TargetLowering.cpp revision 224145
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include <cctype>
33using namespace llvm;
34
35/// We are in the process of implementing a new TypeLegalization action
36/// - the promotion of vector elements. This feature is disabled by default
37/// and only enabled using this flag.
38static cl::opt<bool>
39AllowPromoteIntElem("promote-elements", cl::Hidden,
40  cl::desc("Allow promotion of integer vector element types"));
41
42namespace llvm {
43TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
44  bool isLocal = GV->hasLocalLinkage();
45  bool isDeclaration = GV->isDeclaration();
46  // FIXME: what should we do for protected and internal visibility?
47  // For variables, is internal different from hidden?
48  bool isHidden = GV->hasHiddenVisibility();
49
50  if (reloc == Reloc::PIC_) {
51    if (isLocal || isHidden)
52      return TLSModel::LocalDynamic;
53    else
54      return TLSModel::GeneralDynamic;
55  } else {
56    if (!isDeclaration || isHidden)
57      return TLSModel::LocalExec;
58    else
59      return TLSModel::InitialExec;
60  }
61}
62}
63
64/// InitLibcallNames - Set default libcall names.
65///
66static void InitLibcallNames(const char **Names) {
67  Names[RTLIB::SHL_I16] = "__ashlhi3";
68  Names[RTLIB::SHL_I32] = "__ashlsi3";
69  Names[RTLIB::SHL_I64] = "__ashldi3";
70  Names[RTLIB::SHL_I128] = "__ashlti3";
71  Names[RTLIB::SRL_I16] = "__lshrhi3";
72  Names[RTLIB::SRL_I32] = "__lshrsi3";
73  Names[RTLIB::SRL_I64] = "__lshrdi3";
74  Names[RTLIB::SRL_I128] = "__lshrti3";
75  Names[RTLIB::SRA_I16] = "__ashrhi3";
76  Names[RTLIB::SRA_I32] = "__ashrsi3";
77  Names[RTLIB::SRA_I64] = "__ashrdi3";
78  Names[RTLIB::SRA_I128] = "__ashrti3";
79  Names[RTLIB::MUL_I8] = "__mulqi3";
80  Names[RTLIB::MUL_I16] = "__mulhi3";
81  Names[RTLIB::MUL_I32] = "__mulsi3";
82  Names[RTLIB::MUL_I64] = "__muldi3";
83  Names[RTLIB::MUL_I128] = "__multi3";
84  Names[RTLIB::MULO_I32] = "__mulosi4";
85  Names[RTLIB::MULO_I64] = "__mulodi4";
86  Names[RTLIB::MULO_I128] = "__muloti4";
87  Names[RTLIB::SDIV_I8] = "__divqi3";
88  Names[RTLIB::SDIV_I16] = "__divhi3";
89  Names[RTLIB::SDIV_I32] = "__divsi3";
90  Names[RTLIB::SDIV_I64] = "__divdi3";
91  Names[RTLIB::SDIV_I128] = "__divti3";
92  Names[RTLIB::UDIV_I8] = "__udivqi3";
93  Names[RTLIB::UDIV_I16] = "__udivhi3";
94  Names[RTLIB::UDIV_I32] = "__udivsi3";
95  Names[RTLIB::UDIV_I64] = "__udivdi3";
96  Names[RTLIB::UDIV_I128] = "__udivti3";
97  Names[RTLIB::SREM_I8] = "__modqi3";
98  Names[RTLIB::SREM_I16] = "__modhi3";
99  Names[RTLIB::SREM_I32] = "__modsi3";
100  Names[RTLIB::SREM_I64] = "__moddi3";
101  Names[RTLIB::SREM_I128] = "__modti3";
102  Names[RTLIB::UREM_I8] = "__umodqi3";
103  Names[RTLIB::UREM_I16] = "__umodhi3";
104  Names[RTLIB::UREM_I32] = "__umodsi3";
105  Names[RTLIB::UREM_I64] = "__umoddi3";
106  Names[RTLIB::UREM_I128] = "__umodti3";
107
108  // These are generally not available.
109  Names[RTLIB::SDIVREM_I8] = 0;
110  Names[RTLIB::SDIVREM_I16] = 0;
111  Names[RTLIB::SDIVREM_I32] = 0;
112  Names[RTLIB::SDIVREM_I64] = 0;
113  Names[RTLIB::SDIVREM_I128] = 0;
114  Names[RTLIB::UDIVREM_I8] = 0;
115  Names[RTLIB::UDIVREM_I16] = 0;
116  Names[RTLIB::UDIVREM_I32] = 0;
117  Names[RTLIB::UDIVREM_I64] = 0;
118  Names[RTLIB::UDIVREM_I128] = 0;
119
120  Names[RTLIB::NEG_I32] = "__negsi2";
121  Names[RTLIB::NEG_I64] = "__negdi2";
122  Names[RTLIB::ADD_F32] = "__addsf3";
123  Names[RTLIB::ADD_F64] = "__adddf3";
124  Names[RTLIB::ADD_F80] = "__addxf3";
125  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
126  Names[RTLIB::SUB_F32] = "__subsf3";
127  Names[RTLIB::SUB_F64] = "__subdf3";
128  Names[RTLIB::SUB_F80] = "__subxf3";
129  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
130  Names[RTLIB::MUL_F32] = "__mulsf3";
131  Names[RTLIB::MUL_F64] = "__muldf3";
132  Names[RTLIB::MUL_F80] = "__mulxf3";
133  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
134  Names[RTLIB::DIV_F32] = "__divsf3";
135  Names[RTLIB::DIV_F64] = "__divdf3";
136  Names[RTLIB::DIV_F80] = "__divxf3";
137  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
138  Names[RTLIB::REM_F32] = "fmodf";
139  Names[RTLIB::REM_F64] = "fmod";
140  Names[RTLIB::REM_F80] = "fmodl";
141  Names[RTLIB::REM_PPCF128] = "fmodl";
142  Names[RTLIB::FMA_F32] = "fmaf";
143  Names[RTLIB::FMA_F64] = "fma";
144  Names[RTLIB::FMA_F80] = "fmal";
145  Names[RTLIB::FMA_PPCF128] = "fmal";
146  Names[RTLIB::POWI_F32] = "__powisf2";
147  Names[RTLIB::POWI_F64] = "__powidf2";
148  Names[RTLIB::POWI_F80] = "__powixf2";
149  Names[RTLIB::POWI_PPCF128] = "__powitf2";
150  Names[RTLIB::SQRT_F32] = "sqrtf";
151  Names[RTLIB::SQRT_F64] = "sqrt";
152  Names[RTLIB::SQRT_F80] = "sqrtl";
153  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
154  Names[RTLIB::LOG_F32] = "logf";
155  Names[RTLIB::LOG_F64] = "log";
156  Names[RTLIB::LOG_F80] = "logl";
157  Names[RTLIB::LOG_PPCF128] = "logl";
158  Names[RTLIB::LOG2_F32] = "log2f";
159  Names[RTLIB::LOG2_F64] = "log2";
160  Names[RTLIB::LOG2_F80] = "log2l";
161  Names[RTLIB::LOG2_PPCF128] = "log2l";
162  Names[RTLIB::LOG10_F32] = "log10f";
163  Names[RTLIB::LOG10_F64] = "log10";
164  Names[RTLIB::LOG10_F80] = "log10l";
165  Names[RTLIB::LOG10_PPCF128] = "log10l";
166  Names[RTLIB::EXP_F32] = "expf";
167  Names[RTLIB::EXP_F64] = "exp";
168  Names[RTLIB::EXP_F80] = "expl";
169  Names[RTLIB::EXP_PPCF128] = "expl";
170  Names[RTLIB::EXP2_F32] = "exp2f";
171  Names[RTLIB::EXP2_F64] = "exp2";
172  Names[RTLIB::EXP2_F80] = "exp2l";
173  Names[RTLIB::EXP2_PPCF128] = "exp2l";
174  Names[RTLIB::SIN_F32] = "sinf";
175  Names[RTLIB::SIN_F64] = "sin";
176  Names[RTLIB::SIN_F80] = "sinl";
177  Names[RTLIB::SIN_PPCF128] = "sinl";
178  Names[RTLIB::COS_F32] = "cosf";
179  Names[RTLIB::COS_F64] = "cos";
180  Names[RTLIB::COS_F80] = "cosl";
181  Names[RTLIB::COS_PPCF128] = "cosl";
182  Names[RTLIB::POW_F32] = "powf";
183  Names[RTLIB::POW_F64] = "pow";
184  Names[RTLIB::POW_F80] = "powl";
185  Names[RTLIB::POW_PPCF128] = "powl";
186  Names[RTLIB::CEIL_F32] = "ceilf";
187  Names[RTLIB::CEIL_F64] = "ceil";
188  Names[RTLIB::CEIL_F80] = "ceill";
189  Names[RTLIB::CEIL_PPCF128] = "ceill";
190  Names[RTLIB::TRUNC_F32] = "truncf";
191  Names[RTLIB::TRUNC_F64] = "trunc";
192  Names[RTLIB::TRUNC_F80] = "truncl";
193  Names[RTLIB::TRUNC_PPCF128] = "truncl";
194  Names[RTLIB::RINT_F32] = "rintf";
195  Names[RTLIB::RINT_F64] = "rint";
196  Names[RTLIB::RINT_F80] = "rintl";
197  Names[RTLIB::RINT_PPCF128] = "rintl";
198  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
199  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
200  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
201  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
202  Names[RTLIB::FLOOR_F32] = "floorf";
203  Names[RTLIB::FLOOR_F64] = "floor";
204  Names[RTLIB::FLOOR_F80] = "floorl";
205  Names[RTLIB::FLOOR_PPCF128] = "floorl";
206  Names[RTLIB::COPYSIGN_F32] = "copysignf";
207  Names[RTLIB::COPYSIGN_F64] = "copysign";
208  Names[RTLIB::COPYSIGN_F80] = "copysignl";
209  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
210  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
211  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
212  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
213  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
214  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
215  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
216  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
217  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
218  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
219  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
220  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
221  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
222  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
223  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
224  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
225  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
226  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
227  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
228  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
229  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
230  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
231  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
232  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
233  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
234  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
235  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
236  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
237  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
238  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
239  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
240  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
241  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
242  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
243  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
244  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
245  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
246  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
247  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
248  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
249  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
250  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
251  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
252  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
253  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
254  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
255  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
256  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
257  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
258  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
259  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
260  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
261  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
262  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
263  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
264  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
265  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
266  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
267  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
268  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
269  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
270  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
271  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
272  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
273  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
274  Names[RTLIB::OEQ_F32] = "__eqsf2";
275  Names[RTLIB::OEQ_F64] = "__eqdf2";
276  Names[RTLIB::UNE_F32] = "__nesf2";
277  Names[RTLIB::UNE_F64] = "__nedf2";
278  Names[RTLIB::OGE_F32] = "__gesf2";
279  Names[RTLIB::OGE_F64] = "__gedf2";
280  Names[RTLIB::OLT_F32] = "__ltsf2";
281  Names[RTLIB::OLT_F64] = "__ltdf2";
282  Names[RTLIB::OLE_F32] = "__lesf2";
283  Names[RTLIB::OLE_F64] = "__ledf2";
284  Names[RTLIB::OGT_F32] = "__gtsf2";
285  Names[RTLIB::OGT_F64] = "__gtdf2";
286  Names[RTLIB::UO_F32] = "__unordsf2";
287  Names[RTLIB::UO_F64] = "__unorddf2";
288  Names[RTLIB::O_F32] = "__unordsf2";
289  Names[RTLIB::O_F64] = "__unorddf2";
290  Names[RTLIB::MEMCPY] = "memcpy";
291  Names[RTLIB::MEMMOVE] = "memmove";
292  Names[RTLIB::MEMSET] = "memset";
293  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
294  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
295  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
296  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
297  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
298  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
299  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
300  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
301  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
302  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
303  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
304  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
305  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
306  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
307  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
308  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
309  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
310  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
311  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
312  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
313  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
314  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
315  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
316  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
317  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
318  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
319  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
320  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
321  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
322  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
323  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
324  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
325  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
326}
327
328/// InitLibcallCallingConvs - Set default libcall CallingConvs.
329///
330static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
331  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
332    CCs[i] = CallingConv::C;
333  }
334}
335
336/// getFPEXT - Return the FPEXT_*_* value for the given types, or
337/// UNKNOWN_LIBCALL if there is none.
338RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
339  if (OpVT == MVT::f32) {
340    if (RetVT == MVT::f64)
341      return FPEXT_F32_F64;
342  }
343
344  return UNKNOWN_LIBCALL;
345}
346
347/// getFPROUND - Return the FPROUND_*_* value for the given types, or
348/// UNKNOWN_LIBCALL if there is none.
349RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
350  if (RetVT == MVT::f32) {
351    if (OpVT == MVT::f64)
352      return FPROUND_F64_F32;
353    if (OpVT == MVT::f80)
354      return FPROUND_F80_F32;
355    if (OpVT == MVT::ppcf128)
356      return FPROUND_PPCF128_F32;
357  } else if (RetVT == MVT::f64) {
358    if (OpVT == MVT::f80)
359      return FPROUND_F80_F64;
360    if (OpVT == MVT::ppcf128)
361      return FPROUND_PPCF128_F64;
362  }
363
364  return UNKNOWN_LIBCALL;
365}
366
367/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
368/// UNKNOWN_LIBCALL if there is none.
369RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
370  if (OpVT == MVT::f32) {
371    if (RetVT == MVT::i8)
372      return FPTOSINT_F32_I8;
373    if (RetVT == MVT::i16)
374      return FPTOSINT_F32_I16;
375    if (RetVT == MVT::i32)
376      return FPTOSINT_F32_I32;
377    if (RetVT == MVT::i64)
378      return FPTOSINT_F32_I64;
379    if (RetVT == MVT::i128)
380      return FPTOSINT_F32_I128;
381  } else if (OpVT == MVT::f64) {
382    if (RetVT == MVT::i8)
383      return FPTOSINT_F64_I8;
384    if (RetVT == MVT::i16)
385      return FPTOSINT_F64_I16;
386    if (RetVT == MVT::i32)
387      return FPTOSINT_F64_I32;
388    if (RetVT == MVT::i64)
389      return FPTOSINT_F64_I64;
390    if (RetVT == MVT::i128)
391      return FPTOSINT_F64_I128;
392  } else if (OpVT == MVT::f80) {
393    if (RetVT == MVT::i32)
394      return FPTOSINT_F80_I32;
395    if (RetVT == MVT::i64)
396      return FPTOSINT_F80_I64;
397    if (RetVT == MVT::i128)
398      return FPTOSINT_F80_I128;
399  } else if (OpVT == MVT::ppcf128) {
400    if (RetVT == MVT::i32)
401      return FPTOSINT_PPCF128_I32;
402    if (RetVT == MVT::i64)
403      return FPTOSINT_PPCF128_I64;
404    if (RetVT == MVT::i128)
405      return FPTOSINT_PPCF128_I128;
406  }
407  return UNKNOWN_LIBCALL;
408}
409
410/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
411/// UNKNOWN_LIBCALL if there is none.
412RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
413  if (OpVT == MVT::f32) {
414    if (RetVT == MVT::i8)
415      return FPTOUINT_F32_I8;
416    if (RetVT == MVT::i16)
417      return FPTOUINT_F32_I16;
418    if (RetVT == MVT::i32)
419      return FPTOUINT_F32_I32;
420    if (RetVT == MVT::i64)
421      return FPTOUINT_F32_I64;
422    if (RetVT == MVT::i128)
423      return FPTOUINT_F32_I128;
424  } else if (OpVT == MVT::f64) {
425    if (RetVT == MVT::i8)
426      return FPTOUINT_F64_I8;
427    if (RetVT == MVT::i16)
428      return FPTOUINT_F64_I16;
429    if (RetVT == MVT::i32)
430      return FPTOUINT_F64_I32;
431    if (RetVT == MVT::i64)
432      return FPTOUINT_F64_I64;
433    if (RetVT == MVT::i128)
434      return FPTOUINT_F64_I128;
435  } else if (OpVT == MVT::f80) {
436    if (RetVT == MVT::i32)
437      return FPTOUINT_F80_I32;
438    if (RetVT == MVT::i64)
439      return FPTOUINT_F80_I64;
440    if (RetVT == MVT::i128)
441      return FPTOUINT_F80_I128;
442  } else if (OpVT == MVT::ppcf128) {
443    if (RetVT == MVT::i32)
444      return FPTOUINT_PPCF128_I32;
445    if (RetVT == MVT::i64)
446      return FPTOUINT_PPCF128_I64;
447    if (RetVT == MVT::i128)
448      return FPTOUINT_PPCF128_I128;
449  }
450  return UNKNOWN_LIBCALL;
451}
452
453/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
454/// UNKNOWN_LIBCALL if there is none.
455RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
456  if (OpVT == MVT::i32) {
457    if (RetVT == MVT::f32)
458      return SINTTOFP_I32_F32;
459    else if (RetVT == MVT::f64)
460      return SINTTOFP_I32_F64;
461    else if (RetVT == MVT::f80)
462      return SINTTOFP_I32_F80;
463    else if (RetVT == MVT::ppcf128)
464      return SINTTOFP_I32_PPCF128;
465  } else if (OpVT == MVT::i64) {
466    if (RetVT == MVT::f32)
467      return SINTTOFP_I64_F32;
468    else if (RetVT == MVT::f64)
469      return SINTTOFP_I64_F64;
470    else if (RetVT == MVT::f80)
471      return SINTTOFP_I64_F80;
472    else if (RetVT == MVT::ppcf128)
473      return SINTTOFP_I64_PPCF128;
474  } else if (OpVT == MVT::i128) {
475    if (RetVT == MVT::f32)
476      return SINTTOFP_I128_F32;
477    else if (RetVT == MVT::f64)
478      return SINTTOFP_I128_F64;
479    else if (RetVT == MVT::f80)
480      return SINTTOFP_I128_F80;
481    else if (RetVT == MVT::ppcf128)
482      return SINTTOFP_I128_PPCF128;
483  }
484  return UNKNOWN_LIBCALL;
485}
486
487/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
488/// UNKNOWN_LIBCALL if there is none.
489RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
490  if (OpVT == MVT::i32) {
491    if (RetVT == MVT::f32)
492      return UINTTOFP_I32_F32;
493    else if (RetVT == MVT::f64)
494      return UINTTOFP_I32_F64;
495    else if (RetVT == MVT::f80)
496      return UINTTOFP_I32_F80;
497    else if (RetVT == MVT::ppcf128)
498      return UINTTOFP_I32_PPCF128;
499  } else if (OpVT == MVT::i64) {
500    if (RetVT == MVT::f32)
501      return UINTTOFP_I64_F32;
502    else if (RetVT == MVT::f64)
503      return UINTTOFP_I64_F64;
504    else if (RetVT == MVT::f80)
505      return UINTTOFP_I64_F80;
506    else if (RetVT == MVT::ppcf128)
507      return UINTTOFP_I64_PPCF128;
508  } else if (OpVT == MVT::i128) {
509    if (RetVT == MVT::f32)
510      return UINTTOFP_I128_F32;
511    else if (RetVT == MVT::f64)
512      return UINTTOFP_I128_F64;
513    else if (RetVT == MVT::f80)
514      return UINTTOFP_I128_F80;
515    else if (RetVT == MVT::ppcf128)
516      return UINTTOFP_I128_PPCF128;
517  }
518  return UNKNOWN_LIBCALL;
519}
520
521/// InitCmpLibcallCCs - Set default comparison libcall CC.
522///
523static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
524  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
525  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
526  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
527  CCs[RTLIB::UNE_F32] = ISD::SETNE;
528  CCs[RTLIB::UNE_F64] = ISD::SETNE;
529  CCs[RTLIB::OGE_F32] = ISD::SETGE;
530  CCs[RTLIB::OGE_F64] = ISD::SETGE;
531  CCs[RTLIB::OLT_F32] = ISD::SETLT;
532  CCs[RTLIB::OLT_F64] = ISD::SETLT;
533  CCs[RTLIB::OLE_F32] = ISD::SETLE;
534  CCs[RTLIB::OLE_F64] = ISD::SETLE;
535  CCs[RTLIB::OGT_F32] = ISD::SETGT;
536  CCs[RTLIB::OGT_F64] = ISD::SETGT;
537  CCs[RTLIB::UO_F32] = ISD::SETNE;
538  CCs[RTLIB::UO_F64] = ISD::SETNE;
539  CCs[RTLIB::O_F32] = ISD::SETEQ;
540  CCs[RTLIB::O_F64] = ISD::SETEQ;
541}
542
543/// NOTE: The constructor takes ownership of TLOF.
544TargetLowering::TargetLowering(const TargetMachine &tm,
545                               const TargetLoweringObjectFile *tlof)
546  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
547  mayPromoteElements(AllowPromoteIntElem) {
548  // All operations default to being supported.
549  memset(OpActions, 0, sizeof(OpActions));
550  memset(LoadExtActions, 0, sizeof(LoadExtActions));
551  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
552  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
553  memset(CondCodeActions, 0, sizeof(CondCodeActions));
554
555  // Set default actions for various operations.
556  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
557    // Default all indexed load / store to expand.
558    for (unsigned IM = (unsigned)ISD::PRE_INC;
559         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
560      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
561      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
562    }
563
564    // These operations default to expand.
565    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
567  }
568
569  // Most targets ignore the @llvm.prefetch intrinsic.
570  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
571
572  // ConstantFP nodes default to expand.  Targets can either change this to
573  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
574  // to optimize expansions for certain constants.
575  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
576  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
577  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
578
579  // These library functions default to expand.
580  setOperationAction(ISD::FLOG , MVT::f64, Expand);
581  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
582  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
583  setOperationAction(ISD::FEXP , MVT::f64, Expand);
584  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
585  setOperationAction(ISD::FLOG , MVT::f32, Expand);
586  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
587  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
588  setOperationAction(ISD::FEXP , MVT::f32, Expand);
589  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
590
591  // Default ISD::TRAP to expand (which turns it into abort).
592  setOperationAction(ISD::TRAP, MVT::Other, Expand);
593
594  IsLittleEndian = TD->isLittleEndian();
595  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
596  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
597  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
598  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
599  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
600    = maxStoresPerMemmoveOptSize = 4;
601  benefitFromCodePlacementOpt = false;
602  UseUnderscoreSetJmp = false;
603  UseUnderscoreLongJmp = false;
604  SelectIsExpensive = false;
605  IntDivIsCheap = false;
606  Pow2DivIsCheap = false;
607  JumpIsExpensive = false;
608  StackPointerRegisterToSaveRestore = 0;
609  ExceptionPointerRegister = 0;
610  ExceptionSelectorRegister = 0;
611  BooleanContents = UndefinedBooleanContent;
612  SchedPreferenceInfo = Sched::Latency;
613  JumpBufSize = 0;
614  JumpBufAlignment = 0;
615  MinFunctionAlignment = 0;
616  PrefFunctionAlignment = 0;
617  PrefLoopAlignment = 0;
618  MinStackArgumentAlignment = 1;
619  ShouldFoldAtomicFences = false;
620
621  InitLibcallNames(LibcallRoutineNames);
622  InitCmpLibcallCCs(CmpLibcallCCs);
623  InitLibcallCallingConvs(LibcallCallingConvs);
624}
625
626TargetLowering::~TargetLowering() {
627  delete &TLOF;
628}
629
630MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
631  return MVT::getIntegerVT(8*TD->getPointerSize());
632}
633
634/// canOpTrap - Returns true if the operation can trap for the value type.
635/// VT must be a legal type.
636bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
637  assert(isTypeLegal(VT));
638  switch (Op) {
639  default:
640    return false;
641  case ISD::FDIV:
642  case ISD::FREM:
643  case ISD::SDIV:
644  case ISD::UDIV:
645  case ISD::SREM:
646  case ISD::UREM:
647    return true;
648  }
649}
650
651
652static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
653                                          unsigned &NumIntermediates,
654                                          EVT &RegisterVT,
655                                          TargetLowering *TLI) {
656  // Figure out the right, legal destination reg to copy into.
657  unsigned NumElts = VT.getVectorNumElements();
658  MVT EltTy = VT.getVectorElementType();
659
660  unsigned NumVectorRegs = 1;
661
662  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
663  // could break down into LHS/RHS like LegalizeDAG does.
664  if (!isPowerOf2_32(NumElts)) {
665    NumVectorRegs = NumElts;
666    NumElts = 1;
667  }
668
669  // Divide the input until we get to a supported size.  This will always
670  // end with a scalar if the target doesn't support vectors.
671  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
672    NumElts >>= 1;
673    NumVectorRegs <<= 1;
674  }
675
676  NumIntermediates = NumVectorRegs;
677
678  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
679  if (!TLI->isTypeLegal(NewVT))
680    NewVT = EltTy;
681  IntermediateVT = NewVT;
682
683  unsigned NewVTSize = NewVT.getSizeInBits();
684
685  // Convert sizes such as i33 to i64.
686  if (!isPowerOf2_32(NewVTSize))
687    NewVTSize = NextPowerOf2(NewVTSize);
688
689  EVT DestVT = TLI->getRegisterType(NewVT);
690  RegisterVT = DestVT;
691  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
692    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
693
694  // Otherwise, promotion or legal types use the same number of registers as
695  // the vector decimated to the appropriate level.
696  return NumVectorRegs;
697}
698
699/// isLegalRC - Return true if the value types that can be represented by the
700/// specified register class are all legal.
701bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
702  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
703       I != E; ++I) {
704    if (isTypeLegal(*I))
705      return true;
706  }
707  return false;
708}
709
710/// hasLegalSuperRegRegClasses - Return true if the specified register class
711/// has one or more super-reg register classes that are legal.
712bool
713TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
714  if (*RC->superregclasses_begin() == 0)
715    return false;
716  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
717         E = RC->superregclasses_end(); I != E; ++I) {
718    const TargetRegisterClass *RRC = *I;
719    if (isLegalRC(RRC))
720      return true;
721  }
722  return false;
723}
724
725/// findRepresentativeClass - Return the largest legal super-reg register class
726/// of the register class for the specified type and its associated "cost".
727std::pair<const TargetRegisterClass*, uint8_t>
728TargetLowering::findRepresentativeClass(EVT VT) const {
729  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
730  if (!RC)
731    return std::make_pair(RC, 0);
732  const TargetRegisterClass *BestRC = RC;
733  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
734         E = RC->superregclasses_end(); I != E; ++I) {
735    const TargetRegisterClass *RRC = *I;
736    if (RRC->isASubClass() || !isLegalRC(RRC))
737      continue;
738    if (!hasLegalSuperRegRegClasses(RRC))
739      return std::make_pair(RRC, 1);
740    BestRC = RRC;
741  }
742  return std::make_pair(BestRC, 1);
743}
744
745
746/// computeRegisterProperties - Once all of the register classes are added,
747/// this allows us to compute derived properties we expose.
748void TargetLowering::computeRegisterProperties() {
749  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
750         "Too many value types for ValueTypeActions to hold!");
751
752  // Everything defaults to needing one register.
753  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
754    NumRegistersForVT[i] = 1;
755    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
756  }
757  // ...except isVoid, which doesn't need any registers.
758  NumRegistersForVT[MVT::isVoid] = 0;
759
760  // Find the largest integer register class.
761  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
762  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
763    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
764
765  // Every integer value type larger than this largest register takes twice as
766  // many registers to represent as the previous ValueType.
767  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
768    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
769    if (!ExpandedVT.isInteger())
770      break;
771    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
772    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
773    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
774    ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
775  }
776
777  // Inspect all of the ValueType's smaller than the largest integer
778  // register to see which ones need promotion.
779  unsigned LegalIntReg = LargestIntReg;
780  for (unsigned IntReg = LargestIntReg - 1;
781       IntReg >= (unsigned)MVT::i1; --IntReg) {
782    EVT IVT = (MVT::SimpleValueType)IntReg;
783    if (isTypeLegal(IVT)) {
784      LegalIntReg = IntReg;
785    } else {
786      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
787        (MVT::SimpleValueType)LegalIntReg;
788      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
789    }
790  }
791
792  // ppcf128 type is really two f64's.
793  if (!isTypeLegal(MVT::ppcf128)) {
794    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
795    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
796    TransformToType[MVT::ppcf128] = MVT::f64;
797    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
798  }
799
800  // Decide how to handle f64. If the target does not have native f64 support,
801  // expand it to i64 and we will be generating soft float library calls.
802  if (!isTypeLegal(MVT::f64)) {
803    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
804    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
805    TransformToType[MVT::f64] = MVT::i64;
806    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
807  }
808
809  // Decide how to handle f32. If the target does not have native support for
810  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
811  if (!isTypeLegal(MVT::f32)) {
812    if (isTypeLegal(MVT::f64)) {
813      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
814      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
815      TransformToType[MVT::f32] = MVT::f64;
816      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
817    } else {
818      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
819      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
820      TransformToType[MVT::f32] = MVT::i32;
821      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
822    }
823  }
824
825  // Loop over all of the vector value types to see which need transformations.
826  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
827       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
828    MVT VT = (MVT::SimpleValueType)i;
829    if (isTypeLegal(VT)) continue;
830
831    // Determine if there is a legal wider type.  If so, we should promote to
832    // that wider vector type.
833    EVT EltVT = VT.getVectorElementType();
834    unsigned NElts = VT.getVectorNumElements();
835    if (NElts != 1) {
836      bool IsLegalWiderType = false;
837      // If we allow the promotion of vector elements using a flag,
838      // then return TypePromoteInteger on vector elements.
839      // First try to promote the elements of integer vectors. If no legal
840      // promotion was found, fallback to the widen-vector method.
841      if (mayPromoteElements)
842      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
843        EVT SVT = (MVT::SimpleValueType)nVT;
844        // Promote vectors of integers to vectors with the same number
845        // of elements, with a wider element type.
846        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
847            && SVT.getVectorNumElements() == NElts &&
848            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
849          TransformToType[i] = SVT;
850          RegisterTypeForVT[i] = SVT;
851          NumRegistersForVT[i] = 1;
852          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
853          IsLegalWiderType = true;
854          break;
855        }
856      }
857
858      if (IsLegalWiderType) continue;
859
860      // Try to widen the vector.
861      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
862        EVT SVT = (MVT::SimpleValueType)nVT;
863        if (SVT.getVectorElementType() == EltVT &&
864            SVT.getVectorNumElements() > NElts &&
865            isTypeLegal(SVT)) {
866          TransformToType[i] = SVT;
867          RegisterTypeForVT[i] = SVT;
868          NumRegistersForVT[i] = 1;
869          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
870          IsLegalWiderType = true;
871          break;
872        }
873      }
874      if (IsLegalWiderType) continue;
875    }
876
877    MVT IntermediateVT;
878    EVT RegisterVT;
879    unsigned NumIntermediates;
880    NumRegistersForVT[i] =
881      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
882                                RegisterVT, this);
883    RegisterTypeForVT[i] = RegisterVT;
884
885    EVT NVT = VT.getPow2VectorType();
886    if (NVT == VT) {
887      // Type is already a power of 2.  The default action is to split.
888      TransformToType[i] = MVT::Other;
889      unsigned NumElts = VT.getVectorNumElements();
890      ValueTypeActions.setTypeAction(VT,
891            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
892    } else {
893      TransformToType[i] = NVT;
894      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
895    }
896  }
897
898  // Determine the 'representative' register class for each value type.
899  // An representative register class is the largest (meaning one which is
900  // not a sub-register class / subreg register class) legal register class for
901  // a group of value types. For example, on i386, i8, i16, and i32
902  // representative would be GR32; while on x86_64 it's GR64.
903  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
904    const TargetRegisterClass* RRC;
905    uint8_t Cost;
906    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
907    RepRegClassForVT[i] = RRC;
908    RepRegClassCostForVT[i] = Cost;
909  }
910}
911
912const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
913  return NULL;
914}
915
916
917MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
918  return PointerTy.SimpleTy;
919}
920
921MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
922  return MVT::i32; // return the default value
923}
924
925/// getVectorTypeBreakdown - Vector types are broken down into some number of
926/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
927/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
928/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
929///
930/// This method returns the number of registers needed, and the VT for each
931/// register.  It also returns the VT and quantity of the intermediate values
932/// before they are promoted/expanded.
933///
934unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
935                                                EVT &IntermediateVT,
936                                                unsigned &NumIntermediates,
937                                                EVT &RegisterVT) const {
938  unsigned NumElts = VT.getVectorNumElements();
939
940  // If there is a wider vector type with the same element type as this one,
941  // we should widen to that legal vector type.  This handles things like
942  // <2 x float> -> <4 x float>.
943  if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
944    RegisterVT = getTypeToTransformTo(Context, VT);
945    if (isTypeLegal(RegisterVT)) {
946      IntermediateVT = RegisterVT;
947      NumIntermediates = 1;
948      return 1;
949    }
950  }
951
952  // Figure out the right, legal destination reg to copy into.
953  EVT EltTy = VT.getVectorElementType();
954
955  unsigned NumVectorRegs = 1;
956
957  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
958  // could break down into LHS/RHS like LegalizeDAG does.
959  if (!isPowerOf2_32(NumElts)) {
960    NumVectorRegs = NumElts;
961    NumElts = 1;
962  }
963
964  // Divide the input until we get to a supported size.  This will always
965  // end with a scalar if the target doesn't support vectors.
966  while (NumElts > 1 && !isTypeLegal(
967                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
968    NumElts >>= 1;
969    NumVectorRegs <<= 1;
970  }
971
972  NumIntermediates = NumVectorRegs;
973
974  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
975  if (!isTypeLegal(NewVT))
976    NewVT = EltTy;
977  IntermediateVT = NewVT;
978
979  EVT DestVT = getRegisterType(Context, NewVT);
980  RegisterVT = DestVT;
981  unsigned NewVTSize = NewVT.getSizeInBits();
982
983  // Convert sizes such as i33 to i64.
984  if (!isPowerOf2_32(NewVTSize))
985    NewVTSize = NextPowerOf2(NewVTSize);
986
987  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
988    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
989
990  // Otherwise, promotion or legal types use the same number of registers as
991  // the vector decimated to the appropriate level.
992  return NumVectorRegs;
993}
994
995/// Get the EVTs and ArgFlags collections that represent the legalized return
996/// type of the given function.  This does not require a DAG or a return value,
997/// and is suitable for use before any DAGs for the function are constructed.
998/// TODO: Move this out of TargetLowering.cpp.
999void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
1000                         SmallVectorImpl<ISD::OutputArg> &Outs,
1001                         const TargetLowering &TLI,
1002                         SmallVectorImpl<uint64_t> *Offsets) {
1003  SmallVector<EVT, 4> ValueVTs;
1004  ComputeValueVTs(TLI, ReturnType, ValueVTs);
1005  unsigned NumValues = ValueVTs.size();
1006  if (NumValues == 0) return;
1007  unsigned Offset = 0;
1008
1009  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1010    EVT VT = ValueVTs[j];
1011    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1012
1013    if (attr & Attribute::SExt)
1014      ExtendKind = ISD::SIGN_EXTEND;
1015    else if (attr & Attribute::ZExt)
1016      ExtendKind = ISD::ZERO_EXTEND;
1017
1018    // FIXME: C calling convention requires the return type to be promoted to
1019    // at least 32-bit. But this is not necessary for non-C calling
1020    // conventions. The frontend should mark functions whose return values
1021    // require promoting with signext or zeroext attributes.
1022    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1023      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1024      if (VT.bitsLT(MinVT))
1025        VT = MinVT;
1026    }
1027
1028    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1029    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1030    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1031                        PartVT.getTypeForEVT(ReturnType->getContext()));
1032
1033    // 'inreg' on function refers to return value
1034    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1035    if (attr & Attribute::InReg)
1036      Flags.setInReg();
1037
1038    // Propagate extension type if any
1039    if (attr & Attribute::SExt)
1040      Flags.setSExt();
1041    else if (attr & Attribute::ZExt)
1042      Flags.setZExt();
1043
1044    for (unsigned i = 0; i < NumParts; ++i) {
1045      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1046      if (Offsets) {
1047        Offsets->push_back(Offset);
1048        Offset += PartSize;
1049      }
1050    }
1051  }
1052}
1053
1054/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1055/// function arguments in the caller parameter area.  This is the actual
1056/// alignment, not its logarithm.
1057unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1058  return TD->getCallFrameTypeAlignment(Ty);
1059}
1060
1061/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1062/// current function.  The returned value is a member of the
1063/// MachineJumpTableInfo::JTEntryKind enum.
1064unsigned TargetLowering::getJumpTableEncoding() const {
1065  // In non-pic modes, just use the address of a block.
1066  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1067    return MachineJumpTableInfo::EK_BlockAddress;
1068
1069  // In PIC mode, if the target supports a GPRel32 directive, use it.
1070  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1071    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1072
1073  // Otherwise, use a label difference.
1074  return MachineJumpTableInfo::EK_LabelDifference32;
1075}
1076
1077SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1078                                                 SelectionDAG &DAG) const {
1079  // If our PIC model is GP relative, use the global offset table as the base.
1080  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1081    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1082  return Table;
1083}
1084
1085/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1086/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1087/// MCExpr.
1088const MCExpr *
1089TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1090                                             unsigned JTI,MCContext &Ctx) const{
1091  // The normal PIC reloc base is the label at the start of the jump table.
1092  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1093}
1094
1095bool
1096TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1097  // Assume that everything is safe in static mode.
1098  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1099    return true;
1100
1101  // In dynamic-no-pic mode, assume that known defined values are safe.
1102  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1103      GA &&
1104      !GA->getGlobal()->isDeclaration() &&
1105      !GA->getGlobal()->isWeakForLinker())
1106    return true;
1107
1108  // Otherwise assume nothing is safe.
1109  return false;
1110}
1111
1112//===----------------------------------------------------------------------===//
1113//  Optimization Methods
1114//===----------------------------------------------------------------------===//
1115
1116/// ShrinkDemandedConstant - Check to see if the specified operand of the
1117/// specified instruction is a constant integer.  If so, check to see if there
1118/// are any bits set in the constant that are not demanded.  If so, shrink the
1119/// constant and return true.
1120bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1121                                                        const APInt &Demanded) {
1122  DebugLoc dl = Op.getDebugLoc();
1123
1124  // FIXME: ISD::SELECT, ISD::SELECT_CC
1125  switch (Op.getOpcode()) {
1126  default: break;
1127  case ISD::XOR:
1128  case ISD::AND:
1129  case ISD::OR: {
1130    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1131    if (!C) return false;
1132
1133    if (Op.getOpcode() == ISD::XOR &&
1134        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1135      return false;
1136
1137    // if we can expand it to have all bits set, do it
1138    if (C->getAPIntValue().intersects(~Demanded)) {
1139      EVT VT = Op.getValueType();
1140      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1141                                DAG.getConstant(Demanded &
1142                                                C->getAPIntValue(),
1143                                                VT));
1144      return CombineTo(Op, New);
1145    }
1146
1147    break;
1148  }
1149  }
1150
1151  return false;
1152}
1153
1154/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1155/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1156/// cast, but it could be generalized for targets with other types of
1157/// implicit widening casts.
1158bool
1159TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1160                                                    unsigned BitWidth,
1161                                                    const APInt &Demanded,
1162                                                    DebugLoc dl) {
1163  assert(Op.getNumOperands() == 2 &&
1164         "ShrinkDemandedOp only supports binary operators!");
1165  assert(Op.getNode()->getNumValues() == 1 &&
1166         "ShrinkDemandedOp only supports nodes with one result!");
1167
1168  // Don't do this if the node has another user, which may require the
1169  // full value.
1170  if (!Op.getNode()->hasOneUse())
1171    return false;
1172
1173  // Search for the smallest integer type with free casts to and from
1174  // Op's type. For expedience, just check power-of-2 integer types.
1175  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1176  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1177  if (!isPowerOf2_32(SmallVTBits))
1178    SmallVTBits = NextPowerOf2(SmallVTBits);
1179  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1180    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1181    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1182        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1183      // We found a type with free casts.
1184      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1185                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1186                                          Op.getNode()->getOperand(0)),
1187                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1188                                          Op.getNode()->getOperand(1)));
1189      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1190      return CombineTo(Op, Z);
1191    }
1192  }
1193  return false;
1194}
1195
1196/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1197/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1198/// use this information to simplify Op, create a new simplified DAG node and
1199/// return true, returning the original and new nodes in Old and New. Otherwise,
1200/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1201/// the expression (used to simplify the caller).  The KnownZero/One bits may
1202/// only be accurate for those bits in the DemandedMask.
1203bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1204                                          const APInt &DemandedMask,
1205                                          APInt &KnownZero,
1206                                          APInt &KnownOne,
1207                                          TargetLoweringOpt &TLO,
1208                                          unsigned Depth) const {
1209  unsigned BitWidth = DemandedMask.getBitWidth();
1210  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1211         "Mask size mismatches value type size!");
1212  APInt NewMask = DemandedMask;
1213  DebugLoc dl = Op.getDebugLoc();
1214
1215  // Don't know anything.
1216  KnownZero = KnownOne = APInt(BitWidth, 0);
1217
1218  // Other users may use these bits.
1219  if (!Op.getNode()->hasOneUse()) {
1220    if (Depth != 0) {
1221      // If not at the root, Just compute the KnownZero/KnownOne bits to
1222      // simplify things downstream.
1223      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1224      return false;
1225    }
1226    // If this is the root being simplified, allow it to have multiple uses,
1227    // just set the NewMask to all bits.
1228    NewMask = APInt::getAllOnesValue(BitWidth);
1229  } else if (DemandedMask == 0) {
1230    // Not demanding any bits from Op.
1231    if (Op.getOpcode() != ISD::UNDEF)
1232      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1233    return false;
1234  } else if (Depth == 6) {        // Limit search depth.
1235    return false;
1236  }
1237
1238  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1239  switch (Op.getOpcode()) {
1240  case ISD::Constant:
1241    // We know all of the bits for a constant!
1242    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1243    KnownZero = ~KnownOne & NewMask;
1244    return false;   // Don't fall through, will infinitely loop.
1245  case ISD::AND:
1246    // If the RHS is a constant, check to see if the LHS would be zero without
1247    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1248    // simplify the LHS, here we're using information from the LHS to simplify
1249    // the RHS.
1250    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1251      APInt LHSZero, LHSOne;
1252      // Do not increment Depth here; that can cause an infinite loop.
1253      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1254                                LHSZero, LHSOne, Depth);
1255      // If the LHS already has zeros where RHSC does, this and is dead.
1256      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1257        return TLO.CombineTo(Op, Op.getOperand(0));
1258      // If any of the set bits in the RHS are known zero on the LHS, shrink
1259      // the constant.
1260      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1261        return true;
1262    }
1263
1264    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1265                             KnownOne, TLO, Depth+1))
1266      return true;
1267    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1268    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1269                             KnownZero2, KnownOne2, TLO, Depth+1))
1270      return true;
1271    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1272
1273    // If all of the demanded bits are known one on one side, return the other.
1274    // These bits cannot contribute to the result of the 'and'.
1275    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1276      return TLO.CombineTo(Op, Op.getOperand(0));
1277    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1278      return TLO.CombineTo(Op, Op.getOperand(1));
1279    // If all of the demanded bits in the inputs are known zeros, return zero.
1280    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1281      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1282    // If the RHS is a constant, see if we can simplify it.
1283    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1284      return true;
1285    // If the operation can be done in a smaller type, do so.
1286    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1287      return true;
1288
1289    // Output known-1 bits are only known if set in both the LHS & RHS.
1290    KnownOne &= KnownOne2;
1291    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1292    KnownZero |= KnownZero2;
1293    break;
1294  case ISD::OR:
1295    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1296                             KnownOne, TLO, Depth+1))
1297      return true;
1298    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1299    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1300                             KnownZero2, KnownOne2, TLO, Depth+1))
1301      return true;
1302    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1303
1304    // If all of the demanded bits are known zero on one side, return the other.
1305    // These bits cannot contribute to the result of the 'or'.
1306    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1307      return TLO.CombineTo(Op, Op.getOperand(0));
1308    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1309      return TLO.CombineTo(Op, Op.getOperand(1));
1310    // If all of the potentially set bits on one side are known to be set on
1311    // the other side, just use the 'other' side.
1312    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1313      return TLO.CombineTo(Op, Op.getOperand(0));
1314    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1315      return TLO.CombineTo(Op, Op.getOperand(1));
1316    // If the RHS is a constant, see if we can simplify it.
1317    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1318      return true;
1319    // If the operation can be done in a smaller type, do so.
1320    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1321      return true;
1322
1323    // Output known-0 bits are only known if clear in both the LHS & RHS.
1324    KnownZero &= KnownZero2;
1325    // Output known-1 are known to be set if set in either the LHS | RHS.
1326    KnownOne |= KnownOne2;
1327    break;
1328  case ISD::XOR:
1329    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1330                             KnownOne, TLO, Depth+1))
1331      return true;
1332    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1333    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1334                             KnownOne2, TLO, Depth+1))
1335      return true;
1336    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1337
1338    // If all of the demanded bits are known zero on one side, return the other.
1339    // These bits cannot contribute to the result of the 'xor'.
1340    if ((KnownZero & NewMask) == NewMask)
1341      return TLO.CombineTo(Op, Op.getOperand(0));
1342    if ((KnownZero2 & NewMask) == NewMask)
1343      return TLO.CombineTo(Op, Op.getOperand(1));
1344    // If the operation can be done in a smaller type, do so.
1345    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1346      return true;
1347
1348    // If all of the unknown bits are known to be zero on one side or the other
1349    // (but not both) turn this into an *inclusive* or.
1350    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1351    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1352      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1353                                               Op.getOperand(0),
1354                                               Op.getOperand(1)));
1355
1356    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1357    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1358    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1359    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1360
1361    // If all of the demanded bits on one side are known, and all of the set
1362    // bits on that side are also known to be set on the other side, turn this
1363    // into an AND, as we know the bits will be cleared.
1364    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1365    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1366      if ((KnownOne & KnownOne2) == KnownOne) {
1367        EVT VT = Op.getValueType();
1368        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1369        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1370                                                 Op.getOperand(0), ANDC));
1371      }
1372    }
1373
1374    // If the RHS is a constant, see if we can simplify it.
1375    // for XOR, we prefer to force bits to 1 if they will make a -1.
1376    // if we can't force bits, try to shrink constant
1377    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1378      APInt Expanded = C->getAPIntValue() | (~NewMask);
1379      // if we can expand it to have all bits set, do it
1380      if (Expanded.isAllOnesValue()) {
1381        if (Expanded != C->getAPIntValue()) {
1382          EVT VT = Op.getValueType();
1383          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1384                                          TLO.DAG.getConstant(Expanded, VT));
1385          return TLO.CombineTo(Op, New);
1386        }
1387        // if it already has all the bits set, nothing to change
1388        // but don't shrink either!
1389      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1390        return true;
1391      }
1392    }
1393
1394    KnownZero = KnownZeroOut;
1395    KnownOne  = KnownOneOut;
1396    break;
1397  case ISD::SELECT:
1398    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1399                             KnownOne, TLO, Depth+1))
1400      return true;
1401    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1402                             KnownOne2, TLO, Depth+1))
1403      return true;
1404    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1405    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1406
1407    // If the operands are constants, see if we can simplify them.
1408    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1409      return true;
1410
1411    // Only known if known in both the LHS and RHS.
1412    KnownOne &= KnownOne2;
1413    KnownZero &= KnownZero2;
1414    break;
1415  case ISD::SELECT_CC:
1416    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1417                             KnownOne, TLO, Depth+1))
1418      return true;
1419    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1420                             KnownOne2, TLO, Depth+1))
1421      return true;
1422    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1423    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1424
1425    // If the operands are constants, see if we can simplify them.
1426    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1427      return true;
1428
1429    // Only known if known in both the LHS and RHS.
1430    KnownOne &= KnownOne2;
1431    KnownZero &= KnownZero2;
1432    break;
1433  case ISD::SHL:
1434    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1435      unsigned ShAmt = SA->getZExtValue();
1436      SDValue InOp = Op.getOperand(0);
1437
1438      // If the shift count is an invalid immediate, don't do anything.
1439      if (ShAmt >= BitWidth)
1440        break;
1441
1442      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1443      // single shift.  We can do this if the bottom bits (which are shifted
1444      // out) are never demanded.
1445      if (InOp.getOpcode() == ISD::SRL &&
1446          isa<ConstantSDNode>(InOp.getOperand(1))) {
1447        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1448          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1449          unsigned Opc = ISD::SHL;
1450          int Diff = ShAmt-C1;
1451          if (Diff < 0) {
1452            Diff = -Diff;
1453            Opc = ISD::SRL;
1454          }
1455
1456          SDValue NewSA =
1457            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1458          EVT VT = Op.getValueType();
1459          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1460                                                   InOp.getOperand(0), NewSA));
1461        }
1462      }
1463
1464      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1465                               KnownZero, KnownOne, TLO, Depth+1))
1466        return true;
1467
1468      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1469      // are not demanded. This will likely allow the anyext to be folded away.
1470      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1471        SDValue InnerOp = InOp.getNode()->getOperand(0);
1472        EVT InnerVT = InnerOp.getValueType();
1473        if ((APInt::getHighBitsSet(BitWidth,
1474                                   BitWidth - InnerVT.getSizeInBits()) &
1475               DemandedMask) == 0 &&
1476            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1477          EVT ShTy = getShiftAmountTy(InnerVT);
1478          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1479            ShTy = InnerVT;
1480          SDValue NarrowShl =
1481            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1482                            TLO.DAG.getConstant(ShAmt, ShTy));
1483          return
1484            TLO.CombineTo(Op,
1485                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1486                                          NarrowShl));
1487        }
1488      }
1489
1490      KnownZero <<= SA->getZExtValue();
1491      KnownOne  <<= SA->getZExtValue();
1492      // low bits known zero.
1493      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1494    }
1495    break;
1496  case ISD::SRL:
1497    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1498      EVT VT = Op.getValueType();
1499      unsigned ShAmt = SA->getZExtValue();
1500      unsigned VTSize = VT.getSizeInBits();
1501      SDValue InOp = Op.getOperand(0);
1502
1503      // If the shift count is an invalid immediate, don't do anything.
1504      if (ShAmt >= BitWidth)
1505        break;
1506
1507      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1508      // single shift.  We can do this if the top bits (which are shifted out)
1509      // are never demanded.
1510      if (InOp.getOpcode() == ISD::SHL &&
1511          isa<ConstantSDNode>(InOp.getOperand(1))) {
1512        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1513          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1514          unsigned Opc = ISD::SRL;
1515          int Diff = ShAmt-C1;
1516          if (Diff < 0) {
1517            Diff = -Diff;
1518            Opc = ISD::SHL;
1519          }
1520
1521          SDValue NewSA =
1522            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1523          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1524                                                   InOp.getOperand(0), NewSA));
1525        }
1526      }
1527
1528      // Compute the new bits that are at the top now.
1529      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1530                               KnownZero, KnownOne, TLO, Depth+1))
1531        return true;
1532      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1533      KnownZero = KnownZero.lshr(ShAmt);
1534      KnownOne  = KnownOne.lshr(ShAmt);
1535
1536      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1537      KnownZero |= HighBits;  // High bits known zero.
1538    }
1539    break;
1540  case ISD::SRA:
1541    // If this is an arithmetic shift right and only the low-bit is set, we can
1542    // always convert this into a logical shr, even if the shift amount is
1543    // variable.  The low bit of the shift cannot be an input sign bit unless
1544    // the shift amount is >= the size of the datatype, which is undefined.
1545    if (DemandedMask == 1)
1546      return TLO.CombineTo(Op,
1547                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1548                                           Op.getOperand(0), Op.getOperand(1)));
1549
1550    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1551      EVT VT = Op.getValueType();
1552      unsigned ShAmt = SA->getZExtValue();
1553
1554      // If the shift count is an invalid immediate, don't do anything.
1555      if (ShAmt >= BitWidth)
1556        break;
1557
1558      APInt InDemandedMask = (NewMask << ShAmt);
1559
1560      // If any of the demanded bits are produced by the sign extension, we also
1561      // demand the input sign bit.
1562      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1563      if (HighBits.intersects(NewMask))
1564        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1565
1566      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1567                               KnownZero, KnownOne, TLO, Depth+1))
1568        return true;
1569      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1570      KnownZero = KnownZero.lshr(ShAmt);
1571      KnownOne  = KnownOne.lshr(ShAmt);
1572
1573      // Handle the sign bit, adjusted to where it is now in the mask.
1574      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1575
1576      // If the input sign bit is known to be zero, or if none of the top bits
1577      // are demanded, turn this into an unsigned shift right.
1578      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1579        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1580                                                 Op.getOperand(0),
1581                                                 Op.getOperand(1)));
1582      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1583        KnownOne |= HighBits;
1584      }
1585    }
1586    break;
1587  case ISD::SIGN_EXTEND_INREG: {
1588    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1589
1590    // Sign extension.  Compute the demanded bits in the result that are not
1591    // present in the input.
1592    APInt NewBits =
1593      APInt::getHighBitsSet(BitWidth,
1594                            BitWidth - EVT.getScalarType().getSizeInBits());
1595
1596    // If none of the extended bits are demanded, eliminate the sextinreg.
1597    if ((NewBits & NewMask) == 0)
1598      return TLO.CombineTo(Op, Op.getOperand(0));
1599
1600    APInt InSignBit =
1601      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1602    APInt InputDemandedBits =
1603      APInt::getLowBitsSet(BitWidth,
1604                           EVT.getScalarType().getSizeInBits()) &
1605      NewMask;
1606
1607    // Since the sign extended bits are demanded, we know that the sign
1608    // bit is demanded.
1609    InputDemandedBits |= InSignBit;
1610
1611    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1612                             KnownZero, KnownOne, TLO, Depth+1))
1613      return true;
1614    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1615
1616    // If the sign bit of the input is known set or clear, then we know the
1617    // top bits of the result.
1618
1619    // If the input sign bit is known zero, convert this into a zero extension.
1620    if (KnownZero.intersects(InSignBit))
1621      return TLO.CombineTo(Op,
1622                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1623
1624    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1625      KnownOne |= NewBits;
1626      KnownZero &= ~NewBits;
1627    } else {                       // Input sign bit unknown
1628      KnownZero &= ~NewBits;
1629      KnownOne &= ~NewBits;
1630    }
1631    break;
1632  }
1633  case ISD::ZERO_EXTEND: {
1634    unsigned OperandBitWidth =
1635      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1636    APInt InMask = NewMask.trunc(OperandBitWidth);
1637
1638    // If none of the top bits are demanded, convert this into an any_extend.
1639    APInt NewBits =
1640      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1641    if (!NewBits.intersects(NewMask))
1642      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1643                                               Op.getValueType(),
1644                                               Op.getOperand(0)));
1645
1646    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1647                             KnownZero, KnownOne, TLO, Depth+1))
1648      return true;
1649    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650    KnownZero = KnownZero.zext(BitWidth);
1651    KnownOne = KnownOne.zext(BitWidth);
1652    KnownZero |= NewBits;
1653    break;
1654  }
1655  case ISD::SIGN_EXTEND: {
1656    EVT InVT = Op.getOperand(0).getValueType();
1657    unsigned InBits = InVT.getScalarType().getSizeInBits();
1658    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1659    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1660    APInt NewBits   = ~InMask & NewMask;
1661
1662    // If none of the top bits are demanded, convert this into an any_extend.
1663    if (NewBits == 0)
1664      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1665                                              Op.getValueType(),
1666                                              Op.getOperand(0)));
1667
1668    // Since some of the sign extended bits are demanded, we know that the sign
1669    // bit is demanded.
1670    APInt InDemandedBits = InMask & NewMask;
1671    InDemandedBits |= InSignBit;
1672    InDemandedBits = InDemandedBits.trunc(InBits);
1673
1674    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1675                             KnownOne, TLO, Depth+1))
1676      return true;
1677    KnownZero = KnownZero.zext(BitWidth);
1678    KnownOne = KnownOne.zext(BitWidth);
1679
1680    // If the sign bit is known zero, convert this to a zero extend.
1681    if (KnownZero.intersects(InSignBit))
1682      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1683                                               Op.getValueType(),
1684                                               Op.getOperand(0)));
1685
1686    // If the sign bit is known one, the top bits match.
1687    if (KnownOne.intersects(InSignBit)) {
1688      KnownOne  |= NewBits;
1689      KnownZero &= ~NewBits;
1690    } else {   // Otherwise, top bits aren't known.
1691      KnownOne  &= ~NewBits;
1692      KnownZero &= ~NewBits;
1693    }
1694    break;
1695  }
1696  case ISD::ANY_EXTEND: {
1697    unsigned OperandBitWidth =
1698      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1699    APInt InMask = NewMask.trunc(OperandBitWidth);
1700    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1701                             KnownZero, KnownOne, TLO, Depth+1))
1702      return true;
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    KnownZero = KnownZero.zext(BitWidth);
1705    KnownOne = KnownOne.zext(BitWidth);
1706    break;
1707  }
1708  case ISD::TRUNCATE: {
1709    // Simplify the input, using demanded bit information, and compute the known
1710    // zero/one bits live out.
1711    unsigned OperandBitWidth =
1712      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1713    APInt TruncMask = NewMask.zext(OperandBitWidth);
1714    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1715                             KnownZero, KnownOne, TLO, Depth+1))
1716      return true;
1717    KnownZero = KnownZero.trunc(BitWidth);
1718    KnownOne = KnownOne.trunc(BitWidth);
1719
1720    // If the input is only used by this truncate, see if we can shrink it based
1721    // on the known demanded bits.
1722    if (Op.getOperand(0).getNode()->hasOneUse()) {
1723      SDValue In = Op.getOperand(0);
1724      switch (In.getOpcode()) {
1725      default: break;
1726      case ISD::SRL:
1727        // Shrink SRL by a constant if none of the high bits shifted in are
1728        // demanded.
1729        if (TLO.LegalTypes() &&
1730            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1731          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1732          // undesirable.
1733          break;
1734        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1735        if (!ShAmt)
1736          break;
1737        SDValue Shift = In.getOperand(1);
1738        if (TLO.LegalTypes()) {
1739          uint64_t ShVal = ShAmt->getZExtValue();
1740          Shift =
1741            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1742        }
1743
1744        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1745                                               OperandBitWidth - BitWidth);
1746        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1747
1748        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1749          // None of the shifted in bits are needed.  Add a truncate of the
1750          // shift input, then shift it.
1751          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1752                                             Op.getValueType(),
1753                                             In.getOperand(0));
1754          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1755                                                   Op.getValueType(),
1756                                                   NewTrunc,
1757                                                   Shift));
1758        }
1759        break;
1760      }
1761    }
1762
1763    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1764    break;
1765  }
1766  case ISD::AssertZext: {
1767    // Demand all the bits of the input that are demanded in the output.
1768    // The low bits are obvious; the high bits are demanded because we're
1769    // asserting that they're zero here.
1770    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1771                             KnownZero, KnownOne, TLO, Depth+1))
1772      return true;
1773    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1774
1775    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1776    APInt InMask = APInt::getLowBitsSet(BitWidth,
1777                                        VT.getSizeInBits());
1778    KnownZero |= ~InMask & NewMask;
1779    break;
1780  }
1781  case ISD::BITCAST:
1782    // If this is an FP->Int bitcast and if the sign bit is the only
1783    // thing demanded, turn this into a FGETSIGN.
1784    if (!Op.getOperand(0).getValueType().isVector() &&
1785        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1786        Op.getOperand(0).getValueType().isFloatingPoint()) {
1787      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1788      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1789      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1790        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1791        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1792        // place.  We expect the SHL to be eliminated by other optimizations.
1793        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1794        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1795        if (!OpVTLegal && OpVTSizeInBits > 32)
1796          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1797        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1798        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1799        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1800                                                 Op.getValueType(),
1801                                                 Sign, ShAmt));
1802      }
1803    }
1804    break;
1805  case ISD::ADD:
1806  case ISD::MUL:
1807  case ISD::SUB: {
1808    // Add, Sub, and Mul don't demand any bits in positions beyond that
1809    // of the highest bit demanded of them.
1810    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1811                                        BitWidth - NewMask.countLeadingZeros());
1812    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1813                             KnownOne2, TLO, Depth+1))
1814      return true;
1815    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1816                             KnownOne2, TLO, Depth+1))
1817      return true;
1818    // See if the operation should be performed at a smaller bit width.
1819    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1820      return true;
1821  }
1822  // FALL THROUGH
1823  default:
1824    // Just use ComputeMaskedBits to compute output bits.
1825    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1826    break;
1827  }
1828
1829  // If we know the value of all of the demanded bits, return this as a
1830  // constant.
1831  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1832    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1833
1834  return false;
1835}
1836
1837/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1838/// in Mask are known to be either zero or one and return them in the
1839/// KnownZero/KnownOne bitsets.
1840void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1841                                                    const APInt &Mask,
1842                                                    APInt &KnownZero,
1843                                                    APInt &KnownOne,
1844                                                    const SelectionDAG &DAG,
1845                                                    unsigned Depth) const {
1846  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1847          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1848          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1849          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1850         "Should use MaskedValueIsZero if you don't know whether Op"
1851         " is a target node!");
1852  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1853}
1854
1855/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1856/// targets that want to expose additional information about sign bits to the
1857/// DAG Combiner.
1858unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1859                                                         unsigned Depth) const {
1860  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1861          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1862          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1863          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1864         "Should use ComputeNumSignBits if you don't know whether Op"
1865         " is a target node!");
1866  return 1;
1867}
1868
1869/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1870/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1871/// determine which bit is set.
1872///
1873static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1874  // A left-shift of a constant one will have exactly one bit set, because
1875  // shifting the bit off the end is undefined.
1876  if (Val.getOpcode() == ISD::SHL)
1877    if (ConstantSDNode *C =
1878         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1879      if (C->getAPIntValue() == 1)
1880        return true;
1881
1882  // Similarly, a right-shift of a constant sign-bit will have exactly
1883  // one bit set.
1884  if (Val.getOpcode() == ISD::SRL)
1885    if (ConstantSDNode *C =
1886         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1887      if (C->getAPIntValue().isSignBit())
1888        return true;
1889
1890  // More could be done here, though the above checks are enough
1891  // to handle some common cases.
1892
1893  // Fall back to ComputeMaskedBits to catch other known cases.
1894  EVT OpVT = Val.getValueType();
1895  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1896  APInt Mask = APInt::getAllOnesValue(BitWidth);
1897  APInt KnownZero, KnownOne;
1898  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1899  return (KnownZero.countPopulation() == BitWidth - 1) &&
1900         (KnownOne.countPopulation() == 1);
1901}
1902
1903/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1904/// and cc. If it is unable to simplify it, return a null SDValue.
1905SDValue
1906TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1907                              ISD::CondCode Cond, bool foldBooleans,
1908                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1909  SelectionDAG &DAG = DCI.DAG;
1910
1911  // These setcc operations always fold.
1912  switch (Cond) {
1913  default: break;
1914  case ISD::SETFALSE:
1915  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1916  case ISD::SETTRUE:
1917  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1918  }
1919
1920  // Ensure that the constant occurs on the RHS, and fold constant
1921  // comparisons.
1922  if (isa<ConstantSDNode>(N0.getNode()))
1923    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1924
1925  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1926    const APInt &C1 = N1C->getAPIntValue();
1927
1928    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1929    // equality comparison, then we're just comparing whether X itself is
1930    // zero.
1931    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1932        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1933        N0.getOperand(1).getOpcode() == ISD::Constant) {
1934      const APInt &ShAmt
1935        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1936      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1937          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1938        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1939          // (srl (ctlz x), 5) == 0  -> X != 0
1940          // (srl (ctlz x), 5) != 1  -> X != 0
1941          Cond = ISD::SETNE;
1942        } else {
1943          // (srl (ctlz x), 5) != 0  -> X == 0
1944          // (srl (ctlz x), 5) == 1  -> X == 0
1945          Cond = ISD::SETEQ;
1946        }
1947        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1948        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1949                            Zero, Cond);
1950      }
1951    }
1952
1953    SDValue CTPOP = N0;
1954    // Look through truncs that don't change the value of a ctpop.
1955    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1956      CTPOP = N0.getOperand(0);
1957
1958    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1959        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1960                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1961      EVT CTVT = CTPOP.getValueType();
1962      SDValue CTOp = CTPOP.getOperand(0);
1963
1964      // (ctpop x) u< 2 -> (x & x-1) == 0
1965      // (ctpop x) u> 1 -> (x & x-1) != 0
1966      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1967        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1968                                  DAG.getConstant(1, CTVT));
1969        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1970        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1971        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1972      }
1973
1974      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1975    }
1976
1977    // (zext x) == C --> x == (trunc C)
1978    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1979        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1980      unsigned MinBits = N0.getValueSizeInBits();
1981      SDValue PreZExt;
1982      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1983        // ZExt
1984        MinBits = N0->getOperand(0).getValueSizeInBits();
1985        PreZExt = N0->getOperand(0);
1986      } else if (N0->getOpcode() == ISD::AND) {
1987        // DAGCombine turns costly ZExts into ANDs
1988        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1989          if ((C->getAPIntValue()+1).isPowerOf2()) {
1990            MinBits = C->getAPIntValue().countTrailingOnes();
1991            PreZExt = N0->getOperand(0);
1992          }
1993      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1994        // ZEXTLOAD
1995        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1996          MinBits = LN0->getMemoryVT().getSizeInBits();
1997          PreZExt = N0;
1998        }
1999      }
2000
2001      // Make sure we're not loosing bits from the constant.
2002      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
2003        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2004        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2005          // Will get folded away.
2006          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2007          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2008          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2009        }
2010      }
2011    }
2012
2013    // If the LHS is '(and load, const)', the RHS is 0,
2014    // the test is for equality or unsigned, and all 1 bits of the const are
2015    // in the same partial word, see if we can shorten the load.
2016    if (DCI.isBeforeLegalize() &&
2017        N0.getOpcode() == ISD::AND && C1 == 0 &&
2018        N0.getNode()->hasOneUse() &&
2019        isa<LoadSDNode>(N0.getOperand(0)) &&
2020        N0.getOperand(0).getNode()->hasOneUse() &&
2021        isa<ConstantSDNode>(N0.getOperand(1))) {
2022      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2023      APInt bestMask;
2024      unsigned bestWidth = 0, bestOffset = 0;
2025      if (!Lod->isVolatile() && Lod->isUnindexed()) {
2026        unsigned origWidth = N0.getValueType().getSizeInBits();
2027        unsigned maskWidth = origWidth;
2028        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2029        // 8 bits, but have to be careful...
2030        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2031          origWidth = Lod->getMemoryVT().getSizeInBits();
2032        const APInt &Mask =
2033          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2034        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2035          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2036          for (unsigned offset=0; offset<origWidth/width; offset++) {
2037            if ((newMask & Mask) == Mask) {
2038              if (!TD->isLittleEndian())
2039                bestOffset = (origWidth/width - offset - 1) * (width/8);
2040              else
2041                bestOffset = (uint64_t)offset * (width/8);
2042              bestMask = Mask.lshr(offset * (width/8) * 8);
2043              bestWidth = width;
2044              break;
2045            }
2046            newMask = newMask << width;
2047          }
2048        }
2049      }
2050      if (bestWidth) {
2051        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2052        if (newVT.isRound()) {
2053          EVT PtrType = Lod->getOperand(1).getValueType();
2054          SDValue Ptr = Lod->getBasePtr();
2055          if (bestOffset != 0)
2056            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2057                              DAG.getConstant(bestOffset, PtrType));
2058          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2059          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2060                                Lod->getPointerInfo().getWithOffset(bestOffset),
2061                                        false, false, NewAlign);
2062          return DAG.getSetCC(dl, VT,
2063                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2064                                      DAG.getConstant(bestMask.trunc(bestWidth),
2065                                                      newVT)),
2066                              DAG.getConstant(0LL, newVT), Cond);
2067        }
2068      }
2069    }
2070
2071    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2072    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2073      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2074
2075      // If the comparison constant has bits in the upper part, the
2076      // zero-extended value could never match.
2077      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2078                                              C1.getBitWidth() - InSize))) {
2079        switch (Cond) {
2080        case ISD::SETUGT:
2081        case ISD::SETUGE:
2082        case ISD::SETEQ: return DAG.getConstant(0, VT);
2083        case ISD::SETULT:
2084        case ISD::SETULE:
2085        case ISD::SETNE: return DAG.getConstant(1, VT);
2086        case ISD::SETGT:
2087        case ISD::SETGE:
2088          // True if the sign bit of C1 is set.
2089          return DAG.getConstant(C1.isNegative(), VT);
2090        case ISD::SETLT:
2091        case ISD::SETLE:
2092          // True if the sign bit of C1 isn't set.
2093          return DAG.getConstant(C1.isNonNegative(), VT);
2094        default:
2095          break;
2096        }
2097      }
2098
2099      // Otherwise, we can perform the comparison with the low bits.
2100      switch (Cond) {
2101      case ISD::SETEQ:
2102      case ISD::SETNE:
2103      case ISD::SETUGT:
2104      case ISD::SETUGE:
2105      case ISD::SETULT:
2106      case ISD::SETULE: {
2107        EVT newVT = N0.getOperand(0).getValueType();
2108        if (DCI.isBeforeLegalizeOps() ||
2109            (isOperationLegal(ISD::SETCC, newVT) &&
2110              getCondCodeAction(Cond, newVT)==Legal))
2111          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2112                              DAG.getConstant(C1.trunc(InSize), newVT),
2113                              Cond);
2114        break;
2115      }
2116      default:
2117        break;   // todo, be more careful with signed comparisons
2118      }
2119    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2120               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2121      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2122      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2123      EVT ExtDstTy = N0.getValueType();
2124      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2125
2126      // If the constant doesn't fit into the number of bits for the source of
2127      // the sign extension, it is impossible for both sides to be equal.
2128      if (C1.getMinSignedBits() > ExtSrcTyBits)
2129        return DAG.getConstant(Cond == ISD::SETNE, VT);
2130
2131      SDValue ZextOp;
2132      EVT Op0Ty = N0.getOperand(0).getValueType();
2133      if (Op0Ty == ExtSrcTy) {
2134        ZextOp = N0.getOperand(0);
2135      } else {
2136        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2137        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2138                              DAG.getConstant(Imm, Op0Ty));
2139      }
2140      if (!DCI.isCalledByLegalizer())
2141        DCI.AddToWorklist(ZextOp.getNode());
2142      // Otherwise, make this a use of a zext.
2143      return DAG.getSetCC(dl, VT, ZextOp,
2144                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2145                                                              ExtDstTyBits,
2146                                                              ExtSrcTyBits),
2147                                          ExtDstTy),
2148                          Cond);
2149    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2150                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2151      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2152      if (N0.getOpcode() == ISD::SETCC &&
2153          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2154        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2155        if (TrueWhenTrue)
2156          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2157        // Invert the condition.
2158        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2159        CC = ISD::getSetCCInverse(CC,
2160                                  N0.getOperand(0).getValueType().isInteger());
2161        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2162      }
2163
2164      if ((N0.getOpcode() == ISD::XOR ||
2165           (N0.getOpcode() == ISD::AND &&
2166            N0.getOperand(0).getOpcode() == ISD::XOR &&
2167            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2168          isa<ConstantSDNode>(N0.getOperand(1)) &&
2169          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2170        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2171        // can only do this if the top bits are known zero.
2172        unsigned BitWidth = N0.getValueSizeInBits();
2173        if (DAG.MaskedValueIsZero(N0,
2174                                  APInt::getHighBitsSet(BitWidth,
2175                                                        BitWidth-1))) {
2176          // Okay, get the un-inverted input value.
2177          SDValue Val;
2178          if (N0.getOpcode() == ISD::XOR)
2179            Val = N0.getOperand(0);
2180          else {
2181            assert(N0.getOpcode() == ISD::AND &&
2182                    N0.getOperand(0).getOpcode() == ISD::XOR);
2183            // ((X^1)&1)^1 -> X & 1
2184            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2185                              N0.getOperand(0).getOperand(0),
2186                              N0.getOperand(1));
2187          }
2188
2189          return DAG.getSetCC(dl, VT, Val, N1,
2190                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2191        }
2192      } else if (N1C->getAPIntValue() == 1 &&
2193                 (VT == MVT::i1 ||
2194                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2195        SDValue Op0 = N0;
2196        if (Op0.getOpcode() == ISD::TRUNCATE)
2197          Op0 = Op0.getOperand(0);
2198
2199        if ((Op0.getOpcode() == ISD::XOR) &&
2200            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2201            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2202          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2203          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2204          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2205                              Cond);
2206        } else if (Op0.getOpcode() == ISD::AND &&
2207                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2208                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2209          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2210          if (Op0.getValueType().bitsGT(VT))
2211            Op0 = DAG.getNode(ISD::AND, dl, VT,
2212                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2213                          DAG.getConstant(1, VT));
2214          else if (Op0.getValueType().bitsLT(VT))
2215            Op0 = DAG.getNode(ISD::AND, dl, VT,
2216                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2217                        DAG.getConstant(1, VT));
2218
2219          return DAG.getSetCC(dl, VT, Op0,
2220                              DAG.getConstant(0, Op0.getValueType()),
2221                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2222        }
2223      }
2224    }
2225
2226    APInt MinVal, MaxVal;
2227    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2228    if (ISD::isSignedIntSetCC(Cond)) {
2229      MinVal = APInt::getSignedMinValue(OperandBitSize);
2230      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2231    } else {
2232      MinVal = APInt::getMinValue(OperandBitSize);
2233      MaxVal = APInt::getMaxValue(OperandBitSize);
2234    }
2235
2236    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2237    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2238      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2239      // X >= C0 --> X > (C0-1)
2240      return DAG.getSetCC(dl, VT, N0,
2241                          DAG.getConstant(C1-1, N1.getValueType()),
2242                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2243    }
2244
2245    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2246      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2247      // X <= C0 --> X < (C0+1)
2248      return DAG.getSetCC(dl, VT, N0,
2249                          DAG.getConstant(C1+1, N1.getValueType()),
2250                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2251    }
2252
2253    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2254      return DAG.getConstant(0, VT);      // X < MIN --> false
2255    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2256      return DAG.getConstant(1, VT);      // X >= MIN --> true
2257    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2258      return DAG.getConstant(0, VT);      // X > MAX --> false
2259    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2260      return DAG.getConstant(1, VT);      // X <= MAX --> true
2261
2262    // Canonicalize setgt X, Min --> setne X, Min
2263    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2264      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2265    // Canonicalize setlt X, Max --> setne X, Max
2266    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2267      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2268
2269    // If we have setult X, 1, turn it into seteq X, 0
2270    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2271      return DAG.getSetCC(dl, VT, N0,
2272                          DAG.getConstant(MinVal, N0.getValueType()),
2273                          ISD::SETEQ);
2274    // If we have setugt X, Max-1, turn it into seteq X, Max
2275    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2276      return DAG.getSetCC(dl, VT, N0,
2277                          DAG.getConstant(MaxVal, N0.getValueType()),
2278                          ISD::SETEQ);
2279
2280    // If we have "setcc X, C0", check to see if we can shrink the immediate
2281    // by changing cc.
2282
2283    // SETUGT X, SINTMAX  -> SETLT X, 0
2284    if (Cond == ISD::SETUGT &&
2285        C1 == APInt::getSignedMaxValue(OperandBitSize))
2286      return DAG.getSetCC(dl, VT, N0,
2287                          DAG.getConstant(0, N1.getValueType()),
2288                          ISD::SETLT);
2289
2290    // SETULT X, SINTMIN  -> SETGT X, -1
2291    if (Cond == ISD::SETULT &&
2292        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2293      SDValue ConstMinusOne =
2294          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2295                          N1.getValueType());
2296      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2297    }
2298
2299    // Fold bit comparisons when we can.
2300    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2301        (VT == N0.getValueType() ||
2302         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2303        N0.getOpcode() == ISD::AND)
2304      if (ConstantSDNode *AndRHS =
2305                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2306        EVT ShiftTy = DCI.isBeforeLegalize() ?
2307          getPointerTy() : getShiftAmountTy(N0.getValueType());
2308        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2309          // Perform the xform if the AND RHS is a single bit.
2310          if (AndRHS->getAPIntValue().isPowerOf2()) {
2311            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2312                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2313                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2314          }
2315        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2316          // (X & 8) == 8  -->  (X & 8) >> 3
2317          // Perform the xform if C1 is a single bit.
2318          if (C1.isPowerOf2()) {
2319            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2320                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2321                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2322          }
2323        }
2324      }
2325  }
2326
2327  if (isa<ConstantFPSDNode>(N0.getNode())) {
2328    // Constant fold or commute setcc.
2329    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2330    if (O.getNode()) return O;
2331  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2332    // If the RHS of an FP comparison is a constant, simplify it away in
2333    // some cases.
2334    if (CFP->getValueAPF().isNaN()) {
2335      // If an operand is known to be a nan, we can fold it.
2336      switch (ISD::getUnorderedFlavor(Cond)) {
2337      default: llvm_unreachable("Unknown flavor!");
2338      case 0:  // Known false.
2339        return DAG.getConstant(0, VT);
2340      case 1:  // Known true.
2341        return DAG.getConstant(1, VT);
2342      case 2:  // Undefined.
2343        return DAG.getUNDEF(VT);
2344      }
2345    }
2346
2347    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2348    // constant if knowing that the operand is non-nan is enough.  We prefer to
2349    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2350    // materialize 0.0.
2351    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2352      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2353
2354    // If the condition is not legal, see if we can find an equivalent one
2355    // which is legal.
2356    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2357      // If the comparison was an awkward floating-point == or != and one of
2358      // the comparison operands is infinity or negative infinity, convert the
2359      // condition to a less-awkward <= or >=.
2360      if (CFP->getValueAPF().isInfinity()) {
2361        if (CFP->getValueAPF().isNegative()) {
2362          if (Cond == ISD::SETOEQ &&
2363              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2364            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2365          if (Cond == ISD::SETUEQ &&
2366              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2367            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2368          if (Cond == ISD::SETUNE &&
2369              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2370            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2371          if (Cond == ISD::SETONE &&
2372              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2373            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2374        } else {
2375          if (Cond == ISD::SETOEQ &&
2376              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2377            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2378          if (Cond == ISD::SETUEQ &&
2379              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2380            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2381          if (Cond == ISD::SETUNE &&
2382              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2383            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2384          if (Cond == ISD::SETONE &&
2385              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2386            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2387        }
2388      }
2389    }
2390  }
2391
2392  if (N0 == N1) {
2393    // We can always fold X == X for integer setcc's.
2394    if (N0.getValueType().isInteger())
2395      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2396    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2397    if (UOF == 2)   // FP operators that are undefined on NaNs.
2398      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2399    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2400      return DAG.getConstant(UOF, VT);
2401    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2402    // if it is not already.
2403    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2404    if (NewCond != Cond)
2405      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2406  }
2407
2408  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2409      N0.getValueType().isInteger()) {
2410    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2411        N0.getOpcode() == ISD::XOR) {
2412      // Simplify (X+Y) == (X+Z) -->  Y == Z
2413      if (N0.getOpcode() == N1.getOpcode()) {
2414        if (N0.getOperand(0) == N1.getOperand(0))
2415          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2416        if (N0.getOperand(1) == N1.getOperand(1))
2417          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2418        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2419          // If X op Y == Y op X, try other combinations.
2420          if (N0.getOperand(0) == N1.getOperand(1))
2421            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2422                                Cond);
2423          if (N0.getOperand(1) == N1.getOperand(0))
2424            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2425                                Cond);
2426        }
2427      }
2428
2429      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2430        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2431          // Turn (X+C1) == C2 --> X == C2-C1
2432          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2433            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2434                                DAG.getConstant(RHSC->getAPIntValue()-
2435                                                LHSR->getAPIntValue(),
2436                                N0.getValueType()), Cond);
2437          }
2438
2439          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2440          if (N0.getOpcode() == ISD::XOR)
2441            // If we know that all of the inverted bits are zero, don't bother
2442            // performing the inversion.
2443            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2444              return
2445                DAG.getSetCC(dl, VT, N0.getOperand(0),
2446                             DAG.getConstant(LHSR->getAPIntValue() ^
2447                                               RHSC->getAPIntValue(),
2448                                             N0.getValueType()),
2449                             Cond);
2450        }
2451
2452        // Turn (C1-X) == C2 --> X == C1-C2
2453        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2454          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2455            return
2456              DAG.getSetCC(dl, VT, N0.getOperand(1),
2457                           DAG.getConstant(SUBC->getAPIntValue() -
2458                                             RHSC->getAPIntValue(),
2459                                           N0.getValueType()),
2460                           Cond);
2461          }
2462        }
2463      }
2464
2465      // Simplify (X+Z) == X -->  Z == 0
2466      if (N0.getOperand(0) == N1)
2467        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2468                        DAG.getConstant(0, N0.getValueType()), Cond);
2469      if (N0.getOperand(1) == N1) {
2470        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2471          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2472                          DAG.getConstant(0, N0.getValueType()), Cond);
2473        else if (N0.getNode()->hasOneUse()) {
2474          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2475          // (Z-X) == X  --> Z == X<<1
2476          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2477                                     N1,
2478                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2479          if (!DCI.isCalledByLegalizer())
2480            DCI.AddToWorklist(SH.getNode());
2481          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2482        }
2483      }
2484    }
2485
2486    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2487        N1.getOpcode() == ISD::XOR) {
2488      // Simplify  X == (X+Z) -->  Z == 0
2489      if (N1.getOperand(0) == N0) {
2490        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2491                        DAG.getConstant(0, N1.getValueType()), Cond);
2492      } else if (N1.getOperand(1) == N0) {
2493        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2494          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2495                          DAG.getConstant(0, N1.getValueType()), Cond);
2496        } else if (N1.getNode()->hasOneUse()) {
2497          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2498          // X == (Z-X)  --> X<<1 == Z
2499          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2500                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2501          if (!DCI.isCalledByLegalizer())
2502            DCI.AddToWorklist(SH.getNode());
2503          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2504        }
2505      }
2506    }
2507
2508    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2509    // Note that where y is variable and is known to have at most
2510    // one bit set (for example, if it is z&1) we cannot do this;
2511    // the expressions are not equivalent when y==0.
2512    if (N0.getOpcode() == ISD::AND)
2513      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2514        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2515          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2516          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2517          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2518        }
2519      }
2520    if (N1.getOpcode() == ISD::AND)
2521      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2522        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2523          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2524          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2525          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2526        }
2527      }
2528  }
2529
2530  // Fold away ALL boolean setcc's.
2531  SDValue Temp;
2532  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2533    switch (Cond) {
2534    default: llvm_unreachable("Unknown integer setcc!");
2535    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2536      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2537      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2538      if (!DCI.isCalledByLegalizer())
2539        DCI.AddToWorklist(Temp.getNode());
2540      break;
2541    case ISD::SETNE:  // X != Y   -->  (X^Y)
2542      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2543      break;
2544    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2545    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2546      Temp = DAG.getNOT(dl, N0, MVT::i1);
2547      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2548      if (!DCI.isCalledByLegalizer())
2549        DCI.AddToWorklist(Temp.getNode());
2550      break;
2551    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2552    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2553      Temp = DAG.getNOT(dl, N1, MVT::i1);
2554      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2555      if (!DCI.isCalledByLegalizer())
2556        DCI.AddToWorklist(Temp.getNode());
2557      break;
2558    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2559    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2560      Temp = DAG.getNOT(dl, N0, MVT::i1);
2561      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2562      if (!DCI.isCalledByLegalizer())
2563        DCI.AddToWorklist(Temp.getNode());
2564      break;
2565    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2566    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2567      Temp = DAG.getNOT(dl, N1, MVT::i1);
2568      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2569      break;
2570    }
2571    if (VT != MVT::i1) {
2572      if (!DCI.isCalledByLegalizer())
2573        DCI.AddToWorklist(N0.getNode());
2574      // FIXME: If running after legalize, we probably can't do this.
2575      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2576    }
2577    return N0;
2578  }
2579
2580  // Could not fold it.
2581  return SDValue();
2582}
2583
2584/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2585/// node is a GlobalAddress + offset.
2586bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2587                                    int64_t &Offset) const {
2588  if (isa<GlobalAddressSDNode>(N)) {
2589    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2590    GA = GASD->getGlobal();
2591    Offset += GASD->getOffset();
2592    return true;
2593  }
2594
2595  if (N->getOpcode() == ISD::ADD) {
2596    SDValue N1 = N->getOperand(0);
2597    SDValue N2 = N->getOperand(1);
2598    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2599      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2600      if (V) {
2601        Offset += V->getSExtValue();
2602        return true;
2603      }
2604    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2605      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2606      if (V) {
2607        Offset += V->getSExtValue();
2608        return true;
2609      }
2610    }
2611  }
2612
2613  return false;
2614}
2615
2616
2617SDValue TargetLowering::
2618PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2619  // Default implementation: no optimization.
2620  return SDValue();
2621}
2622
2623//===----------------------------------------------------------------------===//
2624//  Inline Assembler Implementation Methods
2625//===----------------------------------------------------------------------===//
2626
2627
2628TargetLowering::ConstraintType
2629TargetLowering::getConstraintType(const std::string &Constraint) const {
2630  if (Constraint.size() == 1) {
2631    switch (Constraint[0]) {
2632    default: break;
2633    case 'r': return C_RegisterClass;
2634    case 'm':    // memory
2635    case 'o':    // offsetable
2636    case 'V':    // not offsetable
2637      return C_Memory;
2638    case 'i':    // Simple Integer or Relocatable Constant
2639    case 'n':    // Simple Integer
2640    case 'E':    // Floating Point Constant
2641    case 'F':    // Floating Point Constant
2642    case 's':    // Relocatable Constant
2643    case 'p':    // Address.
2644    case 'X':    // Allow ANY value.
2645    case 'I':    // Target registers.
2646    case 'J':
2647    case 'K':
2648    case 'L':
2649    case 'M':
2650    case 'N':
2651    case 'O':
2652    case 'P':
2653    case '<':
2654    case '>':
2655      return C_Other;
2656    }
2657  }
2658
2659  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2660      Constraint[Constraint.size()-1] == '}')
2661    return C_Register;
2662  return C_Unknown;
2663}
2664
2665/// LowerXConstraint - try to replace an X constraint, which matches anything,
2666/// with another that has more specific requirements based on the type of the
2667/// corresponding operand.
2668const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2669  if (ConstraintVT.isInteger())
2670    return "r";
2671  if (ConstraintVT.isFloatingPoint())
2672    return "f";      // works for many targets
2673  return 0;
2674}
2675
2676/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2677/// vector.  If it is invalid, don't add anything to Ops.
2678void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2679                                                  std::string &Constraint,
2680                                                  std::vector<SDValue> &Ops,
2681                                                  SelectionDAG &DAG) const {
2682
2683  if (Constraint.length() > 1) return;
2684
2685  char ConstraintLetter = Constraint[0];
2686  switch (ConstraintLetter) {
2687  default: break;
2688  case 'X':     // Allows any operand; labels (basic block) use this.
2689    if (Op.getOpcode() == ISD::BasicBlock) {
2690      Ops.push_back(Op);
2691      return;
2692    }
2693    // fall through
2694  case 'i':    // Simple Integer or Relocatable Constant
2695  case 'n':    // Simple Integer
2696  case 's': {  // Relocatable Constant
2697    // These operands are interested in values of the form (GV+C), where C may
2698    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2699    // is possible and fine if either GV or C are missing.
2700    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2701    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2702
2703    // If we have "(add GV, C)", pull out GV/C
2704    if (Op.getOpcode() == ISD::ADD) {
2705      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2706      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2707      if (C == 0 || GA == 0) {
2708        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2709        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2710      }
2711      if (C == 0 || GA == 0)
2712        C = 0, GA = 0;
2713    }
2714
2715    // If we find a valid operand, map to the TargetXXX version so that the
2716    // value itself doesn't get selected.
2717    if (GA) {   // Either &GV   or   &GV+C
2718      if (ConstraintLetter != 'n') {
2719        int64_t Offs = GA->getOffset();
2720        if (C) Offs += C->getZExtValue();
2721        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2722                                                 C ? C->getDebugLoc() : DebugLoc(),
2723                                                 Op.getValueType(), Offs));
2724        return;
2725      }
2726    }
2727    if (C) {   // just C, no GV.
2728      // Simple constants are not allowed for 's'.
2729      if (ConstraintLetter != 's') {
2730        // gcc prints these as sign extended.  Sign extend value to 64 bits
2731        // now; without this it would get ZExt'd later in
2732        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2733        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2734                                            MVT::i64));
2735        return;
2736      }
2737    }
2738    break;
2739  }
2740  }
2741}
2742
2743std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2744getRegForInlineAsmConstraint(const std::string &Constraint,
2745                             EVT VT) const {
2746  if (Constraint[0] != '{')
2747    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2748  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2749
2750  // Remove the braces from around the name.
2751  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2752
2753  // Figure out which register class contains this reg.
2754  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2755  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2756       E = RI->regclass_end(); RCI != E; ++RCI) {
2757    const TargetRegisterClass *RC = *RCI;
2758
2759    // If none of the value types for this register class are valid, we
2760    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2761    bool isLegal = false;
2762    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2763         I != E; ++I) {
2764      if (isTypeLegal(*I)) {
2765        isLegal = true;
2766        break;
2767      }
2768    }
2769
2770    if (!isLegal) continue;
2771
2772    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2773         I != E; ++I) {
2774      if (RegName.equals_lower(RI->getName(*I)))
2775        return std::make_pair(*I, RC);
2776    }
2777  }
2778
2779  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2780}
2781
2782//===----------------------------------------------------------------------===//
2783// Constraint Selection.
2784
2785/// isMatchingInputConstraint - Return true of this is an input operand that is
2786/// a matching constraint like "4".
2787bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2788  assert(!ConstraintCode.empty() && "No known constraint!");
2789  return isdigit(ConstraintCode[0]);
2790}
2791
2792/// getMatchedOperand - If this is an input matching constraint, this method
2793/// returns the output operand it matches.
2794unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2795  assert(!ConstraintCode.empty() && "No known constraint!");
2796  return atoi(ConstraintCode.c_str());
2797}
2798
2799
2800/// ParseConstraints - Split up the constraint string from the inline
2801/// assembly value into the specific constraints and their prefixes,
2802/// and also tie in the associated operand values.
2803/// If this returns an empty vector, and if the constraint string itself
2804/// isn't empty, there was an error parsing.
2805TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2806    ImmutableCallSite CS) const {
2807  /// ConstraintOperands - Information about all of the constraints.
2808  AsmOperandInfoVector ConstraintOperands;
2809  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2810  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2811
2812  // Do a prepass over the constraints, canonicalizing them, and building up the
2813  // ConstraintOperands list.
2814  InlineAsm::ConstraintInfoVector
2815    ConstraintInfos = IA->ParseConstraints();
2816
2817  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2818  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2819
2820  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2821    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2822    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2823
2824    // Update multiple alternative constraint count.
2825    if (OpInfo.multipleAlternatives.size() > maCount)
2826      maCount = OpInfo.multipleAlternatives.size();
2827
2828    OpInfo.ConstraintVT = MVT::Other;
2829
2830    // Compute the value type for each operand.
2831    switch (OpInfo.Type) {
2832    case InlineAsm::isOutput:
2833      // Indirect outputs just consume an argument.
2834      if (OpInfo.isIndirect) {
2835        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2836        break;
2837      }
2838
2839      // The return value of the call is this value.  As such, there is no
2840      // corresponding argument.
2841      assert(!CS.getType()->isVoidTy() &&
2842             "Bad inline asm!");
2843      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2844        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2845      } else {
2846        assert(ResNo == 0 && "Asm only has one result!");
2847        OpInfo.ConstraintVT = getValueType(CS.getType());
2848      }
2849      ++ResNo;
2850      break;
2851    case InlineAsm::isInput:
2852      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2853      break;
2854    case InlineAsm::isClobber:
2855      // Nothing to do.
2856      break;
2857    }
2858
2859    if (OpInfo.CallOperandVal) {
2860      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2861      if (OpInfo.isIndirect) {
2862        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2863        if (!PtrTy)
2864          report_fatal_error("Indirect operand for inline asm not a pointer!");
2865        OpTy = PtrTy->getElementType();
2866      }
2867
2868      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2869      if (const StructType *STy = dyn_cast<StructType>(OpTy))
2870        if (STy->getNumElements() == 1)
2871          OpTy = STy->getElementType(0);
2872
2873      // If OpTy is not a single value, it may be a struct/union that we
2874      // can tile with integers.
2875      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2876        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2877        switch (BitSize) {
2878        default: break;
2879        case 1:
2880        case 8:
2881        case 16:
2882        case 32:
2883        case 64:
2884        case 128:
2885          OpInfo.ConstraintVT =
2886              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2887          break;
2888        }
2889      } else if (dyn_cast<PointerType>(OpTy)) {
2890        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2891      } else {
2892        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2893      }
2894    }
2895  }
2896
2897  // If we have multiple alternative constraints, select the best alternative.
2898  if (ConstraintInfos.size()) {
2899    if (maCount) {
2900      unsigned bestMAIndex = 0;
2901      int bestWeight = -1;
2902      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2903      int weight = -1;
2904      unsigned maIndex;
2905      // Compute the sums of the weights for each alternative, keeping track
2906      // of the best (highest weight) one so far.
2907      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2908        int weightSum = 0;
2909        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2910            cIndex != eIndex; ++cIndex) {
2911          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2912          if (OpInfo.Type == InlineAsm::isClobber)
2913            continue;
2914
2915          // If this is an output operand with a matching input operand,
2916          // look up the matching input. If their types mismatch, e.g. one
2917          // is an integer, the other is floating point, or their sizes are
2918          // different, flag it as an maCantMatch.
2919          if (OpInfo.hasMatchingInput()) {
2920            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2921            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2922              if ((OpInfo.ConstraintVT.isInteger() !=
2923                   Input.ConstraintVT.isInteger()) ||
2924                  (OpInfo.ConstraintVT.getSizeInBits() !=
2925                   Input.ConstraintVT.getSizeInBits())) {
2926                weightSum = -1;  // Can't match.
2927                break;
2928              }
2929            }
2930          }
2931          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2932          if (weight == -1) {
2933            weightSum = -1;
2934            break;
2935          }
2936          weightSum += weight;
2937        }
2938        // Update best.
2939        if (weightSum > bestWeight) {
2940          bestWeight = weightSum;
2941          bestMAIndex = maIndex;
2942        }
2943      }
2944
2945      // Now select chosen alternative in each constraint.
2946      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2947          cIndex != eIndex; ++cIndex) {
2948        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2949        if (cInfo.Type == InlineAsm::isClobber)
2950          continue;
2951        cInfo.selectAlternative(bestMAIndex);
2952      }
2953    }
2954  }
2955
2956  // Check and hook up tied operands, choose constraint code to use.
2957  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2958      cIndex != eIndex; ++cIndex) {
2959    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2960
2961    // If this is an output operand with a matching input operand, look up the
2962    // matching input. If their types mismatch, e.g. one is an integer, the
2963    // other is floating point, or their sizes are different, flag it as an
2964    // error.
2965    if (OpInfo.hasMatchingInput()) {
2966      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2967
2968      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2969	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
2970	  getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
2971	std::pair<unsigned, const TargetRegisterClass*> InputRC =
2972	  getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
2973        if ((OpInfo.ConstraintVT.isInteger() !=
2974             Input.ConstraintVT.isInteger()) ||
2975            (MatchRC.second != InputRC.second)) {
2976          report_fatal_error("Unsupported asm: input constraint"
2977                             " with a matching output constraint of"
2978                             " incompatible type!");
2979        }
2980      }
2981
2982    }
2983  }
2984
2985  return ConstraintOperands;
2986}
2987
2988
2989/// getConstraintGenerality - Return an integer indicating how general CT
2990/// is.
2991static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2992  switch (CT) {
2993  default: llvm_unreachable("Unknown constraint type!");
2994  case TargetLowering::C_Other:
2995  case TargetLowering::C_Unknown:
2996    return 0;
2997  case TargetLowering::C_Register:
2998    return 1;
2999  case TargetLowering::C_RegisterClass:
3000    return 2;
3001  case TargetLowering::C_Memory:
3002    return 3;
3003  }
3004}
3005
3006/// Examine constraint type and operand type and determine a weight value.
3007/// This object must already have been set up with the operand type
3008/// and the current alternative constraint selected.
3009TargetLowering::ConstraintWeight
3010  TargetLowering::getMultipleConstraintMatchWeight(
3011    AsmOperandInfo &info, int maIndex) const {
3012  InlineAsm::ConstraintCodeVector *rCodes;
3013  if (maIndex >= (int)info.multipleAlternatives.size())
3014    rCodes = &info.Codes;
3015  else
3016    rCodes = &info.multipleAlternatives[maIndex].Codes;
3017  ConstraintWeight BestWeight = CW_Invalid;
3018
3019  // Loop over the options, keeping track of the most general one.
3020  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3021    ConstraintWeight weight =
3022      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3023    if (weight > BestWeight)
3024      BestWeight = weight;
3025  }
3026
3027  return BestWeight;
3028}
3029
3030/// Examine constraint type and operand type and determine a weight value.
3031/// This object must already have been set up with the operand type
3032/// and the current alternative constraint selected.
3033TargetLowering::ConstraintWeight
3034  TargetLowering::getSingleConstraintMatchWeight(
3035    AsmOperandInfo &info, const char *constraint) const {
3036  ConstraintWeight weight = CW_Invalid;
3037  Value *CallOperandVal = info.CallOperandVal;
3038    // If we don't have a value, we can't do a match,
3039    // but allow it at the lowest weight.
3040  if (CallOperandVal == NULL)
3041    return CW_Default;
3042  // Look at the constraint type.
3043  switch (*constraint) {
3044    case 'i': // immediate integer.
3045    case 'n': // immediate integer with a known value.
3046      if (isa<ConstantInt>(CallOperandVal))
3047        weight = CW_Constant;
3048      break;
3049    case 's': // non-explicit intregal immediate.
3050      if (isa<GlobalValue>(CallOperandVal))
3051        weight = CW_Constant;
3052      break;
3053    case 'E': // immediate float if host format.
3054    case 'F': // immediate float.
3055      if (isa<ConstantFP>(CallOperandVal))
3056        weight = CW_Constant;
3057      break;
3058    case '<': // memory operand with autodecrement.
3059    case '>': // memory operand with autoincrement.
3060    case 'm': // memory operand.
3061    case 'o': // offsettable memory operand
3062    case 'V': // non-offsettable memory operand
3063      weight = CW_Memory;
3064      break;
3065    case 'r': // general register.
3066    case 'g': // general register, memory operand or immediate integer.
3067              // note: Clang converts "g" to "imr".
3068      if (CallOperandVal->getType()->isIntegerTy())
3069        weight = CW_Register;
3070      break;
3071    case 'X': // any operand.
3072    default:
3073      weight = CW_Default;
3074      break;
3075  }
3076  return weight;
3077}
3078
3079/// ChooseConstraint - If there are multiple different constraints that we
3080/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3081/// This is somewhat tricky: constraints fall into four classes:
3082///    Other         -> immediates and magic values
3083///    Register      -> one specific register
3084///    RegisterClass -> a group of regs
3085///    Memory        -> memory
3086/// Ideally, we would pick the most specific constraint possible: if we have
3087/// something that fits into a register, we would pick it.  The problem here
3088/// is that if we have something that could either be in a register or in
3089/// memory that use of the register could cause selection of *other*
3090/// operands to fail: they might only succeed if we pick memory.  Because of
3091/// this the heuristic we use is:
3092///
3093///  1) If there is an 'other' constraint, and if the operand is valid for
3094///     that constraint, use it.  This makes us take advantage of 'i'
3095///     constraints when available.
3096///  2) Otherwise, pick the most general constraint present.  This prefers
3097///     'm' over 'r', for example.
3098///
3099static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3100                             const TargetLowering &TLI,
3101                             SDValue Op, SelectionDAG *DAG) {
3102  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3103  unsigned BestIdx = 0;
3104  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3105  int BestGenerality = -1;
3106
3107  // Loop over the options, keeping track of the most general one.
3108  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3109    TargetLowering::ConstraintType CType =
3110      TLI.getConstraintType(OpInfo.Codes[i]);
3111
3112    // If this is an 'other' constraint, see if the operand is valid for it.
3113    // For example, on X86 we might have an 'rI' constraint.  If the operand
3114    // is an integer in the range [0..31] we want to use I (saving a load
3115    // of a register), otherwise we must use 'r'.
3116    if (CType == TargetLowering::C_Other && Op.getNode()) {
3117      assert(OpInfo.Codes[i].size() == 1 &&
3118             "Unhandled multi-letter 'other' constraint");
3119      std::vector<SDValue> ResultOps;
3120      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3121                                       ResultOps, *DAG);
3122      if (!ResultOps.empty()) {
3123        BestType = CType;
3124        BestIdx = i;
3125        break;
3126      }
3127    }
3128
3129    // Things with matching constraints can only be registers, per gcc
3130    // documentation.  This mainly affects "g" constraints.
3131    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3132      continue;
3133
3134    // This constraint letter is more general than the previous one, use it.
3135    int Generality = getConstraintGenerality(CType);
3136    if (Generality > BestGenerality) {
3137      BestType = CType;
3138      BestIdx = i;
3139      BestGenerality = Generality;
3140    }
3141  }
3142
3143  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3144  OpInfo.ConstraintType = BestType;
3145}
3146
3147/// ComputeConstraintToUse - Determines the constraint code and constraint
3148/// type to use for the specific AsmOperandInfo, setting
3149/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3150void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3151                                            SDValue Op,
3152                                            SelectionDAG *DAG) const {
3153  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3154
3155  // Single-letter constraints ('r') are very common.
3156  if (OpInfo.Codes.size() == 1) {
3157    OpInfo.ConstraintCode = OpInfo.Codes[0];
3158    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3159  } else {
3160    ChooseConstraint(OpInfo, *this, Op, DAG);
3161  }
3162
3163  // 'X' matches anything.
3164  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3165    // Labels and constants are handled elsewhere ('X' is the only thing
3166    // that matches labels).  For Functions, the type here is the type of
3167    // the result, which is not what we want to look at; leave them alone.
3168    Value *v = OpInfo.CallOperandVal;
3169    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3170      OpInfo.CallOperandVal = v;
3171      return;
3172    }
3173
3174    // Otherwise, try to resolve it to something we know about by looking at
3175    // the actual operand type.
3176    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3177      OpInfo.ConstraintCode = Repl;
3178      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3179    }
3180  }
3181}
3182
3183//===----------------------------------------------------------------------===//
3184//  Loop Strength Reduction hooks
3185//===----------------------------------------------------------------------===//
3186
3187/// isLegalAddressingMode - Return true if the addressing mode represented
3188/// by AM is legal for this target, for a load/store of the specified type.
3189bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3190                                           const Type *Ty) const {
3191  // The default implementation of this implements a conservative RISCy, r+r and
3192  // r+i addr mode.
3193
3194  // Allows a sign-extended 16-bit immediate field.
3195  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3196    return false;
3197
3198  // No global is ever allowed as a base.
3199  if (AM.BaseGV)
3200    return false;
3201
3202  // Only support r+r,
3203  switch (AM.Scale) {
3204  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3205    break;
3206  case 1:
3207    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3208      return false;
3209    // Otherwise we have r+r or r+i.
3210    break;
3211  case 2:
3212    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3213      return false;
3214    // Allow 2*r as r+r.
3215    break;
3216  }
3217
3218  return true;
3219}
3220
3221/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3222/// with the multiplicative inverse of the constant.
3223SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
3224                                       SelectionDAG &DAG) const {
3225  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
3226  APInt d = C->getAPIntValue();
3227  assert(d != 0 && "Division by zero!");
3228
3229  // Shift the value upfront if it is even, so the LSB is one.
3230  unsigned ShAmt = d.countTrailingZeros();
3231  if (ShAmt) {
3232    // TODO: For UDIV use SRL instead of SRA.
3233    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
3234    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
3235    d = d.ashr(ShAmt);
3236  }
3237
3238  // Calculate the multiplicative inverse, using Newton's method.
3239  APInt t, xn = d;
3240  while ((t = d*xn) != 1)
3241    xn *= APInt(d.getBitWidth(), 2) - t;
3242
3243  Op2 = DAG.getConstant(xn, Op1.getValueType());
3244  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3245}
3246
3247/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3248/// return a DAG expression to select that will generate the same value by
3249/// multiplying by a magic number.  See:
3250/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3251SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3252                                  std::vector<SDNode*>* Created) const {
3253  EVT VT = N->getValueType(0);
3254  DebugLoc dl= N->getDebugLoc();
3255
3256  // Check to see if we can do this.
3257  // FIXME: We should be more aggressive here.
3258  if (!isTypeLegal(VT))
3259    return SDValue();
3260
3261  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3262  APInt::ms magics = d.magic();
3263
3264  // Multiply the numerator (operand 0) by the magic value
3265  // FIXME: We should support doing a MUL in a wider type
3266  SDValue Q;
3267  if (isOperationLegalOrCustom(ISD::MULHS, VT))
3268    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3269                    DAG.getConstant(magics.m, VT));
3270  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3271    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3272                              N->getOperand(0),
3273                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3274  else
3275    return SDValue();       // No mulhs or equvialent
3276  // If d > 0 and m < 0, add the numerator
3277  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3278    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3279    if (Created)
3280      Created->push_back(Q.getNode());
3281  }
3282  // If d < 0 and m > 0, subtract the numerator.
3283  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3284    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3285    if (Created)
3286      Created->push_back(Q.getNode());
3287  }
3288  // Shift right algebraic if shift value is nonzero
3289  if (magics.s > 0) {
3290    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3291                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3292    if (Created)
3293      Created->push_back(Q.getNode());
3294  }
3295  // Extract the sign bit and add it to the quotient
3296  SDValue T =
3297    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3298                                           getShiftAmountTy(Q.getValueType())));
3299  if (Created)
3300    Created->push_back(T.getNode());
3301  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3302}
3303
3304/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3305/// return a DAG expression to select that will generate the same value by
3306/// multiplying by a magic number.  See:
3307/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3308SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3309                                  std::vector<SDNode*>* Created) const {
3310  EVT VT = N->getValueType(0);
3311  DebugLoc dl = N->getDebugLoc();
3312
3313  // Check to see if we can do this.
3314  // FIXME: We should be more aggressive here.
3315  if (!isTypeLegal(VT))
3316    return SDValue();
3317
3318  // FIXME: We should use a narrower constant when the upper
3319  // bits are known to be zero.
3320  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3321  APInt::mu magics = N1C.magicu();
3322
3323  SDValue Q = N->getOperand(0);
3324
3325  // If the divisor is even, we can avoid using the expensive fixup by shifting
3326  // the divided value upfront.
3327  if (magics.a != 0 && !N1C[0]) {
3328    unsigned Shift = N1C.countTrailingZeros();
3329    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3330                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3331    if (Created)
3332      Created->push_back(Q.getNode());
3333
3334    // Get magic number for the shifted divisor.
3335    magics = N1C.lshr(Shift).magicu(Shift);
3336    assert(magics.a == 0 && "Should use cheap fixup now");
3337  }
3338
3339  // Multiply the numerator (operand 0) by the magic value
3340  // FIXME: We should support doing a MUL in a wider type
3341  if (isOperationLegalOrCustom(ISD::MULHU, VT))
3342    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3343  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3344    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3345                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3346  else
3347    return SDValue();       // No mulhu or equvialent
3348  if (Created)
3349    Created->push_back(Q.getNode());
3350
3351  if (magics.a == 0) {
3352    assert(magics.s < N1C.getBitWidth() &&
3353           "We shouldn't generate an undefined shift!");
3354    return DAG.getNode(ISD::SRL, dl, VT, Q,
3355                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3356  } else {
3357    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3358    if (Created)
3359      Created->push_back(NPQ.getNode());
3360    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3361                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3362    if (Created)
3363      Created->push_back(NPQ.getNode());
3364    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3365    if (Created)
3366      Created->push_back(NPQ.getNode());
3367    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3368             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3369  }
3370}
3371