TargetLowering.cpp revision 234353
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include <cctype>
33using namespace llvm;
34
35/// We are in the process of implementing a new TypeLegalization action
36/// - the promotion of vector elements. This feature is disabled by default
37/// and only enabled using this flag.
38static cl::opt<bool>
39AllowPromoteIntElem("promote-elements", cl::Hidden, cl::init(true),
40  cl::desc("Allow promotion of integer vector element types"));
41
42/// InitLibcallNames - Set default libcall names.
43///
44static void InitLibcallNames(const char **Names) {
45  Names[RTLIB::SHL_I16] = "__ashlhi3";
46  Names[RTLIB::SHL_I32] = "__ashlsi3";
47  Names[RTLIB::SHL_I64] = "__ashldi3";
48  Names[RTLIB::SHL_I128] = "__ashlti3";
49  Names[RTLIB::SRL_I16] = "__lshrhi3";
50  Names[RTLIB::SRL_I32] = "__lshrsi3";
51  Names[RTLIB::SRL_I64] = "__lshrdi3";
52  Names[RTLIB::SRL_I128] = "__lshrti3";
53  Names[RTLIB::SRA_I16] = "__ashrhi3";
54  Names[RTLIB::SRA_I32] = "__ashrsi3";
55  Names[RTLIB::SRA_I64] = "__ashrdi3";
56  Names[RTLIB::SRA_I128] = "__ashrti3";
57  Names[RTLIB::MUL_I8] = "__mulqi3";
58  Names[RTLIB::MUL_I16] = "__mulhi3";
59  Names[RTLIB::MUL_I32] = "__mulsi3";
60  Names[RTLIB::MUL_I64] = "__muldi3";
61  Names[RTLIB::MUL_I128] = "__multi3";
62  Names[RTLIB::MULO_I32] = "__mulosi4";
63  Names[RTLIB::MULO_I64] = "__mulodi4";
64  Names[RTLIB::MULO_I128] = "__muloti4";
65  Names[RTLIB::SDIV_I8] = "__divqi3";
66  Names[RTLIB::SDIV_I16] = "__divhi3";
67  Names[RTLIB::SDIV_I32] = "__divsi3";
68  Names[RTLIB::SDIV_I64] = "__divdi3";
69  Names[RTLIB::SDIV_I128] = "__divti3";
70  Names[RTLIB::UDIV_I8] = "__udivqi3";
71  Names[RTLIB::UDIV_I16] = "__udivhi3";
72  Names[RTLIB::UDIV_I32] = "__udivsi3";
73  Names[RTLIB::UDIV_I64] = "__udivdi3";
74  Names[RTLIB::UDIV_I128] = "__udivti3";
75  Names[RTLIB::SREM_I8] = "__modqi3";
76  Names[RTLIB::SREM_I16] = "__modhi3";
77  Names[RTLIB::SREM_I32] = "__modsi3";
78  Names[RTLIB::SREM_I64] = "__moddi3";
79  Names[RTLIB::SREM_I128] = "__modti3";
80  Names[RTLIB::UREM_I8] = "__umodqi3";
81  Names[RTLIB::UREM_I16] = "__umodhi3";
82  Names[RTLIB::UREM_I32] = "__umodsi3";
83  Names[RTLIB::UREM_I64] = "__umoddi3";
84  Names[RTLIB::UREM_I128] = "__umodti3";
85
86  // These are generally not available.
87  Names[RTLIB::SDIVREM_I8] = 0;
88  Names[RTLIB::SDIVREM_I16] = 0;
89  Names[RTLIB::SDIVREM_I32] = 0;
90  Names[RTLIB::SDIVREM_I64] = 0;
91  Names[RTLIB::SDIVREM_I128] = 0;
92  Names[RTLIB::UDIVREM_I8] = 0;
93  Names[RTLIB::UDIVREM_I16] = 0;
94  Names[RTLIB::UDIVREM_I32] = 0;
95  Names[RTLIB::UDIVREM_I64] = 0;
96  Names[RTLIB::UDIVREM_I128] = 0;
97
98  Names[RTLIB::NEG_I32] = "__negsi2";
99  Names[RTLIB::NEG_I64] = "__negdi2";
100  Names[RTLIB::ADD_F32] = "__addsf3";
101  Names[RTLIB::ADD_F64] = "__adddf3";
102  Names[RTLIB::ADD_F80] = "__addxf3";
103  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
104  Names[RTLIB::SUB_F32] = "__subsf3";
105  Names[RTLIB::SUB_F64] = "__subdf3";
106  Names[RTLIB::SUB_F80] = "__subxf3";
107  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
108  Names[RTLIB::MUL_F32] = "__mulsf3";
109  Names[RTLIB::MUL_F64] = "__muldf3";
110  Names[RTLIB::MUL_F80] = "__mulxf3";
111  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
112  Names[RTLIB::DIV_F32] = "__divsf3";
113  Names[RTLIB::DIV_F64] = "__divdf3";
114  Names[RTLIB::DIV_F80] = "__divxf3";
115  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
116  Names[RTLIB::REM_F32] = "fmodf";
117  Names[RTLIB::REM_F64] = "fmod";
118  Names[RTLIB::REM_F80] = "fmodl";
119  Names[RTLIB::REM_PPCF128] = "fmodl";
120  Names[RTLIB::FMA_F32] = "fmaf";
121  Names[RTLIB::FMA_F64] = "fma";
122  Names[RTLIB::FMA_F80] = "fmal";
123  Names[RTLIB::FMA_PPCF128] = "fmal";
124  Names[RTLIB::POWI_F32] = "__powisf2";
125  Names[RTLIB::POWI_F64] = "__powidf2";
126  Names[RTLIB::POWI_F80] = "__powixf2";
127  Names[RTLIB::POWI_PPCF128] = "__powitf2";
128  Names[RTLIB::SQRT_F32] = "sqrtf";
129  Names[RTLIB::SQRT_F64] = "sqrt";
130  Names[RTLIB::SQRT_F80] = "sqrtl";
131  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
132  Names[RTLIB::LOG_F32] = "logf";
133  Names[RTLIB::LOG_F64] = "log";
134  Names[RTLIB::LOG_F80] = "logl";
135  Names[RTLIB::LOG_PPCF128] = "logl";
136  Names[RTLIB::LOG2_F32] = "log2f";
137  Names[RTLIB::LOG2_F64] = "log2";
138  Names[RTLIB::LOG2_F80] = "log2l";
139  Names[RTLIB::LOG2_PPCF128] = "log2l";
140  Names[RTLIB::LOG10_F32] = "log10f";
141  Names[RTLIB::LOG10_F64] = "log10";
142  Names[RTLIB::LOG10_F80] = "log10l";
143  Names[RTLIB::LOG10_PPCF128] = "log10l";
144  Names[RTLIB::EXP_F32] = "expf";
145  Names[RTLIB::EXP_F64] = "exp";
146  Names[RTLIB::EXP_F80] = "expl";
147  Names[RTLIB::EXP_PPCF128] = "expl";
148  Names[RTLIB::EXP2_F32] = "exp2f";
149  Names[RTLIB::EXP2_F64] = "exp2";
150  Names[RTLIB::EXP2_F80] = "exp2l";
151  Names[RTLIB::EXP2_PPCF128] = "exp2l";
152  Names[RTLIB::SIN_F32] = "sinf";
153  Names[RTLIB::SIN_F64] = "sin";
154  Names[RTLIB::SIN_F80] = "sinl";
155  Names[RTLIB::SIN_PPCF128] = "sinl";
156  Names[RTLIB::COS_F32] = "cosf";
157  Names[RTLIB::COS_F64] = "cos";
158  Names[RTLIB::COS_F80] = "cosl";
159  Names[RTLIB::COS_PPCF128] = "cosl";
160  Names[RTLIB::POW_F32] = "powf";
161  Names[RTLIB::POW_F64] = "pow";
162  Names[RTLIB::POW_F80] = "powl";
163  Names[RTLIB::POW_PPCF128] = "powl";
164  Names[RTLIB::CEIL_F32] = "ceilf";
165  Names[RTLIB::CEIL_F64] = "ceil";
166  Names[RTLIB::CEIL_F80] = "ceill";
167  Names[RTLIB::CEIL_PPCF128] = "ceill";
168  Names[RTLIB::TRUNC_F32] = "truncf";
169  Names[RTLIB::TRUNC_F64] = "trunc";
170  Names[RTLIB::TRUNC_F80] = "truncl";
171  Names[RTLIB::TRUNC_PPCF128] = "truncl";
172  Names[RTLIB::RINT_F32] = "rintf";
173  Names[RTLIB::RINT_F64] = "rint";
174  Names[RTLIB::RINT_F80] = "rintl";
175  Names[RTLIB::RINT_PPCF128] = "rintl";
176  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
177  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
178  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
179  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
180  Names[RTLIB::FLOOR_F32] = "floorf";
181  Names[RTLIB::FLOOR_F64] = "floor";
182  Names[RTLIB::FLOOR_F80] = "floorl";
183  Names[RTLIB::FLOOR_PPCF128] = "floorl";
184  Names[RTLIB::COPYSIGN_F32] = "copysignf";
185  Names[RTLIB::COPYSIGN_F64] = "copysign";
186  Names[RTLIB::COPYSIGN_F80] = "copysignl";
187  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
188  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
189  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
190  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
191  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
192  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
193  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
194  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
195  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
196  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
197  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
198  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
199  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
200  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
201  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
202  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
203  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
204  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
205  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
206  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
207  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
208  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
209  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
210  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
211  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
212  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
213  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
214  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
215  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
216  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
217  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
218  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
219  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
220  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
221  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
222  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
223  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
224  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
225  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
226  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
227  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
228  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
229  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
230  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
231  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
232  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
233  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
234  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
235  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
236  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
237  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
238  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
239  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
240  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
241  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
242  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
243  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
244  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
245  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
246  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
247  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
248  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
249  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
250  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
251  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
252  Names[RTLIB::OEQ_F32] = "__eqsf2";
253  Names[RTLIB::OEQ_F64] = "__eqdf2";
254  Names[RTLIB::UNE_F32] = "__nesf2";
255  Names[RTLIB::UNE_F64] = "__nedf2";
256  Names[RTLIB::OGE_F32] = "__gesf2";
257  Names[RTLIB::OGE_F64] = "__gedf2";
258  Names[RTLIB::OLT_F32] = "__ltsf2";
259  Names[RTLIB::OLT_F64] = "__ltdf2";
260  Names[RTLIB::OLE_F32] = "__lesf2";
261  Names[RTLIB::OLE_F64] = "__ledf2";
262  Names[RTLIB::OGT_F32] = "__gtsf2";
263  Names[RTLIB::OGT_F64] = "__gtdf2";
264  Names[RTLIB::UO_F32] = "__unordsf2";
265  Names[RTLIB::UO_F64] = "__unorddf2";
266  Names[RTLIB::O_F32] = "__unordsf2";
267  Names[RTLIB::O_F64] = "__unorddf2";
268  Names[RTLIB::MEMCPY] = "memcpy";
269  Names[RTLIB::MEMMOVE] = "memmove";
270  Names[RTLIB::MEMSET] = "memset";
271  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
272  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
273  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
274  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
275  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
276  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
277  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
278  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
279  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
280  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
281  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
282  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
283  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
284  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
285  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
286  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
287  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
288  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
289  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
290  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
291  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
292  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
293  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
294  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
295  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
296  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
297  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
298  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
299  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
300  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
301  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
302  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
303  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
304}
305
306/// InitLibcallCallingConvs - Set default libcall CallingConvs.
307///
308static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
309  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
310    CCs[i] = CallingConv::C;
311  }
312}
313
314/// getFPEXT - Return the FPEXT_*_* value for the given types, or
315/// UNKNOWN_LIBCALL if there is none.
316RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
317  if (OpVT == MVT::f32) {
318    if (RetVT == MVT::f64)
319      return FPEXT_F32_F64;
320  }
321
322  return UNKNOWN_LIBCALL;
323}
324
325/// getFPROUND - Return the FPROUND_*_* value for the given types, or
326/// UNKNOWN_LIBCALL if there is none.
327RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
328  if (RetVT == MVT::f32) {
329    if (OpVT == MVT::f64)
330      return FPROUND_F64_F32;
331    if (OpVT == MVT::f80)
332      return FPROUND_F80_F32;
333    if (OpVT == MVT::ppcf128)
334      return FPROUND_PPCF128_F32;
335  } else if (RetVT == MVT::f64) {
336    if (OpVT == MVT::f80)
337      return FPROUND_F80_F64;
338    if (OpVT == MVT::ppcf128)
339      return FPROUND_PPCF128_F64;
340  }
341
342  return UNKNOWN_LIBCALL;
343}
344
345/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
346/// UNKNOWN_LIBCALL if there is none.
347RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
348  if (OpVT == MVT::f32) {
349    if (RetVT == MVT::i8)
350      return FPTOSINT_F32_I8;
351    if (RetVT == MVT::i16)
352      return FPTOSINT_F32_I16;
353    if (RetVT == MVT::i32)
354      return FPTOSINT_F32_I32;
355    if (RetVT == MVT::i64)
356      return FPTOSINT_F32_I64;
357    if (RetVT == MVT::i128)
358      return FPTOSINT_F32_I128;
359  } else if (OpVT == MVT::f64) {
360    if (RetVT == MVT::i8)
361      return FPTOSINT_F64_I8;
362    if (RetVT == MVT::i16)
363      return FPTOSINT_F64_I16;
364    if (RetVT == MVT::i32)
365      return FPTOSINT_F64_I32;
366    if (RetVT == MVT::i64)
367      return FPTOSINT_F64_I64;
368    if (RetVT == MVT::i128)
369      return FPTOSINT_F64_I128;
370  } else if (OpVT == MVT::f80) {
371    if (RetVT == MVT::i32)
372      return FPTOSINT_F80_I32;
373    if (RetVT == MVT::i64)
374      return FPTOSINT_F80_I64;
375    if (RetVT == MVT::i128)
376      return FPTOSINT_F80_I128;
377  } else if (OpVT == MVT::ppcf128) {
378    if (RetVT == MVT::i32)
379      return FPTOSINT_PPCF128_I32;
380    if (RetVT == MVT::i64)
381      return FPTOSINT_PPCF128_I64;
382    if (RetVT == MVT::i128)
383      return FPTOSINT_PPCF128_I128;
384  }
385  return UNKNOWN_LIBCALL;
386}
387
388/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
389/// UNKNOWN_LIBCALL if there is none.
390RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
391  if (OpVT == MVT::f32) {
392    if (RetVT == MVT::i8)
393      return FPTOUINT_F32_I8;
394    if (RetVT == MVT::i16)
395      return FPTOUINT_F32_I16;
396    if (RetVT == MVT::i32)
397      return FPTOUINT_F32_I32;
398    if (RetVT == MVT::i64)
399      return FPTOUINT_F32_I64;
400    if (RetVT == MVT::i128)
401      return FPTOUINT_F32_I128;
402  } else if (OpVT == MVT::f64) {
403    if (RetVT == MVT::i8)
404      return FPTOUINT_F64_I8;
405    if (RetVT == MVT::i16)
406      return FPTOUINT_F64_I16;
407    if (RetVT == MVT::i32)
408      return FPTOUINT_F64_I32;
409    if (RetVT == MVT::i64)
410      return FPTOUINT_F64_I64;
411    if (RetVT == MVT::i128)
412      return FPTOUINT_F64_I128;
413  } else if (OpVT == MVT::f80) {
414    if (RetVT == MVT::i32)
415      return FPTOUINT_F80_I32;
416    if (RetVT == MVT::i64)
417      return FPTOUINT_F80_I64;
418    if (RetVT == MVT::i128)
419      return FPTOUINT_F80_I128;
420  } else if (OpVT == MVT::ppcf128) {
421    if (RetVT == MVT::i32)
422      return FPTOUINT_PPCF128_I32;
423    if (RetVT == MVT::i64)
424      return FPTOUINT_PPCF128_I64;
425    if (RetVT == MVT::i128)
426      return FPTOUINT_PPCF128_I128;
427  }
428  return UNKNOWN_LIBCALL;
429}
430
431/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
432/// UNKNOWN_LIBCALL if there is none.
433RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
434  if (OpVT == MVT::i32) {
435    if (RetVT == MVT::f32)
436      return SINTTOFP_I32_F32;
437    else if (RetVT == MVT::f64)
438      return SINTTOFP_I32_F64;
439    else if (RetVT == MVT::f80)
440      return SINTTOFP_I32_F80;
441    else if (RetVT == MVT::ppcf128)
442      return SINTTOFP_I32_PPCF128;
443  } else if (OpVT == MVT::i64) {
444    if (RetVT == MVT::f32)
445      return SINTTOFP_I64_F32;
446    else if (RetVT == MVT::f64)
447      return SINTTOFP_I64_F64;
448    else if (RetVT == MVT::f80)
449      return SINTTOFP_I64_F80;
450    else if (RetVT == MVT::ppcf128)
451      return SINTTOFP_I64_PPCF128;
452  } else if (OpVT == MVT::i128) {
453    if (RetVT == MVT::f32)
454      return SINTTOFP_I128_F32;
455    else if (RetVT == MVT::f64)
456      return SINTTOFP_I128_F64;
457    else if (RetVT == MVT::f80)
458      return SINTTOFP_I128_F80;
459    else if (RetVT == MVT::ppcf128)
460      return SINTTOFP_I128_PPCF128;
461  }
462  return UNKNOWN_LIBCALL;
463}
464
465/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
466/// UNKNOWN_LIBCALL if there is none.
467RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
468  if (OpVT == MVT::i32) {
469    if (RetVT == MVT::f32)
470      return UINTTOFP_I32_F32;
471    else if (RetVT == MVT::f64)
472      return UINTTOFP_I32_F64;
473    else if (RetVT == MVT::f80)
474      return UINTTOFP_I32_F80;
475    else if (RetVT == MVT::ppcf128)
476      return UINTTOFP_I32_PPCF128;
477  } else if (OpVT == MVT::i64) {
478    if (RetVT == MVT::f32)
479      return UINTTOFP_I64_F32;
480    else if (RetVT == MVT::f64)
481      return UINTTOFP_I64_F64;
482    else if (RetVT == MVT::f80)
483      return UINTTOFP_I64_F80;
484    else if (RetVT == MVT::ppcf128)
485      return UINTTOFP_I64_PPCF128;
486  } else if (OpVT == MVT::i128) {
487    if (RetVT == MVT::f32)
488      return UINTTOFP_I128_F32;
489    else if (RetVT == MVT::f64)
490      return UINTTOFP_I128_F64;
491    else if (RetVT == MVT::f80)
492      return UINTTOFP_I128_F80;
493    else if (RetVT == MVT::ppcf128)
494      return UINTTOFP_I128_PPCF128;
495  }
496  return UNKNOWN_LIBCALL;
497}
498
499/// InitCmpLibcallCCs - Set default comparison libcall CC.
500///
501static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
502  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
503  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
504  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
505  CCs[RTLIB::UNE_F32] = ISD::SETNE;
506  CCs[RTLIB::UNE_F64] = ISD::SETNE;
507  CCs[RTLIB::OGE_F32] = ISD::SETGE;
508  CCs[RTLIB::OGE_F64] = ISD::SETGE;
509  CCs[RTLIB::OLT_F32] = ISD::SETLT;
510  CCs[RTLIB::OLT_F64] = ISD::SETLT;
511  CCs[RTLIB::OLE_F32] = ISD::SETLE;
512  CCs[RTLIB::OLE_F64] = ISD::SETLE;
513  CCs[RTLIB::OGT_F32] = ISD::SETGT;
514  CCs[RTLIB::OGT_F64] = ISD::SETGT;
515  CCs[RTLIB::UO_F32] = ISD::SETNE;
516  CCs[RTLIB::UO_F64] = ISD::SETNE;
517  CCs[RTLIB::O_F32] = ISD::SETEQ;
518  CCs[RTLIB::O_F64] = ISD::SETEQ;
519}
520
521/// NOTE: The constructor takes ownership of TLOF.
522TargetLowering::TargetLowering(const TargetMachine &tm,
523                               const TargetLoweringObjectFile *tlof)
524  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
525  mayPromoteElements(AllowPromoteIntElem) {
526  // All operations default to being supported.
527  memset(OpActions, 0, sizeof(OpActions));
528  memset(LoadExtActions, 0, sizeof(LoadExtActions));
529  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
530  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
531  memset(CondCodeActions, 0, sizeof(CondCodeActions));
532
533  // Set default actions for various operations.
534  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
535    // Default all indexed load / store to expand.
536    for (unsigned IM = (unsigned)ISD::PRE_INC;
537         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
538      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
539      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
540    }
541
542    // These operations default to expand.
543    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
545  }
546
547  // Most targets ignore the @llvm.prefetch intrinsic.
548  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
549
550  // ConstantFP nodes default to expand.  Targets can either change this to
551  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
552  // to optimize expansions for certain constants.
553  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
554  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
555  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
556  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
557
558  // These library functions default to expand.
559  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
560  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
561  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
562  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
563  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
564  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
565  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
566  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
567  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
568  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
569  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
570  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
571  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
572  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
573  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
574  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
575  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
576  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
577  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
578  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
579  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
580  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
581  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
582  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
583  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
584  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
585  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
586  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
587  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
588  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
589
590  // Default ISD::TRAP to expand (which turns it into abort).
591  setOperationAction(ISD::TRAP, MVT::Other, Expand);
592
593  IsLittleEndian = TD->isLittleEndian();
594  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
595  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
596  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
597  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
598  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
599    = maxStoresPerMemmoveOptSize = 4;
600  benefitFromCodePlacementOpt = false;
601  UseUnderscoreSetJmp = false;
602  UseUnderscoreLongJmp = false;
603  SelectIsExpensive = false;
604  IntDivIsCheap = false;
605  Pow2DivIsCheap = false;
606  JumpIsExpensive = false;
607  StackPointerRegisterToSaveRestore = 0;
608  ExceptionPointerRegister = 0;
609  ExceptionSelectorRegister = 0;
610  BooleanContents = UndefinedBooleanContent;
611  BooleanVectorContents = UndefinedBooleanContent;
612  SchedPreferenceInfo = Sched::ILP;
613  JumpBufSize = 0;
614  JumpBufAlignment = 0;
615  MinFunctionAlignment = 0;
616  PrefFunctionAlignment = 0;
617  PrefLoopAlignment = 0;
618  MinStackArgumentAlignment = 1;
619  ShouldFoldAtomicFences = false;
620  InsertFencesForAtomic = false;
621
622  InitLibcallNames(LibcallRoutineNames);
623  InitCmpLibcallCCs(CmpLibcallCCs);
624  InitLibcallCallingConvs(LibcallCallingConvs);
625}
626
627TargetLowering::~TargetLowering() {
628  delete &TLOF;
629}
630
631MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
632  return MVT::getIntegerVT(8*TD->getPointerSize());
633}
634
635/// canOpTrap - Returns true if the operation can trap for the value type.
636/// VT must be a legal type.
637bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
638  assert(isTypeLegal(VT));
639  switch (Op) {
640  default:
641    return false;
642  case ISD::FDIV:
643  case ISD::FREM:
644  case ISD::SDIV:
645  case ISD::UDIV:
646  case ISD::SREM:
647  case ISD::UREM:
648    return true;
649  }
650}
651
652
653static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
654                                          unsigned &NumIntermediates,
655                                          EVT &RegisterVT,
656                                          TargetLowering *TLI) {
657  // Figure out the right, legal destination reg to copy into.
658  unsigned NumElts = VT.getVectorNumElements();
659  MVT EltTy = VT.getVectorElementType();
660
661  unsigned NumVectorRegs = 1;
662
663  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
664  // could break down into LHS/RHS like LegalizeDAG does.
665  if (!isPowerOf2_32(NumElts)) {
666    NumVectorRegs = NumElts;
667    NumElts = 1;
668  }
669
670  // Divide the input until we get to a supported size.  This will always
671  // end with a scalar if the target doesn't support vectors.
672  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
673    NumElts >>= 1;
674    NumVectorRegs <<= 1;
675  }
676
677  NumIntermediates = NumVectorRegs;
678
679  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
680  if (!TLI->isTypeLegal(NewVT))
681    NewVT = EltTy;
682  IntermediateVT = NewVT;
683
684  unsigned NewVTSize = NewVT.getSizeInBits();
685
686  // Convert sizes such as i33 to i64.
687  if (!isPowerOf2_32(NewVTSize))
688    NewVTSize = NextPowerOf2(NewVTSize);
689
690  EVT DestVT = TLI->getRegisterType(NewVT);
691  RegisterVT = DestVT;
692  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
693    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
694
695  // Otherwise, promotion or legal types use the same number of registers as
696  // the vector decimated to the appropriate level.
697  return NumVectorRegs;
698}
699
700/// isLegalRC - Return true if the value types that can be represented by the
701/// specified register class are all legal.
702bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
703  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
704       I != E; ++I) {
705    if (isTypeLegal(*I))
706      return true;
707  }
708  return false;
709}
710
711/// hasLegalSuperRegRegClasses - Return true if the specified register class
712/// has one or more super-reg register classes that are legal.
713bool
714TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
715  if (*RC->superregclasses_begin() == 0)
716    return false;
717  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
718         E = RC->superregclasses_end(); I != E; ++I) {
719    const TargetRegisterClass *RRC = *I;
720    if (isLegalRC(RRC))
721      return true;
722  }
723  return false;
724}
725
726/// findRepresentativeClass - Return the largest legal super-reg register class
727/// of the register class for the specified type and its associated "cost".
728std::pair<const TargetRegisterClass*, uint8_t>
729TargetLowering::findRepresentativeClass(EVT VT) const {
730  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
731  if (!RC)
732    return std::make_pair(RC, 0);
733  const TargetRegisterClass *BestRC = RC;
734  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
735         E = RC->superregclasses_end(); I != E; ++I) {
736    const TargetRegisterClass *RRC = *I;
737    if (RRC->isASubClass() || !isLegalRC(RRC))
738      continue;
739    if (!hasLegalSuperRegRegClasses(RRC))
740      return std::make_pair(RRC, 1);
741    BestRC = RRC;
742  }
743  return std::make_pair(BestRC, 1);
744}
745
746
747/// computeRegisterProperties - Once all of the register classes are added,
748/// this allows us to compute derived properties we expose.
749void TargetLowering::computeRegisterProperties() {
750  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
751         "Too many value types for ValueTypeActions to hold!");
752
753  // Everything defaults to needing one register.
754  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
755    NumRegistersForVT[i] = 1;
756    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
757  }
758  // ...except isVoid, which doesn't need any registers.
759  NumRegistersForVT[MVT::isVoid] = 0;
760
761  // Find the largest integer register class.
762  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
763  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
764    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
765
766  // Every integer value type larger than this largest register takes twice as
767  // many registers to represent as the previous ValueType.
768  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
769    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
770    if (!ExpandedVT.isInteger())
771      break;
772    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
773    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
774    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
775    ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
776  }
777
778  // Inspect all of the ValueType's smaller than the largest integer
779  // register to see which ones need promotion.
780  unsigned LegalIntReg = LargestIntReg;
781  for (unsigned IntReg = LargestIntReg - 1;
782       IntReg >= (unsigned)MVT::i1; --IntReg) {
783    EVT IVT = (MVT::SimpleValueType)IntReg;
784    if (isTypeLegal(IVT)) {
785      LegalIntReg = IntReg;
786    } else {
787      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
788        (MVT::SimpleValueType)LegalIntReg;
789      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
790    }
791  }
792
793  // ppcf128 type is really two f64's.
794  if (!isTypeLegal(MVT::ppcf128)) {
795    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
796    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
797    TransformToType[MVT::ppcf128] = MVT::f64;
798    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
799  }
800
801  // Decide how to handle f64. If the target does not have native f64 support,
802  // expand it to i64 and we will be generating soft float library calls.
803  if (!isTypeLegal(MVT::f64)) {
804    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
805    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
806    TransformToType[MVT::f64] = MVT::i64;
807    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
808  }
809
810  // Decide how to handle f32. If the target does not have native support for
811  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
812  if (!isTypeLegal(MVT::f32)) {
813    if (isTypeLegal(MVT::f64)) {
814      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
815      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
816      TransformToType[MVT::f32] = MVT::f64;
817      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
818    } else {
819      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
820      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
821      TransformToType[MVT::f32] = MVT::i32;
822      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
823    }
824  }
825
826  // Loop over all of the vector value types to see which need transformations.
827  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
828       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
829    MVT VT = (MVT::SimpleValueType)i;
830    if (isTypeLegal(VT)) continue;
831
832    // Determine if there is a legal wider type.  If so, we should promote to
833    // that wider vector type.
834    EVT EltVT = VT.getVectorElementType();
835    unsigned NElts = VT.getVectorNumElements();
836    if (NElts != 1) {
837      bool IsLegalWiderType = false;
838      // If we allow the promotion of vector elements using a flag,
839      // then return TypePromoteInteger on vector elements.
840      // First try to promote the elements of integer vectors. If no legal
841      // promotion was found, fallback to the widen-vector method.
842      if (mayPromoteElements)
843      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
844        EVT SVT = (MVT::SimpleValueType)nVT;
845        // Promote vectors of integers to vectors with the same number
846        // of elements, with a wider element type.
847        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
848            && SVT.getVectorNumElements() == NElts &&
849            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
850          TransformToType[i] = SVT;
851          RegisterTypeForVT[i] = SVT;
852          NumRegistersForVT[i] = 1;
853          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
854          IsLegalWiderType = true;
855          break;
856        }
857      }
858
859      if (IsLegalWiderType) continue;
860
861      // Try to widen the vector.
862      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
863        EVT SVT = (MVT::SimpleValueType)nVT;
864        if (SVT.getVectorElementType() == EltVT &&
865            SVT.getVectorNumElements() > NElts &&
866            isTypeLegal(SVT)) {
867          TransformToType[i] = SVT;
868          RegisterTypeForVT[i] = SVT;
869          NumRegistersForVT[i] = 1;
870          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
871          IsLegalWiderType = true;
872          break;
873        }
874      }
875      if (IsLegalWiderType) continue;
876    }
877
878    MVT IntermediateVT;
879    EVT RegisterVT;
880    unsigned NumIntermediates;
881    NumRegistersForVT[i] =
882      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
883                                RegisterVT, this);
884    RegisterTypeForVT[i] = RegisterVT;
885
886    EVT NVT = VT.getPow2VectorType();
887    if (NVT == VT) {
888      // Type is already a power of 2.  The default action is to split.
889      TransformToType[i] = MVT::Other;
890      unsigned NumElts = VT.getVectorNumElements();
891      ValueTypeActions.setTypeAction(VT,
892            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
893    } else {
894      TransformToType[i] = NVT;
895      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
896    }
897  }
898
899  // Determine the 'representative' register class for each value type.
900  // An representative register class is the largest (meaning one which is
901  // not a sub-register class / subreg register class) legal register class for
902  // a group of value types. For example, on i386, i8, i16, and i32
903  // representative would be GR32; while on x86_64 it's GR64.
904  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
905    const TargetRegisterClass* RRC;
906    uint8_t Cost;
907    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
908    RepRegClassForVT[i] = RRC;
909    RepRegClassCostForVT[i] = Cost;
910  }
911}
912
913const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
914  return NULL;
915}
916
917
918EVT TargetLowering::getSetCCResultType(EVT VT) const {
919  assert(!VT.isVector() && "No default SetCC type for vectors!");
920  return PointerTy.SimpleTy;
921}
922
923MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
924  return MVT::i32; // return the default value
925}
926
927/// getVectorTypeBreakdown - Vector types are broken down into some number of
928/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
929/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
930/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
931///
932/// This method returns the number of registers needed, and the VT for each
933/// register.  It also returns the VT and quantity of the intermediate values
934/// before they are promoted/expanded.
935///
936unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
937                                                EVT &IntermediateVT,
938                                                unsigned &NumIntermediates,
939                                                EVT &RegisterVT) const {
940  unsigned NumElts = VT.getVectorNumElements();
941
942  // If there is a wider vector type with the same element type as this one,
943  // we should widen to that legal vector type.  This handles things like
944  // <2 x float> -> <4 x float>.
945  if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
946    RegisterVT = getTypeToTransformTo(Context, VT);
947    if (isTypeLegal(RegisterVT)) {
948      IntermediateVT = RegisterVT;
949      NumIntermediates = 1;
950      return 1;
951    }
952  }
953
954  // Figure out the right, legal destination reg to copy into.
955  EVT EltTy = VT.getVectorElementType();
956
957  unsigned NumVectorRegs = 1;
958
959  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
960  // could break down into LHS/RHS like LegalizeDAG does.
961  if (!isPowerOf2_32(NumElts)) {
962    NumVectorRegs = NumElts;
963    NumElts = 1;
964  }
965
966  // Divide the input until we get to a supported size.  This will always
967  // end with a scalar if the target doesn't support vectors.
968  while (NumElts > 1 && !isTypeLegal(
969                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
970    NumElts >>= 1;
971    NumVectorRegs <<= 1;
972  }
973
974  NumIntermediates = NumVectorRegs;
975
976  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
977  if (!isTypeLegal(NewVT))
978    NewVT = EltTy;
979  IntermediateVT = NewVT;
980
981  EVT DestVT = getRegisterType(Context, NewVT);
982  RegisterVT = DestVT;
983  unsigned NewVTSize = NewVT.getSizeInBits();
984
985  // Convert sizes such as i33 to i64.
986  if (!isPowerOf2_32(NewVTSize))
987    NewVTSize = NextPowerOf2(NewVTSize);
988
989  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
990    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
991
992  // Otherwise, promotion or legal types use the same number of registers as
993  // the vector decimated to the appropriate level.
994  return NumVectorRegs;
995}
996
997/// Get the EVTs and ArgFlags collections that represent the legalized return
998/// type of the given function.  This does not require a DAG or a return value,
999/// and is suitable for use before any DAGs for the function are constructed.
1000/// TODO: Move this out of TargetLowering.cpp.
1001void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
1002                         SmallVectorImpl<ISD::OutputArg> &Outs,
1003                         const TargetLowering &TLI,
1004                         SmallVectorImpl<uint64_t> *Offsets) {
1005  SmallVector<EVT, 4> ValueVTs;
1006  ComputeValueVTs(TLI, ReturnType, ValueVTs);
1007  unsigned NumValues = ValueVTs.size();
1008  if (NumValues == 0) return;
1009  unsigned Offset = 0;
1010
1011  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1012    EVT VT = ValueVTs[j];
1013    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1014
1015    if (attr & Attribute::SExt)
1016      ExtendKind = ISD::SIGN_EXTEND;
1017    else if (attr & Attribute::ZExt)
1018      ExtendKind = ISD::ZERO_EXTEND;
1019
1020    // FIXME: C calling convention requires the return type to be promoted to
1021    // at least 32-bit. But this is not necessary for non-C calling
1022    // conventions. The frontend should mark functions whose return values
1023    // require promoting with signext or zeroext attributes.
1024    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1025      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1026      if (VT.bitsLT(MinVT))
1027        VT = MinVT;
1028    }
1029
1030    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1031    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1032    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1033                        PartVT.getTypeForEVT(ReturnType->getContext()));
1034
1035    // 'inreg' on function refers to return value
1036    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1037    if (attr & Attribute::InReg)
1038      Flags.setInReg();
1039
1040    // Propagate extension type if any
1041    if (attr & Attribute::SExt)
1042      Flags.setSExt();
1043    else if (attr & Attribute::ZExt)
1044      Flags.setZExt();
1045
1046    for (unsigned i = 0; i < NumParts; ++i) {
1047      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1048      if (Offsets) {
1049        Offsets->push_back(Offset);
1050        Offset += PartSize;
1051      }
1052    }
1053  }
1054}
1055
1056/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1057/// function arguments in the caller parameter area.  This is the actual
1058/// alignment, not its logarithm.
1059unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
1060  return TD->getCallFrameTypeAlignment(Ty);
1061}
1062
1063/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1064/// current function.  The returned value is a member of the
1065/// MachineJumpTableInfo::JTEntryKind enum.
1066unsigned TargetLowering::getJumpTableEncoding() const {
1067  // In non-pic modes, just use the address of a block.
1068  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1069    return MachineJumpTableInfo::EK_BlockAddress;
1070
1071  // In PIC mode, if the target supports a GPRel32 directive, use it.
1072  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1073    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1074
1075  // Otherwise, use a label difference.
1076  return MachineJumpTableInfo::EK_LabelDifference32;
1077}
1078
1079SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1080                                                 SelectionDAG &DAG) const {
1081  // If our PIC model is GP relative, use the global offset table as the base.
1082  unsigned JTEncoding = getJumpTableEncoding();
1083
1084  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
1085      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
1086    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1087
1088  return Table;
1089}
1090
1091/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1092/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1093/// MCExpr.
1094const MCExpr *
1095TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1096                                             unsigned JTI,MCContext &Ctx) const{
1097  // The normal PIC reloc base is the label at the start of the jump table.
1098  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1099}
1100
1101bool
1102TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1103  // Assume that everything is safe in static mode.
1104  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1105    return true;
1106
1107  // In dynamic-no-pic mode, assume that known defined values are safe.
1108  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1109      GA &&
1110      !GA->getGlobal()->isDeclaration() &&
1111      !GA->getGlobal()->isWeakForLinker())
1112    return true;
1113
1114  // Otherwise assume nothing is safe.
1115  return false;
1116}
1117
1118//===----------------------------------------------------------------------===//
1119//  Optimization Methods
1120//===----------------------------------------------------------------------===//
1121
1122/// ShrinkDemandedConstant - Check to see if the specified operand of the
1123/// specified instruction is a constant integer.  If so, check to see if there
1124/// are any bits set in the constant that are not demanded.  If so, shrink the
1125/// constant and return true.
1126bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1127                                                        const APInt &Demanded) {
1128  DebugLoc dl = Op.getDebugLoc();
1129
1130  // FIXME: ISD::SELECT, ISD::SELECT_CC
1131  switch (Op.getOpcode()) {
1132  default: break;
1133  case ISD::XOR:
1134  case ISD::AND:
1135  case ISD::OR: {
1136    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1137    if (!C) return false;
1138
1139    if (Op.getOpcode() == ISD::XOR &&
1140        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1141      return false;
1142
1143    // if we can expand it to have all bits set, do it
1144    if (C->getAPIntValue().intersects(~Demanded)) {
1145      EVT VT = Op.getValueType();
1146      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1147                                DAG.getConstant(Demanded &
1148                                                C->getAPIntValue(),
1149                                                VT));
1150      return CombineTo(Op, New);
1151    }
1152
1153    break;
1154  }
1155  }
1156
1157  return false;
1158}
1159
1160/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1161/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1162/// cast, but it could be generalized for targets with other types of
1163/// implicit widening casts.
1164bool
1165TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1166                                                    unsigned BitWidth,
1167                                                    const APInt &Demanded,
1168                                                    DebugLoc dl) {
1169  assert(Op.getNumOperands() == 2 &&
1170         "ShrinkDemandedOp only supports binary operators!");
1171  assert(Op.getNode()->getNumValues() == 1 &&
1172         "ShrinkDemandedOp only supports nodes with one result!");
1173
1174  // Don't do this if the node has another user, which may require the
1175  // full value.
1176  if (!Op.getNode()->hasOneUse())
1177    return false;
1178
1179  // Search for the smallest integer type with free casts to and from
1180  // Op's type. For expedience, just check power-of-2 integer types.
1181  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1182  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1183  if (!isPowerOf2_32(SmallVTBits))
1184    SmallVTBits = NextPowerOf2(SmallVTBits);
1185  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1186    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1187    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1188        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1189      // We found a type with free casts.
1190      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1191                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1192                                          Op.getNode()->getOperand(0)),
1193                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1194                                          Op.getNode()->getOperand(1)));
1195      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1196      return CombineTo(Op, Z);
1197    }
1198  }
1199  return false;
1200}
1201
1202/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1203/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1204/// use this information to simplify Op, create a new simplified DAG node and
1205/// return true, returning the original and new nodes in Old and New. Otherwise,
1206/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1207/// the expression (used to simplify the caller).  The KnownZero/One bits may
1208/// only be accurate for those bits in the DemandedMask.
1209bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1210                                          const APInt &DemandedMask,
1211                                          APInt &KnownZero,
1212                                          APInt &KnownOne,
1213                                          TargetLoweringOpt &TLO,
1214                                          unsigned Depth) const {
1215  unsigned BitWidth = DemandedMask.getBitWidth();
1216  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1217         "Mask size mismatches value type size!");
1218  APInt NewMask = DemandedMask;
1219  DebugLoc dl = Op.getDebugLoc();
1220
1221  // Don't know anything.
1222  KnownZero = KnownOne = APInt(BitWidth, 0);
1223
1224  // Other users may use these bits.
1225  if (!Op.getNode()->hasOneUse()) {
1226    if (Depth != 0) {
1227      // If not at the root, Just compute the KnownZero/KnownOne bits to
1228      // simplify things downstream.
1229      TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1230      return false;
1231    }
1232    // If this is the root being simplified, allow it to have multiple uses,
1233    // just set the NewMask to all bits.
1234    NewMask = APInt::getAllOnesValue(BitWidth);
1235  } else if (DemandedMask == 0) {
1236    // Not demanding any bits from Op.
1237    if (Op.getOpcode() != ISD::UNDEF)
1238      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1239    return false;
1240  } else if (Depth == 6) {        // Limit search depth.
1241    return false;
1242  }
1243
1244  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1245  switch (Op.getOpcode()) {
1246  case ISD::Constant:
1247    // We know all of the bits for a constant!
1248    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1249    KnownZero = ~KnownOne;
1250    return false;   // Don't fall through, will infinitely loop.
1251  case ISD::AND:
1252    // If the RHS is a constant, check to see if the LHS would be zero without
1253    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1254    // simplify the LHS, here we're using information from the LHS to simplify
1255    // the RHS.
1256    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1257      APInt LHSZero, LHSOne;
1258      // Do not increment Depth here; that can cause an infinite loop.
1259      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
1260      // If the LHS already has zeros where RHSC does, this and is dead.
1261      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1262        return TLO.CombineTo(Op, Op.getOperand(0));
1263      // If any of the set bits in the RHS are known zero on the LHS, shrink
1264      // the constant.
1265      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1266        return true;
1267    }
1268
1269    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1270                             KnownOne, TLO, Depth+1))
1271      return true;
1272    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1273    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1274                             KnownZero2, KnownOne2, TLO, Depth+1))
1275      return true;
1276    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1277
1278    // If all of the demanded bits are known one on one side, return the other.
1279    // These bits cannot contribute to the result of the 'and'.
1280    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1281      return TLO.CombineTo(Op, Op.getOperand(0));
1282    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1283      return TLO.CombineTo(Op, Op.getOperand(1));
1284    // If all of the demanded bits in the inputs are known zeros, return zero.
1285    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1286      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1287    // If the RHS is a constant, see if we can simplify it.
1288    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1289      return true;
1290    // If the operation can be done in a smaller type, do so.
1291    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1292      return true;
1293
1294    // Output known-1 bits are only known if set in both the LHS & RHS.
1295    KnownOne &= KnownOne2;
1296    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1297    KnownZero |= KnownZero2;
1298    break;
1299  case ISD::OR:
1300    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1301                             KnownOne, TLO, Depth+1))
1302      return true;
1303    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1304    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1305                             KnownZero2, KnownOne2, TLO, Depth+1))
1306      return true;
1307    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1308
1309    // If all of the demanded bits are known zero on one side, return the other.
1310    // These bits cannot contribute to the result of the 'or'.
1311    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1312      return TLO.CombineTo(Op, Op.getOperand(0));
1313    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1314      return TLO.CombineTo(Op, Op.getOperand(1));
1315    // If all of the potentially set bits on one side are known to be set on
1316    // the other side, just use the 'other' side.
1317    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1318      return TLO.CombineTo(Op, Op.getOperand(0));
1319    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1320      return TLO.CombineTo(Op, Op.getOperand(1));
1321    // If the RHS is a constant, see if we can simplify it.
1322    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1323      return true;
1324    // If the operation can be done in a smaller type, do so.
1325    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1326      return true;
1327
1328    // Output known-0 bits are only known if clear in both the LHS & RHS.
1329    KnownZero &= KnownZero2;
1330    // Output known-1 are known to be set if set in either the LHS | RHS.
1331    KnownOne |= KnownOne2;
1332    break;
1333  case ISD::XOR:
1334    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1335                             KnownOne, TLO, Depth+1))
1336      return true;
1337    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1338    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1339                             KnownOne2, TLO, Depth+1))
1340      return true;
1341    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1342
1343    // If all of the demanded bits are known zero on one side, return the other.
1344    // These bits cannot contribute to the result of the 'xor'.
1345    if ((KnownZero & NewMask) == NewMask)
1346      return TLO.CombineTo(Op, Op.getOperand(0));
1347    if ((KnownZero2 & NewMask) == NewMask)
1348      return TLO.CombineTo(Op, Op.getOperand(1));
1349    // If the operation can be done in a smaller type, do so.
1350    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1351      return true;
1352
1353    // If all of the unknown bits are known to be zero on one side or the other
1354    // (but not both) turn this into an *inclusive* or.
1355    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1356    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1357      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1358                                               Op.getOperand(0),
1359                                               Op.getOperand(1)));
1360
1361    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1362    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1363    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1364    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1365
1366    // If all of the demanded bits on one side are known, and all of the set
1367    // bits on that side are also known to be set on the other side, turn this
1368    // into an AND, as we know the bits will be cleared.
1369    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1370    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1371      if ((KnownOne & KnownOne2) == KnownOne) {
1372        EVT VT = Op.getValueType();
1373        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1374        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1375                                                 Op.getOperand(0), ANDC));
1376      }
1377    }
1378
1379    // If the RHS is a constant, see if we can simplify it.
1380    // for XOR, we prefer to force bits to 1 if they will make a -1.
1381    // if we can't force bits, try to shrink constant
1382    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1383      APInt Expanded = C->getAPIntValue() | (~NewMask);
1384      // if we can expand it to have all bits set, do it
1385      if (Expanded.isAllOnesValue()) {
1386        if (Expanded != C->getAPIntValue()) {
1387          EVT VT = Op.getValueType();
1388          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1389                                          TLO.DAG.getConstant(Expanded, VT));
1390          return TLO.CombineTo(Op, New);
1391        }
1392        // if it already has all the bits set, nothing to change
1393        // but don't shrink either!
1394      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1395        return true;
1396      }
1397    }
1398
1399    KnownZero = KnownZeroOut;
1400    KnownOne  = KnownOneOut;
1401    break;
1402  case ISD::SELECT:
1403    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1404                             KnownOne, TLO, Depth+1))
1405      return true;
1406    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1407                             KnownOne2, TLO, Depth+1))
1408      return true;
1409    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1410    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1411
1412    // If the operands are constants, see if we can simplify them.
1413    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1414      return true;
1415
1416    // Only known if known in both the LHS and RHS.
1417    KnownOne &= KnownOne2;
1418    KnownZero &= KnownZero2;
1419    break;
1420  case ISD::SELECT_CC:
1421    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1422                             KnownOne, TLO, Depth+1))
1423      return true;
1424    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1425                             KnownOne2, TLO, Depth+1))
1426      return true;
1427    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1428    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1429
1430    // If the operands are constants, see if we can simplify them.
1431    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1432      return true;
1433
1434    // Only known if known in both the LHS and RHS.
1435    KnownOne &= KnownOne2;
1436    KnownZero &= KnownZero2;
1437    break;
1438  case ISD::SHL:
1439    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1440      unsigned ShAmt = SA->getZExtValue();
1441      SDValue InOp = Op.getOperand(0);
1442
1443      // If the shift count is an invalid immediate, don't do anything.
1444      if (ShAmt >= BitWidth)
1445        break;
1446
1447      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1448      // single shift.  We can do this if the bottom bits (which are shifted
1449      // out) are never demanded.
1450      if (InOp.getOpcode() == ISD::SRL &&
1451          isa<ConstantSDNode>(InOp.getOperand(1))) {
1452        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1453          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1454          unsigned Opc = ISD::SHL;
1455          int Diff = ShAmt-C1;
1456          if (Diff < 0) {
1457            Diff = -Diff;
1458            Opc = ISD::SRL;
1459          }
1460
1461          SDValue NewSA =
1462            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1463          EVT VT = Op.getValueType();
1464          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1465                                                   InOp.getOperand(0), NewSA));
1466        }
1467      }
1468
1469      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1470                               KnownZero, KnownOne, TLO, Depth+1))
1471        return true;
1472
1473      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474      // are not demanded. This will likely allow the anyext to be folded away.
1475      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1476        SDValue InnerOp = InOp.getNode()->getOperand(0);
1477        EVT InnerVT = InnerOp.getValueType();
1478        unsigned InnerBits = InnerVT.getSizeInBits();
1479        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
1480            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1481          EVT ShTy = getShiftAmountTy(InnerVT);
1482          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1483            ShTy = InnerVT;
1484          SDValue NarrowShl =
1485            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1486                            TLO.DAG.getConstant(ShAmt, ShTy));
1487          return
1488            TLO.CombineTo(Op,
1489                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1490                                          NarrowShl));
1491        }
1492      }
1493
1494      KnownZero <<= SA->getZExtValue();
1495      KnownOne  <<= SA->getZExtValue();
1496      // low bits known zero.
1497      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1498    }
1499    break;
1500  case ISD::SRL:
1501    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1502      EVT VT = Op.getValueType();
1503      unsigned ShAmt = SA->getZExtValue();
1504      unsigned VTSize = VT.getSizeInBits();
1505      SDValue InOp = Op.getOperand(0);
1506
1507      // If the shift count is an invalid immediate, don't do anything.
1508      if (ShAmt >= BitWidth)
1509        break;
1510
1511      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1512      // single shift.  We can do this if the top bits (which are shifted out)
1513      // are never demanded.
1514      if (InOp.getOpcode() == ISD::SHL &&
1515          isa<ConstantSDNode>(InOp.getOperand(1))) {
1516        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1517          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1518          unsigned Opc = ISD::SRL;
1519          int Diff = ShAmt-C1;
1520          if (Diff < 0) {
1521            Diff = -Diff;
1522            Opc = ISD::SHL;
1523          }
1524
1525          SDValue NewSA =
1526            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1527          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1528                                                   InOp.getOperand(0), NewSA));
1529        }
1530      }
1531
1532      // Compute the new bits that are at the top now.
1533      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1534                               KnownZero, KnownOne, TLO, Depth+1))
1535        return true;
1536      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1537      KnownZero = KnownZero.lshr(ShAmt);
1538      KnownOne  = KnownOne.lshr(ShAmt);
1539
1540      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1541      KnownZero |= HighBits;  // High bits known zero.
1542    }
1543    break;
1544  case ISD::SRA:
1545    // If this is an arithmetic shift right and only the low-bit is set, we can
1546    // always convert this into a logical shr, even if the shift amount is
1547    // variable.  The low bit of the shift cannot be an input sign bit unless
1548    // the shift amount is >= the size of the datatype, which is undefined.
1549    if (NewMask == 1)
1550      return TLO.CombineTo(Op,
1551                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1552                                           Op.getOperand(0), Op.getOperand(1)));
1553
1554    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1555      EVT VT = Op.getValueType();
1556      unsigned ShAmt = SA->getZExtValue();
1557
1558      // If the shift count is an invalid immediate, don't do anything.
1559      if (ShAmt >= BitWidth)
1560        break;
1561
1562      APInt InDemandedMask = (NewMask << ShAmt);
1563
1564      // If any of the demanded bits are produced by the sign extension, we also
1565      // demand the input sign bit.
1566      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1567      if (HighBits.intersects(NewMask))
1568        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1569
1570      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1571                               KnownZero, KnownOne, TLO, Depth+1))
1572        return true;
1573      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1574      KnownZero = KnownZero.lshr(ShAmt);
1575      KnownOne  = KnownOne.lshr(ShAmt);
1576
1577      // Handle the sign bit, adjusted to where it is now in the mask.
1578      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1579
1580      // If the input sign bit is known to be zero, or if none of the top bits
1581      // are demanded, turn this into an unsigned shift right.
1582      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1583        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1584                                                 Op.getOperand(0),
1585                                                 Op.getOperand(1)));
1586      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1587        KnownOne |= HighBits;
1588      }
1589    }
1590    break;
1591  case ISD::SIGN_EXTEND_INREG: {
1592    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1593
1594    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
1595    // If we only care about the highest bit, don't bother shifting right.
1596    if (MsbMask == DemandedMask) {
1597      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
1598      SDValue InOp = Op.getOperand(0);
1599
1600      // Compute the correct shift amount type, which must be getShiftAmountTy
1601      // for scalar types after legalization.
1602      EVT ShiftAmtTy = Op.getValueType();
1603      if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1604        ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
1605
1606      SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
1607      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1608                                            Op.getValueType(), InOp, ShiftAmt));
1609    }
1610
1611    // Sign extension.  Compute the demanded bits in the result that are not
1612    // present in the input.
1613    APInt NewBits =
1614      APInt::getHighBitsSet(BitWidth,
1615                            BitWidth - ExVT.getScalarType().getSizeInBits());
1616
1617    // If none of the extended bits are demanded, eliminate the sextinreg.
1618    if ((NewBits & NewMask) == 0)
1619      return TLO.CombineTo(Op, Op.getOperand(0));
1620
1621    APInt InSignBit =
1622      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
1623    APInt InputDemandedBits =
1624      APInt::getLowBitsSet(BitWidth,
1625                           ExVT.getScalarType().getSizeInBits()) &
1626      NewMask;
1627
1628    // Since the sign extended bits are demanded, we know that the sign
1629    // bit is demanded.
1630    InputDemandedBits |= InSignBit;
1631
1632    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1633                             KnownZero, KnownOne, TLO, Depth+1))
1634      return true;
1635    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1636
1637    // If the sign bit of the input is known set or clear, then we know the
1638    // top bits of the result.
1639
1640    // If the input sign bit is known zero, convert this into a zero extension.
1641    if (KnownZero.intersects(InSignBit))
1642      return TLO.CombineTo(Op,
1643                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
1644
1645    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1646      KnownOne |= NewBits;
1647      KnownZero &= ~NewBits;
1648    } else {                       // Input sign bit unknown
1649      KnownZero &= ~NewBits;
1650      KnownOne &= ~NewBits;
1651    }
1652    break;
1653  }
1654  case ISD::ZERO_EXTEND: {
1655    unsigned OperandBitWidth =
1656      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1657    APInt InMask = NewMask.trunc(OperandBitWidth);
1658
1659    // If none of the top bits are demanded, convert this into an any_extend.
1660    APInt NewBits =
1661      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1662    if (!NewBits.intersects(NewMask))
1663      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1664                                               Op.getValueType(),
1665                                               Op.getOperand(0)));
1666
1667    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1668                             KnownZero, KnownOne, TLO, Depth+1))
1669      return true;
1670    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1671    KnownZero = KnownZero.zext(BitWidth);
1672    KnownOne = KnownOne.zext(BitWidth);
1673    KnownZero |= NewBits;
1674    break;
1675  }
1676  case ISD::SIGN_EXTEND: {
1677    EVT InVT = Op.getOperand(0).getValueType();
1678    unsigned InBits = InVT.getScalarType().getSizeInBits();
1679    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1680    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1681    APInt NewBits   = ~InMask & NewMask;
1682
1683    // If none of the top bits are demanded, convert this into an any_extend.
1684    if (NewBits == 0)
1685      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1686                                              Op.getValueType(),
1687                                              Op.getOperand(0)));
1688
1689    // Since some of the sign extended bits are demanded, we know that the sign
1690    // bit is demanded.
1691    APInt InDemandedBits = InMask & NewMask;
1692    InDemandedBits |= InSignBit;
1693    InDemandedBits = InDemandedBits.trunc(InBits);
1694
1695    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1696                             KnownOne, TLO, Depth+1))
1697      return true;
1698    KnownZero = KnownZero.zext(BitWidth);
1699    KnownOne = KnownOne.zext(BitWidth);
1700
1701    // If the sign bit is known zero, convert this to a zero extend.
1702    if (KnownZero.intersects(InSignBit))
1703      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1704                                               Op.getValueType(),
1705                                               Op.getOperand(0)));
1706
1707    // If the sign bit is known one, the top bits match.
1708    if (KnownOne.intersects(InSignBit)) {
1709      KnownOne |= NewBits;
1710      assert((KnownZero & NewBits) == 0);
1711    } else {   // Otherwise, top bits aren't known.
1712      assert((KnownOne & NewBits) == 0);
1713      assert((KnownZero & NewBits) == 0);
1714    }
1715    break;
1716  }
1717  case ISD::ANY_EXTEND: {
1718    unsigned OperandBitWidth =
1719      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1720    APInt InMask = NewMask.trunc(OperandBitWidth);
1721    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1722                             KnownZero, KnownOne, TLO, Depth+1))
1723      return true;
1724    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1725    KnownZero = KnownZero.zext(BitWidth);
1726    KnownOne = KnownOne.zext(BitWidth);
1727    break;
1728  }
1729  case ISD::TRUNCATE: {
1730    // Simplify the input, using demanded bit information, and compute the known
1731    // zero/one bits live out.
1732    unsigned OperandBitWidth =
1733      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1734    APInt TruncMask = NewMask.zext(OperandBitWidth);
1735    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1736                             KnownZero, KnownOne, TLO, Depth+1))
1737      return true;
1738    KnownZero = KnownZero.trunc(BitWidth);
1739    KnownOne = KnownOne.trunc(BitWidth);
1740
1741    // If the input is only used by this truncate, see if we can shrink it based
1742    // on the known demanded bits.
1743    if (Op.getOperand(0).getNode()->hasOneUse()) {
1744      SDValue In = Op.getOperand(0);
1745      switch (In.getOpcode()) {
1746      default: break;
1747      case ISD::SRL:
1748        // Shrink SRL by a constant if none of the high bits shifted in are
1749        // demanded.
1750        if (TLO.LegalTypes() &&
1751            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1752          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1753          // undesirable.
1754          break;
1755        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1756        if (!ShAmt)
1757          break;
1758        SDValue Shift = In.getOperand(1);
1759        if (TLO.LegalTypes()) {
1760          uint64_t ShVal = ShAmt->getZExtValue();
1761          Shift =
1762            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1763        }
1764
1765        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1766                                               OperandBitWidth - BitWidth);
1767        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1768
1769        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1770          // None of the shifted in bits are needed.  Add a truncate of the
1771          // shift input, then shift it.
1772          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1773                                             Op.getValueType(),
1774                                             In.getOperand(0));
1775          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1776                                                   Op.getValueType(),
1777                                                   NewTrunc,
1778                                                   Shift));
1779        }
1780        break;
1781      }
1782    }
1783
1784    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1785    break;
1786  }
1787  case ISD::AssertZext: {
1788    // AssertZext demands all of the high bits, plus any of the low bits
1789    // demanded by its users.
1790    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1791    APInt InMask = APInt::getLowBitsSet(BitWidth,
1792                                        VT.getSizeInBits());
1793    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1794                             KnownZero, KnownOne, TLO, Depth+1))
1795      return true;
1796    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1797
1798    KnownZero |= ~InMask & NewMask;
1799    break;
1800  }
1801  case ISD::BITCAST:
1802    // If this is an FP->Int bitcast and if the sign bit is the only
1803    // thing demanded, turn this into a FGETSIGN.
1804    if (!TLO.LegalOperations() &&
1805        !Op.getValueType().isVector() &&
1806        !Op.getOperand(0).getValueType().isVector() &&
1807        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1808        Op.getOperand(0).getValueType().isFloatingPoint()) {
1809      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1810      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1811      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1812        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1813        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1814        // place.  We expect the SHL to be eliminated by other optimizations.
1815        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1816        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1817        if (!OpVTLegal && OpVTSizeInBits > 32)
1818          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1819        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1820        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1821        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1822                                                 Op.getValueType(),
1823                                                 Sign, ShAmt));
1824      }
1825    }
1826    break;
1827  case ISD::ADD:
1828  case ISD::MUL:
1829  case ISD::SUB: {
1830    // Add, Sub, and Mul don't demand any bits in positions beyond that
1831    // of the highest bit demanded of them.
1832    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1833                                        BitWidth - NewMask.countLeadingZeros());
1834    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1835                             KnownOne2, TLO, Depth+1))
1836      return true;
1837    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1838                             KnownOne2, TLO, Depth+1))
1839      return true;
1840    // See if the operation should be performed at a smaller bit width.
1841    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1842      return true;
1843  }
1844  // FALL THROUGH
1845  default:
1846    // Just use ComputeMaskedBits to compute output bits.
1847    TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1848    break;
1849  }
1850
1851  // If we know the value of all of the demanded bits, return this as a
1852  // constant.
1853  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1854    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1855
1856  return false;
1857}
1858
1859/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1860/// in Mask are known to be either zero or one and return them in the
1861/// KnownZero/KnownOne bitsets.
1862void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1863                                                    APInt &KnownZero,
1864                                                    APInt &KnownOne,
1865                                                    const SelectionDAG &DAG,
1866                                                    unsigned Depth) const {
1867  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1868          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1869          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1870          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1871         "Should use MaskedValueIsZero if you don't know whether Op"
1872         " is a target node!");
1873  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1874}
1875
1876/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1877/// targets that want to expose additional information about sign bits to the
1878/// DAG Combiner.
1879unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1880                                                         unsigned Depth) const {
1881  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1882          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1883          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1884          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1885         "Should use ComputeNumSignBits if you don't know whether Op"
1886         " is a target node!");
1887  return 1;
1888}
1889
1890/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1891/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1892/// determine which bit is set.
1893///
1894static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1895  // A left-shift of a constant one will have exactly one bit set, because
1896  // shifting the bit off the end is undefined.
1897  if (Val.getOpcode() == ISD::SHL)
1898    if (ConstantSDNode *C =
1899         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1900      if (C->getAPIntValue() == 1)
1901        return true;
1902
1903  // Similarly, a right-shift of a constant sign-bit will have exactly
1904  // one bit set.
1905  if (Val.getOpcode() == ISD::SRL)
1906    if (ConstantSDNode *C =
1907         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1908      if (C->getAPIntValue().isSignBit())
1909        return true;
1910
1911  // More could be done here, though the above checks are enough
1912  // to handle some common cases.
1913
1914  // Fall back to ComputeMaskedBits to catch other known cases.
1915  EVT OpVT = Val.getValueType();
1916  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1917  APInt KnownZero, KnownOne;
1918  DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
1919  return (KnownZero.countPopulation() == BitWidth - 1) &&
1920         (KnownOne.countPopulation() == 1);
1921}
1922
1923/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1924/// and cc. If it is unable to simplify it, return a null SDValue.
1925SDValue
1926TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1927                              ISD::CondCode Cond, bool foldBooleans,
1928                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1929  SelectionDAG &DAG = DCI.DAG;
1930
1931  // These setcc operations always fold.
1932  switch (Cond) {
1933  default: break;
1934  case ISD::SETFALSE:
1935  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1936  case ISD::SETTRUE:
1937  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1938  }
1939
1940  // Ensure that the constant occurs on the RHS, and fold constant
1941  // comparisons.
1942  if (isa<ConstantSDNode>(N0.getNode()))
1943    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1944
1945  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1946    const APInt &C1 = N1C->getAPIntValue();
1947
1948    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1949    // equality comparison, then we're just comparing whether X itself is
1950    // zero.
1951    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1952        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1953        N0.getOperand(1).getOpcode() == ISD::Constant) {
1954      const APInt &ShAmt
1955        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1956      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1957          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1958        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1959          // (srl (ctlz x), 5) == 0  -> X != 0
1960          // (srl (ctlz x), 5) != 1  -> X != 0
1961          Cond = ISD::SETNE;
1962        } else {
1963          // (srl (ctlz x), 5) != 0  -> X == 0
1964          // (srl (ctlz x), 5) == 1  -> X == 0
1965          Cond = ISD::SETEQ;
1966        }
1967        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1968        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1969                            Zero, Cond);
1970      }
1971    }
1972
1973    SDValue CTPOP = N0;
1974    // Look through truncs that don't change the value of a ctpop.
1975    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1976      CTPOP = N0.getOperand(0);
1977
1978    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1979        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1980                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1981      EVT CTVT = CTPOP.getValueType();
1982      SDValue CTOp = CTPOP.getOperand(0);
1983
1984      // (ctpop x) u< 2 -> (x & x-1) == 0
1985      // (ctpop x) u> 1 -> (x & x-1) != 0
1986      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1987        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1988                                  DAG.getConstant(1, CTVT));
1989        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1990        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1991        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1992      }
1993
1994      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1995    }
1996
1997    // (zext x) == C --> x == (trunc C)
1998    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1999        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2000      unsigned MinBits = N0.getValueSizeInBits();
2001      SDValue PreZExt;
2002      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2003        // ZExt
2004        MinBits = N0->getOperand(0).getValueSizeInBits();
2005        PreZExt = N0->getOperand(0);
2006      } else if (N0->getOpcode() == ISD::AND) {
2007        // DAGCombine turns costly ZExts into ANDs
2008        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2009          if ((C->getAPIntValue()+1).isPowerOf2()) {
2010            MinBits = C->getAPIntValue().countTrailingOnes();
2011            PreZExt = N0->getOperand(0);
2012          }
2013      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
2014        // ZEXTLOAD
2015        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2016          MinBits = LN0->getMemoryVT().getSizeInBits();
2017          PreZExt = N0;
2018        }
2019      }
2020
2021      // Make sure we're not loosing bits from the constant.
2022      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
2023        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2024        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2025          // Will get folded away.
2026          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2027          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2028          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2029        }
2030      }
2031    }
2032
2033    // If the LHS is '(and load, const)', the RHS is 0,
2034    // the test is for equality or unsigned, and all 1 bits of the const are
2035    // in the same partial word, see if we can shorten the load.
2036    if (DCI.isBeforeLegalize() &&
2037        N0.getOpcode() == ISD::AND && C1 == 0 &&
2038        N0.getNode()->hasOneUse() &&
2039        isa<LoadSDNode>(N0.getOperand(0)) &&
2040        N0.getOperand(0).getNode()->hasOneUse() &&
2041        isa<ConstantSDNode>(N0.getOperand(1))) {
2042      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2043      APInt bestMask;
2044      unsigned bestWidth = 0, bestOffset = 0;
2045      if (!Lod->isVolatile() && Lod->isUnindexed()) {
2046        unsigned origWidth = N0.getValueType().getSizeInBits();
2047        unsigned maskWidth = origWidth;
2048        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2049        // 8 bits, but have to be careful...
2050        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2051          origWidth = Lod->getMemoryVT().getSizeInBits();
2052        const APInt &Mask =
2053          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2054        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2055          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2056          for (unsigned offset=0; offset<origWidth/width; offset++) {
2057            if ((newMask & Mask) == Mask) {
2058              if (!TD->isLittleEndian())
2059                bestOffset = (origWidth/width - offset - 1) * (width/8);
2060              else
2061                bestOffset = (uint64_t)offset * (width/8);
2062              bestMask = Mask.lshr(offset * (width/8) * 8);
2063              bestWidth = width;
2064              break;
2065            }
2066            newMask = newMask << width;
2067          }
2068        }
2069      }
2070      if (bestWidth) {
2071        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2072        if (newVT.isRound()) {
2073          EVT PtrType = Lod->getOperand(1).getValueType();
2074          SDValue Ptr = Lod->getBasePtr();
2075          if (bestOffset != 0)
2076            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2077                              DAG.getConstant(bestOffset, PtrType));
2078          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2079          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2080                                Lod->getPointerInfo().getWithOffset(bestOffset),
2081                                        false, false, false, NewAlign);
2082          return DAG.getSetCC(dl, VT,
2083                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2084                                      DAG.getConstant(bestMask.trunc(bestWidth),
2085                                                      newVT)),
2086                              DAG.getConstant(0LL, newVT), Cond);
2087        }
2088      }
2089    }
2090
2091    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2092    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2093      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2094
2095      // If the comparison constant has bits in the upper part, the
2096      // zero-extended value could never match.
2097      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2098                                              C1.getBitWidth() - InSize))) {
2099        switch (Cond) {
2100        case ISD::SETUGT:
2101        case ISD::SETUGE:
2102        case ISD::SETEQ: return DAG.getConstant(0, VT);
2103        case ISD::SETULT:
2104        case ISD::SETULE:
2105        case ISD::SETNE: return DAG.getConstant(1, VT);
2106        case ISD::SETGT:
2107        case ISD::SETGE:
2108          // True if the sign bit of C1 is set.
2109          return DAG.getConstant(C1.isNegative(), VT);
2110        case ISD::SETLT:
2111        case ISD::SETLE:
2112          // True if the sign bit of C1 isn't set.
2113          return DAG.getConstant(C1.isNonNegative(), VT);
2114        default:
2115          break;
2116        }
2117      }
2118
2119      // Otherwise, we can perform the comparison with the low bits.
2120      switch (Cond) {
2121      case ISD::SETEQ:
2122      case ISD::SETNE:
2123      case ISD::SETUGT:
2124      case ISD::SETUGE:
2125      case ISD::SETULT:
2126      case ISD::SETULE: {
2127        EVT newVT = N0.getOperand(0).getValueType();
2128        if (DCI.isBeforeLegalizeOps() ||
2129            (isOperationLegal(ISD::SETCC, newVT) &&
2130              getCondCodeAction(Cond, newVT)==Legal))
2131          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2132                              DAG.getConstant(C1.trunc(InSize), newVT),
2133                              Cond);
2134        break;
2135      }
2136      default:
2137        break;   // todo, be more careful with signed comparisons
2138      }
2139    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2140               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2141      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2142      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2143      EVT ExtDstTy = N0.getValueType();
2144      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2145
2146      // If the constant doesn't fit into the number of bits for the source of
2147      // the sign extension, it is impossible for both sides to be equal.
2148      if (C1.getMinSignedBits() > ExtSrcTyBits)
2149        return DAG.getConstant(Cond == ISD::SETNE, VT);
2150
2151      SDValue ZextOp;
2152      EVT Op0Ty = N0.getOperand(0).getValueType();
2153      if (Op0Ty == ExtSrcTy) {
2154        ZextOp = N0.getOperand(0);
2155      } else {
2156        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2157        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2158                              DAG.getConstant(Imm, Op0Ty));
2159      }
2160      if (!DCI.isCalledByLegalizer())
2161        DCI.AddToWorklist(ZextOp.getNode());
2162      // Otherwise, make this a use of a zext.
2163      return DAG.getSetCC(dl, VT, ZextOp,
2164                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2165                                                              ExtDstTyBits,
2166                                                              ExtSrcTyBits),
2167                                          ExtDstTy),
2168                          Cond);
2169    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2170                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2171      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2172      if (N0.getOpcode() == ISD::SETCC &&
2173          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2174        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2175        if (TrueWhenTrue)
2176          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2177        // Invert the condition.
2178        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2179        CC = ISD::getSetCCInverse(CC,
2180                                  N0.getOperand(0).getValueType().isInteger());
2181        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2182      }
2183
2184      if ((N0.getOpcode() == ISD::XOR ||
2185           (N0.getOpcode() == ISD::AND &&
2186            N0.getOperand(0).getOpcode() == ISD::XOR &&
2187            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2188          isa<ConstantSDNode>(N0.getOperand(1)) &&
2189          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2190        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2191        // can only do this if the top bits are known zero.
2192        unsigned BitWidth = N0.getValueSizeInBits();
2193        if (DAG.MaskedValueIsZero(N0,
2194                                  APInt::getHighBitsSet(BitWidth,
2195                                                        BitWidth-1))) {
2196          // Okay, get the un-inverted input value.
2197          SDValue Val;
2198          if (N0.getOpcode() == ISD::XOR)
2199            Val = N0.getOperand(0);
2200          else {
2201            assert(N0.getOpcode() == ISD::AND &&
2202                    N0.getOperand(0).getOpcode() == ISD::XOR);
2203            // ((X^1)&1)^1 -> X & 1
2204            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2205                              N0.getOperand(0).getOperand(0),
2206                              N0.getOperand(1));
2207          }
2208
2209          return DAG.getSetCC(dl, VT, Val, N1,
2210                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2211        }
2212      } else if (N1C->getAPIntValue() == 1 &&
2213                 (VT == MVT::i1 ||
2214                  getBooleanContents(false) == ZeroOrOneBooleanContent)) {
2215        SDValue Op0 = N0;
2216        if (Op0.getOpcode() == ISD::TRUNCATE)
2217          Op0 = Op0.getOperand(0);
2218
2219        if ((Op0.getOpcode() == ISD::XOR) &&
2220            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2221            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2222          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2223          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2224          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2225                              Cond);
2226        } else if (Op0.getOpcode() == ISD::AND &&
2227                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2228                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2229          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2230          if (Op0.getValueType().bitsGT(VT))
2231            Op0 = DAG.getNode(ISD::AND, dl, VT,
2232                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2233                          DAG.getConstant(1, VT));
2234          else if (Op0.getValueType().bitsLT(VT))
2235            Op0 = DAG.getNode(ISD::AND, dl, VT,
2236                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2237                        DAG.getConstant(1, VT));
2238
2239          return DAG.getSetCC(dl, VT, Op0,
2240                              DAG.getConstant(0, Op0.getValueType()),
2241                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2242        }
2243      }
2244    }
2245
2246    APInt MinVal, MaxVal;
2247    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2248    if (ISD::isSignedIntSetCC(Cond)) {
2249      MinVal = APInt::getSignedMinValue(OperandBitSize);
2250      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2251    } else {
2252      MinVal = APInt::getMinValue(OperandBitSize);
2253      MaxVal = APInt::getMaxValue(OperandBitSize);
2254    }
2255
2256    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2257    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2258      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2259      // X >= C0 --> X > (C0-1)
2260      return DAG.getSetCC(dl, VT, N0,
2261                          DAG.getConstant(C1-1, N1.getValueType()),
2262                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2263    }
2264
2265    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2266      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2267      // X <= C0 --> X < (C0+1)
2268      return DAG.getSetCC(dl, VT, N0,
2269                          DAG.getConstant(C1+1, N1.getValueType()),
2270                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2271    }
2272
2273    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2274      return DAG.getConstant(0, VT);      // X < MIN --> false
2275    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2276      return DAG.getConstant(1, VT);      // X >= MIN --> true
2277    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2278      return DAG.getConstant(0, VT);      // X > MAX --> false
2279    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2280      return DAG.getConstant(1, VT);      // X <= MAX --> true
2281
2282    // Canonicalize setgt X, Min --> setne X, Min
2283    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2284      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2285    // Canonicalize setlt X, Max --> setne X, Max
2286    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2287      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2288
2289    // If we have setult X, 1, turn it into seteq X, 0
2290    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2291      return DAG.getSetCC(dl, VT, N0,
2292                          DAG.getConstant(MinVal, N0.getValueType()),
2293                          ISD::SETEQ);
2294    // If we have setugt X, Max-1, turn it into seteq X, Max
2295    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2296      return DAG.getSetCC(dl, VT, N0,
2297                          DAG.getConstant(MaxVal, N0.getValueType()),
2298                          ISD::SETEQ);
2299
2300    // If we have "setcc X, C0", check to see if we can shrink the immediate
2301    // by changing cc.
2302
2303    // SETUGT X, SINTMAX  -> SETLT X, 0
2304    if (Cond == ISD::SETUGT &&
2305        C1 == APInt::getSignedMaxValue(OperandBitSize))
2306      return DAG.getSetCC(dl, VT, N0,
2307                          DAG.getConstant(0, N1.getValueType()),
2308                          ISD::SETLT);
2309
2310    // SETULT X, SINTMIN  -> SETGT X, -1
2311    if (Cond == ISD::SETULT &&
2312        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2313      SDValue ConstMinusOne =
2314          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2315                          N1.getValueType());
2316      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2317    }
2318
2319    // Fold bit comparisons when we can.
2320    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2321        (VT == N0.getValueType() ||
2322         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2323        N0.getOpcode() == ISD::AND)
2324      if (ConstantSDNode *AndRHS =
2325                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2326        EVT ShiftTy = DCI.isBeforeLegalize() ?
2327          getPointerTy() : getShiftAmountTy(N0.getValueType());
2328        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2329          // Perform the xform if the AND RHS is a single bit.
2330          if (AndRHS->getAPIntValue().isPowerOf2()) {
2331            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2332                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2333                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2334          }
2335        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2336          // (X & 8) == 8  -->  (X & 8) >> 3
2337          // Perform the xform if C1 is a single bit.
2338          if (C1.isPowerOf2()) {
2339            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2340                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2341                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2342          }
2343        }
2344      }
2345  }
2346
2347  if (isa<ConstantFPSDNode>(N0.getNode())) {
2348    // Constant fold or commute setcc.
2349    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2350    if (O.getNode()) return O;
2351  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2352    // If the RHS of an FP comparison is a constant, simplify it away in
2353    // some cases.
2354    if (CFP->getValueAPF().isNaN()) {
2355      // If an operand is known to be a nan, we can fold it.
2356      switch (ISD::getUnorderedFlavor(Cond)) {
2357      default: llvm_unreachable("Unknown flavor!");
2358      case 0:  // Known false.
2359        return DAG.getConstant(0, VT);
2360      case 1:  // Known true.
2361        return DAG.getConstant(1, VT);
2362      case 2:  // Undefined.
2363        return DAG.getUNDEF(VT);
2364      }
2365    }
2366
2367    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2368    // constant if knowing that the operand is non-nan is enough.  We prefer to
2369    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2370    // materialize 0.0.
2371    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2372      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2373
2374    // If the condition is not legal, see if we can find an equivalent one
2375    // which is legal.
2376    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2377      // If the comparison was an awkward floating-point == or != and one of
2378      // the comparison operands is infinity or negative infinity, convert the
2379      // condition to a less-awkward <= or >=.
2380      if (CFP->getValueAPF().isInfinity()) {
2381        if (CFP->getValueAPF().isNegative()) {
2382          if (Cond == ISD::SETOEQ &&
2383              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2384            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2385          if (Cond == ISD::SETUEQ &&
2386              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2387            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2388          if (Cond == ISD::SETUNE &&
2389              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2390            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2391          if (Cond == ISD::SETONE &&
2392              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2393            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2394        } else {
2395          if (Cond == ISD::SETOEQ &&
2396              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2397            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2398          if (Cond == ISD::SETUEQ &&
2399              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2400            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2401          if (Cond == ISD::SETUNE &&
2402              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2403            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2404          if (Cond == ISD::SETONE &&
2405              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2406            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2407        }
2408      }
2409    }
2410  }
2411
2412  if (N0 == N1) {
2413    // We can always fold X == X for integer setcc's.
2414    if (N0.getValueType().isInteger()) {
2415      switch (getBooleanContents(N0.getValueType().isVector())) {
2416      case UndefinedBooleanContent:
2417      case ZeroOrOneBooleanContent:
2418        return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2419      case ZeroOrNegativeOneBooleanContent:
2420        return DAG.getConstant(ISD::isTrueWhenEqual(Cond) ? -1 : 0, VT);
2421      }
2422    }
2423    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2424    if (UOF == 2)   // FP operators that are undefined on NaNs.
2425      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2426    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2427      return DAG.getConstant(UOF, VT);
2428    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2429    // if it is not already.
2430    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2431    if (NewCond != Cond)
2432      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2433  }
2434
2435  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2436      N0.getValueType().isInteger()) {
2437    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2438        N0.getOpcode() == ISD::XOR) {
2439      // Simplify (X+Y) == (X+Z) -->  Y == Z
2440      if (N0.getOpcode() == N1.getOpcode()) {
2441        if (N0.getOperand(0) == N1.getOperand(0))
2442          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2443        if (N0.getOperand(1) == N1.getOperand(1))
2444          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2445        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2446          // If X op Y == Y op X, try other combinations.
2447          if (N0.getOperand(0) == N1.getOperand(1))
2448            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2449                                Cond);
2450          if (N0.getOperand(1) == N1.getOperand(0))
2451            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2452                                Cond);
2453        }
2454      }
2455
2456      // If RHS is a legal immediate value for a compare instruction, we need
2457      // to be careful about increasing register pressure needlessly.
2458      bool LegalRHSImm = false;
2459
2460      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2461        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2462          // Turn (X+C1) == C2 --> X == C2-C1
2463          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2464            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2465                                DAG.getConstant(RHSC->getAPIntValue()-
2466                                                LHSR->getAPIntValue(),
2467                                N0.getValueType()), Cond);
2468          }
2469
2470          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2471          if (N0.getOpcode() == ISD::XOR)
2472            // If we know that all of the inverted bits are zero, don't bother
2473            // performing the inversion.
2474            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2475              return
2476                DAG.getSetCC(dl, VT, N0.getOperand(0),
2477                             DAG.getConstant(LHSR->getAPIntValue() ^
2478                                               RHSC->getAPIntValue(),
2479                                             N0.getValueType()),
2480                             Cond);
2481        }
2482
2483        // Turn (C1-X) == C2 --> X == C1-C2
2484        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2485          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2486            return
2487              DAG.getSetCC(dl, VT, N0.getOperand(1),
2488                           DAG.getConstant(SUBC->getAPIntValue() -
2489                                             RHSC->getAPIntValue(),
2490                                           N0.getValueType()),
2491                           Cond);
2492          }
2493        }
2494
2495        // Could RHSC fold directly into a compare?
2496        if (RHSC->getValueType(0).getSizeInBits() <= 64)
2497          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2498      }
2499
2500      // Simplify (X+Z) == X -->  Z == 0
2501      // Don't do this if X is an immediate that can fold into a cmp
2502      // instruction and X+Z has other uses. It could be an induction variable
2503      // chain, and the transform would increase register pressure.
2504      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2505        if (N0.getOperand(0) == N1)
2506          return DAG.getSetCC(dl, VT, N0.getOperand(1),
2507                              DAG.getConstant(0, N0.getValueType()), Cond);
2508        if (N0.getOperand(1) == N1) {
2509          if (DAG.isCommutativeBinOp(N0.getOpcode()))
2510            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2511                                DAG.getConstant(0, N0.getValueType()), Cond);
2512          else if (N0.getNode()->hasOneUse()) {
2513            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2514            // (Z-X) == X  --> Z == X<<1
2515            SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
2516                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2517            if (!DCI.isCalledByLegalizer())
2518              DCI.AddToWorklist(SH.getNode());
2519            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2520          }
2521        }
2522      }
2523    }
2524
2525    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2526        N1.getOpcode() == ISD::XOR) {
2527      // Simplify  X == (X+Z) -->  Z == 0
2528      if (N1.getOperand(0) == N0) {
2529        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2530                        DAG.getConstant(0, N1.getValueType()), Cond);
2531      } else if (N1.getOperand(1) == N0) {
2532        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2533          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2534                          DAG.getConstant(0, N1.getValueType()), Cond);
2535        } else if (N1.getNode()->hasOneUse()) {
2536          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2537          // X == (Z-X)  --> X<<1 == Z
2538          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2539                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2540          if (!DCI.isCalledByLegalizer())
2541            DCI.AddToWorklist(SH.getNode());
2542          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2543        }
2544      }
2545    }
2546
2547    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2548    // Note that where y is variable and is known to have at most
2549    // one bit set (for example, if it is z&1) we cannot do this;
2550    // the expressions are not equivalent when y==0.
2551    if (N0.getOpcode() == ISD::AND)
2552      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2553        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2554          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2555          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2556          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2557        }
2558      }
2559    if (N1.getOpcode() == ISD::AND)
2560      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2561        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2562          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2563          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2564          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2565        }
2566      }
2567  }
2568
2569  // Fold away ALL boolean setcc's.
2570  SDValue Temp;
2571  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2572    switch (Cond) {
2573    default: llvm_unreachable("Unknown integer setcc!");
2574    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2575      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2576      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2577      if (!DCI.isCalledByLegalizer())
2578        DCI.AddToWorklist(Temp.getNode());
2579      break;
2580    case ISD::SETNE:  // X != Y   -->  (X^Y)
2581      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2582      break;
2583    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2584    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2585      Temp = DAG.getNOT(dl, N0, MVT::i1);
2586      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2587      if (!DCI.isCalledByLegalizer())
2588        DCI.AddToWorklist(Temp.getNode());
2589      break;
2590    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2591    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2592      Temp = DAG.getNOT(dl, N1, MVT::i1);
2593      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2594      if (!DCI.isCalledByLegalizer())
2595        DCI.AddToWorklist(Temp.getNode());
2596      break;
2597    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2598    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2599      Temp = DAG.getNOT(dl, N0, MVT::i1);
2600      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2601      if (!DCI.isCalledByLegalizer())
2602        DCI.AddToWorklist(Temp.getNode());
2603      break;
2604    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2605    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2606      Temp = DAG.getNOT(dl, N1, MVT::i1);
2607      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2608      break;
2609    }
2610    if (VT != MVT::i1) {
2611      if (!DCI.isCalledByLegalizer())
2612        DCI.AddToWorklist(N0.getNode());
2613      // FIXME: If running after legalize, we probably can't do this.
2614      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2615    }
2616    return N0;
2617  }
2618
2619  // Could not fold it.
2620  return SDValue();
2621}
2622
2623/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2624/// node is a GlobalAddress + offset.
2625bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2626                                    int64_t &Offset) const {
2627  if (isa<GlobalAddressSDNode>(N)) {
2628    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2629    GA = GASD->getGlobal();
2630    Offset += GASD->getOffset();
2631    return true;
2632  }
2633
2634  if (N->getOpcode() == ISD::ADD) {
2635    SDValue N1 = N->getOperand(0);
2636    SDValue N2 = N->getOperand(1);
2637    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2638      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2639      if (V) {
2640        Offset += V->getSExtValue();
2641        return true;
2642      }
2643    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2644      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2645      if (V) {
2646        Offset += V->getSExtValue();
2647        return true;
2648      }
2649    }
2650  }
2651
2652  return false;
2653}
2654
2655
2656SDValue TargetLowering::
2657PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2658  // Default implementation: no optimization.
2659  return SDValue();
2660}
2661
2662//===----------------------------------------------------------------------===//
2663//  Inline Assembler Implementation Methods
2664//===----------------------------------------------------------------------===//
2665
2666
2667TargetLowering::ConstraintType
2668TargetLowering::getConstraintType(const std::string &Constraint) const {
2669  if (Constraint.size() == 1) {
2670    switch (Constraint[0]) {
2671    default: break;
2672    case 'r': return C_RegisterClass;
2673    case 'm':    // memory
2674    case 'o':    // offsetable
2675    case 'V':    // not offsetable
2676      return C_Memory;
2677    case 'i':    // Simple Integer or Relocatable Constant
2678    case 'n':    // Simple Integer
2679    case 'E':    // Floating Point Constant
2680    case 'F':    // Floating Point Constant
2681    case 's':    // Relocatable Constant
2682    case 'p':    // Address.
2683    case 'X':    // Allow ANY value.
2684    case 'I':    // Target registers.
2685    case 'J':
2686    case 'K':
2687    case 'L':
2688    case 'M':
2689    case 'N':
2690    case 'O':
2691    case 'P':
2692    case '<':
2693    case '>':
2694      return C_Other;
2695    }
2696  }
2697
2698  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2699      Constraint[Constraint.size()-1] == '}')
2700    return C_Register;
2701  return C_Unknown;
2702}
2703
2704/// LowerXConstraint - try to replace an X constraint, which matches anything,
2705/// with another that has more specific requirements based on the type of the
2706/// corresponding operand.
2707const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2708  if (ConstraintVT.isInteger())
2709    return "r";
2710  if (ConstraintVT.isFloatingPoint())
2711    return "f";      // works for many targets
2712  return 0;
2713}
2714
2715/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2716/// vector.  If it is invalid, don't add anything to Ops.
2717void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2718                                                  std::string &Constraint,
2719                                                  std::vector<SDValue> &Ops,
2720                                                  SelectionDAG &DAG) const {
2721
2722  if (Constraint.length() > 1) return;
2723
2724  char ConstraintLetter = Constraint[0];
2725  switch (ConstraintLetter) {
2726  default: break;
2727  case 'X':     // Allows any operand; labels (basic block) use this.
2728    if (Op.getOpcode() == ISD::BasicBlock) {
2729      Ops.push_back(Op);
2730      return;
2731    }
2732    // fall through
2733  case 'i':    // Simple Integer or Relocatable Constant
2734  case 'n':    // Simple Integer
2735  case 's': {  // Relocatable Constant
2736    // These operands are interested in values of the form (GV+C), where C may
2737    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2738    // is possible and fine if either GV or C are missing.
2739    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2740    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2741
2742    // If we have "(add GV, C)", pull out GV/C
2743    if (Op.getOpcode() == ISD::ADD) {
2744      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2745      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2746      if (C == 0 || GA == 0) {
2747        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2748        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2749      }
2750      if (C == 0 || GA == 0)
2751        C = 0, GA = 0;
2752    }
2753
2754    // If we find a valid operand, map to the TargetXXX version so that the
2755    // value itself doesn't get selected.
2756    if (GA) {   // Either &GV   or   &GV+C
2757      if (ConstraintLetter != 'n') {
2758        int64_t Offs = GA->getOffset();
2759        if (C) Offs += C->getZExtValue();
2760        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2761                                                 C ? C->getDebugLoc() : DebugLoc(),
2762                                                 Op.getValueType(), Offs));
2763        return;
2764      }
2765    }
2766    if (C) {   // just C, no GV.
2767      // Simple constants are not allowed for 's'.
2768      if (ConstraintLetter != 's') {
2769        // gcc prints these as sign extended.  Sign extend value to 64 bits
2770        // now; without this it would get ZExt'd later in
2771        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2772        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2773                                            MVT::i64));
2774        return;
2775      }
2776    }
2777    break;
2778  }
2779  }
2780}
2781
2782std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2783getRegForInlineAsmConstraint(const std::string &Constraint,
2784                             EVT VT) const {
2785  if (Constraint[0] != '{')
2786    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2787  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2788
2789  // Remove the braces from around the name.
2790  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2791
2792  // Figure out which register class contains this reg.
2793  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2794  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2795       E = RI->regclass_end(); RCI != E; ++RCI) {
2796    const TargetRegisterClass *RC = *RCI;
2797
2798    // If none of the value types for this register class are valid, we
2799    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2800    if (!isLegalRC(RC))
2801      continue;
2802
2803    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2804         I != E; ++I) {
2805      if (RegName.equals_lower(RI->getName(*I)))
2806        return std::make_pair(*I, RC);
2807    }
2808  }
2809
2810  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2811}
2812
2813//===----------------------------------------------------------------------===//
2814// Constraint Selection.
2815
2816/// isMatchingInputConstraint - Return true of this is an input operand that is
2817/// a matching constraint like "4".
2818bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2819  assert(!ConstraintCode.empty() && "No known constraint!");
2820  return isdigit(ConstraintCode[0]);
2821}
2822
2823/// getMatchedOperand - If this is an input matching constraint, this method
2824/// returns the output operand it matches.
2825unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2826  assert(!ConstraintCode.empty() && "No known constraint!");
2827  return atoi(ConstraintCode.c_str());
2828}
2829
2830
2831/// ParseConstraints - Split up the constraint string from the inline
2832/// assembly value into the specific constraints and their prefixes,
2833/// and also tie in the associated operand values.
2834/// If this returns an empty vector, and if the constraint string itself
2835/// isn't empty, there was an error parsing.
2836TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2837    ImmutableCallSite CS) const {
2838  /// ConstraintOperands - Information about all of the constraints.
2839  AsmOperandInfoVector ConstraintOperands;
2840  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2841  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2842
2843  // Do a prepass over the constraints, canonicalizing them, and building up the
2844  // ConstraintOperands list.
2845  InlineAsm::ConstraintInfoVector
2846    ConstraintInfos = IA->ParseConstraints();
2847
2848  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2849  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2850
2851  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2852    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2853    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2854
2855    // Update multiple alternative constraint count.
2856    if (OpInfo.multipleAlternatives.size() > maCount)
2857      maCount = OpInfo.multipleAlternatives.size();
2858
2859    OpInfo.ConstraintVT = MVT::Other;
2860
2861    // Compute the value type for each operand.
2862    switch (OpInfo.Type) {
2863    case InlineAsm::isOutput:
2864      // Indirect outputs just consume an argument.
2865      if (OpInfo.isIndirect) {
2866        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2867        break;
2868      }
2869
2870      // The return value of the call is this value.  As such, there is no
2871      // corresponding argument.
2872      assert(!CS.getType()->isVoidTy() &&
2873             "Bad inline asm!");
2874      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2875        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2876      } else {
2877        assert(ResNo == 0 && "Asm only has one result!");
2878        OpInfo.ConstraintVT = getValueType(CS.getType());
2879      }
2880      ++ResNo;
2881      break;
2882    case InlineAsm::isInput:
2883      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2884      break;
2885    case InlineAsm::isClobber:
2886      // Nothing to do.
2887      break;
2888    }
2889
2890    if (OpInfo.CallOperandVal) {
2891      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2892      if (OpInfo.isIndirect) {
2893        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2894        if (!PtrTy)
2895          report_fatal_error("Indirect operand for inline asm not a pointer!");
2896        OpTy = PtrTy->getElementType();
2897      }
2898
2899      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2900      if (StructType *STy = dyn_cast<StructType>(OpTy))
2901        if (STy->getNumElements() == 1)
2902          OpTy = STy->getElementType(0);
2903
2904      // If OpTy is not a single value, it may be a struct/union that we
2905      // can tile with integers.
2906      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2907        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2908        switch (BitSize) {
2909        default: break;
2910        case 1:
2911        case 8:
2912        case 16:
2913        case 32:
2914        case 64:
2915        case 128:
2916          OpInfo.ConstraintVT =
2917              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2918          break;
2919        }
2920      } else if (dyn_cast<PointerType>(OpTy)) {
2921        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2922      } else {
2923        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2924      }
2925    }
2926  }
2927
2928  // If we have multiple alternative constraints, select the best alternative.
2929  if (ConstraintInfos.size()) {
2930    if (maCount) {
2931      unsigned bestMAIndex = 0;
2932      int bestWeight = -1;
2933      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2934      int weight = -1;
2935      unsigned maIndex;
2936      // Compute the sums of the weights for each alternative, keeping track
2937      // of the best (highest weight) one so far.
2938      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2939        int weightSum = 0;
2940        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2941            cIndex != eIndex; ++cIndex) {
2942          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2943          if (OpInfo.Type == InlineAsm::isClobber)
2944            continue;
2945
2946          // If this is an output operand with a matching input operand,
2947          // look up the matching input. If their types mismatch, e.g. one
2948          // is an integer, the other is floating point, or their sizes are
2949          // different, flag it as an maCantMatch.
2950          if (OpInfo.hasMatchingInput()) {
2951            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2952            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2953              if ((OpInfo.ConstraintVT.isInteger() !=
2954                   Input.ConstraintVT.isInteger()) ||
2955                  (OpInfo.ConstraintVT.getSizeInBits() !=
2956                   Input.ConstraintVT.getSizeInBits())) {
2957                weightSum = -1;  // Can't match.
2958                break;
2959              }
2960            }
2961          }
2962          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2963          if (weight == -1) {
2964            weightSum = -1;
2965            break;
2966          }
2967          weightSum += weight;
2968        }
2969        // Update best.
2970        if (weightSum > bestWeight) {
2971          bestWeight = weightSum;
2972          bestMAIndex = maIndex;
2973        }
2974      }
2975
2976      // Now select chosen alternative in each constraint.
2977      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2978          cIndex != eIndex; ++cIndex) {
2979        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2980        if (cInfo.Type == InlineAsm::isClobber)
2981          continue;
2982        cInfo.selectAlternative(bestMAIndex);
2983      }
2984    }
2985  }
2986
2987  // Check and hook up tied operands, choose constraint code to use.
2988  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2989      cIndex != eIndex; ++cIndex) {
2990    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2991
2992    // If this is an output operand with a matching input operand, look up the
2993    // matching input. If their types mismatch, e.g. one is an integer, the
2994    // other is floating point, or their sizes are different, flag it as an
2995    // error.
2996    if (OpInfo.hasMatchingInput()) {
2997      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2998
2999      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3000	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
3001	  getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
3002	std::pair<unsigned, const TargetRegisterClass*> InputRC =
3003	  getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
3004        if ((OpInfo.ConstraintVT.isInteger() !=
3005             Input.ConstraintVT.isInteger()) ||
3006            (MatchRC.second != InputRC.second)) {
3007          report_fatal_error("Unsupported asm: input constraint"
3008                             " with a matching output constraint of"
3009                             " incompatible type!");
3010        }
3011      }
3012
3013    }
3014  }
3015
3016  return ConstraintOperands;
3017}
3018
3019
3020/// getConstraintGenerality - Return an integer indicating how general CT
3021/// is.
3022static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3023  switch (CT) {
3024  case TargetLowering::C_Other:
3025  case TargetLowering::C_Unknown:
3026    return 0;
3027  case TargetLowering::C_Register:
3028    return 1;
3029  case TargetLowering::C_RegisterClass:
3030    return 2;
3031  case TargetLowering::C_Memory:
3032    return 3;
3033  }
3034  llvm_unreachable("Invalid constraint type");
3035}
3036
3037/// Examine constraint type and operand type and determine a weight value.
3038/// This object must already have been set up with the operand type
3039/// and the current alternative constraint selected.
3040TargetLowering::ConstraintWeight
3041  TargetLowering::getMultipleConstraintMatchWeight(
3042    AsmOperandInfo &info, int maIndex) const {
3043  InlineAsm::ConstraintCodeVector *rCodes;
3044  if (maIndex >= (int)info.multipleAlternatives.size())
3045    rCodes = &info.Codes;
3046  else
3047    rCodes = &info.multipleAlternatives[maIndex].Codes;
3048  ConstraintWeight BestWeight = CW_Invalid;
3049
3050  // Loop over the options, keeping track of the most general one.
3051  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3052    ConstraintWeight weight =
3053      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3054    if (weight > BestWeight)
3055      BestWeight = weight;
3056  }
3057
3058  return BestWeight;
3059}
3060
3061/// Examine constraint type and operand type and determine a weight value.
3062/// This object must already have been set up with the operand type
3063/// and the current alternative constraint selected.
3064TargetLowering::ConstraintWeight
3065  TargetLowering::getSingleConstraintMatchWeight(
3066    AsmOperandInfo &info, const char *constraint) const {
3067  ConstraintWeight weight = CW_Invalid;
3068  Value *CallOperandVal = info.CallOperandVal;
3069    // If we don't have a value, we can't do a match,
3070    // but allow it at the lowest weight.
3071  if (CallOperandVal == NULL)
3072    return CW_Default;
3073  // Look at the constraint type.
3074  switch (*constraint) {
3075    case 'i': // immediate integer.
3076    case 'n': // immediate integer with a known value.
3077      if (isa<ConstantInt>(CallOperandVal))
3078        weight = CW_Constant;
3079      break;
3080    case 's': // non-explicit intregal immediate.
3081      if (isa<GlobalValue>(CallOperandVal))
3082        weight = CW_Constant;
3083      break;
3084    case 'E': // immediate float if host format.
3085    case 'F': // immediate float.
3086      if (isa<ConstantFP>(CallOperandVal))
3087        weight = CW_Constant;
3088      break;
3089    case '<': // memory operand with autodecrement.
3090    case '>': // memory operand with autoincrement.
3091    case 'm': // memory operand.
3092    case 'o': // offsettable memory operand
3093    case 'V': // non-offsettable memory operand
3094      weight = CW_Memory;
3095      break;
3096    case 'r': // general register.
3097    case 'g': // general register, memory operand or immediate integer.
3098              // note: Clang converts "g" to "imr".
3099      if (CallOperandVal->getType()->isIntegerTy())
3100        weight = CW_Register;
3101      break;
3102    case 'X': // any operand.
3103    default:
3104      weight = CW_Default;
3105      break;
3106  }
3107  return weight;
3108}
3109
3110/// ChooseConstraint - If there are multiple different constraints that we
3111/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3112/// This is somewhat tricky: constraints fall into four classes:
3113///    Other         -> immediates and magic values
3114///    Register      -> one specific register
3115///    RegisterClass -> a group of regs
3116///    Memory        -> memory
3117/// Ideally, we would pick the most specific constraint possible: if we have
3118/// something that fits into a register, we would pick it.  The problem here
3119/// is that if we have something that could either be in a register or in
3120/// memory that use of the register could cause selection of *other*
3121/// operands to fail: they might only succeed if we pick memory.  Because of
3122/// this the heuristic we use is:
3123///
3124///  1) If there is an 'other' constraint, and if the operand is valid for
3125///     that constraint, use it.  This makes us take advantage of 'i'
3126///     constraints when available.
3127///  2) Otherwise, pick the most general constraint present.  This prefers
3128///     'm' over 'r', for example.
3129///
3130static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3131                             const TargetLowering &TLI,
3132                             SDValue Op, SelectionDAG *DAG) {
3133  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3134  unsigned BestIdx = 0;
3135  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3136  int BestGenerality = -1;
3137
3138  // Loop over the options, keeping track of the most general one.
3139  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3140    TargetLowering::ConstraintType CType =
3141      TLI.getConstraintType(OpInfo.Codes[i]);
3142
3143    // If this is an 'other' constraint, see if the operand is valid for it.
3144    // For example, on X86 we might have an 'rI' constraint.  If the operand
3145    // is an integer in the range [0..31] we want to use I (saving a load
3146    // of a register), otherwise we must use 'r'.
3147    if (CType == TargetLowering::C_Other && Op.getNode()) {
3148      assert(OpInfo.Codes[i].size() == 1 &&
3149             "Unhandled multi-letter 'other' constraint");
3150      std::vector<SDValue> ResultOps;
3151      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3152                                       ResultOps, *DAG);
3153      if (!ResultOps.empty()) {
3154        BestType = CType;
3155        BestIdx = i;
3156        break;
3157      }
3158    }
3159
3160    // Things with matching constraints can only be registers, per gcc
3161    // documentation.  This mainly affects "g" constraints.
3162    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3163      continue;
3164
3165    // This constraint letter is more general than the previous one, use it.
3166    int Generality = getConstraintGenerality(CType);
3167    if (Generality > BestGenerality) {
3168      BestType = CType;
3169      BestIdx = i;
3170      BestGenerality = Generality;
3171    }
3172  }
3173
3174  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3175  OpInfo.ConstraintType = BestType;
3176}
3177
3178/// ComputeConstraintToUse - Determines the constraint code and constraint
3179/// type to use for the specific AsmOperandInfo, setting
3180/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3181void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3182                                            SDValue Op,
3183                                            SelectionDAG *DAG) const {
3184  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3185
3186  // Single-letter constraints ('r') are very common.
3187  if (OpInfo.Codes.size() == 1) {
3188    OpInfo.ConstraintCode = OpInfo.Codes[0];
3189    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3190  } else {
3191    ChooseConstraint(OpInfo, *this, Op, DAG);
3192  }
3193
3194  // 'X' matches anything.
3195  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3196    // Labels and constants are handled elsewhere ('X' is the only thing
3197    // that matches labels).  For Functions, the type here is the type of
3198    // the result, which is not what we want to look at; leave them alone.
3199    Value *v = OpInfo.CallOperandVal;
3200    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3201      OpInfo.CallOperandVal = v;
3202      return;
3203    }
3204
3205    // Otherwise, try to resolve it to something we know about by looking at
3206    // the actual operand type.
3207    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3208      OpInfo.ConstraintCode = Repl;
3209      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3210    }
3211  }
3212}
3213
3214//===----------------------------------------------------------------------===//
3215//  Loop Strength Reduction hooks
3216//===----------------------------------------------------------------------===//
3217
3218/// isLegalAddressingMode - Return true if the addressing mode represented
3219/// by AM is legal for this target, for a load/store of the specified type.
3220bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3221                                           Type *Ty) const {
3222  // The default implementation of this implements a conservative RISCy, r+r and
3223  // r+i addr mode.
3224
3225  // Allows a sign-extended 16-bit immediate field.
3226  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3227    return false;
3228
3229  // No global is ever allowed as a base.
3230  if (AM.BaseGV)
3231    return false;
3232
3233  // Only support r+r,
3234  switch (AM.Scale) {
3235  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3236    break;
3237  case 1:
3238    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3239      return false;
3240    // Otherwise we have r+r or r+i.
3241    break;
3242  case 2:
3243    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3244      return false;
3245    // Allow 2*r as r+r.
3246    break;
3247  }
3248
3249  return true;
3250}
3251
3252/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3253/// with the multiplicative inverse of the constant.
3254SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
3255                                       SelectionDAG &DAG) const {
3256  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
3257  APInt d = C->getAPIntValue();
3258  assert(d != 0 && "Division by zero!");
3259
3260  // Shift the value upfront if it is even, so the LSB is one.
3261  unsigned ShAmt = d.countTrailingZeros();
3262  if (ShAmt) {
3263    // TODO: For UDIV use SRL instead of SRA.
3264    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
3265    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
3266    d = d.ashr(ShAmt);
3267  }
3268
3269  // Calculate the multiplicative inverse, using Newton's method.
3270  APInt t, xn = d;
3271  while ((t = d*xn) != 1)
3272    xn *= APInt(d.getBitWidth(), 2) - t;
3273
3274  Op2 = DAG.getConstant(xn, Op1.getValueType());
3275  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3276}
3277
3278/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3279/// return a DAG expression to select that will generate the same value by
3280/// multiplying by a magic number.  See:
3281/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3282SDValue TargetLowering::
3283BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3284          std::vector<SDNode*>* Created) const {
3285  EVT VT = N->getValueType(0);
3286  DebugLoc dl= N->getDebugLoc();
3287
3288  // Check to see if we can do this.
3289  // FIXME: We should be more aggressive here.
3290  if (!isTypeLegal(VT))
3291    return SDValue();
3292
3293  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3294  APInt::ms magics = d.magic();
3295
3296  // Multiply the numerator (operand 0) by the magic value
3297  // FIXME: We should support doing a MUL in a wider type
3298  SDValue Q;
3299  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3300                            isOperationLegalOrCustom(ISD::MULHS, VT))
3301    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3302                    DAG.getConstant(magics.m, VT));
3303  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3304                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3305    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3306                              N->getOperand(0),
3307                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3308  else
3309    return SDValue();       // No mulhs or equvialent
3310  // If d > 0 and m < 0, add the numerator
3311  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3312    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3313    if (Created)
3314      Created->push_back(Q.getNode());
3315  }
3316  // If d < 0 and m > 0, subtract the numerator.
3317  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3318    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3319    if (Created)
3320      Created->push_back(Q.getNode());
3321  }
3322  // Shift right algebraic if shift value is nonzero
3323  if (magics.s > 0) {
3324    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3325                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3326    if (Created)
3327      Created->push_back(Q.getNode());
3328  }
3329  // Extract the sign bit and add it to the quotient
3330  SDValue T =
3331    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3332                                           getShiftAmountTy(Q.getValueType())));
3333  if (Created)
3334    Created->push_back(T.getNode());
3335  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3336}
3337
3338/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3339/// return a DAG expression to select that will generate the same value by
3340/// multiplying by a magic number.  See:
3341/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3342SDValue TargetLowering::
3343BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3344          std::vector<SDNode*>* Created) const {
3345  EVT VT = N->getValueType(0);
3346  DebugLoc dl = N->getDebugLoc();
3347
3348  // Check to see if we can do this.
3349  // FIXME: We should be more aggressive here.
3350  if (!isTypeLegal(VT))
3351    return SDValue();
3352
3353  // FIXME: We should use a narrower constant when the upper
3354  // bits are known to be zero.
3355  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3356  APInt::mu magics = N1C.magicu();
3357
3358  SDValue Q = N->getOperand(0);
3359
3360  // If the divisor is even, we can avoid using the expensive fixup by shifting
3361  // the divided value upfront.
3362  if (magics.a != 0 && !N1C[0]) {
3363    unsigned Shift = N1C.countTrailingZeros();
3364    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3365                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3366    if (Created)
3367      Created->push_back(Q.getNode());
3368
3369    // Get magic number for the shifted divisor.
3370    magics = N1C.lshr(Shift).magicu(Shift);
3371    assert(magics.a == 0 && "Should use cheap fixup now");
3372  }
3373
3374  // Multiply the numerator (operand 0) by the magic value
3375  // FIXME: We should support doing a MUL in a wider type
3376  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3377                            isOperationLegalOrCustom(ISD::MULHU, VT))
3378    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3379  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3380                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3381    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3382                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3383  else
3384    return SDValue();       // No mulhu or equvialent
3385  if (Created)
3386    Created->push_back(Q.getNode());
3387
3388  if (magics.a == 0) {
3389    assert(magics.s < N1C.getBitWidth() &&
3390           "We shouldn't generate an undefined shift!");
3391    return DAG.getNode(ISD::SRL, dl, VT, Q,
3392                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3393  } else {
3394    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3395    if (Created)
3396      Created->push_back(NPQ.getNode());
3397    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3398                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3399    if (Created)
3400      Created->push_back(NPQ.getNode());
3401    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3402    if (Created)
3403      Created->push_back(NPQ.getNode());
3404    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3405             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3406  }
3407}
3408