is the largest (meaning one which is
901  // not a sub-register class / subreg register class) legal register class for
902  // a group of value types. For example, on i386, i8, i16, and i32
903  // representative would be GR32; while on x86_64 it's GR64.
904  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
905    const TargetRegisterClass* RRC;
906    uint8_t Cost;
907    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
908    RepRegClassForVT[i] = RRC;
909    RepRegClassCostForVT[i] = Cost;
910  }
911}
912
913const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
914  return NULL;
915}
916
917
918EVT TargetLowering::getSetCCResultType(EVT VT) const {
919  assert(!VT.isVector() && "No default SetCC type for vectors!");
920  return PointerTy.SimpleTy;
921}
922
923MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
924  return MVT::i32; // return the default value
925}
926
927/// getVectorTypeBreakdown - Vector types are broken down into some number of
928/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
929/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
930/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
931///
932/// This method returns the number of registers needed, and the VT for each
933/// register.  It also returns the VT and quantity of the intermediate values
934/// before they are promoted/expanded.
935///
936unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
937                                                EVT &IntermediateVT,
938                                                unsigned &NumIntermediates,
939                                                EVT &RegisterVT) const {
940  unsigned NumElts = VT.getVectorNumElements();
941
942  // If there is a wider vector type with the same element type as this one,
943  // we should widen to that legal vector type.  This handles things like
944  // <2 x float> -> <4 x float>.
945  if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
946    RegisterVT = getTypeToTransformTo(Context, VT);
947    if (isTypeLegal(RegisterVT)) {
948      IntermediateVT = RegisterVT;
949      NumIntermediates = 1;
950      return 1;
951    }
952  }
953
954  // Figure out the right, legal destination reg to copy into.
955  EVT EltTy = VT.getVectorElementType();
956
957  unsigned NumVectorRegs = 1;
958
959  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
960  // could break down into LHS/RHS like LegalizeDAG does.
961  if (!isPowerOf2_32(NumElts)) {
962    NumVectorRegs = NumElts;
963    NumElts = 1;
964  }
965
966  // Divide the input until we get to a supported size.  This will always
967  // end with a scalar if the target doesn't support vectors.
968  while (NumElts > 1 && !isTypeLegal(
969                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
970    NumElts >>= 1;
971    NumVectorRegs <<= 1;
972  }
973
974  NumIntermediates = NumVectorRegs;
975
976  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
977  if (!isTypeLegal(NewVT))
978    NewVT = EltTy;
979  IntermediateVT = NewVT;
980
981  EVT DestVT = getRegisterType(Context, NewVT);
982  RegisterVT = DestVT;
983  unsigned NewVTSize = NewVT.getSizeInBits();
984
985  // Convert sizes such as i33 to i64.
986  if (!isPowerOf2_32(NewVTSize))
987    NewVTSize = NextPowerOf2(NewVTSize);
988
989  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
990    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
991
992  // Otherwise, promotion or legal types use the same number of registers as
993  // the vector decimated to the appropriate level.
994  return NumVectorRegs;
995}
996
997/// Get the EVTs and ArgFlags collections that represent the legalized return
998/// type of the given function.  This does not require a DAG or a return value,
999/// and is suitable for use before any DAGs for the function are constructed.
1000/// TODO: Move this out of TargetLowering.cpp.
1001void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
1002                         SmallVectorImpl<ISD::OutputArg> &Outs,
1003                         const TargetLowering &TLI,
1004                         SmallVectorImpl<uint64_t> *Offsets) {
1005  SmallVector<EVT, 4> ValueVTs;
1006  ComputeValueVTs(TLI, ReturnType, ValueVTs);
1007  unsigned NumValues = ValueVTs.size();
1008  if (NumValues == 0) return;
1009  unsigned Offset = 0;
1010
1011  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1012    EVT VT = ValueVTs[j];
1013    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1014
1015    if (attr & Attribute::SExt)
1016      ExtendKind = ISD::SIGN_EXTEND;
1017    else if (attr & Attribute::ZExt)
1018      ExtendKind = ISD::ZERO_EXTEND;
1019
1020    // FIXME: C calling convention requires the return type to be promoted to
1021    // at least 32-bit. But this is not necessary for non-C calling
1022    // conventions. The frontend should mark functions whose return values
1023    // require promoting with signext or zeroext attributes.
1024    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1025      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1026      if (VT.bitsLT(MinVT))
1027        VT = MinVT;
1028    }
1029
1030    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1031    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1032    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1033                        PartVT.getTypeForEVT(ReturnType->getContext()));
1034
1035    // 'inreg' on function refers to return value
1036    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1037    if (attr & Attribute::InReg)
1038      Flags.setInReg();
1039
1040    // Propagate extension type if any
1041    if (attr & Attribute::SExt)
1042      Flags.setSExt();
1043    else if (attr & Attribute::ZExt)
1044      Flags.setZExt();
1045
1046    for (unsigned i = 0; i < NumParts; ++i) {
1047      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1048      if (Offsets) {
1049        Offsets->push_back(Offset);
1050        Offset += PartSize;
1051      }
1052    }
1053  }
1054}
1055
1056/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1057/// function arguments in the caller parameter area.  This is the actual
1058/// alignment, not its logarithm.
1059unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
1060  return TD->getCallFrameTypeAlignment(Ty);
1061}
1062
1063/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1064/// current function.  The returned value is a member of the
1065/// MachineJumpTableInfo::JTEntryKind enum.
1066unsigned TargetLowering::getJumpTableEncoding() const {
1067  // In non-pic modes, just use the address of a block.
1068  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1069    return MachineJumpTableInfo::EK_BlockAddress;
1070
1071  // In PIC mode, if the target supports a GPRel32 directive, use it.
1072  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1073    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1074
1075  // Otherwise, use a label difference.
1076  return MachineJumpTableInfo::EK_LabelDifference32;
1077}
1078
1079SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1080                                                 SelectionDAG &DAG) const {
1081  // If our PIC model is GP relative, use the global offset table as the base.
1082  unsigned JTEncoding = getJumpTableEncoding();
1083
1084  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
1085      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
1086    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1087
1088  return Table;
1089}
1090
1091/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1092/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1093/// MCExpr.
1094const MCExpr *
1095TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1096                                             unsigned JTI,MCContext &Ctx) const{
1097  // The normal PIC reloc base is the label at the start of the jump table.
1098  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1099}
1100
1101bool
1102TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1103  // Assume that everything is safe in static mode.
1104  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1105    return true;
1106
1107  // In dynamic-no-pic mode, assume that known defined values are safe.
1108  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1109      GA &&
1110      !GA->getGlobal()->isDeclaration() &&
1111      !GA->getGlobal()->isWeakForLinker())
1112    return true;
1113
1114  // Otherwise assume nothing is safe.
1115  return false;
1116}
1117
1118//===----------------------------------------------------------------------===//
1119//  Optimization Methods
1120//===----------------------------------------------------------------------===//
1121
1122/// ShrinkDemandedConstant - Check to see if the specified operand of the
1123/// specified instruction is a constant integer.  If so, check to see if there
1124/// are any bits set in the constant that are not demanded.  If so, shrink the
1125/// constant and return true.
1126bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1127                                                        const APInt &Demanded) {
1128  DebugLoc dl = Op.getDebugLoc();
1129
1130  // FIXME: ISD::SELECT, ISD::SELECT_CC
1131  switch (Op.getOpcode()) {
1132  default: break;
1133  case ISD::XOR:
1134  case ISD::AND:
1135  case ISD::OR: {
1136    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1137    if (!C) return false;
1138
1139    if (Op.getOpcode() == ISD::XOR &&
1140        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1141      return false;
1142
1143    // if we can expand it to have all bits set, do it
1144    if (C->getAPIntValue().intersects(~Demanded)) {
1145      EVT VT = Op.getValueType();
1146      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1147                                DAG.getConstant(Demanded &
1148                                                C->getAPIntValue(),
1149                                                VT));
1150      return CombineTo(Op, New);
1151    }
1152
1153    break;
1154  }
1155  }
1156
1157  return false;
1158}
1159
1160/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1161/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1162/// cast, but it could be generalized for targets with other types of
1163/// implicit widening casts.
1164bool
1165TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1166                                                    unsigned BitWidth,
1167                                                    const APInt &Demanded,
1168                                                    DebugLoc dl) {
1169  assert(Op.getNumOperands() == 2 &&
1170         "ShrinkDemandedOp only supports binary operators!");
1171  assert(Op.getNode()->getNumValues() == 1 &&
1172         "ShrinkDemandedOp only supports nodes with one result!");
1173
1174  // Don't do this if the node has another user, which may require the
1175  // full value.
1176  if (!Op.getNode()->hasOneUse())
1177    return false;
1178
1179  // Search for the smallest integer type with free casts to and from
1180  // Op's type. For expedience, just check power-of-2 integer types.
1181  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1182  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1183  if (!isPowerOf2_32(SmallVTBits))
1184    SmallVTBits = NextPowerOf2(SmallVTBits);
1185  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1186    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1187    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1188        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1189      // We found a type with free casts.
1190      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1191                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1192                                          Op.getNode()->getOperand(0)),
1193                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1194                                          Op.getNode()->getOperand(1)));
1195      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1196      return CombineTo(Op, Z);
1197    }
1198  }
1199  return false;
1200}
1201
1202/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1203/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1204/// use this information to simplify Op, create a new simplified DAG node and
1205/// return true, returning the original and new nodes in Old and New. Otherwise,
1206/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1207/// the expression (used to simplify the caller).  The KnownZero/One bits may
1208/// only be accurate for those bits in the DemandedMask.
1209bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1210                                          const APInt &DemandedMask,
1211                                          APInt &KnownZero,
1212                                          APInt &KnownOne,
1213                                          TargetLoweringOpt &TLO,
1214                                          unsigned Depth) const {
1215  unsigned BitWidth = DemandedMask.getBitWidth();
1216  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1217         "Mask size mismatches value type size!");
1218  APInt NewMask = DemandedMask;
1219  DebugLoc dl = Op.getDebugLoc();
1220
1221  // Don't know anything.
1222  KnownZero = KnownOne = APInt(BitWidth, 0);
1223
1224  // Other users may use these bits.
1225  if (!Op.getNode()->hasOneUse()) {
1226    if (Depth != 0) {
1227      // If not at the root, Just compute the KnownZero/KnownOne bits to
1228      // simplify things downstream.
1229      TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1230      return false;
1231    }
1232    // If this is the root being simplified, allow it to have multiple uses,
1233    // just set the NewMask to all bits.
1234    NewMask = APInt::getAllOnesValue(BitWidth);
1235  } else if (DemandedMask == 0) {
1236    // Not demanding any bits from Op.
1237    if (Op.getOpcode() != ISD::UNDEF)
1238      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1239    return false;
1240  } else if (Depth == 6) {        // Limit search depth.
1241    return false;
1242  }
1243
1244  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1245  switch (Op.getOpcode()) {
1246  case ISD::Constant:
1247    // We know all of the bits for a constant!
1248    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1249    KnownZero = ~KnownOne;
1250    return false;   // Don't fall through, will infinitely loop.
1251  case ISD::AND:
1252    // If the RHS is a constant, check to see if the LHS would be zero without
1253    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1254    // simplify the LHS, here we're using information from the LHS to simplify
1255    // the RHS.
1256    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1257      APInt LHSZero, LHSOne;
1258      // Do not increment Depth here; that can cause an infinite loop.
1259      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
1260      // If the LHS already has zeros where RHSC does, this and is dead.
1261      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1262        return TLO.CombineTo(Op, Op.getOperand(0));
1263      // If any of the set bits in the RHS are known zero on the LHS, shrink
1264      // the constant.
1265      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1266        return true;
1267    }
1268
1269    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1270                             KnownOne, TLO, Depth+1))
1271      return true;
1272    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1273    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1274                             KnownZero2, KnownOne2, TLO, Depth+1))
1275      return true;
1276    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1277
1278    // If all of the demanded bits are known one on one side, return the other.
1279    // These bits cannot contribute to the result of the 'and'.
1280    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1281      return TLO.CombineTo(Op, Op.getOperand(0));
1282    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1283      return TLO.CombineTo(Op, Op.getOperand(1));
1284    // If all of the demanded bits in the inputs are known zeros, return zero.
1285    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1286      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1287    // If the RHS is a constant, see if we can simplify it.
1288    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1289      return true;
1290    // If the operation can be done in a smaller type, do so.
1291    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1292      return true;
1293
1294    // Output known-1 bits are only known if set in both the LHS & RHS.
1295    KnownOne &= KnownOne2;
1296    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1297    KnownZero |= KnownZero2;
1298    break;
1299  case ISD::OR:
1300    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1301                             KnownOne, TLO, Depth+1))
1302      return true;
1303    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1304    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1305                             KnownZero2, KnownOne2, TLO, Depth+1))
1306      return true;
1307    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1308
1309    // If all of the demanded bits are known zero on one side, return the other.
1310    // These bits cannot contribute to the result of the 'or'.
1311    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1312      return TLO.CombineTo(Op, Op.getOperand(0));
1313    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1314      return TLO.CombineTo(Op, Op.getOperand(1));
1315    // If all of the potentially set bits on one side are known to be set on
1316    // the other side, just use the 'other' side.
1317    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1318      return TLO.CombineTo(Op, Op.getOperand(0));
1319    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1320      return TLO.CombineTo(Op, Op.getOperand(1));
1321    // If the RHS is a constant, see if we can simplify it.
1322    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1323      return true;
1324    // If the operation can be done in a smaller type, do so.
1325    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1326      return true;
1327
1328    // Output known-0 bits are only known if clear in both the LHS & RHS.
1329    KnownZero &= KnownZero2;
1330    // Output known-1 are known to be set if set in either the LHS | RHS.
1331    KnownOne |= KnownOne2;
1332    break;
1333  case ISD::XOR:
1334    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1335                             KnownOne, TLO, Depth+1))
1336      return true;
1337    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1338    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1339                             KnownOne2, TLO, Depth+1))
1340      return true;
1341    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1342
1343    // If all of the demanded bits are known zero on one side, return the other.
1344    // These bits cannot contribute to the result of the 'xor'.
1345    if ((KnownZero & NewMask) == NewMask)
1346      return TLO.CombineTo(Op, Op.getOperand(0));
1347    if ((KnownZero2 & NewMask) == NewMask)
1348      return TLO.CombineTo(Op, Op.getOperand(1));
1349    // If the operation can be done in a smaller type, do so.
1350    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1351      return true;
1352
1353    // If all of the unknown bits are known to be zero on one side or the other
1354    // (but not both) turn this into an *inclusive* or.
1355    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1356    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1357      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1358                                               Op.getOperand(0),
1359                                               Op.getOperand(1)));
1360
1361    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1362    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1363    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1364    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1365
1366    // If all of the demanded bits on one side are known, and all of the set
1367    // bits on that side are also known to be set on the other side, turn this
1368    // into an AND, as we know the bits will be cleared.
1369    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1370    // NB: it is okay if more bits are known than are requested
1371    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
1372      if (KnownOne == KnownOne2) { // set bits are the same on both sides
1373        EVT VT = Op.getValueType();
1374        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1375        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1376                                                 Op.getOperand(0), ANDC));
1377      }
1378    }
1379
1380    // If the RHS is a constant, see if we can simplify it.
1381    // for XOR, we prefer to force bits to 1 if they will make a -1.
1382    // if we can't force bits, try to shrink constant
1383    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1384      APInt Expanded = C->getAPIntValue() | (~NewMask);
1385      // if we can expand it to have all bits set, do it
1386      if (Expanded.isAllOnesValue()) {
1387        if (Expanded != C->getAPIntValue()) {
1388          EVT VT = Op.getValueType();
1389          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1390                                          TLO.DAG.getConstant(Expanded, VT));
1391          return TLO.CombineTo(Op, New);
1392        }
1393        // if it already has all the bits set, nothing to change
1394        // but don't shrink either!
1395      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1396        return true;
1397      }
1398    }
1399
1400    KnownZero = KnownZeroOut;
1401    KnownOne  = KnownOneOut;
1402    break;
1403  case ISD::SELECT:
1404    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1405                             KnownOne, TLO, Depth+1))
1406      return true;
1407    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1408                             KnownOne2, TLO, Depth+1))
1409      return true;
1410    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1411    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1412
1413    // If the operands are constants, see if we can simplify them.
1414    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1415      return true;
1416
1417    // Only known if known in both the LHS and RHS.
1418    KnownOne &= KnownOne2;
1419    KnownZero &= KnownZero2;
1420    break;
1421  case ISD::SELECT_CC:
1422    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1423                             KnownOne, TLO, Depth+1))
1424      return true;
1425    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1426                             KnownOne2, TLO, Depth+1))
1427      return true;
1428    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1429    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1430
1431    // If the operands are constants, see if we can simplify them.
1432    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1433      return true;
1434
1435    // Only known if known in both the LHS and RHS.
1436    KnownOne &= KnownOne2;
1437    KnownZero &= KnownZero2;
1438    break;
1439  case ISD::SHL:
1440    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1441      unsigned ShAmt = SA->getZExtValue();
1442      SDValue InOp = Op.getOperand(0);
1443
1444      // If the shift count is an invalid immediate, don't do anything.
1445      if (ShAmt >= BitWidth)
1446        break;
1447
1448      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1449      // single shift.  We can do this if the bottom bits (which are shifted
1450      // out) are never demanded.
1451      if (InOp.getOpcode() == ISD::SRL &&
1452          isa<ConstantSDNode>(InOp.getOperand(1))) {
1453        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1454          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1455          unsigned Opc = ISD::SHL;
1456          int Diff = ShAmt-C1;
1457          if (Diff < 0) {
1458            Diff = -Diff;
1459            Opc = ISD::SRL;
1460          }
1461
1462          SDValue NewSA =
1463            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1464          EVT VT = Op.getValueType();
1465          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1466                                                   InOp.getOperand(0), NewSA));
1467        }
1468      }
1469
1470      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1471                               KnownZero, KnownOne, TLO, Depth+1))
1472        return true;
1473
1474      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1475      // are not demanded. This will likely allow the anyext to be folded away.
1476      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1477        SDValue InnerOp = InOp.getNode()->getOperand(0);
1478        EVT InnerVT = InnerOp.getValueType();
1479        unsigned InnerBits = InnerVT.getSizeInBits();
1480        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
1481            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482          EVT ShTy = getShiftAmountTy(InnerVT);
1483          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484            ShTy = InnerVT;
1485          SDValue NarrowShl =
1486            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                            TLO.DAG.getConstant(ShAmt, ShTy));
1488          return
1489            TLO.CombineTo(Op,
1490                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1491                                          NarrowShl));
1492        }
1493      }
1494
1495      KnownZero <<= SA->getZExtValue();
1496      KnownOne  <<= SA->getZExtValue();
1497      // low bits known zero.
1498      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1499    }
1500    break;
1501  case ISD::SRL:
1502    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1503      EVT VT = Op.getValueType();
1504      unsigned ShAmt = SA->getZExtValue();
1505      unsigned VTSize = VT.getSizeInBits();
1506      SDValue InOp = Op.getOperand(0);
1507
1508      // If the shift count is an invalid immediate, don't do anything.
1509      if (ShAmt >= BitWidth)
1510        break;
1511
1512      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1513      // single shift.  We can do this if the top bits (which are shifted out)
1514      // are never demanded.
1515      if (InOp.getOpcode() == ISD::SHL &&
1516          isa<ConstantSDNode>(InOp.getOperand(1))) {
1517        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1518          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1519          unsigned Opc = ISD::SRL;
1520          int Diff = ShAmt-C1;
1521          if (Diff < 0) {
1522            Diff = -Diff;
1523            Opc = ISD::SHL;
1524          }
1525
1526          SDValue NewSA =
1527            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1528          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1529                                                   InOp.getOperand(0), NewSA));
1530        }
1531      }
1532
1533      // Compute the new bits that are at the top now.
1534      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1535                               KnownZero, KnownOne, TLO, Depth+1))
1536        return true;
1537      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1538      KnownZero = KnownZero.lshr(ShAmt);
1539      KnownOne  = KnownOne.lshr(ShAmt);
1540
1541      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1542      KnownZero |= HighBits;  // High bits known zero.
1543    }
1544    break;
1545  case ISD::SRA:
1546    // If this is an arithmetic shift right and only the low-bit is set, we can
1547    // always convert this into a logical shr, even if the shift amount is
1548    // variable.  The low bit of the shift cannot be an input sign bit unless
1549    // the shift amount is >= the size of the datatype, which is undefined.
1550    if (NewMask == 1)
1551      return TLO.CombineTo(Op,
1552                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1553                                           Op.getOperand(0), Op.getOperand(1)));
1554
1555    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1556      EVT VT = Op.getValueType();
1557      unsigned ShAmt = SA->getZExtValue();
1558
1559      // If the shift count is an invalid immediate, don't do anything.
1560      if (ShAmt >= BitWidth)
1561        break;
1562
1563      APInt InDemandedMask = (NewMask << ShAmt);
1564
1565      // If any of the demanded bits are produced by the sign extension, we also
1566      // demand the input sign bit.
1567      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1568      if (HighBits.intersects(NewMask))
1569        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1570
1571      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1572                               KnownZero, KnownOne, TLO, Depth+1))
1573        return true;
1574      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1575      KnownZero = KnownZero.lshr(ShAmt);
1576      KnownOne  = KnownOne.lshr(ShAmt);
1577
1578      // Handle the sign bit, adjusted to where it is now in the mask.
1579      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1580
1581      // If the input sign bit is known to be zero, or if none of the top bits
1582      // are demanded, turn this into an unsigned shift right.
1583      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1584        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1585                                                 Op.getOperand(0),
1586                                                 Op.getOperand(1)));
1587      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1588        KnownOne |= HighBits;
1589      }
1590    }
1591    break;
1592  case ISD::SIGN_EXTEND_INREG: {
1593    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1594
1595    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
1596    // If we only care about the highest bit, don't bother shifting right.
1597    if (MsbMask == DemandedMask) {
1598      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
1599      SDValue InOp = Op.getOperand(0);
1600
1601      // Compute the correct shift amount type, which must be getShiftAmountTy
1602      // for scalar types after legalization.
1603      EVT ShiftAmtTy = Op.getValueType();
1604      if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1605        ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
1606
1607      SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
1608      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1609                                            Op.getValueType(), InOp, ShiftAmt));
1610    }
1611
1612    // Sign extension.  Compute the demanded bits in the result that are not
1613    // present in the input.
1614    APInt NewBits =
1615      APInt::getHighBitsSet(BitWidth,
1616                            BitWidth - ExVT.getScalarType().getSizeInBits());
1617
1618    // If none of the extended bits are demanded, eliminate the sextinreg.
1619    if ((NewBits & NewMask) == 0)
1620      return TLO.CombineTo(Op, Op.getOperand(0));
1621
1622    APInt InSignBit =
1623      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
1624    APInt InputDemandedBits =
1625      APInt::getLowBitsSet(BitWidth,
1626                           ExVT.getScalarType().getSizeInBits()) &
1627      NewMask;
1628
1629    // Since the sign extended bits are demanded, we know that the sign
1630    // bit is demanded.
1631    InputDemandedBits |= InSignBit;
1632
1633    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1634                             KnownZero, KnownOne, TLO, Depth+1))
1635      return true;
1636    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1637
1638    // If the sign bit of the input is known set or clear, then we know the
1639    // top bits of the result.
1640
1641    // If the input sign bit is known zero, convert this into a zero extension.
1642    if (KnownZero.intersects(InSignBit))
1643      return TLO.CombineTo(Op,
1644                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
1645
1646    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1647      KnownOne |= NewBits;
1648      KnownZero &= ~NewBits;
1649    } else {                       // Input sign bit unknown
1650      KnownZero &= ~NewBits;
1651      KnownOne &= ~NewBits;
1652    }
1653    break;
1654  }
1655  case ISD::ZERO_EXTEND: {
1656    unsigned OperandBitWidth =
1657      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1658    APInt InMask = NewMask.trunc(OperandBitWidth);
1659
1660    // If none of the top bits are demanded, convert this into an any_extend.
1661    APInt NewBits =
1662      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1663    if (!NewBits.intersects(NewMask))
1664      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1665                                               Op.getValueType(),
1666                                               Op.getOperand(0)));
1667
1668    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1669                             KnownZero, KnownOne, TLO, Depth+1))
1670      return true;
1671    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1672    KnownZero = KnownZero.zext(BitWidth);
1673    KnownOne = KnownOne.zext(BitWidth);
1674    KnownZero |= NewBits;
1675    break;
1676  }
1677  case ISD::SIGN_EXTEND: {
1678    EVT InVT = Op.getOperand(0).getValueType();
1679    unsigned InBits = InVT.getScalarType().getSizeInBits();
1680    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1681    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1682    APInt NewBits   = ~InMask & NewMask;
1683
1684    // If none of the top bits are demanded, convert this into an any_extend.
1685    if (NewBits == 0)
1686      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1687                                              Op.getValueType(),
1688                                              Op.getOperand(0)));
1689
1690    // Since some of the sign extended bits are demanded, we know that the sign
1691    // bit is demanded.
1692    APInt InDemandedBits = InMask & NewMask;
1693    InDemandedBits |= InSignBit;
1694    InDemandedBits = InDemandedBits.trunc(InBits);
1695
1696    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1697                             KnownOne, TLO, Depth+1))
1698      return true;
1699    KnownZero = KnownZero.zext(BitWidth);
1700    KnownOne = KnownOne.zext(BitWidth);
1701
1702    // If the sign bit is known zero, convert this to a zero extend.
1703    if (KnownZero.intersects(InSignBit))
1704      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1705                                               Op.getValueType(),
1706                                               Op.getOperand(0)));
1707
1708    // If the sign bit is known one, the top bits match.
1709    if (KnownOne.intersects(InSignBit)) {
1710      KnownOne |= NewBits;
1711      assert((KnownZero & NewBits) == 0);
1712    } else {   // Otherwise, top bits aren't known.
1713      assert((KnownOne & NewBits) == 0);
1714      assert((KnownZero & NewBits) == 0);
1715    }
1716    break;
1717  }
1718  case ISD::ANY_EXTEND: {
1719    unsigned OperandBitWidth =
1720      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1721    APInt InMask = NewMask.trunc(OperandBitWidth);
1722    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1723                             KnownZero, KnownOne, TLO, Depth+1))
1724      return true;
1725    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1726    KnownZero = KnownZero.zext(BitWidth);
1727    KnownOne = KnownOne.zext(BitWidth);
1728    break;
1729  }
1730  case ISD::TRUNCATE: {
1731    // Simplify the input, using demanded bit information, and compute the known
1732    // zero/one bits live out.
1733    unsigned OperandBitWidth =
1734      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1735    APInt TruncMask = NewMask.zext(OperandBitWidth);
1736    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1737                             KnownZero, KnownOne, TLO, Depth+1))
1738      return true;
1739    KnownZero = KnownZero.trunc(BitWidth);
1740    KnownOne = KnownOne.trunc(BitWidth);
1741
1742    // If the input is only used by this truncate, see if we can shrink it based
1743    // on the known demanded bits.
1744    if (Op.getOperand(0).getNode()->hasOneUse()) {
1745      SDValue In = Op.getOperand(0);
1746      switch (In.getOpcode()) {
1747      default: break;
1748      case ISD::SRL:
1749        // Shrink SRL by a constant if none of the high bits shifted in are
1750        // demanded.
1751        if (TLO.LegalTypes() &&
1752            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1753          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1754          // undesirable.
1755          break;
1756        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1757        if (!ShAmt)
1758          break;
1759        SDValue Shift = In.getOperand(1);
1760        if (TLO.LegalTypes()) {
1761          uint64_t ShVal = ShAmt->getZExtValue();
1762          Shift =
1763            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1764        }
1765
1766        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1767                                               OperandBitWidth - BitWidth);
1768        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1769
1770        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1771          // None of the shifted in bits are needed.  Add a truncate of the
1772          // shift input, then shift it.
1773          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1774                                             Op.getValueType(),
1775                                             In.getOperand(0));
1776          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1777                                                   Op.getValueType(),
1778                                                   NewTrunc,
1779                                                   Shift));
1780        }
1781        break;
1782      }
1783    }
1784
1785    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1786    break;
1787  }
1788  case ISD::AssertZext: {
1789    // AssertZext demands all of the high bits, plus any of the low bits
1790    // demanded by its users.
1791    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1792    APInt InMask = APInt::getLowBitsSet(BitWidth,
1793                                        VT.getSizeInBits());
1794    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1795                             KnownZero, KnownOne, TLO, Depth+1))
1796      return true;
1797    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1798
1799    KnownZero |= ~InMask & NewMask;
1800    break;
1801  }
1802  case ISD::BITCAST:
1803    // If this is an FP->Int bitcast and if the sign bit is the only
1804    // thing demanded, turn this into a FGETSIGN.
1805    if (!TLO.LegalOperations() &&
1806        !Op.getValueType().isVector() &&
1807        !Op.getOperand(0).getValueType().isVector() &&
1808        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1809        Op.getOperand(0).getValueType().isFloatingPoint()) {
1810      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1811      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1812      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1813        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1814        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1815        // place.  We expect the SHL to be eliminated by other optimizations.
1816        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1817        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1818        if (!OpVTLegal && OpVTSizeInBits > 32)
1819          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1820        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1821        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1822        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1823                                                 Op.getValueType(),
1824                                                 Sign, ShAmt));
1825      }
1826    }
1827    break;
1828  case ISD::ADD:
1829  case ISD::MUL:
1830  case ISD::SUB: {
1831    // Add, Sub, and Mul don't demand any bits in positions beyond that
1832    // of the highest bit demanded of them.
1833    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1834                                        BitWidth - NewMask.countLeadingZeros());
1835    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1836                             KnownOne2, TLO, Depth+1))
1837      return true;
1838    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1839                             KnownOne2, TLO, Depth+1))
1840      return true;
1841    // See if the operation should be performed at a smaller bit width.
1842    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1843      return true;
1844  }
1845  // FALL THROUGH
1846  default:
1847    // Just use ComputeMaskedBits to compute output bits.
1848    TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1849    break;
1850  }
1851
1852  // If we know the value of all of the demanded bits, return this as a
1853  // constant.
1854  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1855    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1856
1857  return false;
1858}
1859
1860/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1861/// in Mask are known to be either zero or one and return them in the
1862/// KnownZero/KnownOne bitsets.
1863void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1864                                                    APInt &KnownZero,
1865                                                    APInt &KnownOne,
1866                                                    const SelectionDAG &DAG,
1867                                                    unsigned Depth) const {
1868  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1869          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1870          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1871          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1872         "Should use MaskedValueIsZero if you don't know whether Op"
1873         " is a target node!");
1874  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1875}
1876
1877/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1878/// targets that want to expose additional information about sign bits to the
1879/// DAG Combiner.
1880unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1881                                                         unsigned Depth) const {
1882  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1883          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1884          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1885          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1886         "Should use ComputeNumSignBits if you don't know whether Op"
1887         " is a target node!");
1888  return 1;
1889}
1890
1891/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1892/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1893/// determine which bit is set.
1894///
1895static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1896  // A left-shift of a constant one will have exactly one bit set, because
1897  // shifting the bit off the end is undefined.
1898  if (Val.getOpcode() == ISD::SHL)
1899    if (ConstantSDNode *C =
1900         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1901      if (C->getAPIntValue() == 1)
1902        return true;
1903
1904  // Similarly, a right-shift of a constant sign-bit will have exactly
1905  // one bit set.
1906  if (Val.getOpcode() == ISD::SRL)
1907    if (ConstantSDNode *C =
1908         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1909      if (C->getAPIntValue().isSignBit())
1910        return true;
1911
1912  // More could be done here, though the above checks are enough
1913  // to handle some common cases.
1914
1915  // Fall back to ComputeMaskedBits to catch other known cases.
1916  EVT OpVT = Val.getValueType();
1917  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1918  APInt KnownZero, KnownOne;
1919  DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
1920  return (KnownZero.countPopulation() == BitWidth - 1) &&
1921         (KnownOne.countPopulation() == 1);
1922}
1923
1924/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1925/// and cc. If it is unable to simplify it, return a null SDValue.
1926SDValue
1927TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1928                              ISD::CondCode Cond, bool foldBooleans,
1929                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1930  SelectionDAG &DAG = DCI.DAG;
1931
1932  // These setcc operations always fold.
1933  switch (Cond) {
1934  default: break;
1935  case ISD::SETFALSE:
1936  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1937  case ISD::SETTRUE:
1938  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1939  }
1940
1941  // Ensure that the constant occurs on the RHS, and fold constant
1942  // comparisons.
1943  if (isa<ConstantSDNode>(N0.getNode()))
1944    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1945
1946  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1947    const APInt &C1 = N1C->getAPIntValue();
1948
1949    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1950    // equality comparison, then we're just comparing whether X itself is
1951    // zero.
1952    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1953        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1954        N0.getOperand(1).getOpcode() == ISD::Constant) {
1955      const APInt &ShAmt
1956        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1957      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1958          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1959        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1960          // (srl (ctlz x), 5) == 0  -> X != 0
1961          // (srl (ctlz x), 5) != 1  -> X != 0
1962          Cond = ISD::SETNE;
1963        } else {
1964          // (srl (ctlz x), 5) != 0  -> X == 0
1965          // (srl (ctlz x), 5) == 1  -> X == 0
1966          Cond = ISD::SETEQ;
1967        }
1968        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1969        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1970                            Zero, Cond);
1971      }
1972    }
1973
1974    SDValue CTPOP = N0;
1975    // Look through truncs that don't change the value of a ctpop.
1976    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1977      CTPOP = N0.getOperand(0);
1978
1979    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1980        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1981                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1982      EVT CTVT = CTPOP.getValueType();
1983      SDValue CTOp = CTPOP.getOperand(0);
1984
1985      // (ctpop x) u< 2 -> (x & x-1) == 0
1986      // (ctpop x) u> 1 -> (x & x-1) != 0
1987      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1988        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1989                                  DAG.getConstant(1, CTVT));
1990        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1991        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1992        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1993      }
1994
1995      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1996    }
1997
1998    // (zext x) == C --> x == (trunc C)
1999    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
2000        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2001      unsigned MinBits = N0.getValueSizeInBits();
2002      SDValue PreZExt;
2003      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2004        // ZExt
2005        MinBits = N0->getOperand(0).getValueSizeInBits();
2006        PreZExt = N0->getOperand(0);
2007      } else if (N0->getOpcode() == ISD::AND) {
2008        // DAGCombine turns costly ZExts into ANDs
2009        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2010          if ((C->getAPIntValue()+1).isPowerOf2()) {
2011            MinBits = C->getAPIntValue().countTrailingOnes();
2012            PreZExt = N0->getOperand(0);
2013          }
2014      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
2015        // ZEXTLOAD
2016        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2017          MinBits = LN0->getMemoryVT().getSizeInBits();
2018          PreZExt = N0;
2019        }
2020      }
2021
2022      // Make sure we're not loosing bits from the constant.
2023      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
2024        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2025        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2026          // Will get folded away.
2027          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2028          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2029          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2030        }
2031      }
2032    }
2033
2034    // If the LHS is '(and load, const)', the RHS is 0,
2035    // the test is for equality or unsigned, and all 1 bits of the const are
2036    // in the same partial word, see if we can shorten the load.
2037    if (DCI.isBeforeLegalize() &&
2038        N0.getOpcode() == ISD::AND && C1 == 0 &&
2039        N0.getNode()->hasOneUse() &&
2040        isa<LoadSDNode>(N0.getOperand(0)) &&
2041        N0.getOperand(0).getNode()->hasOneUse() &&
2042        isa<ConstantSDNode>(N0.getOperand(1))) {
2043      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2044      APInt bestMask;
2045      unsigned bestWidth = 0, bestOffset = 0;
2046      if (!Lod->isVolatile() && Lod->isUnindexed()) {
2047        unsigned origWidth = N0.getValueType().getSizeInBits();
2048        unsigned maskWidth = origWidth;
2049        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2050        // 8 bits, but have to be careful...
2051        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2052          origWidth = Lod->getMemoryVT().getSizeInBits();
2053        const APInt &Mask =
2054          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2055        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2056          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2057          for (unsigned offset=0; offset<origWidth/width; offset++) {
2058            if ((newMask & Mask) == Mask) {
2059              if (!TD->isLittleEndian())
2060                bestOffset = (origWidth/width - offset - 1) * (width/8);
2061              else
2062                bestOffset = (uint64_t)offset * (width/8);
2063              bestMask = Mask.lshr(offset * (width/8) * 8);
2064              bestWidth = width;
2065              break;
2066            }
2067            newMask = newMask << width;
2068          }
2069        }
2070      }
2071      if (bestWidth) {
2072        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2073        if (newVT.isRound()) {
2074          EVT PtrType = Lod->getOperand(1).getValueType();
2075          SDValue Ptr = Lod->getBasePtr();
2076          if (bestOffset != 0)
2077            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2078                              DAG.getConstant(bestOffset, PtrType));
2079          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2080          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2081                                Lod->getPointerInfo().getWithOffset(bestOffset),
2082                                        false, false, false, NewAlign);
2083          return DAG.getSetCC(dl, VT,
2084                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2085                                      DAG.getConstant(bestMask.trunc(bestWidth),
2086                                                      newVT)),
2087                              DAG.getConstant(0LL, newVT), Cond);
2088        }
2089      }
2090    }
2091
2092    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2093    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2094      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2095
2096      // If the comparison constant has bits in the upper part, the
2097      // zero-extended value could never match.
2098      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2099                                              C1.getBitWidth() - InSize))) {
2100        switch (Cond) {
2101        case ISD::SETUGT:
2102        case ISD::SETUGE:
2103        case ISD::SETEQ: return DAG.getConstant(0, VT);
2104        case ISD::SETULT:
2105        case ISD::SETULE:
2106        case ISD::SETNE: return DAG.getConstant(1, VT);
2107        case ISD::SETGT:
2108        case ISD::SETGE:
2109          // True if the sign bit of C1 is set.
2110          return DAG.getConstant(C1.isNegative(), VT);
2111        case ISD::SETLT:
2112        case ISD::SETLE:
2113          // True if the sign bit of C1 isn't set.
2114          return DAG.getConstant(C1.isNonNegative(), VT);
2115        default:
2116          break;
2117        }
2118      }
2119
2120      // Otherwise, we can perform the comparison with the low bits.
2121      switch (Cond) {
2122      case ISD::SETEQ:
2123      case ISD::SETNE:
2124      case ISD::SETUGT:
2125      case ISD::SETUGE:
2126      case ISD::SETULT:
2127      case ISD::SETULE: {
2128        EVT newVT = N0.getOperand(0).getValueType();
2129        if (DCI.isBeforeLegalizeOps() ||
2130            (isOperationLegal(ISD::SETCC, newVT) &&
2131              getCondCodeAction(Cond, newVT)==Legal))
2132          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2133                              DAG.getConstant(C1.trunc(InSize), newVT),
2134                              Cond);
2135        break;
2136      }
2137      default:
2138        break;   // todo, be more careful with signed comparisons
2139      }
2140    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2141               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2142      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2143      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2144      EVT ExtDstTy = N0.getValueType();
2145      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2146
2147      // If the constant doesn't fit into the number of bits for the source of
2148      // the sign extension, it is impossible for both sides to be equal.
2149      if (C1.getMinSignedBits() > ExtSrcTyBits)
2150        return DAG.getConstant(Cond == ISD::SETNE, VT);
2151
2152      SDValue ZextOp;
2153      EVT Op0Ty = N0.getOperand(0).getValueType();
2154      if (Op0Ty == ExtSrcTy) {
2155        ZextOp = N0.getOperand(0);
2156      } else {
2157        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2158        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2159                              DAG.getConstant(Imm, Op0Ty));
2160      }
2161      if (!DCI.isCalledByLegalizer())
2162        DCI.AddToWorklist(ZextOp.getNode());
2163      // Otherwise, make this a use of a zext.
2164      return DAG.getSetCC(dl, VT, ZextOp,
2165                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2166                                                              ExtDstTyBits,
2167                                                              ExtSrcTyBits),
2168                                          ExtDstTy),
2169                          Cond);
2170    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2171                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2172      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2173      if (N0.getOpcode() == ISD::SETCC &&
2174          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2175        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2176        if (TrueWhenTrue)
2177          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2178        // Invert the condition.
2179        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2180        CC = ISD::getSetCCInverse(CC,
2181                                  N0.getOperand(0).getValueType().isInteger());
2182        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2183      }
2184
2185      if ((N0.getOpcode() == ISD::XOR ||
2186           (N0.getOpcode() == ISD::AND &&
2187            N0.getOperand(0).getOpcode() == ISD::XOR &&
2188            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2189          isa<ConstantSDNode>(N0.getOperand(1)) &&
2190          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2191        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2192        // can only do this if the top bits are known zero.
2193        unsigned BitWidth = N0.getValueSizeInBits();
2194        if (DAG.MaskedValueIsZero(N0,
2195                                  APInt::getHighBitsSet(BitWidth,
2196                                                        BitWidth-1))) {
2197          // Okay, get the un-inverted input value.
2198          SDValue Val;
2199          if (N0.getOpcode() == ISD::XOR)
2200            Val = N0.getOperand(0);
2201          else {
2202            assert(N0.getOpcode() == ISD::AND &&
2203                    N0.getOperand(0).getOpcode() == ISD::XOR);
2204            // ((X^1)&1)^1 -> X & 1
2205            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2206                              N0.getOperand(0).getOperand(0),
2207                              N0.getOperand(1));
2208          }
2209
2210          return DAG.getSetCC(dl, VT, Val, N1,
2211                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2212        }
2213      } else if (N1C->getAPIntValue() == 1 &&
2214                 (VT == MVT::i1 ||
2215                  getBooleanContents(false) == ZeroOrOneBooleanContent)) {
2216        SDValue Op0 = N0;
2217        if (Op0.getOpcode() == ISD::TRUNCATE)
2218          Op0 = Op0.getOperand(0);
2219
2220        if ((Op0.getOpcode() == ISD::XOR) &&
2221            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2222            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2223          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2224          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2225          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2226                              Cond);
2227        } else if (Op0.getOpcode() == ISD::AND &&
2228                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2229                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2230          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2231          if (Op0.getValueType().bitsGT(VT))
2232            Op0 = DAG.getNode(ISD::AND, dl, VT,
2233                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2234                          DAG.getConstant(1, VT));
2235          else if (Op0.getValueType().bitsLT(VT))
2236            Op0 = DAG.getNode(ISD::AND, dl, VT,
2237                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2238                        DAG.getConstant(1, VT));
2239
2240          return DAG.getSetCC(dl, VT, Op0,
2241                              DAG.getConstant(0, Op0.getValueType()),
2242                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2243        }
2244      }
2245    }
2246
2247    APInt MinVal, MaxVal;
2248    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2249    if (ISD::isSignedIntSetCC(Cond)) {
2250      MinVal = APInt::getSignedMinValue(OperandBitSize);
2251      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2252    } else {
2253      MinVal = APInt::getMinValue(OperandBitSize);
2254      MaxVal = APInt::getMaxValue(OperandBitSize);
2255    }
2256
2257    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2258    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2259      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2260      // X >= C0 --> X > (C0-1)
2261      return DAG.getSetCC(dl, VT, N0,
2262                          DAG.getConstant(C1-1, N1.getValueType()),
2263                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2264    }
2265
2266    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2267      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2268      // X <= C0 --> X < (C0+1)
2269      return DAG.getSetCC(dl, VT, N0,
2270                          DAG.getConstant(C1+1, N1.getValueType()),
2271                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2272    }
2273
2274    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2275      return DAG.getConstant(0, VT);      // X < MIN --> false
2276    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2277      return DAG.getConstant(1, VT);      // X >= MIN --> true
2278    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2279      return DAG.getConstant(0, VT);      // X > MAX --> false
2280    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2281      return DAG.getConstant(1, VT);      // X <= MAX --> true
2282
2283    // Canonicalize setgt X, Min --> setne X, Min
2284    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2285      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2286    // Canonicalize setlt X, Max --> setne X, Max
2287    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2288      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2289
2290    // If we have setult X, 1, turn it into seteq X, 0
2291    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2292      return DAG.getSetCC(dl, VT, N0,
2293                          DAG.getConstant(MinVal, N0.getValueType()),
2294                          ISD::SETEQ);
2295    // If we have setugt X, Max-1, turn it into seteq X, Max
2296    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2297      return DAG.getSetCC(dl, VT, N0,
2298                          DAG.getConstant(MaxVal, N0.getValueType()),
2299                          ISD::SETEQ);
2300
2301    // If we have "setcc X, C0", check to see if we can shrink the immediate
2302    // by changing cc.
2303
2304    // SETUGT X, SINTMAX  -> SETLT X, 0
2305    if (Cond == ISD::SETUGT &&
2306        C1 == APInt::getSignedMaxValue(OperandBitSize))
2307      return DAG.getSetCC(dl, VT, N0,
2308                          DAG.getConstant(0, N1.getValueType()),
2309                          ISD::SETLT);
2310
2311    // SETULT X, SINTMIN  -> SETGT X, -1
2312    if (Cond == ISD::SETULT &&
2313        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2314      SDValue ConstMinusOne =
2315          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2316                          N1.getValueType());
2317      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2318    }
2319
2320    // Fold bit comparisons when we can.
2321    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2322        (VT == N0.getValueType() ||
2323         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2324        N0.getOpcode() == ISD::AND)
2325      if (ConstantSDNode *AndRHS =
2326                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2327        EVT ShiftTy = DCI.isBeforeLegalize() ?
2328          getPointerTy() : getShiftAmountTy(N0.getValueType());
2329        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2330          // Perform the xform if the AND RHS is a single bit.
2331          if (AndRHS->getAPIntValue().isPowerOf2()) {
2332            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2333                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2334                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2335          }
2336        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2337          // (X & 8) == 8  -->  (X & 8) >> 3
2338          // Perform the xform if C1 is a single bit.
2339          if (C1.isPowerOf2()) {
2340            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2341                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2342                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2343          }
2344        }
2345      }
2346  }
2347
2348  if (isa<ConstantFPSDNode>(N0.getNode())) {
2349    // Constant fold or commute setcc.
2350    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2351    if (O.getNode()) return O;
2352  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2353    // If the RHS of an FP comparison is a constant, simplify it away in
2354    // some cases.
2355    if (CFP->getValueAPF().isNaN()) {
2356      // If an operand is known to be a nan, we can fold it.
2357      switch (ISD::getUnorderedFlavor(Cond)) {
2358      default: llvm_unreachable("Unknown flavor!");
2359      case 0:  // Known false.
2360        return DAG.getConstant(0, VT);
2361      case 1:  // Known true.
2362        return DAG.getConstant(1, VT);
2363      case 2:  // Undefined.
2364        return DAG.getUNDEF(VT);
2365      }
2366    }
2367
2368    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2369    // constant if knowing that the operand is non-nan is enough.  We prefer to
2370    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2371    // materialize 0.0.
2372    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2373      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2374
2375    // If the condition is not legal, see if we can find an equivalent one
2376    // which is legal.
2377    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2378      // If the comparison was an awkward floating-point == or != and one of
2379      // the comparison operands is infinity or negative infinity, convert the
2380      // condition to a less-awkward <= or >=.
2381      if (CFP->getValueAPF().isInfinity()) {
2382        if (CFP->getValueAPF().isNegative()) {
2383          if (Cond == ISD::SETOEQ &&
2384              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2385            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2386          if (Cond == ISD::SETUEQ &&
2387              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2388            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2389          if (Cond == ISD::SETUNE &&
2390              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2391            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2392          if (Cond == ISD::SETONE &&
2393              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2394            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2395        } else {
2396          if (Cond == ISD::SETOEQ &&
2397              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2398            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2399          if (Cond == ISD::SETUEQ &&
2400              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2401            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2402          if (Cond == ISD::SETUNE &&
2403              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2404            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2405          if (Cond == ISD::SETONE &&
2406              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2407            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2408        }
2409      }
2410    }
2411  }
2412
2413  if (N0 == N1) {
2414    // We can always fold X == X for integer setcc's.
2415    if (N0.getValueType().isInteger()) {
2416      switch (getBooleanContents(N0.getValueType().isVector())) {
2417      case UndefinedBooleanContent:
2418      case ZeroOrOneBooleanContent:
2419        return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2420      case ZeroOrNegativeOneBooleanContent:
2421        return DAG.getConstant(ISD::isTrueWhenEqual(Cond) ? -1 : 0, VT);
2422      }
2423    }
2424    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2425    if (UOF == 2)   // FP operators that are undefined on NaNs.
2426      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2427    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2428      return DAG.getConstant(UOF, VT);
2429    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2430    // if it is not already.
2431    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2432    if (NewCond != Cond)
2433      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2434  }
2435
2436  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2437      N0.getValueType().isInteger()) {
2438    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2439        N0.getOpcode() == ISD::XOR) {
2440      // Simplify (X+Y) == (X+Z) -->  Y == Z
2441      if (N0.getOpcode() == N1.getOpcode()) {
2442        if (N0.getOperand(0) == N1.getOperand(0))
2443          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2444        if (N0.getOperand(1) == N1.getOperand(1))
2445          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2446        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2447          // If X op Y == Y op X, try other combinations.
2448          if (N0.getOperand(0) == N1.getOperand(1))
2449            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2450                                Cond);
2451          if (N0.getOperand(1) == N1.getOperand(0))
2452            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2453                                Cond);
2454        }
2455      }
2456
2457      // If RHS is a legal immediate value for a compare instruction, we need
2458      // to be careful about increasing register pressure needlessly.
2459      bool LegalRHSImm = false;
2460
2461      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2462        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2463          // Turn (X+C1) == C2 --> X == C2-C1
2464          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2465            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2466                                DAG.getConstant(RHSC->getAPIntValue()-
2467                                                LHSR->getAPIntValue(),
2468                                N0.getValueType()), Cond);
2469          }
2470
2471          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2472          if (N0.getOpcode() == ISD::XOR)
2473            // If we know that all of the inverted bits are zero, don't bother
2474            // performing the inversion.
2475            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2476              return
2477                DAG.getSetCC(dl, VT, N0.getOperand(0),
2478                             DAG.getConstant(LHSR->getAPIntValue() ^
2479                                               RHSC->getAPIntValue(),
2480                                             N0.getValueType()),
2481                             Cond);
2482        }
2483
2484        // Turn (C1-X) == C2 --> X == C1-C2
2485        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2486          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2487            return
2488              DAG.getSetCC(dl, VT, N0.getOperand(1),
2489                           DAG.getConstant(SUBC->getAPIntValue() -
2490                                             RHSC->getAPIntValue(),
2491                                           N0.getValueType()),
2492                           Cond);
2493          }
2494        }
2495
2496        // Could RHSC fold directly into a compare?
2497        if (RHSC->getValueType(0).getSizeInBits() <= 64)
2498          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2499      }
2500
2501      // Simplify (X+Z) == X -->  Z == 0
2502      // Don't do this if X is an immediate that can fold into a cmp
2503      // instruction and X+Z has other uses. It could be an induction variable
2504      // chain, and the transform would increase register pressure.
2505      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2506        if (N0.getOperand(0) == N1)
2507          return DAG.getSetCC(dl, VT, N0.getOperand(1),
2508                              DAG.getConstant(0, N0.getValueType()), Cond);
2509        if (N0.getOperand(1) == N1) {
2510          if (DAG.isCommutativeBinOp(N0.getOpcode()))
2511            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2512                                DAG.getConstant(0, N0.getValueType()), Cond);
2513          else if (N0.getNode()->hasOneUse()) {
2514            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2515            // (Z-X) == X  --> Z == X<<1
2516            SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
2517                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2518            if (!DCI.isCalledByLegalizer())
2519              DCI.AddToWorklist(SH.getNode());
2520            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2521          }
2522        }
2523      }
2524    }
2525
2526    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2527        N1.getOpcode() == ISD::XOR) {
2528      // Simplify  X == (X+Z) -->  Z == 0
2529      if (N1.getOperand(0) == N0) {
2530        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2531                        DAG.getConstant(0, N1.getValueType()), Cond);
2532      } else if (N1.getOperand(1) == N0) {
2533        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2534          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2535                          DAG.getConstant(0, N1.getValueType()), Cond);
2536        } else if (N1.getNode()->hasOneUse()) {
2537          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2538          // X == (Z-X)  --> X<<1 == Z
2539          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2540                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2541          if (!DCI.isCalledByLegalizer())
2542            DCI.AddToWorklist(SH.getNode());
2543          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2544        }
2545      }
2546    }
2547
2548    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2549    // Note that where y is variable and is known to have at most
2550    // one bit set (for example, if it is z&1) we cannot do this;
2551    // the expressions are not equivalent when y==0.
2552    if (N0.getOpcode() == ISD::AND)
2553      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2554        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2555          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2556          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2557          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2558        }
2559      }
2560    if (N1.getOpcode() == ISD::AND)
2561      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2562        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2563          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2564          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2565          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2566        }
2567      }
2568  }
2569
2570  // Fold away ALL boolean setcc's.
2571  SDValue Temp;
2572  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2573    switch (Cond) {
2574    default: llvm_unreachable("Unknown integer setcc!");
2575    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2576      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2577      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2578      if (!DCI.isCalledByLegalizer())
2579        DCI.AddToWorklist(Temp.getNode());
2580      break;
2581    case ISD::SETNE:  // X != Y   -->  (X^Y)
2582      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2583      break;
2584    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2585    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2586      Temp = DAG.getNOT(dl, N0, MVT::i1);
2587      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2588      if (!DCI.isCalledByLegalizer())
2589        DCI.AddToWorklist(Temp.getNode());
2590      break;
2591    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2592    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2593      Temp = DAG.getNOT(dl, N1, MVT::i1);
2594      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2595      if (!DCI.isCalledByLegalizer())
2596        DCI.AddToWorklist(Temp.getNode());
2597      break;
2598    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2599    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2600      Temp = DAG.getNOT(dl, N0, MVT::i1);
2601      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2602      if (!DCI.isCalledByLegalizer())
2603        DCI.AddToWorklist(Temp.getNode());
2604      break;
2605    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2606    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2607      Temp = DAG.getNOT(dl, N1, MVT::i1);
2608      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2609      break;
2610    }
2611    if (VT != MVT::i1) {
2612      if (!DCI.isCalledByLegalizer())
2613        DCI.AddToWorklist(N0.getNode());
2614      // FIXME: If running after legalize, we probably can't do this.
2615      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2616    }
2617    return N0;
2618  }
2619
2620  // Could not fold it.
2621  return SDValue();
2622}
2623
2624/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2625/// node is a GlobalAddress + offset.
2626bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2627                                    int64_t &Offset) const {
2628  if (isa<GlobalAddressSDNode>(N)) {
2629    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2630    GA = GASD->getGlobal();
2631    Offset += GASD->getOffset();
2632    return true;
2633  }
2634
2635  if (N->getOpcode() == ISD::ADD) {
2636    SDValue N1 = N->getOperand(0);
2637    SDValue N2 = N->getOperand(1);
2638    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2639      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2640      if (V) {
2641        Offset += V->getSExtValue();
2642        return true;
2643      }
2644    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2645      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2646      if (V) {
2647        Offset += V->getSExtValue();
2648        return true;
2649      }
2650    }
2651  }
2652
2653  return false;
2654}
2655
2656
2657SDValue TargetLowering::
2658PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2659  // Default implementation: no optimization.
2660  return SDValue();
2661}
2662
2663//===----------------------------------------------------------------------===//
2664//  Inline Assembler Implementation Methods
2665//===----------------------------------------------------------------------===//
2666
2667
2668TargetLowering::ConstraintType
2669TargetLowering::getConstraintType(const std::string &Constraint) const {
2670  if (Constraint.size() == 1) {
2671    switch (Constraint[0]) {
2672    default: break;
2673    case 'r': return C_RegisterClass;
2674    case 'm':    // memory
2675    case 'o':    // offsetable
2676    case 'V':    // not offsetable
2677      return C_Memory;
2678    case 'i':    // Simple Integer or Relocatable Constant
2679    case 'n':    // Simple Integer
2680    case 'E':    // Floating Point Constant
2681    case 'F':    // Floating Point Constant
2682    case 's':    // Relocatable Constant
2683    case 'p':    // Address.
2684    case 'X':    // Allow ANY value.
2685    case 'I':    // Target registers.
2686    case 'J':
2687    case 'K':
2688    case 'L':
2689    case 'M':
2690    case 'N':
2691    case 'O':
2692    case 'P':
2693    case '<':
2694    case '>':
2695      return C_Other;
2696    }
2697  }
2698
2699  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2700      Constraint[Constraint.size()-1] == '}')
2701    return C_Register;
2702  return C_Unknown;
2703}
2704
2705/// LowerXConstraint - try to replace an X constraint, which matches anything,
2706/// with another that has more specific requirements based on the type of the
2707/// corresponding operand.
2708const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2709  if (ConstraintVT.isInteger())
2710    return "r";
2711  if (ConstraintVT.isFloatingPoint())
2712    return "f";      // works for many targets
2713  return 0;
2714}
2715
2716/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2717/// vector.  If it is invalid, don't add anything to Ops.
2718void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2719                                                  std::string &Constraint,
2720                                                  std::vector<SDValue> &Ops,
2721                                                  SelectionDAG &DAG) const {
2722
2723  if (Constraint.length() > 1) return;
2724
2725  char ConstraintLetter = Constraint[0];
2726  switch (ConstraintLetter) {
2727  default: break;
2728  case 'X':     // Allows any operand; labels (basic block) use this.
2729    if (Op.getOpcode() == ISD::BasicBlock) {
2730      Ops.push_back(Op);
2731      return;
2732    }
2733    // fall through
2734  case 'i':    // Simple Integer or Relocatable Constant
2735  case 'n':    // Simple Integer
2736  case 's': {  // Relocatable Constant
2737    // These operands are interested in values of the form (GV+C), where C may
2738    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2739    // is possible and fine if either GV or C are missing.
2740    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2741    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2742
2743    // If we have "(add GV, C)", pull out GV/C
2744    if (Op.getOpcode() == ISD::ADD) {
2745      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2746      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2747      if (C == 0 || GA == 0) {
2748        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2749        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2750      }
2751      if (C == 0 || GA == 0)
2752        C = 0, GA = 0;
2753    }
2754
2755    // If we find a valid operand, map to the TargetXXX version so that the
2756    // value itself doesn't get selected.
2757    if (GA) {   // Either &GV   or   &GV+C
2758      if (ConstraintLetter != 'n') {
2759        int64_t Offs = GA->getOffset();
2760        if (C) Offs += C->getZExtValue();
2761        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2762                                                 C ? C->getDebugLoc() : DebugLoc(),
2763                                                 Op.getValueType(), Offs));
2764        return;
2765      }
2766    }
2767    if (C) {   // just C, no GV.
2768      // Simple constants are not allowed for 's'.
2769      if (ConstraintLetter != 's') {
2770        // gcc prints these as sign extended.  Sign extend value to 64 bits
2771        // now; without this it would get ZExt'd later in
2772        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2773        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2774                                            MVT::i64));
2775        return;
2776      }
2777    }
2778    break;
2779  }
2780  }
2781}
2782
2783std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2784getRegForInlineAsmConstraint(const std::string &Constraint,
2785                             EVT VT) const {
2786  if (Constraint[0] != '{')
2787    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2788  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2789
2790  // Remove the braces from around the name.
2791  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2792
2793  // Figure out which register class contains this reg.
2794  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2795  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2796       E = RI->regclass_end(); RCI != E; ++RCI) {
2797    const TargetRegisterClass *RC = *RCI;
2798
2799    // If none of the value types for this register class are valid, we
2800    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2801    if (!isLegalRC(RC))
2802      continue;
2803
2804    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2805         I != E; ++I) {
2806      if (RegName.equals_lower(RI->getName(*I)))
2807        return std::make_pair(*I, RC);
2808    }
2809  }
2810
2811  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2812}
2813
2814//===----------------------------------------------------------------------===//
2815// Constraint Selection.
2816
2817/// isMatchingInputConstraint - Return true of this is an input operand that is
2818/// a matching constraint like "4".
2819bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2820  assert(!ConstraintCode.empty() && "No known constraint!");
2821  return isdigit(ConstraintCode[0]);
2822}
2823
2824/// getMatchedOperand - If this is an input matching constraint, this method
2825/// returns the output operand it matches.
2826unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2827  assert(!ConstraintCode.empty() && "No known constraint!");
2828  return atoi(ConstraintCode.c_str());
2829}
2830
2831
2832/// ParseConstraints - Split up the constraint string from the inline
2833/// assembly value into the specific constraints and their prefixes,
2834/// and also tie in the associated operand values.
2835/// If this returns an empty vector, and if the constraint string itself
2836/// isn't empty, there was an error parsing.
2837TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2838    ImmutableCallSite CS) const {
2839  /// ConstraintOperands - Information about all of the constraints.
2840  AsmOperandInfoVector ConstraintOperands;
2841  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2842  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2843
2844  // Do a prepass over the constraints, canonicalizing them, and building up the
2845  // ConstraintOperands list.
2846  InlineAsm::ConstraintInfoVector
2847    ConstraintInfos = IA->ParseConstraints();
2848
2849  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2850  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2851
2852  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2853    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2854    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2855
2856    // Update multiple alternative constraint count.
2857    if (OpInfo.multipleAlternatives.size() > maCount)
2858      maCount = OpInfo.multipleAlternatives.size();
2859
2860    OpInfo.ConstraintVT = MVT::Other;
2861
2862    // Compute the value type for each operand.
2863    switch (OpInfo.Type) {
2864    case InlineAsm::isOutput:
2865      // Indirect outputs just consume an argument.
2866      if (OpInfo.isIndirect) {
2867        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2868        break;
2869      }
2870
2871      // The return value of the call is this value.  As such, there is no
2872      // corresponding argument.
2873      assert(!CS.getType()->isVoidTy() &&
2874             "Bad inline asm!");
2875      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2876        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2877      } else {
2878        assert(ResNo == 0 && "Asm only has one result!");
2879        OpInfo.ConstraintVT = getValueType(CS.getType());
2880      }
2881      ++ResNo;
2882      break;
2883    case InlineAsm::isInput:
2884      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2885      break;
2886    case InlineAsm::isClobber:
2887      // Nothing to do.
2888      break;
2889    }
2890
2891    if (OpInfo.CallOperandVal) {
2892      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2893      if (OpInfo.isIndirect) {
2894        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2895        if (!PtrTy)
2896          report_fatal_error("Indirect operand for inline asm not a pointer!");
2897        OpTy = PtrTy->getElementType();
2898      }
2899
2900      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2901      if (StructType *STy = dyn_cast<StructType>(OpTy))
2902        if (STy->getNumElements() == 1)
2903          OpTy = STy->getElementType(0);
2904
2905      // If OpTy is not a single value, it may be a struct/union that we
2906      // can tile with integers.
2907      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2908        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2909        switch (BitSize) {
2910        default: break;
2911        case 1:
2912        case 8:
2913        case 16:
2914        case 32:
2915        case 64:
2916        case 128:
2917          OpInfo.ConstraintVT =
2918              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2919          break;
2920        }
2921      } else if (dyn_cast<PointerType>(OpTy)) {
2922        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2923      } else {
2924        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2925      }
2926    }
2927  }
2928
2929  // If we have multiple alternative constraints, select the best alternative.
2930  if (ConstraintInfos.size()) {
2931    if (maCount) {
2932      unsigned bestMAIndex = 0;
2933      int bestWeight = -1;
2934      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2935      int weight = -1;
2936      unsigned maIndex;
2937      // Compute the sums of the weights for each alternative, keeping track
2938      // of the best (highest weight) one so far.
2939      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2940        int weightSum = 0;
2941        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2942            cIndex != eIndex; ++cIndex) {
2943          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2944          if (OpInfo.Type == InlineAsm::isClobber)
2945            continue;
2946
2947          // If this is an output operand with a matching input operand,
2948          // look up the matching input. If their types mismatch, e.g. one
2949          // is an integer, the other is floating point, or their sizes are
2950          // different, flag it as an maCantMatch.
2951          if (OpInfo.hasMatchingInput()) {
2952            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2953            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2954              if ((OpInfo.ConstraintVT.isInteger() !=
2955                   Input.ConstraintVT.isInteger()) ||
2956                  (OpInfo.ConstraintVT.getSizeInBits() !=
2957                   Input.ConstraintVT.getSizeInBits())) {
2958                weightSum = -1;  // Can't match.
2959                break;
2960              }
2961            }
2962          }
2963          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2964          if (weight == -1) {
2965            weightSum = -1;
2966            break;
2967          }
2968          weightSum += weight;
2969        }
2970        // Update best.
2971        if (weightSum > bestWeight) {
2972          bestWeight = weightSum;
2973          bestMAIndex = maIndex;
2974        }
2975      }
2976
2977      // Now select chosen alternative in each constraint.
2978      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2979          cIndex != eIndex; ++cIndex) {
2980        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2981        if (cInfo.Type == InlineAsm::isClobber)
2982          continue;
2983        cInfo.selectAlternative(bestMAIndex);
2984      }
2985    }
2986  }
2987
2988  // Check and hook up tied operands, choose constraint code to use.
2989  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2990      cIndex != eIndex; ++cIndex) {
2991    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2992
2993    // If this is an output operand with a matching input operand, look up the
2994    // matching input. If their types mismatch, e.g. one is an integer, the
2995    // other is floating point, or their sizes are different, flag it as an
2996    // error.
2997    if (OpInfo.hasMatchingInput()) {
2998      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2999
3000      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3001	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
3002	  getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
3003	std::pair<unsigned, const TargetRegisterClass*> InputRC =
3004	  getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
3005        if ((OpInfo.ConstraintVT.isInteger() !=
3006             Input.ConstraintVT.isInteger()) ||
3007            (MatchRC.second != InputRC.second)) {
3008          report_fatal_error("Unsupported asm: input constraint"
3009                             " with a matching output constraint of"
3010                             " incompatible type!");
3011        }
3012      }
3013
3014    }
3015  }
3016
3017  return ConstraintOperands;
3018}
3019
3020
3021/// getConstraintGenerality - Return an integer indicating how general CT
3022/// is.
3023static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3024  switch (CT) {
3025  case TargetLowering::C_Other:
3026  case TargetLowering::C_Unknown:
3027    return 0;
3028  case TargetLowering::C_Register:
3029    return 1;
3030  case TargetLowering::C_RegisterClass:
3031    return 2;
3032  case TargetLowering::C_Memory:
3033    return 3;
3034  }
3035  llvm_unreachable("Invalid constraint type");
3036}
3037
3038/// Examine constraint type and operand type and determine a weight value.
3039/// This object must already have been set up with the operand type
3040/// and the current alternative constraint selected.
3041TargetLowering::ConstraintWeight
3042  TargetLowering::getMultipleConstraintMatchWeight(
3043    AsmOperandInfo &info, int maIndex) const {
3044  InlineAsm::ConstraintCodeVector *rCodes;
3045  if (maIndex >= (int)info.multipleAlternatives.size())
3046    rCodes = &info.Codes;
3047  else
3048    rCodes = &info.multipleAlternatives[maIndex].Codes;
3049  ConstraintWeight BestWeight = CW_Invalid;
3050
3051  // Loop over the options, keeping track of the most general one.
3052  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3053    ConstraintWeight weight =
3054      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3055    if (weight > BestWeight)
3056      BestWeight = weight;
3057  }
3058
3059  return BestWeight;
3060}
3061
3062/// Examine constraint type and operand type and determine a weight value.
3063/// This object must already have been set up with the operand type
3064/// and the current alternative constraint selected.
3065TargetLowering::ConstraintWeight
3066  TargetLowering::getSingleConstraintMatchWeight(
3067    AsmOperandInfo &info, const char *constraint) const {
3068  ConstraintWeight weight = CW_Invalid;
3069  Value *CallOperandVal = info.CallOperandVal;
3070    // If we don't have a value, we can't do a match,
3071    // but allow it at the lowest weight.
3072  if (CallOperandVal == NULL)
3073    return CW_Default;
3074  // Look at the constraint type.
3075  switch (*constraint) {
3076    case 'i': // immediate integer.
3077    case 'n': // immediate integer with a known value.
3078      if (isa<ConstantInt>(CallOperandVal))
3079        weight = CW_Constant;
3080      break;
3081    case 's': // non-explicit intregal immediate.
3082      if (isa<GlobalValue>(CallOperandVal))
3083        weight = CW_Constant;
3084      break;
3085    case 'E': // immediate float if host format.
3086    case 'F': // immediate float.
3087      if (isa<ConstantFP>(CallOperandVal))
3088        weight = CW_Constant;
3089      break;
3090    case '<': // memory operand with autodecrement.
3091    case '>': // memory operand with autoincrement.
3092    case 'm': // memory operand.
3093    case 'o': // offsettable memory operand
3094    case 'V': // non-offsettable memory operand
3095      weight = CW_Memory;
3096      break;
3097    case 'r': // general register.
3098    case 'g': // general register, memory operand or immediate integer.
3099              // note: Clang converts "g" to "imr".
3100      if (CallOperandVal->getType()->isIntegerTy())
3101        weight = CW_Register;
3102      break;
3103    case 'X': // any operand.
3104    default:
3105      weight = CW_Default;
3106      break;
3107  }
3108  return weight;
3109}
3110
3111/// ChooseConstraint - If there are multiple different constraints that we
3112/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3113/// This is somewhat tricky: constraints fall into four classes:
3114///    Other         -> immediates and magic values
3115///    Register      -> one specific register
3116///    RegisterClass -> a group of regs
3117///    Memory        -> memory
3118/// Ideally, we would pick the most specific constraint possible: if we have
3119/// something that fits into a register, we would pick it.  The problem here
3120/// is that if we have something that could either be in a register or in
3121/// memory that use of the register could cause selection of *other*
3122/// operands to fail: they might only succeed if we pick memory.  Because of
3123/// this the heuristic we use is:
3124///
3125///  1) If there is an 'other' constraint, and if the operand is valid for
3126///     that constraint, use it.  This makes us take advantage of 'i'
3127///     constraints when available.
3128///  2) Otherwise, pick the most general constraint present.  This prefers
3129///     'm' over 'r', for example.
3130///
3131static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3132                             const TargetLowering &TLI,
3133                             SDValue Op, SelectionDAG *DAG) {
3134  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3135  unsigned BestIdx = 0;
3136  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3137  int BestGenerality = -1;
3138
3139  // Loop over the options, keeping track of the most general one.
3140  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3141    TargetLowering::ConstraintType CType =
3142      TLI.getConstraintType(OpInfo.Codes[i]);
3143
3144    // If this is an 'other' constraint, see if the operand is valid for it.
3145    // For example, on X86 we might have an 'rI' constraint.  If the operand
3146    // is an integer in the range [0..31] we want to use I (saving a load
3147    // of a register), otherwise we must use 'r'.
3148    if (CType == TargetLowering::C_Other && Op.getNode()) {
3149      assert(OpInfo.Codes[i].size() == 1 &&
3150             "Unhandled multi-letter 'other' constraint");
3151      std::vector<SDValue> ResultOps;
3152      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3153                                       ResultOps, *DAG);
3154      if (!ResultOps.empty()) {
3155        BestType = CType;
3156        BestIdx = i;
3157        break;
3158      }
3159    }
3160
3161    // Things with matching constraints can only be registers, per gcc
3162    // documentation.  This mainly affects "g" constraints.
3163    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3164      continue;
3165
3166    // This constraint letter is more general than the previous one, use it.
3167    int Generality = getConstraintGenerality(CType);
3168    if (Generality > BestGenerality) {
3169      BestType = CType;
3170      BestIdx = i;
3171      BestGenerality = Generality;
3172    }
3173  }
3174
3175  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3176  OpInfo.ConstraintType = BestType;
3177}
3178
3179/// ComputeConstraintToUse - Determines the constraint code and constraint
3180/// type to use for the specific AsmOperandInfo, setting
3181/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3182void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3183                                            SDValue Op,
3184                                            SelectionDAG *DAG) const {
3185  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3186
3187  // Single-letter constraints ('r') are very common.
3188  if (OpInfo.Codes.size() == 1) {
3189    OpInfo.ConstraintCode = OpInfo.Codes[0];
3190    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3191  } else {
3192    ChooseConstraint(OpInfo, *this, Op, DAG);
3193  }
3194
3195  // 'X' matches anything.
3196  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3197    // Labels and constants are handled elsewhere ('X' is the only thing
3198    // that matches labels).  For Functions, the type here is the type of
3199    // the result, which is not what we want to look at; leave them alone.
3200    Value *v = OpInfo.CallOperandVal;
3201    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3202      OpInfo.CallOperandVal = v;
3203      return;
3204    }
3205
3206    // Otherwise, try to resolve it to something we know about by looking at
3207    // the actual operand type.
3208    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3209      OpInfo.ConstraintCode = Repl;
3210      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3211    }
3212  }
3213}
3214
3215//===----------------------------------------------------------------------===//
3216//  Loop Strength Reduction hooks
3217//===----------------------------------------------------------------------===//
3218
3219/// isLegalAddressingMode - Return true if the addressing mode represented
3220/// by AM is legal for this target, for a load/store of the specified type.
3221bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3222                                           Type *Ty) const {
3223  // The default implementation of this implements a conservative RISCy, r+r and
3224  // r+i addr mode.
3225
3226  // Allows a sign-extended 16-bit immediate field.
3227  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3228    return false;
3229
3230  // No global is ever allowed as a base.
3231  if (AM.BaseGV)
3232    return false;
3233
3234  // Only support r+r,
3235  switch (AM.Scale) {
3236  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3237    break;
3238  case 1:
3239    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3240      return false;
3241    // Otherwise we have r+r or r+i.
3242    break;
3243  case 2:
3244    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3245      return false;
3246    // Allow 2*r as r+r.
3247    break;
3248  }
3249
3250  return true;
3251}
3252
3253/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3254/// with the multiplicative inverse of the constant.
3255SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
3256                                       SelectionDAG &DAG) const {
3257  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
3258  APInt d = C->getAPIntValue();
3259  assert(d != 0 && "Division by zero!");
3260
3261  // Shift the value upfront if it is even, so the LSB is one.
3262  unsigned ShAmt = d.countTrailingZeros();
3263  if (ShAmt) {
3264    // TODO: For UDIV use SRL instead of SRA.
3265    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
3266    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
3267    d = d.ashr(ShAmt);
3268  }
3269
3270  // Calculate the multiplicative inverse, using Newton's method.
3271  APInt t, xn = d;
3272  while ((t = d*xn) != 1)
3273    xn *= APInt(d.getBitWidth(), 2) - t;
3274
3275  Op2 = DAG.getConstant(xn, Op1.getValueType());
3276  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3277}
3278
3279/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3280/// return a DAG expression to select that will generate the same value by
3281/// multiplying by a magic number.  See:
3282/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3283SDValue TargetLowering::
3284BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3285          std::vector<SDNode*>* Created) const {
3286  EVT VT = N->getValueType(0);
3287  DebugLoc dl= N->getDebugLoc();
3288
3289  // Check to see if we can do this.
3290  // FIXME: We should be more aggressive here.
3291  if (!isTypeLegal(VT))
3292    return SDValue();
3293
3294  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3295  APInt::ms magics = d.magic();
3296
3297  // Multiply the numerator (operand 0) by the magic value
3298  // FIXME: We should support doing a MUL in a wider type
3299  SDValue Q;
3300  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3301                            isOperationLegalOrCustom(ISD::MULHS, VT))
3302    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3303                    DAG.getConstant(magics.m, VT));
3304  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3305                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3306    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3307                              N->getOperand(0),
3308                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3309  else
3310    return SDValue();       // No mulhs or equvialent
3311  // If d > 0 and m < 0, add the numerator
3312  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3313    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3314    if (Created)
3315      Created->push_back(Q.getNode());
3316  }
3317  // If d < 0 and m > 0, subtract the numerator.
3318  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3319    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3320    if (Created)
3321      Created->push_back(Q.getNode());
3322  }
3323  // Shift right algebraic if shift value is nonzero
3324  if (magics.s > 0) {
3325    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3326                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3327    if (Created)
3328      Created->push_back(Q.getNode());
3329  }
3330  // Extract the sign bit and add it to the quotient
3331  SDValue T =
3332    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3333                                           getShiftAmountTy(Q.getValueType())));
3334  if (Created)
3335    Created->push_back(T.getNode());
3336  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3337}
3338
3339/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3340/// return a DAG expression to select that will generate the same value by
3341/// multiplying by a magic number.  See:
3342/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3343SDValue TargetLowering::
3344BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3345          std::vector<SDNode*>* Created) const {
3346  EVT VT = N->getValueType(0);
3347  DebugLoc dl = N->getDebugLoc();
3348
3349  // Check to see if we can do this.
3350  // FIXME: We should be more aggressive here.
3351  if (!isTypeLegal(VT))
3352    return SDValue();
3353
3354  // FIXME: We should use a narrower constant when the upper
3355  // bits are known to be zero.
3356  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3357  APInt::mu magics = N1C.magicu();
3358
3359  SDValue Q = N->getOperand(0);
3360
3361  // If the divisor is even, we can avoid using the expensive fixup by shifting
3362  // the divided value upfront.
3363  if (magics.a != 0 && !N1C[0]) {
3364    unsigned Shift = N1C.countTrailingZeros();
3365    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3366                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3367    if (Created)
3368      Created->push_back(Q.getNode());
3369
3370    // Get magic number for the shifted divisor.
3371    magics = N1C.lshr(Shift).magicu(Shift);
3372    assert(magics.a == 0 && "Should use cheap fixup now");
3373  }
3374
3375  // Multiply the numerator (operand 0) by the magic value
3376  // FIXME: We should support doing a MUL in a wider type
3377  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3378                            isOperationLegalOrCustom(ISD::MULHU, VT))
3379    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3380  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3381                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3382    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3383                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3384  else
3385    return SDValue();       // No mulhu or equvialent
3386  if (Created)
3387    Created->push_back(Q.getNode());
3388
3389  if (magics.a == 0) {
3390    assert(magics.s < N1C.getBitWidth() &&
3391           "We shouldn't generate an undefined shift!");
3392    return DAG.getNode(ISD::SRL, dl, VT, Q,
3393                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3394  } else {
3395    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3396    if (Created)
3397      Created->push_back(NPQ.getNode());
3398    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3399                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3400    if (Created)
3401      Created->push_back(NPQ.getNode());
3402    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3403    if (Created)
3404      Created->push_back(NPQ.getNode());
3405    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3406             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3407  }
3408}
3409