TargetLowering.cpp revision 205218
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Target/TargetSubtarget.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31using namespace llvm;
32
33namespace llvm {
34TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
35  bool isLocal = GV->hasLocalLinkage();
36  bool isDeclaration = GV->isDeclaration();
37  // FIXME: what should we do for protected and internal visibility?
38  // For variables, is internal different from hidden?
39  bool isHidden = GV->hasHiddenVisibility();
40
41  if (reloc == Reloc::PIC_) {
42    if (isLocal || isHidden)
43      return TLSModel::LocalDynamic;
44    else
45      return TLSModel::GeneralDynamic;
46  } else {
47    if (!isDeclaration || isHidden)
48      return TLSModel::LocalExec;
49    else
50      return TLSModel::InitialExec;
51  }
52}
53}
54
55/// InitLibcallNames - Set default libcall names.
56///
57static void InitLibcallNames(const char **Names) {
58  Names[RTLIB::SHL_I16] = "__ashlhi3";
59  Names[RTLIB::SHL_I32] = "__ashlsi3";
60  Names[RTLIB::SHL_I64] = "__ashldi3";
61  Names[RTLIB::SHL_I128] = "__ashlti3";
62  Names[RTLIB::SRL_I16] = "__lshrhi3";
63  Names[RTLIB::SRL_I32] = "__lshrsi3";
64  Names[RTLIB::SRL_I64] = "__lshrdi3";
65  Names[RTLIB::SRL_I128] = "__lshrti3";
66  Names[RTLIB::SRA_I16] = "__ashrhi3";
67  Names[RTLIB::SRA_I32] = "__ashrsi3";
68  Names[RTLIB::SRA_I64] = "__ashrdi3";
69  Names[RTLIB::SRA_I128] = "__ashrti3";
70  Names[RTLIB::MUL_I8] = "__mulqi3";
71  Names[RTLIB::MUL_I16] = "__mulhi3";
72  Names[RTLIB::MUL_I32] = "__mulsi3";
73  Names[RTLIB::MUL_I64] = "__muldi3";
74  Names[RTLIB::MUL_I128] = "__multi3";
75  Names[RTLIB::SDIV_I8] = "__divqi3";
76  Names[RTLIB::SDIV_I16] = "__divhi3";
77  Names[RTLIB::SDIV_I32] = "__divsi3";
78  Names[RTLIB::SDIV_I64] = "__divdi3";
79  Names[RTLIB::SDIV_I128] = "__divti3";
80  Names[RTLIB::UDIV_I8] = "__udivqi3";
81  Names[RTLIB::UDIV_I16] = "__udivhi3";
82  Names[RTLIB::UDIV_I32] = "__udivsi3";
83  Names[RTLIB::UDIV_I64] = "__udivdi3";
84  Names[RTLIB::UDIV_I128] = "__udivti3";
85  Names[RTLIB::SREM_I8] = "__modqi3";
86  Names[RTLIB::SREM_I16] = "__modhi3";
87  Names[RTLIB::SREM_I32] = "__modsi3";
88  Names[RTLIB::SREM_I64] = "__moddi3";
89  Names[RTLIB::SREM_I128] = "__modti3";
90  Names[RTLIB::UREM_I8] = "__umodqi3";
91  Names[RTLIB::UREM_I16] = "__umodhi3";
92  Names[RTLIB::UREM_I32] = "__umodsi3";
93  Names[RTLIB::UREM_I64] = "__umoddi3";
94  Names[RTLIB::UREM_I128] = "__umodti3";
95  Names[RTLIB::NEG_I32] = "__negsi2";
96  Names[RTLIB::NEG_I64] = "__negdi2";
97  Names[RTLIB::ADD_F32] = "__addsf3";
98  Names[RTLIB::ADD_F64] = "__adddf3";
99  Names[RTLIB::ADD_F80] = "__addxf3";
100  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
101  Names[RTLIB::SUB_F32] = "__subsf3";
102  Names[RTLIB::SUB_F64] = "__subdf3";
103  Names[RTLIB::SUB_F80] = "__subxf3";
104  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
105  Names[RTLIB::MUL_F32] = "__mulsf3";
106  Names[RTLIB::MUL_F64] = "__muldf3";
107  Names[RTLIB::MUL_F80] = "__mulxf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
113  Names[RTLIB::REM_F32] = "fmodf";
114  Names[RTLIB::REM_F64] = "fmod";
115  Names[RTLIB::REM_F80] = "fmodl";
116  Names[RTLIB::REM_PPCF128] = "fmodl";
117  Names[RTLIB::POWI_F32] = "__powisf2";
118  Names[RTLIB::POWI_F64] = "__powidf2";
119  Names[RTLIB::POWI_F80] = "__powixf2";
120  Names[RTLIB::POWI_PPCF128] = "__powitf2";
121  Names[RTLIB::SQRT_F32] = "sqrtf";
122  Names[RTLIB::SQRT_F64] = "sqrt";
123  Names[RTLIB::SQRT_F80] = "sqrtl";
124  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
125  Names[RTLIB::LOG_F32] = "logf";
126  Names[RTLIB::LOG_F64] = "log";
127  Names[RTLIB::LOG_F80] = "logl";
128  Names[RTLIB::LOG_PPCF128] = "logl";
129  Names[RTLIB::LOG2_F32] = "log2f";
130  Names[RTLIB::LOG2_F64] = "log2";
131  Names[RTLIB::LOG2_F80] = "log2l";
132  Names[RTLIB::LOG2_PPCF128] = "log2l";
133  Names[RTLIB::LOG10_F32] = "log10f";
134  Names[RTLIB::LOG10_F64] = "log10";
135  Names[RTLIB::LOG10_F80] = "log10l";
136  Names[RTLIB::LOG10_PPCF128] = "log10l";
137  Names[RTLIB::EXP_F32] = "expf";
138  Names[RTLIB::EXP_F64] = "exp";
139  Names[RTLIB::EXP_F80] = "expl";
140  Names[RTLIB::EXP_PPCF128] = "expl";
141  Names[RTLIB::EXP2_F32] = "exp2f";
142  Names[RTLIB::EXP2_F64] = "exp2";
143  Names[RTLIB::EXP2_F80] = "exp2l";
144  Names[RTLIB::EXP2_PPCF128] = "exp2l";
145  Names[RTLIB::SIN_F32] = "sinf";
146  Names[RTLIB::SIN_F64] = "sin";
147  Names[RTLIB::SIN_F80] = "sinl";
148  Names[RTLIB::SIN_PPCF128] = "sinl";
149  Names[RTLIB::COS_F32] = "cosf";
150  Names[RTLIB::COS_F64] = "cos";
151  Names[RTLIB::COS_F80] = "cosl";
152  Names[RTLIB::COS_PPCF128] = "cosl";
153  Names[RTLIB::POW_F32] = "powf";
154  Names[RTLIB::POW_F64] = "pow";
155  Names[RTLIB::POW_F80] = "powl";
156  Names[RTLIB::POW_PPCF128] = "powl";
157  Names[RTLIB::CEIL_F32] = "ceilf";
158  Names[RTLIB::CEIL_F64] = "ceil";
159  Names[RTLIB::CEIL_F80] = "ceill";
160  Names[RTLIB::CEIL_PPCF128] = "ceill";
161  Names[RTLIB::TRUNC_F32] = "truncf";
162  Names[RTLIB::TRUNC_F64] = "trunc";
163  Names[RTLIB::TRUNC_F80] = "truncl";
164  Names[RTLIB::TRUNC_PPCF128] = "truncl";
165  Names[RTLIB::RINT_F32] = "rintf";
166  Names[RTLIB::RINT_F64] = "rint";
167  Names[RTLIB::RINT_F80] = "rintl";
168  Names[RTLIB::RINT_PPCF128] = "rintl";
169  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
170  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
171  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
172  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
173  Names[RTLIB::FLOOR_F32] = "floorf";
174  Names[RTLIB::FLOOR_F64] = "floor";
175  Names[RTLIB::FLOOR_F80] = "floorl";
176  Names[RTLIB::FLOOR_PPCF128] = "floorl";
177  Names[RTLIB::COPYSIGN_F32] = "copysignf";
178  Names[RTLIB::COPYSIGN_F64] = "copysign";
179  Names[RTLIB::COPYSIGN_F80] = "copysignl";
180  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
181  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
182  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
183  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
184  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
185  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
186  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
187  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
188  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
189  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
190  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
191  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
192  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
193  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
194  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
195  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
196  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
197  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
198  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
199  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
200  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
201  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
202  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
203  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
204  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
205  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
206  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
207  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
208  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
209  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
210  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
211  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
212  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
213  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
214  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
215  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
216  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
217  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
218  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
219  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
220  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
221  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
222  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
223  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
224  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
225  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
226  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
227  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
228  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
229  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
230  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
231  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
232  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
233  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
234  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
235  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
236  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
237  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
238  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
239  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
240  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
241  Names[RTLIB::OEQ_F32] = "__eqsf2";
242  Names[RTLIB::OEQ_F64] = "__eqdf2";
243  Names[RTLIB::UNE_F32] = "__nesf2";
244  Names[RTLIB::UNE_F64] = "__nedf2";
245  Names[RTLIB::OGE_F32] = "__gesf2";
246  Names[RTLIB::OGE_F64] = "__gedf2";
247  Names[RTLIB::OLT_F32] = "__ltsf2";
248  Names[RTLIB::OLT_F64] = "__ltdf2";
249  Names[RTLIB::OLE_F32] = "__lesf2";
250  Names[RTLIB::OLE_F64] = "__ledf2";
251  Names[RTLIB::OGT_F32] = "__gtsf2";
252  Names[RTLIB::OGT_F64] = "__gtdf2";
253  Names[RTLIB::UO_F32] = "__unordsf2";
254  Names[RTLIB::UO_F64] = "__unorddf2";
255  Names[RTLIB::O_F32] = "__unordsf2";
256  Names[RTLIB::O_F64] = "__unorddf2";
257  Names[RTLIB::MEMCPY] = "memcpy";
258  Names[RTLIB::MEMMOVE] = "memmove";
259  Names[RTLIB::MEMSET] = "memset";
260  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
261}
262
263/// InitLibcallCallingConvs - Set default libcall CallingConvs.
264///
265static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
266  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
267    CCs[i] = CallingConv::C;
268  }
269}
270
271/// getFPEXT - Return the FPEXT_*_* value for the given types, or
272/// UNKNOWN_LIBCALL if there is none.
273RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
274  if (OpVT == MVT::f32) {
275    if (RetVT == MVT::f64)
276      return FPEXT_F32_F64;
277  }
278
279  return UNKNOWN_LIBCALL;
280}
281
282/// getFPROUND - Return the FPROUND_*_* value for the given types, or
283/// UNKNOWN_LIBCALL if there is none.
284RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
285  if (RetVT == MVT::f32) {
286    if (OpVT == MVT::f64)
287      return FPROUND_F64_F32;
288    if (OpVT == MVT::f80)
289      return FPROUND_F80_F32;
290    if (OpVT == MVT::ppcf128)
291      return FPROUND_PPCF128_F32;
292  } else if (RetVT == MVT::f64) {
293    if (OpVT == MVT::f80)
294      return FPROUND_F80_F64;
295    if (OpVT == MVT::ppcf128)
296      return FPROUND_PPCF128_F64;
297  }
298
299  return UNKNOWN_LIBCALL;
300}
301
302/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
303/// UNKNOWN_LIBCALL if there is none.
304RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
305  if (OpVT == MVT::f32) {
306    if (RetVT == MVT::i8)
307      return FPTOSINT_F32_I8;
308    if (RetVT == MVT::i16)
309      return FPTOSINT_F32_I16;
310    if (RetVT == MVT::i32)
311      return FPTOSINT_F32_I32;
312    if (RetVT == MVT::i64)
313      return FPTOSINT_F32_I64;
314    if (RetVT == MVT::i128)
315      return FPTOSINT_F32_I128;
316  } else if (OpVT == MVT::f64) {
317    if (RetVT == MVT::i32)
318      return FPTOSINT_F64_I32;
319    if (RetVT == MVT::i64)
320      return FPTOSINT_F64_I64;
321    if (RetVT == MVT::i128)
322      return FPTOSINT_F64_I128;
323  } else if (OpVT == MVT::f80) {
324    if (RetVT == MVT::i32)
325      return FPTOSINT_F80_I32;
326    if (RetVT == MVT::i64)
327      return FPTOSINT_F80_I64;
328    if (RetVT == MVT::i128)
329      return FPTOSINT_F80_I128;
330  } else if (OpVT == MVT::ppcf128) {
331    if (RetVT == MVT::i32)
332      return FPTOSINT_PPCF128_I32;
333    if (RetVT == MVT::i64)
334      return FPTOSINT_PPCF128_I64;
335    if (RetVT == MVT::i128)
336      return FPTOSINT_PPCF128_I128;
337  }
338  return UNKNOWN_LIBCALL;
339}
340
341/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
342/// UNKNOWN_LIBCALL if there is none.
343RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
344  if (OpVT == MVT::f32) {
345    if (RetVT == MVT::i8)
346      return FPTOUINT_F32_I8;
347    if (RetVT == MVT::i16)
348      return FPTOUINT_F32_I16;
349    if (RetVT == MVT::i32)
350      return FPTOUINT_F32_I32;
351    if (RetVT == MVT::i64)
352      return FPTOUINT_F32_I64;
353    if (RetVT == MVT::i128)
354      return FPTOUINT_F32_I128;
355  } else if (OpVT == MVT::f64) {
356    if (RetVT == MVT::i32)
357      return FPTOUINT_F64_I32;
358    if (RetVT == MVT::i64)
359      return FPTOUINT_F64_I64;
360    if (RetVT == MVT::i128)
361      return FPTOUINT_F64_I128;
362  } else if (OpVT == MVT::f80) {
363    if (RetVT == MVT::i32)
364      return FPTOUINT_F80_I32;
365    if (RetVT == MVT::i64)
366      return FPTOUINT_F80_I64;
367    if (RetVT == MVT::i128)
368      return FPTOUINT_F80_I128;
369  } else if (OpVT == MVT::ppcf128) {
370    if (RetVT == MVT::i32)
371      return FPTOUINT_PPCF128_I32;
372    if (RetVT == MVT::i64)
373      return FPTOUINT_PPCF128_I64;
374    if (RetVT == MVT::i128)
375      return FPTOUINT_PPCF128_I128;
376  }
377  return UNKNOWN_LIBCALL;
378}
379
380/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
381/// UNKNOWN_LIBCALL if there is none.
382RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
383  if (OpVT == MVT::i32) {
384    if (RetVT == MVT::f32)
385      return SINTTOFP_I32_F32;
386    else if (RetVT == MVT::f64)
387      return SINTTOFP_I32_F64;
388    else if (RetVT == MVT::f80)
389      return SINTTOFP_I32_F80;
390    else if (RetVT == MVT::ppcf128)
391      return SINTTOFP_I32_PPCF128;
392  } else if (OpVT == MVT::i64) {
393    if (RetVT == MVT::f32)
394      return SINTTOFP_I64_F32;
395    else if (RetVT == MVT::f64)
396      return SINTTOFP_I64_F64;
397    else if (RetVT == MVT::f80)
398      return SINTTOFP_I64_F80;
399    else if (RetVT == MVT::ppcf128)
400      return SINTTOFP_I64_PPCF128;
401  } else if (OpVT == MVT::i128) {
402    if (RetVT == MVT::f32)
403      return SINTTOFP_I128_F32;
404    else if (RetVT == MVT::f64)
405      return SINTTOFP_I128_F64;
406    else if (RetVT == MVT::f80)
407      return SINTTOFP_I128_F80;
408    else if (RetVT == MVT::ppcf128)
409      return SINTTOFP_I128_PPCF128;
410  }
411  return UNKNOWN_LIBCALL;
412}
413
414/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
415/// UNKNOWN_LIBCALL if there is none.
416RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
417  if (OpVT == MVT::i32) {
418    if (RetVT == MVT::f32)
419      return UINTTOFP_I32_F32;
420    else if (RetVT == MVT::f64)
421      return UINTTOFP_I32_F64;
422    else if (RetVT == MVT::f80)
423      return UINTTOFP_I32_F80;
424    else if (RetVT == MVT::ppcf128)
425      return UINTTOFP_I32_PPCF128;
426  } else if (OpVT == MVT::i64) {
427    if (RetVT == MVT::f32)
428      return UINTTOFP_I64_F32;
429    else if (RetVT == MVT::f64)
430      return UINTTOFP_I64_F64;
431    else if (RetVT == MVT::f80)
432      return UINTTOFP_I64_F80;
433    else if (RetVT == MVT::ppcf128)
434      return UINTTOFP_I64_PPCF128;
435  } else if (OpVT == MVT::i128) {
436    if (RetVT == MVT::f32)
437      return UINTTOFP_I128_F32;
438    else if (RetVT == MVT::f64)
439      return UINTTOFP_I128_F64;
440    else if (RetVT == MVT::f80)
441      return UINTTOFP_I128_F80;
442    else if (RetVT == MVT::ppcf128)
443      return UINTTOFP_I128_PPCF128;
444  }
445  return UNKNOWN_LIBCALL;
446}
447
448/// InitCmpLibcallCCs - Set default comparison libcall CC.
449///
450static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
451  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
452  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
453  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
454  CCs[RTLIB::UNE_F32] = ISD::SETNE;
455  CCs[RTLIB::UNE_F64] = ISD::SETNE;
456  CCs[RTLIB::OGE_F32] = ISD::SETGE;
457  CCs[RTLIB::OGE_F64] = ISD::SETGE;
458  CCs[RTLIB::OLT_F32] = ISD::SETLT;
459  CCs[RTLIB::OLT_F64] = ISD::SETLT;
460  CCs[RTLIB::OLE_F32] = ISD::SETLE;
461  CCs[RTLIB::OLE_F64] = ISD::SETLE;
462  CCs[RTLIB::OGT_F32] = ISD::SETGT;
463  CCs[RTLIB::OGT_F64] = ISD::SETGT;
464  CCs[RTLIB::UO_F32] = ISD::SETNE;
465  CCs[RTLIB::UO_F64] = ISD::SETNE;
466  CCs[RTLIB::O_F32] = ISD::SETEQ;
467  CCs[RTLIB::O_F64] = ISD::SETEQ;
468}
469
470/// NOTE: The constructor takes ownership of TLOF.
471TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
472  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
473  // All operations default to being supported.
474  memset(OpActions, 0, sizeof(OpActions));
475  memset(LoadExtActions, 0, sizeof(LoadExtActions));
476  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
477  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
478  memset(ConvertActions, 0, sizeof(ConvertActions));
479  memset(CondCodeActions, 0, sizeof(CondCodeActions));
480
481  // Set default actions for various operations.
482  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
483    // Default all indexed load / store to expand.
484    for (unsigned IM = (unsigned)ISD::PRE_INC;
485         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
486      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
487      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
488    }
489
490    // These operations default to expand.
491    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
492    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
493  }
494
495  // Most targets ignore the @llvm.prefetch intrinsic.
496  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
497
498  // ConstantFP nodes default to expand.  Targets can either change this to
499  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
500  // to optimize expansions for certain constants.
501  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
502  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
503  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
504
505  // These library functions default to expand.
506  setOperationAction(ISD::FLOG , MVT::f64, Expand);
507  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
508  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
509  setOperationAction(ISD::FEXP , MVT::f64, Expand);
510  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
511  setOperationAction(ISD::FLOG , MVT::f32, Expand);
512  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
513  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
514  setOperationAction(ISD::FEXP , MVT::f32, Expand);
515  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
516
517  // Default ISD::TRAP to expand (which turns it into abort).
518  setOperationAction(ISD::TRAP, MVT::Other, Expand);
519
520  IsLittleEndian = TD->isLittleEndian();
521  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
522  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
523  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
524  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
525  benefitFromCodePlacementOpt = false;
526  UseUnderscoreSetJmp = false;
527  UseUnderscoreLongJmp = false;
528  SelectIsExpensive = false;
529  IntDivIsCheap = false;
530  Pow2DivIsCheap = false;
531  StackPointerRegisterToSaveRestore = 0;
532  ExceptionPointerRegister = 0;
533  ExceptionSelectorRegister = 0;
534  BooleanContents = UndefinedBooleanContent;
535  SchedPreferenceInfo = SchedulingForLatency;
536  JumpBufSize = 0;
537  JumpBufAlignment = 0;
538  IfCvtBlockSizeLimit = 2;
539  IfCvtDupBlockSizeLimit = 0;
540  PrefLoopAlignment = 0;
541
542  InitLibcallNames(LibcallRoutineNames);
543  InitCmpLibcallCCs(CmpLibcallCCs);
544  InitLibcallCallingConvs(LibcallCallingConvs);
545}
546
547TargetLowering::~TargetLowering() {
548  delete &TLOF;
549}
550
551/// canOpTrap - Returns true if the operation can trap for the value type.
552/// VT must be a legal type.
553bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
554  assert(isTypeLegal(VT));
555  switch (Op) {
556  default:
557    return false;
558  case ISD::FDIV:
559  case ISD::FREM:
560  case ISD::SDIV:
561  case ISD::UDIV:
562  case ISD::SREM:
563  case ISD::UREM:
564    return true;
565  }
566}
567
568
569static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
570                                       unsigned &NumIntermediates,
571                                       EVT &RegisterVT,
572                                       TargetLowering* TLI) {
573  // Figure out the right, legal destination reg to copy into.
574  unsigned NumElts = VT.getVectorNumElements();
575  MVT EltTy = VT.getVectorElementType();
576
577  unsigned NumVectorRegs = 1;
578
579  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
580  // could break down into LHS/RHS like LegalizeDAG does.
581  if (!isPowerOf2_32(NumElts)) {
582    NumVectorRegs = NumElts;
583    NumElts = 1;
584  }
585
586  // Divide the input until we get to a supported size.  This will always
587  // end with a scalar if the target doesn't support vectors.
588  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
589    NumElts >>= 1;
590    NumVectorRegs <<= 1;
591  }
592
593  NumIntermediates = NumVectorRegs;
594
595  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
596  if (!TLI->isTypeLegal(NewVT))
597    NewVT = EltTy;
598  IntermediateVT = NewVT;
599
600  EVT DestVT = TLI->getRegisterType(NewVT);
601  RegisterVT = DestVT;
602  if (EVT(DestVT).bitsLT(NewVT)) {
603    // Value is expanded, e.g. i64 -> i16.
604    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
605  } else {
606    // Otherwise, promotion or legal types use the same number of registers as
607    // the vector decimated to the appropriate level.
608    return NumVectorRegs;
609  }
610
611  return 1;
612}
613
614/// computeRegisterProperties - Once all of the register classes are added,
615/// this allows us to compute derived properties we expose.
616void TargetLowering::computeRegisterProperties() {
617  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
618         "Too many value types for ValueTypeActions to hold!");
619
620  // Everything defaults to needing one register.
621  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
622    NumRegistersForVT[i] = 1;
623    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
624  }
625  // ...except isVoid, which doesn't need any registers.
626  NumRegistersForVT[MVT::isVoid] = 0;
627
628  // Find the largest integer register class.
629  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
630  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
631    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
632
633  // Every integer value type larger than this largest register takes twice as
634  // many registers to represent as the previous ValueType.
635  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
636    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
637    if (!ExpandedVT.isInteger())
638      break;
639    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
640    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
641    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
642    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
643  }
644
645  // Inspect all of the ValueType's smaller than the largest integer
646  // register to see which ones need promotion.
647  unsigned LegalIntReg = LargestIntReg;
648  for (unsigned IntReg = LargestIntReg - 1;
649       IntReg >= (unsigned)MVT::i1; --IntReg) {
650    EVT IVT = (MVT::SimpleValueType)IntReg;
651    if (isTypeLegal(IVT)) {
652      LegalIntReg = IntReg;
653    } else {
654      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
655        (MVT::SimpleValueType)LegalIntReg;
656      ValueTypeActions.setTypeAction(IVT, Promote);
657    }
658  }
659
660  // ppcf128 type is really two f64's.
661  if (!isTypeLegal(MVT::ppcf128)) {
662    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
663    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
664    TransformToType[MVT::ppcf128] = MVT::f64;
665    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
666  }
667
668  // Decide how to handle f64. If the target does not have native f64 support,
669  // expand it to i64 and we will be generating soft float library calls.
670  if (!isTypeLegal(MVT::f64)) {
671    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
672    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
673    TransformToType[MVT::f64] = MVT::i64;
674    ValueTypeActions.setTypeAction(MVT::f64, Expand);
675  }
676
677  // Decide how to handle f32. If the target does not have native support for
678  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
679  if (!isTypeLegal(MVT::f32)) {
680    if (isTypeLegal(MVT::f64)) {
681      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
682      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
683      TransformToType[MVT::f32] = MVT::f64;
684      ValueTypeActions.setTypeAction(MVT::f32, Promote);
685    } else {
686      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
687      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
688      TransformToType[MVT::f32] = MVT::i32;
689      ValueTypeActions.setTypeAction(MVT::f32, Expand);
690    }
691  }
692
693  // Loop over all of the vector value types to see which need transformations.
694  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
695       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
696    MVT VT = (MVT::SimpleValueType)i;
697    if (!isTypeLegal(VT)) {
698      MVT IntermediateVT;
699      EVT RegisterVT;
700      unsigned NumIntermediates;
701      NumRegistersForVT[i] =
702        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
703                                  RegisterVT, this);
704      RegisterTypeForVT[i] = RegisterVT;
705
706      // Determine if there is a legal wider type.
707      bool IsLegalWiderType = false;
708      EVT EltVT = VT.getVectorElementType();
709      unsigned NElts = VT.getVectorNumElements();
710      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
711        EVT SVT = (MVT::SimpleValueType)nVT;
712        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
713            SVT.getVectorNumElements() > NElts && NElts != 1) {
714          TransformToType[i] = SVT;
715          ValueTypeActions.setTypeAction(VT, Promote);
716          IsLegalWiderType = true;
717          break;
718        }
719      }
720      if (!IsLegalWiderType) {
721        EVT NVT = VT.getPow2VectorType();
722        if (NVT == VT) {
723          // Type is already a power of 2.  The default action is to split.
724          TransformToType[i] = MVT::Other;
725          ValueTypeActions.setTypeAction(VT, Expand);
726        } else {
727          TransformToType[i] = NVT;
728          ValueTypeActions.setTypeAction(VT, Promote);
729        }
730      }
731    }
732  }
733}
734
735const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
736  return NULL;
737}
738
739
740MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
741  return PointerTy.SimpleTy;
742}
743
744MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
745  return MVT::i32; // return the default value
746}
747
748/// getVectorTypeBreakdown - Vector types are broken down into some number of
749/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
750/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
751/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
752///
753/// This method returns the number of registers needed, and the VT for each
754/// register.  It also returns the VT and quantity of the intermediate values
755/// before they are promoted/expanded.
756///
757unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
758                                                EVT &IntermediateVT,
759                                                unsigned &NumIntermediates,
760                                                EVT &RegisterVT) const {
761  // Figure out the right, legal destination reg to copy into.
762  unsigned NumElts = VT.getVectorNumElements();
763  EVT EltTy = VT.getVectorElementType();
764
765  unsigned NumVectorRegs = 1;
766
767  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
768  // could break down into LHS/RHS like LegalizeDAG does.
769  if (!isPowerOf2_32(NumElts)) {
770    NumVectorRegs = NumElts;
771    NumElts = 1;
772  }
773
774  // Divide the input until we get to a supported size.  This will always
775  // end with a scalar if the target doesn't support vectors.
776  while (NumElts > 1 && !isTypeLegal(
777                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
778    NumElts >>= 1;
779    NumVectorRegs <<= 1;
780  }
781
782  NumIntermediates = NumVectorRegs;
783
784  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
785  if (!isTypeLegal(NewVT))
786    NewVT = EltTy;
787  IntermediateVT = NewVT;
788
789  EVT DestVT = getRegisterType(Context, NewVT);
790  RegisterVT = DestVT;
791  if (DestVT.bitsLT(NewVT)) {
792    // Value is expanded, e.g. i64 -> i16.
793    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
794  } else {
795    // Otherwise, promotion or legal types use the same number of registers as
796    // the vector decimated to the appropriate level.
797    return NumVectorRegs;
798  }
799
800  return 1;
801}
802
803/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
804/// function arguments in the caller parameter area.  This is the actual
805/// alignment, not its logarithm.
806unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
807  return TD->getCallFrameTypeAlignment(Ty);
808}
809
810/// getJumpTableEncoding - Return the entry encoding for a jump table in the
811/// current function.  The returned value is a member of the
812/// MachineJumpTableInfo::JTEntryKind enum.
813unsigned TargetLowering::getJumpTableEncoding() const {
814  // In non-pic modes, just use the address of a block.
815  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
816    return MachineJumpTableInfo::EK_BlockAddress;
817
818  // In PIC mode, if the target supports a GPRel32 directive, use it.
819  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
820    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
821
822  // Otherwise, use a label difference.
823  return MachineJumpTableInfo::EK_LabelDifference32;
824}
825
826SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
827                                                 SelectionDAG &DAG) const {
828  // If our PIC model is GP relative, use the global offset table as the base.
829  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
830    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
831  return Table;
832}
833
834/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
835/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
836/// MCExpr.
837const MCExpr *
838TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
839                                             unsigned JTI,MCContext &Ctx) const{
840  // The normal PIC reloc base is the label at the start of the jump table.
841  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
842}
843
844bool
845TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
846  // Assume that everything is safe in static mode.
847  if (getTargetMachine().getRelocationModel() == Reloc::Static)
848    return true;
849
850  // In dynamic-no-pic mode, assume that known defined values are safe.
851  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
852      GA &&
853      !GA->getGlobal()->isDeclaration() &&
854      !GA->getGlobal()->isWeakForLinker())
855    return true;
856
857  // Otherwise assume nothing is safe.
858  return false;
859}
860
861//===----------------------------------------------------------------------===//
862//  Optimization Methods
863//===----------------------------------------------------------------------===//
864
865/// ShrinkDemandedConstant - Check to see if the specified operand of the
866/// specified instruction is a constant integer.  If so, check to see if there
867/// are any bits set in the constant that are not demanded.  If so, shrink the
868/// constant and return true.
869bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
870                                                        const APInt &Demanded) {
871  DebugLoc dl = Op.getDebugLoc();
872
873  // FIXME: ISD::SELECT, ISD::SELECT_CC
874  switch (Op.getOpcode()) {
875  default: break;
876  case ISD::XOR:
877  case ISD::AND:
878  case ISD::OR: {
879    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
880    if (!C) return false;
881
882    if (Op.getOpcode() == ISD::XOR &&
883        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
884      return false;
885
886    // if we can expand it to have all bits set, do it
887    if (C->getAPIntValue().intersects(~Demanded)) {
888      EVT VT = Op.getValueType();
889      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
890                                DAG.getConstant(Demanded &
891                                                C->getAPIntValue(),
892                                                VT));
893      return CombineTo(Op, New);
894    }
895
896    break;
897  }
898  }
899
900  return false;
901}
902
903/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
904/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
905/// cast, but it could be generalized for targets with other types of
906/// implicit widening casts.
907bool
908TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
909                                                    unsigned BitWidth,
910                                                    const APInt &Demanded,
911                                                    DebugLoc dl) {
912  assert(Op.getNumOperands() == 2 &&
913         "ShrinkDemandedOp only supports binary operators!");
914  assert(Op.getNode()->getNumValues() == 1 &&
915         "ShrinkDemandedOp only supports nodes with one result!");
916
917  // Don't do this if the node has another user, which may require the
918  // full value.
919  if (!Op.getNode()->hasOneUse())
920    return false;
921
922  // Search for the smallest integer type with free casts to and from
923  // Op's type. For expedience, just check power-of-2 integer types.
924  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
925  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
926  if (!isPowerOf2_32(SmallVTBits))
927    SmallVTBits = NextPowerOf2(SmallVTBits);
928  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
929    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
930    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
931        TLI.isZExtFree(SmallVT, Op.getValueType())) {
932      // We found a type with free casts.
933      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
934                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
935                                          Op.getNode()->getOperand(0)),
936                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
937                                          Op.getNode()->getOperand(1)));
938      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
939      return CombineTo(Op, Z);
940    }
941  }
942  return false;
943}
944
945/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
946/// DemandedMask bits of the result of Op are ever used downstream.  If we can
947/// use this information to simplify Op, create a new simplified DAG node and
948/// return true, returning the original and new nodes in Old and New. Otherwise,
949/// analyze the expression and return a mask of KnownOne and KnownZero bits for
950/// the expression (used to simplify the caller).  The KnownZero/One bits may
951/// only be accurate for those bits in the DemandedMask.
952bool TargetLowering::SimplifyDemandedBits(SDValue Op,
953                                          const APInt &DemandedMask,
954                                          APInt &KnownZero,
955                                          APInt &KnownOne,
956                                          TargetLoweringOpt &TLO,
957                                          unsigned Depth) const {
958  unsigned BitWidth = DemandedMask.getBitWidth();
959  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
960         "Mask size mismatches value type size!");
961  APInt NewMask = DemandedMask;
962  DebugLoc dl = Op.getDebugLoc();
963
964  // Don't know anything.
965  KnownZero = KnownOne = APInt(BitWidth, 0);
966
967  // Other users may use these bits.
968  if (!Op.getNode()->hasOneUse()) {
969    if (Depth != 0) {
970      // If not at the root, Just compute the KnownZero/KnownOne bits to
971      // simplify things downstream.
972      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
973      return false;
974    }
975    // If this is the root being simplified, allow it to have multiple uses,
976    // just set the NewMask to all bits.
977    NewMask = APInt::getAllOnesValue(BitWidth);
978  } else if (DemandedMask == 0) {
979    // Not demanding any bits from Op.
980    if (Op.getOpcode() != ISD::UNDEF)
981      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
982    return false;
983  } else if (Depth == 6) {        // Limit search depth.
984    return false;
985  }
986
987  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
988  switch (Op.getOpcode()) {
989  case ISD::Constant:
990    // We know all of the bits for a constant!
991    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
992    KnownZero = ~KnownOne & NewMask;
993    return false;   // Don't fall through, will infinitely loop.
994  case ISD::AND:
995    // If the RHS is a constant, check to see if the LHS would be zero without
996    // using the bits from the RHS.  Below, we use knowledge about the RHS to
997    // simplify the LHS, here we're using information from the LHS to simplify
998    // the RHS.
999    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1000      APInt LHSZero, LHSOne;
1001      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1002                                LHSZero, LHSOne, Depth+1);
1003      // If the LHS already has zeros where RHSC does, this and is dead.
1004      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1005        return TLO.CombineTo(Op, Op.getOperand(0));
1006      // If any of the set bits in the RHS are known zero on the LHS, shrink
1007      // the constant.
1008      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1009        return true;
1010    }
1011
1012    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1013                             KnownOne, TLO, Depth+1))
1014      return true;
1015    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1016    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1017                             KnownZero2, KnownOne2, TLO, Depth+1))
1018      return true;
1019    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1020
1021    // If all of the demanded bits are known one on one side, return the other.
1022    // These bits cannot contribute to the result of the 'and'.
1023    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1024      return TLO.CombineTo(Op, Op.getOperand(0));
1025    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1026      return TLO.CombineTo(Op, Op.getOperand(1));
1027    // If all of the demanded bits in the inputs are known zeros, return zero.
1028    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1029      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1030    // If the RHS is a constant, see if we can simplify it.
1031    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1032      return true;
1033    // If the operation can be done in a smaller type, do so.
1034    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1035      return true;
1036
1037    // Output known-1 bits are only known if set in both the LHS & RHS.
1038    KnownOne &= KnownOne2;
1039    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1040    KnownZero |= KnownZero2;
1041    break;
1042  case ISD::OR:
1043    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1044                             KnownOne, TLO, Depth+1))
1045      return true;
1046    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1047    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1048                             KnownZero2, KnownOne2, TLO, Depth+1))
1049      return true;
1050    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1051
1052    // If all of the demanded bits are known zero on one side, return the other.
1053    // These bits cannot contribute to the result of the 'or'.
1054    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1055      return TLO.CombineTo(Op, Op.getOperand(0));
1056    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1057      return TLO.CombineTo(Op, Op.getOperand(1));
1058    // If all of the potentially set bits on one side are known to be set on
1059    // the other side, just use the 'other' side.
1060    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1061      return TLO.CombineTo(Op, Op.getOperand(0));
1062    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1063      return TLO.CombineTo(Op, Op.getOperand(1));
1064    // If the RHS is a constant, see if we can simplify it.
1065    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1066      return true;
1067    // If the operation can be done in a smaller type, do so.
1068    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1069      return true;
1070
1071    // Output known-0 bits are only known if clear in both the LHS & RHS.
1072    KnownZero &= KnownZero2;
1073    // Output known-1 are known to be set if set in either the LHS | RHS.
1074    KnownOne |= KnownOne2;
1075    break;
1076  case ISD::XOR:
1077    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1078                             KnownOne, TLO, Depth+1))
1079      return true;
1080    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1081    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1082                             KnownOne2, TLO, Depth+1))
1083      return true;
1084    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1085
1086    // If all of the demanded bits are known zero on one side, return the other.
1087    // These bits cannot contribute to the result of the 'xor'.
1088    if ((KnownZero & NewMask) == NewMask)
1089      return TLO.CombineTo(Op, Op.getOperand(0));
1090    if ((KnownZero2 & NewMask) == NewMask)
1091      return TLO.CombineTo(Op, Op.getOperand(1));
1092    // If the operation can be done in a smaller type, do so.
1093    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1094      return true;
1095
1096    // If all of the unknown bits are known to be zero on one side or the other
1097    // (but not both) turn this into an *inclusive* or.
1098    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1099    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1100      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1101                                               Op.getOperand(0),
1102                                               Op.getOperand(1)));
1103
1104    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1105    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1106    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1107    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1108
1109    // If all of the demanded bits on one side are known, and all of the set
1110    // bits on that side are also known to be set on the other side, turn this
1111    // into an AND, as we know the bits will be cleared.
1112    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1113    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1114      if ((KnownOne & KnownOne2) == KnownOne) {
1115        EVT VT = Op.getValueType();
1116        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1117        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1118                                                 Op.getOperand(0), ANDC));
1119      }
1120    }
1121
1122    // If the RHS is a constant, see if we can simplify it.
1123    // for XOR, we prefer to force bits to 1 if they will make a -1.
1124    // if we can't force bits, try to shrink constant
1125    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1126      APInt Expanded = C->getAPIntValue() | (~NewMask);
1127      // if we can expand it to have all bits set, do it
1128      if (Expanded.isAllOnesValue()) {
1129        if (Expanded != C->getAPIntValue()) {
1130          EVT VT = Op.getValueType();
1131          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1132                                          TLO.DAG.getConstant(Expanded, VT));
1133          return TLO.CombineTo(Op, New);
1134        }
1135        // if it already has all the bits set, nothing to change
1136        // but don't shrink either!
1137      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1138        return true;
1139      }
1140    }
1141
1142    KnownZero = KnownZeroOut;
1143    KnownOne  = KnownOneOut;
1144    break;
1145  case ISD::SELECT:
1146    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1147                             KnownOne, TLO, Depth+1))
1148      return true;
1149    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1150                             KnownOne2, TLO, Depth+1))
1151      return true;
1152    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1153    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1154
1155    // If the operands are constants, see if we can simplify them.
1156    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1157      return true;
1158
1159    // Only known if known in both the LHS and RHS.
1160    KnownOne &= KnownOne2;
1161    KnownZero &= KnownZero2;
1162    break;
1163  case ISD::SELECT_CC:
1164    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1165                             KnownOne, TLO, Depth+1))
1166      return true;
1167    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1168                             KnownOne2, TLO, Depth+1))
1169      return true;
1170    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1171    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1172
1173    // If the operands are constants, see if we can simplify them.
1174    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1175      return true;
1176
1177    // Only known if known in both the LHS and RHS.
1178    KnownOne &= KnownOne2;
1179    KnownZero &= KnownZero2;
1180    break;
1181  case ISD::SHL:
1182    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1183      unsigned ShAmt = SA->getZExtValue();
1184      SDValue InOp = Op.getOperand(0);
1185
1186      // If the shift count is an invalid immediate, don't do anything.
1187      if (ShAmt >= BitWidth)
1188        break;
1189
1190      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1191      // single shift.  We can do this if the bottom bits (which are shifted
1192      // out) are never demanded.
1193      if (InOp.getOpcode() == ISD::SRL &&
1194          isa<ConstantSDNode>(InOp.getOperand(1))) {
1195        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1196          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1197          unsigned Opc = ISD::SHL;
1198          int Diff = ShAmt-C1;
1199          if (Diff < 0) {
1200            Diff = -Diff;
1201            Opc = ISD::SRL;
1202          }
1203
1204          SDValue NewSA =
1205            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1206          EVT VT = Op.getValueType();
1207          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1208                                                   InOp.getOperand(0), NewSA));
1209        }
1210      }
1211
1212      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1213                               KnownZero, KnownOne, TLO, Depth+1))
1214        return true;
1215      KnownZero <<= SA->getZExtValue();
1216      KnownOne  <<= SA->getZExtValue();
1217      // low bits known zero.
1218      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1219    }
1220    break;
1221  case ISD::SRL:
1222    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1223      EVT VT = Op.getValueType();
1224      unsigned ShAmt = SA->getZExtValue();
1225      unsigned VTSize = VT.getSizeInBits();
1226      SDValue InOp = Op.getOperand(0);
1227
1228      // If the shift count is an invalid immediate, don't do anything.
1229      if (ShAmt >= BitWidth)
1230        break;
1231
1232      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1233      // single shift.  We can do this if the top bits (which are shifted out)
1234      // are never demanded.
1235      if (InOp.getOpcode() == ISD::SHL &&
1236          isa<ConstantSDNode>(InOp.getOperand(1))) {
1237        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1238          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1239          unsigned Opc = ISD::SRL;
1240          int Diff = ShAmt-C1;
1241          if (Diff < 0) {
1242            Diff = -Diff;
1243            Opc = ISD::SHL;
1244          }
1245
1246          SDValue NewSA =
1247            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1248          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1249                                                   InOp.getOperand(0), NewSA));
1250        }
1251      }
1252
1253      // Compute the new bits that are at the top now.
1254      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1255                               KnownZero, KnownOne, TLO, Depth+1))
1256        return true;
1257      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1258      KnownZero = KnownZero.lshr(ShAmt);
1259      KnownOne  = KnownOne.lshr(ShAmt);
1260
1261      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1262      KnownZero |= HighBits;  // High bits known zero.
1263    }
1264    break;
1265  case ISD::SRA:
1266    // If this is an arithmetic shift right and only the low-bit is set, we can
1267    // always convert this into a logical shr, even if the shift amount is
1268    // variable.  The low bit of the shift cannot be an input sign bit unless
1269    // the shift amount is >= the size of the datatype, which is undefined.
1270    if (DemandedMask == 1)
1271      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1272                                               Op.getOperand(0), Op.getOperand(1)));
1273
1274    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1275      EVT VT = Op.getValueType();
1276      unsigned ShAmt = SA->getZExtValue();
1277
1278      // If the shift count is an invalid immediate, don't do anything.
1279      if (ShAmt >= BitWidth)
1280        break;
1281
1282      APInt InDemandedMask = (NewMask << ShAmt);
1283
1284      // If any of the demanded bits are produced by the sign extension, we also
1285      // demand the input sign bit.
1286      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1287      if (HighBits.intersects(NewMask))
1288        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1289
1290      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1291                               KnownZero, KnownOne, TLO, Depth+1))
1292        return true;
1293      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1294      KnownZero = KnownZero.lshr(ShAmt);
1295      KnownOne  = KnownOne.lshr(ShAmt);
1296
1297      // Handle the sign bit, adjusted to where it is now in the mask.
1298      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1299
1300      // If the input sign bit is known to be zero, or if none of the top bits
1301      // are demanded, turn this into an unsigned shift right.
1302      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1303        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1304                                                 Op.getOperand(0),
1305                                                 Op.getOperand(1)));
1306      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1307        KnownOne |= HighBits;
1308      }
1309    }
1310    break;
1311  case ISD::SIGN_EXTEND_INREG: {
1312    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1313
1314    // Sign extension.  Compute the demanded bits in the result that are not
1315    // present in the input.
1316    APInt NewBits =
1317      APInt::getHighBitsSet(BitWidth,
1318                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1319      NewMask;
1320
1321    // If none of the extended bits are demanded, eliminate the sextinreg.
1322    if (NewBits == 0)
1323      return TLO.CombineTo(Op, Op.getOperand(0));
1324
1325    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1326    InSignBit.zext(BitWidth);
1327    APInt InputDemandedBits =
1328      APInt::getLowBitsSet(BitWidth,
1329                           EVT.getScalarType().getSizeInBits()) &
1330      NewMask;
1331
1332    // Since the sign extended bits are demanded, we know that the sign
1333    // bit is demanded.
1334    InputDemandedBits |= InSignBit;
1335
1336    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1337                             KnownZero, KnownOne, TLO, Depth+1))
1338      return true;
1339    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1340
1341    // If the sign bit of the input is known set or clear, then we know the
1342    // top bits of the result.
1343
1344    // If the input sign bit is known zero, convert this into a zero extension.
1345    if (KnownZero.intersects(InSignBit))
1346      return TLO.CombineTo(Op,
1347                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1348
1349    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1350      KnownOne |= NewBits;
1351      KnownZero &= ~NewBits;
1352    } else {                       // Input sign bit unknown
1353      KnownZero &= ~NewBits;
1354      KnownOne &= ~NewBits;
1355    }
1356    break;
1357  }
1358  case ISD::ZERO_EXTEND: {
1359    unsigned OperandBitWidth =
1360      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1361    APInt InMask = NewMask;
1362    InMask.trunc(OperandBitWidth);
1363
1364    // If none of the top bits are demanded, convert this into an any_extend.
1365    APInt NewBits =
1366      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1367    if (!NewBits.intersects(NewMask))
1368      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1369                                               Op.getValueType(),
1370                                               Op.getOperand(0)));
1371
1372    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1373                             KnownZero, KnownOne, TLO, Depth+1))
1374      return true;
1375    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1376    KnownZero.zext(BitWidth);
1377    KnownOne.zext(BitWidth);
1378    KnownZero |= NewBits;
1379    break;
1380  }
1381  case ISD::SIGN_EXTEND: {
1382    EVT InVT = Op.getOperand(0).getValueType();
1383    unsigned InBits = InVT.getScalarType().getSizeInBits();
1384    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1385    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1386    APInt NewBits   = ~InMask & NewMask;
1387
1388    // If none of the top bits are demanded, convert this into an any_extend.
1389    if (NewBits == 0)
1390      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1391                                              Op.getValueType(),
1392                                              Op.getOperand(0)));
1393
1394    // Since some of the sign extended bits are demanded, we know that the sign
1395    // bit is demanded.
1396    APInt InDemandedBits = InMask & NewMask;
1397    InDemandedBits |= InSignBit;
1398    InDemandedBits.trunc(InBits);
1399
1400    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1401                             KnownOne, TLO, Depth+1))
1402      return true;
1403    KnownZero.zext(BitWidth);
1404    KnownOne.zext(BitWidth);
1405
1406    // If the sign bit is known zero, convert this to a zero extend.
1407    if (KnownZero.intersects(InSignBit))
1408      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1409                                               Op.getValueType(),
1410                                               Op.getOperand(0)));
1411
1412    // If the sign bit is known one, the top bits match.
1413    if (KnownOne.intersects(InSignBit)) {
1414      KnownOne  |= NewBits;
1415      KnownZero &= ~NewBits;
1416    } else {   // Otherwise, top bits aren't known.
1417      KnownOne  &= ~NewBits;
1418      KnownZero &= ~NewBits;
1419    }
1420    break;
1421  }
1422  case ISD::ANY_EXTEND: {
1423    unsigned OperandBitWidth =
1424      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1425    APInt InMask = NewMask;
1426    InMask.trunc(OperandBitWidth);
1427    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1428                             KnownZero, KnownOne, TLO, Depth+1))
1429      return true;
1430    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1431    KnownZero.zext(BitWidth);
1432    KnownOne.zext(BitWidth);
1433    break;
1434  }
1435  case ISD::TRUNCATE: {
1436    // Simplify the input, using demanded bit information, and compute the known
1437    // zero/one bits live out.
1438    unsigned OperandBitWidth =
1439      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1440    APInt TruncMask = NewMask;
1441    TruncMask.zext(OperandBitWidth);
1442    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1443                             KnownZero, KnownOne, TLO, Depth+1))
1444      return true;
1445    KnownZero.trunc(BitWidth);
1446    KnownOne.trunc(BitWidth);
1447
1448    // If the input is only used by this truncate, see if we can shrink it based
1449    // on the known demanded bits.
1450    if (Op.getOperand(0).getNode()->hasOneUse()) {
1451      SDValue In = Op.getOperand(0);
1452      switch (In.getOpcode()) {
1453      default: break;
1454      case ISD::SRL:
1455        // Shrink SRL by a constant if none of the high bits shifted in are
1456        // demanded.
1457        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1458          APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1459                                                 OperandBitWidth - BitWidth);
1460          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1461          HighBits.trunc(BitWidth);
1462
1463          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1464            // None of the shifted in bits are needed.  Add a truncate of the
1465            // shift input, then shift it.
1466            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1467                                                 Op.getValueType(),
1468                                                 In.getOperand(0));
1469            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1470                                                     Op.getValueType(),
1471                                                     NewTrunc,
1472                                                     In.getOperand(1)));
1473          }
1474        }
1475        break;
1476      }
1477    }
1478
1479    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1480    break;
1481  }
1482  case ISD::AssertZext: {
1483    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1484    APInt InMask = APInt::getLowBitsSet(BitWidth,
1485                                        VT.getSizeInBits());
1486    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1487                             KnownZero, KnownOne, TLO, Depth+1))
1488      return true;
1489    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1490    KnownZero |= ~InMask & NewMask;
1491    break;
1492  }
1493  case ISD::BIT_CONVERT:
1494#if 0
1495    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1496    // is demanded, turn this into a FGETSIGN.
1497    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1498        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1499        !MVT::isVector(Op.getOperand(0).getValueType())) {
1500      // Only do this xform if FGETSIGN is valid or if before legalize.
1501      if (!TLO.AfterLegalize ||
1502          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1503        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1504        // place.  We expect the SHL to be eliminated by other optimizations.
1505        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1506                                         Op.getOperand(0));
1507        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1508        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1509        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1510                                                 Sign, ShAmt));
1511      }
1512    }
1513#endif
1514    break;
1515  case ISD::ADD:
1516  case ISD::MUL:
1517  case ISD::SUB: {
1518    // Add, Sub, and Mul don't demand any bits in positions beyond that
1519    // of the highest bit demanded of them.
1520    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1521                                        BitWidth - NewMask.countLeadingZeros());
1522    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1523                             KnownOne2, TLO, Depth+1))
1524      return true;
1525    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1526                             KnownOne2, TLO, Depth+1))
1527      return true;
1528    // See if the operation should be performed at a smaller bit width.
1529    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1530      return true;
1531  }
1532  // FALL THROUGH
1533  default:
1534    // Just use ComputeMaskedBits to compute output bits.
1535    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1536    break;
1537  }
1538
1539  // If we know the value of all of the demanded bits, return this as a
1540  // constant.
1541  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1542    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1543
1544  return false;
1545}
1546
1547/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1548/// in Mask are known to be either zero or one and return them in the
1549/// KnownZero/KnownOne bitsets.
1550void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1551                                                    const APInt &Mask,
1552                                                    APInt &KnownZero,
1553                                                    APInt &KnownOne,
1554                                                    const SelectionDAG &DAG,
1555                                                    unsigned Depth) const {
1556  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1557          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1558          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1559          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1560         "Should use MaskedValueIsZero if you don't know whether Op"
1561         " is a target node!");
1562  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1563}
1564
1565/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1566/// targets that want to expose additional information about sign bits to the
1567/// DAG Combiner.
1568unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1569                                                         unsigned Depth) const {
1570  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1571          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1572          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1573          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1574         "Should use ComputeNumSignBits if you don't know whether Op"
1575         " is a target node!");
1576  return 1;
1577}
1578
1579/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1580/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1581/// determine which bit is set.
1582///
1583static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1584  // A left-shift of a constant one will have exactly one bit set, because
1585  // shifting the bit off the end is undefined.
1586  if (Val.getOpcode() == ISD::SHL)
1587    if (ConstantSDNode *C =
1588         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1589      if (C->getAPIntValue() == 1)
1590        return true;
1591
1592  // Similarly, a right-shift of a constant sign-bit will have exactly
1593  // one bit set.
1594  if (Val.getOpcode() == ISD::SRL)
1595    if (ConstantSDNode *C =
1596         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1597      if (C->getAPIntValue().isSignBit())
1598        return true;
1599
1600  // More could be done here, though the above checks are enough
1601  // to handle some common cases.
1602
1603  // Fall back to ComputeMaskedBits to catch other known cases.
1604  EVT OpVT = Val.getValueType();
1605  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1606  APInt Mask = APInt::getAllOnesValue(BitWidth);
1607  APInt KnownZero, KnownOne;
1608  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1609  return (KnownZero.countPopulation() == BitWidth - 1) &&
1610         (KnownOne.countPopulation() == 1);
1611}
1612
1613/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1614/// and cc. If it is unable to simplify it, return a null SDValue.
1615SDValue
1616TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1617                              ISD::CondCode Cond, bool foldBooleans,
1618                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1619  SelectionDAG &DAG = DCI.DAG;
1620  LLVMContext &Context = *DAG.getContext();
1621
1622  // These setcc operations always fold.
1623  switch (Cond) {
1624  default: break;
1625  case ISD::SETFALSE:
1626  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1627  case ISD::SETTRUE:
1628  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1629  }
1630
1631  if (isa<ConstantSDNode>(N0.getNode())) {
1632    // Ensure that the constant occurs on the RHS, and fold constant
1633    // comparisons.
1634    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1635  }
1636
1637  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1638    const APInt &C1 = N1C->getAPIntValue();
1639
1640    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1641    // equality comparison, then we're just comparing whether X itself is
1642    // zero.
1643    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1644        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1645        N0.getOperand(1).getOpcode() == ISD::Constant) {
1646      const APInt &ShAmt
1647        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1648      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1649          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1650        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1651          // (srl (ctlz x), 5) == 0  -> X != 0
1652          // (srl (ctlz x), 5) != 1  -> X != 0
1653          Cond = ISD::SETNE;
1654        } else {
1655          // (srl (ctlz x), 5) != 0  -> X == 0
1656          // (srl (ctlz x), 5) == 1  -> X == 0
1657          Cond = ISD::SETEQ;
1658        }
1659        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1660        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1661                            Zero, Cond);
1662      }
1663    }
1664
1665    // If the LHS is '(and load, const)', the RHS is 0,
1666    // the test is for equality or unsigned, and all 1 bits of the const are
1667    // in the same partial word, see if we can shorten the load.
1668    if (DCI.isBeforeLegalize() &&
1669        N0.getOpcode() == ISD::AND && C1 == 0 &&
1670        N0.getNode()->hasOneUse() &&
1671        isa<LoadSDNode>(N0.getOperand(0)) &&
1672        N0.getOperand(0).getNode()->hasOneUse() &&
1673        isa<ConstantSDNode>(N0.getOperand(1))) {
1674      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1675      APInt bestMask;
1676      unsigned bestWidth = 0, bestOffset = 0;
1677      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1678        unsigned origWidth = N0.getValueType().getSizeInBits();
1679        unsigned maskWidth = origWidth;
1680        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1681        // 8 bits, but have to be careful...
1682        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1683          origWidth = Lod->getMemoryVT().getSizeInBits();
1684        const APInt &Mask =
1685          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1686        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1687          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1688          for (unsigned offset=0; offset<origWidth/width; offset++) {
1689            if ((newMask & Mask) == Mask) {
1690              if (!TD->isLittleEndian())
1691                bestOffset = (origWidth/width - offset - 1) * (width/8);
1692              else
1693                bestOffset = (uint64_t)offset * (width/8);
1694              bestMask = Mask.lshr(offset * (width/8) * 8);
1695              bestWidth = width;
1696              break;
1697            }
1698            newMask = newMask << width;
1699          }
1700        }
1701      }
1702      if (bestWidth) {
1703        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1704        if (newVT.isRound()) {
1705          EVT PtrType = Lod->getOperand(1).getValueType();
1706          SDValue Ptr = Lod->getBasePtr();
1707          if (bestOffset != 0)
1708            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1709                              DAG.getConstant(bestOffset, PtrType));
1710          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1711          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1712                                        Lod->getSrcValue(),
1713                                        Lod->getSrcValueOffset() + bestOffset,
1714                                        false, false, NewAlign);
1715          return DAG.getSetCC(dl, VT,
1716                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1717                                      DAG.getConstant(bestMask.trunc(bestWidth),
1718                                                      newVT)),
1719                              DAG.getConstant(0LL, newVT), Cond);
1720        }
1721      }
1722    }
1723
1724    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1725    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1726      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1727
1728      // If the comparison constant has bits in the upper part, the
1729      // zero-extended value could never match.
1730      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1731                                              C1.getBitWidth() - InSize))) {
1732        switch (Cond) {
1733        case ISD::SETUGT:
1734        case ISD::SETUGE:
1735        case ISD::SETEQ: return DAG.getConstant(0, VT);
1736        case ISD::SETULT:
1737        case ISD::SETULE:
1738        case ISD::SETNE: return DAG.getConstant(1, VT);
1739        case ISD::SETGT:
1740        case ISD::SETGE:
1741          // True if the sign bit of C1 is set.
1742          return DAG.getConstant(C1.isNegative(), VT);
1743        case ISD::SETLT:
1744        case ISD::SETLE:
1745          // True if the sign bit of C1 isn't set.
1746          return DAG.getConstant(C1.isNonNegative(), VT);
1747        default:
1748          break;
1749        }
1750      }
1751
1752      // Otherwise, we can perform the comparison with the low bits.
1753      switch (Cond) {
1754      case ISD::SETEQ:
1755      case ISD::SETNE:
1756      case ISD::SETUGT:
1757      case ISD::SETUGE:
1758      case ISD::SETULT:
1759      case ISD::SETULE: {
1760        EVT newVT = N0.getOperand(0).getValueType();
1761        if (DCI.isBeforeLegalizeOps() ||
1762            (isOperationLegal(ISD::SETCC, newVT) &&
1763              getCondCodeAction(Cond, newVT)==Legal))
1764          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1765                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1766                              Cond);
1767        break;
1768      }
1769      default:
1770        break;   // todo, be more careful with signed comparisons
1771      }
1772    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1773               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1774      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1775      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1776      EVT ExtDstTy = N0.getValueType();
1777      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1778
1779      // If the extended part has any inconsistent bits, it cannot ever
1780      // compare equal.  In other words, they have to be all ones or all
1781      // zeros.
1782      APInt ExtBits =
1783        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1784      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1785        return DAG.getConstant(Cond == ISD::SETNE, VT);
1786
1787      SDValue ZextOp;
1788      EVT Op0Ty = N0.getOperand(0).getValueType();
1789      if (Op0Ty == ExtSrcTy) {
1790        ZextOp = N0.getOperand(0);
1791      } else {
1792        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1793        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1794                              DAG.getConstant(Imm, Op0Ty));
1795      }
1796      if (!DCI.isCalledByLegalizer())
1797        DCI.AddToWorklist(ZextOp.getNode());
1798      // Otherwise, make this a use of a zext.
1799      return DAG.getSetCC(dl, VT, ZextOp,
1800                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1801                                                              ExtDstTyBits,
1802                                                              ExtSrcTyBits),
1803                                          ExtDstTy),
1804                          Cond);
1805    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1806                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1807      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1808      if (N0.getOpcode() == ISD::SETCC &&
1809          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1810        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1811        if (TrueWhenTrue)
1812          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1813        // Invert the condition.
1814        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1815        CC = ISD::getSetCCInverse(CC,
1816                                  N0.getOperand(0).getValueType().isInteger());
1817        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1818      }
1819
1820      if ((N0.getOpcode() == ISD::XOR ||
1821           (N0.getOpcode() == ISD::AND &&
1822            N0.getOperand(0).getOpcode() == ISD::XOR &&
1823            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1824          isa<ConstantSDNode>(N0.getOperand(1)) &&
1825          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1826        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1827        // can only do this if the top bits are known zero.
1828        unsigned BitWidth = N0.getValueSizeInBits();
1829        if (DAG.MaskedValueIsZero(N0,
1830                                  APInt::getHighBitsSet(BitWidth,
1831                                                        BitWidth-1))) {
1832          // Okay, get the un-inverted input value.
1833          SDValue Val;
1834          if (N0.getOpcode() == ISD::XOR)
1835            Val = N0.getOperand(0);
1836          else {
1837            assert(N0.getOpcode() == ISD::AND &&
1838                    N0.getOperand(0).getOpcode() == ISD::XOR);
1839            // ((X^1)&1)^1 -> X & 1
1840            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1841                              N0.getOperand(0).getOperand(0),
1842                              N0.getOperand(1));
1843          }
1844
1845          return DAG.getSetCC(dl, VT, Val, N1,
1846                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1847        }
1848      } else if (N1C->getAPIntValue() == 1 &&
1849                 (VT == MVT::i1 ||
1850                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1851        SDValue Op0 = N0;
1852        if (Op0.getOpcode() == ISD::TRUNCATE)
1853          Op0 = Op0.getOperand(0);
1854
1855        if ((Op0.getOpcode() == ISD::XOR) &&
1856            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1857            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1858          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1859          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1860          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1861                              Cond);
1862        } else if (Op0.getOpcode() == ISD::AND &&
1863                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1864                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1865          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1866          if (Op0.getValueType() != VT)
1867            Op0 = DAG.getNode(ISD::AND, dl, VT,
1868                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1869                          DAG.getConstant(1, VT));
1870          return DAG.getSetCC(dl, VT, Op0,
1871                              DAG.getConstant(0, Op0.getValueType()),
1872                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1873        }
1874      }
1875    }
1876
1877    APInt MinVal, MaxVal;
1878    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1879    if (ISD::isSignedIntSetCC(Cond)) {
1880      MinVal = APInt::getSignedMinValue(OperandBitSize);
1881      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1882    } else {
1883      MinVal = APInt::getMinValue(OperandBitSize);
1884      MaxVal = APInt::getMaxValue(OperandBitSize);
1885    }
1886
1887    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1888    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1889      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1890      // X >= C0 --> X > (C0-1)
1891      return DAG.getSetCC(dl, VT, N0,
1892                          DAG.getConstant(C1-1, N1.getValueType()),
1893                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1894    }
1895
1896    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1897      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1898      // X <= C0 --> X < (C0+1)
1899      return DAG.getSetCC(dl, VT, N0,
1900                          DAG.getConstant(C1+1, N1.getValueType()),
1901                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1902    }
1903
1904    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1905      return DAG.getConstant(0, VT);      // X < MIN --> false
1906    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1907      return DAG.getConstant(1, VT);      // X >= MIN --> true
1908    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1909      return DAG.getConstant(0, VT);      // X > MAX --> false
1910    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1911      return DAG.getConstant(1, VT);      // X <= MAX --> true
1912
1913    // Canonicalize setgt X, Min --> setne X, Min
1914    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1915      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1916    // Canonicalize setlt X, Max --> setne X, Max
1917    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1918      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1919
1920    // If we have setult X, 1, turn it into seteq X, 0
1921    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1922      return DAG.getSetCC(dl, VT, N0,
1923                          DAG.getConstant(MinVal, N0.getValueType()),
1924                          ISD::SETEQ);
1925    // If we have setugt X, Max-1, turn it into seteq X, Max
1926    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1927      return DAG.getSetCC(dl, VT, N0,
1928                          DAG.getConstant(MaxVal, N0.getValueType()),
1929                          ISD::SETEQ);
1930
1931    // If we have "setcc X, C0", check to see if we can shrink the immediate
1932    // by changing cc.
1933
1934    // SETUGT X, SINTMAX  -> SETLT X, 0
1935    if (Cond == ISD::SETUGT &&
1936        C1 == APInt::getSignedMaxValue(OperandBitSize))
1937      return DAG.getSetCC(dl, VT, N0,
1938                          DAG.getConstant(0, N1.getValueType()),
1939                          ISD::SETLT);
1940
1941    // SETULT X, SINTMIN  -> SETGT X, -1
1942    if (Cond == ISD::SETULT &&
1943        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1944      SDValue ConstMinusOne =
1945          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1946                          N1.getValueType());
1947      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1948    }
1949
1950    // Fold bit comparisons when we can.
1951    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1952        (VT == N0.getValueType() ||
1953         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1954        N0.getOpcode() == ISD::AND)
1955      if (ConstantSDNode *AndRHS =
1956                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1957        EVT ShiftTy = DCI.isBeforeLegalize() ?
1958          getPointerTy() : getShiftAmountTy();
1959        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1960          // Perform the xform if the AND RHS is a single bit.
1961          if (AndRHS->getAPIntValue().isPowerOf2()) {
1962            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1963                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1964                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1965          }
1966        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1967          // (X & 8) == 8  -->  (X & 8) >> 3
1968          // Perform the xform if C1 is a single bit.
1969          if (C1.isPowerOf2()) {
1970            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1971                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1972                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
1973          }
1974        }
1975      }
1976  }
1977
1978  if (isa<ConstantFPSDNode>(N0.getNode())) {
1979    // Constant fold or commute setcc.
1980    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1981    if (O.getNode()) return O;
1982  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1983    // If the RHS of an FP comparison is a constant, simplify it away in
1984    // some cases.
1985    if (CFP->getValueAPF().isNaN()) {
1986      // If an operand is known to be a nan, we can fold it.
1987      switch (ISD::getUnorderedFlavor(Cond)) {
1988      default: llvm_unreachable("Unknown flavor!");
1989      case 0:  // Known false.
1990        return DAG.getConstant(0, VT);
1991      case 1:  // Known true.
1992        return DAG.getConstant(1, VT);
1993      case 2:  // Undefined.
1994        return DAG.getUNDEF(VT);
1995      }
1996    }
1997
1998    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1999    // constant if knowing that the operand is non-nan is enough.  We prefer to
2000    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2001    // materialize 0.0.
2002    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2003      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2004
2005    // If the condition is not legal, see if we can find an equivalent one
2006    // which is legal.
2007    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2008      // If the comparison was an awkward floating-point == or != and one of
2009      // the comparison operands is infinity or negative infinity, convert the
2010      // condition to a less-awkward <= or >=.
2011      if (CFP->getValueAPF().isInfinity()) {
2012        if (CFP->getValueAPF().isNegative()) {
2013          if (Cond == ISD::SETOEQ &&
2014              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2015            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2016          if (Cond == ISD::SETUEQ &&
2017              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2018            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2019          if (Cond == ISD::SETUNE &&
2020              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2021            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2022          if (Cond == ISD::SETONE &&
2023              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2024            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2025        } else {
2026          if (Cond == ISD::SETOEQ &&
2027              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2028            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2029          if (Cond == ISD::SETUEQ &&
2030              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2031            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2032          if (Cond == ISD::SETUNE &&
2033              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2034            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2035          if (Cond == ISD::SETONE &&
2036              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2037            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2038        }
2039      }
2040    }
2041  }
2042
2043  if (N0 == N1) {
2044    // We can always fold X == X for integer setcc's.
2045    if (N0.getValueType().isInteger())
2046      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2047    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2048    if (UOF == 2)   // FP operators that are undefined on NaNs.
2049      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2050    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2051      return DAG.getConstant(UOF, VT);
2052    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2053    // if it is not already.
2054    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2055    if (NewCond != Cond)
2056      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2057  }
2058
2059  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2060      N0.getValueType().isInteger()) {
2061    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2062        N0.getOpcode() == ISD::XOR) {
2063      // Simplify (X+Y) == (X+Z) -->  Y == Z
2064      if (N0.getOpcode() == N1.getOpcode()) {
2065        if (N0.getOperand(0) == N1.getOperand(0))
2066          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2067        if (N0.getOperand(1) == N1.getOperand(1))
2068          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2069        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2070          // If X op Y == Y op X, try other combinations.
2071          if (N0.getOperand(0) == N1.getOperand(1))
2072            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2073                                Cond);
2074          if (N0.getOperand(1) == N1.getOperand(0))
2075            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2076                                Cond);
2077        }
2078      }
2079
2080      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2081        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2082          // Turn (X+C1) == C2 --> X == C2-C1
2083          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2084            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2085                                DAG.getConstant(RHSC->getAPIntValue()-
2086                                                LHSR->getAPIntValue(),
2087                                N0.getValueType()), Cond);
2088          }
2089
2090          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2091          if (N0.getOpcode() == ISD::XOR)
2092            // If we know that all of the inverted bits are zero, don't bother
2093            // performing the inversion.
2094            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2095              return
2096                DAG.getSetCC(dl, VT, N0.getOperand(0),
2097                             DAG.getConstant(LHSR->getAPIntValue() ^
2098                                               RHSC->getAPIntValue(),
2099                                             N0.getValueType()),
2100                             Cond);
2101        }
2102
2103        // Turn (C1-X) == C2 --> X == C1-C2
2104        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2105          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2106            return
2107              DAG.getSetCC(dl, VT, N0.getOperand(1),
2108                           DAG.getConstant(SUBC->getAPIntValue() -
2109                                             RHSC->getAPIntValue(),
2110                                           N0.getValueType()),
2111                           Cond);
2112          }
2113        }
2114      }
2115
2116      // Simplify (X+Z) == X -->  Z == 0
2117      if (N0.getOperand(0) == N1)
2118        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2119                        DAG.getConstant(0, N0.getValueType()), Cond);
2120      if (N0.getOperand(1) == N1) {
2121        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2122          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2123                          DAG.getConstant(0, N0.getValueType()), Cond);
2124        else if (N0.getNode()->hasOneUse()) {
2125          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2126          // (Z-X) == X  --> Z == X<<1
2127          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2128                                     N1,
2129                                     DAG.getConstant(1, getShiftAmountTy()));
2130          if (!DCI.isCalledByLegalizer())
2131            DCI.AddToWorklist(SH.getNode());
2132          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2133        }
2134      }
2135    }
2136
2137    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2138        N1.getOpcode() == ISD::XOR) {
2139      // Simplify  X == (X+Z) -->  Z == 0
2140      if (N1.getOperand(0) == N0) {
2141        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2142                        DAG.getConstant(0, N1.getValueType()), Cond);
2143      } else if (N1.getOperand(1) == N0) {
2144        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2145          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2146                          DAG.getConstant(0, N1.getValueType()), Cond);
2147        } else if (N1.getNode()->hasOneUse()) {
2148          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2149          // X == (Z-X)  --> X<<1 == Z
2150          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2151                                     DAG.getConstant(1, getShiftAmountTy()));
2152          if (!DCI.isCalledByLegalizer())
2153            DCI.AddToWorklist(SH.getNode());
2154          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2155        }
2156      }
2157    }
2158
2159    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2160    // Note that where y is variable and is known to have at most
2161    // one bit set (for example, if it is z&1) we cannot do this;
2162    // the expressions are not equivalent when y==0.
2163    if (N0.getOpcode() == ISD::AND)
2164      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2165        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2166          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2167          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2168          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2169        }
2170      }
2171    if (N1.getOpcode() == ISD::AND)
2172      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2173        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2174          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2175          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2176          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2177        }
2178      }
2179  }
2180
2181  // Fold away ALL boolean setcc's.
2182  SDValue Temp;
2183  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2184    switch (Cond) {
2185    default: llvm_unreachable("Unknown integer setcc!");
2186    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2187      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2188      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2189      if (!DCI.isCalledByLegalizer())
2190        DCI.AddToWorklist(Temp.getNode());
2191      break;
2192    case ISD::SETNE:  // X != Y   -->  (X^Y)
2193      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2194      break;
2195    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2196    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2197      Temp = DAG.getNOT(dl, N0, MVT::i1);
2198      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2199      if (!DCI.isCalledByLegalizer())
2200        DCI.AddToWorklist(Temp.getNode());
2201      break;
2202    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2203    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2204      Temp = DAG.getNOT(dl, N1, MVT::i1);
2205      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2206      if (!DCI.isCalledByLegalizer())
2207        DCI.AddToWorklist(Temp.getNode());
2208      break;
2209    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2210    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2211      Temp = DAG.getNOT(dl, N0, MVT::i1);
2212      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2213      if (!DCI.isCalledByLegalizer())
2214        DCI.AddToWorklist(Temp.getNode());
2215      break;
2216    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2217    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2218      Temp = DAG.getNOT(dl, N1, MVT::i1);
2219      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2220      break;
2221    }
2222    if (VT != MVT::i1) {
2223      if (!DCI.isCalledByLegalizer())
2224        DCI.AddToWorklist(N0.getNode());
2225      // FIXME: If running after legalize, we probably can't do this.
2226      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2227    }
2228    return N0;
2229  }
2230
2231  // Could not fold it.
2232  return SDValue();
2233}
2234
2235/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2236/// node is a GlobalAddress + offset.
2237bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2238                                    int64_t &Offset) const {
2239  if (isa<GlobalAddressSDNode>(N)) {
2240    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2241    GA = GASD->getGlobal();
2242    Offset += GASD->getOffset();
2243    return true;
2244  }
2245
2246  if (N->getOpcode() == ISD::ADD) {
2247    SDValue N1 = N->getOperand(0);
2248    SDValue N2 = N->getOperand(1);
2249    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2250      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2251      if (V) {
2252        Offset += V->getSExtValue();
2253        return true;
2254      }
2255    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2256      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2257      if (V) {
2258        Offset += V->getSExtValue();
2259        return true;
2260      }
2261    }
2262  }
2263  return false;
2264}
2265
2266
2267SDValue TargetLowering::
2268PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2269  // Default implementation: no optimization.
2270  return SDValue();
2271}
2272
2273//===----------------------------------------------------------------------===//
2274//  Inline Assembler Implementation Methods
2275//===----------------------------------------------------------------------===//
2276
2277
2278TargetLowering::ConstraintType
2279TargetLowering::getConstraintType(const std::string &Constraint) const {
2280  // FIXME: lots more standard ones to handle.
2281  if (Constraint.size() == 1) {
2282    switch (Constraint[0]) {
2283    default: break;
2284    case 'r': return C_RegisterClass;
2285    case 'm':    // memory
2286    case 'o':    // offsetable
2287    case 'V':    // not offsetable
2288      return C_Memory;
2289    case 'i':    // Simple Integer or Relocatable Constant
2290    case 'n':    // Simple Integer
2291    case 's':    // Relocatable Constant
2292    case 'X':    // Allow ANY value.
2293    case 'I':    // Target registers.
2294    case 'J':
2295    case 'K':
2296    case 'L':
2297    case 'M':
2298    case 'N':
2299    case 'O':
2300    case 'P':
2301      return C_Other;
2302    }
2303  }
2304
2305  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2306      Constraint[Constraint.size()-1] == '}')
2307    return C_Register;
2308  return C_Unknown;
2309}
2310
2311/// LowerXConstraint - try to replace an X constraint, which matches anything,
2312/// with another that has more specific requirements based on the type of the
2313/// corresponding operand.
2314const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2315  if (ConstraintVT.isInteger())
2316    return "r";
2317  if (ConstraintVT.isFloatingPoint())
2318    return "f";      // works for many targets
2319  return 0;
2320}
2321
2322/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2323/// vector.  If it is invalid, don't add anything to Ops.
2324void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2325                                                  char ConstraintLetter,
2326                                                  bool hasMemory,
2327                                                  std::vector<SDValue> &Ops,
2328                                                  SelectionDAG &DAG) const {
2329  switch (ConstraintLetter) {
2330  default: break;
2331  case 'X':     // Allows any operand; labels (basic block) use this.
2332    if (Op.getOpcode() == ISD::BasicBlock) {
2333      Ops.push_back(Op);
2334      return;
2335    }
2336    // fall through
2337  case 'i':    // Simple Integer or Relocatable Constant
2338  case 'n':    // Simple Integer
2339  case 's': {  // Relocatable Constant
2340    // These operands are interested in values of the form (GV+C), where C may
2341    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2342    // is possible and fine if either GV or C are missing.
2343    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2344    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2345
2346    // If we have "(add GV, C)", pull out GV/C
2347    if (Op.getOpcode() == ISD::ADD) {
2348      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2349      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2350      if (C == 0 || GA == 0) {
2351        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2352        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2353      }
2354      if (C == 0 || GA == 0)
2355        C = 0, GA = 0;
2356    }
2357
2358    // If we find a valid operand, map to the TargetXXX version so that the
2359    // value itself doesn't get selected.
2360    if (GA) {   // Either &GV   or   &GV+C
2361      if (ConstraintLetter != 'n') {
2362        int64_t Offs = GA->getOffset();
2363        if (C) Offs += C->getZExtValue();
2364        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2365                                                 Op.getValueType(), Offs));
2366        return;
2367      }
2368    }
2369    if (C) {   // just C, no GV.
2370      // Simple constants are not allowed for 's'.
2371      if (ConstraintLetter != 's') {
2372        // gcc prints these as sign extended.  Sign extend value to 64 bits
2373        // now; without this it would get ZExt'd later in
2374        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2375        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2376                                            MVT::i64));
2377        return;
2378      }
2379    }
2380    break;
2381  }
2382  }
2383}
2384
2385std::vector<unsigned> TargetLowering::
2386getRegClassForInlineAsmConstraint(const std::string &Constraint,
2387                                  EVT VT) const {
2388  return std::vector<unsigned>();
2389}
2390
2391
2392std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2393getRegForInlineAsmConstraint(const std::string &Constraint,
2394                             EVT VT) const {
2395  if (Constraint[0] != '{')
2396    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2397  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2398
2399  // Remove the braces from around the name.
2400  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2401
2402  // Figure out which register class contains this reg.
2403  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2404  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2405       E = RI->regclass_end(); RCI != E; ++RCI) {
2406    const TargetRegisterClass *RC = *RCI;
2407
2408    // If none of the value types for this register class are valid, we
2409    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2410    bool isLegal = false;
2411    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2412         I != E; ++I) {
2413      if (isTypeLegal(*I)) {
2414        isLegal = true;
2415        break;
2416      }
2417    }
2418
2419    if (!isLegal) continue;
2420
2421    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2422         I != E; ++I) {
2423      if (RegName.equals_lower(RI->getName(*I)))
2424        return std::make_pair(*I, RC);
2425    }
2426  }
2427
2428  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2429}
2430
2431//===----------------------------------------------------------------------===//
2432// Constraint Selection.
2433
2434/// isMatchingInputConstraint - Return true of this is an input operand that is
2435/// a matching constraint like "4".
2436bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2437  assert(!ConstraintCode.empty() && "No known constraint!");
2438  return isdigit(ConstraintCode[0]);
2439}
2440
2441/// getMatchedOperand - If this is an input matching constraint, this method
2442/// returns the output operand it matches.
2443unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2444  assert(!ConstraintCode.empty() && "No known constraint!");
2445  return atoi(ConstraintCode.c_str());
2446}
2447
2448
2449/// getConstraintGenerality - Return an integer indicating how general CT
2450/// is.
2451static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2452  switch (CT) {
2453  default: llvm_unreachable("Unknown constraint type!");
2454  case TargetLowering::C_Other:
2455  case TargetLowering::C_Unknown:
2456    return 0;
2457  case TargetLowering::C_Register:
2458    return 1;
2459  case TargetLowering::C_RegisterClass:
2460    return 2;
2461  case TargetLowering::C_Memory:
2462    return 3;
2463  }
2464}
2465
2466/// ChooseConstraint - If there are multiple different constraints that we
2467/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2468/// This is somewhat tricky: constraints fall into four classes:
2469///    Other         -> immediates and magic values
2470///    Register      -> one specific register
2471///    RegisterClass -> a group of regs
2472///    Memory        -> memory
2473/// Ideally, we would pick the most specific constraint possible: if we have
2474/// something that fits into a register, we would pick it.  The problem here
2475/// is that if we have something that could either be in a register or in
2476/// memory that use of the register could cause selection of *other*
2477/// operands to fail: they might only succeed if we pick memory.  Because of
2478/// this the heuristic we use is:
2479///
2480///  1) If there is an 'other' constraint, and if the operand is valid for
2481///     that constraint, use it.  This makes us take advantage of 'i'
2482///     constraints when available.
2483///  2) Otherwise, pick the most general constraint present.  This prefers
2484///     'm' over 'r', for example.
2485///
2486static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2487                             bool hasMemory,  const TargetLowering &TLI,
2488                             SDValue Op, SelectionDAG *DAG) {
2489  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2490  unsigned BestIdx = 0;
2491  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2492  int BestGenerality = -1;
2493
2494  // Loop over the options, keeping track of the most general one.
2495  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2496    TargetLowering::ConstraintType CType =
2497      TLI.getConstraintType(OpInfo.Codes[i]);
2498
2499    // If this is an 'other' constraint, see if the operand is valid for it.
2500    // For example, on X86 we might have an 'rI' constraint.  If the operand
2501    // is an integer in the range [0..31] we want to use I (saving a load
2502    // of a register), otherwise we must use 'r'.
2503    if (CType == TargetLowering::C_Other && Op.getNode()) {
2504      assert(OpInfo.Codes[i].size() == 1 &&
2505             "Unhandled multi-letter 'other' constraint");
2506      std::vector<SDValue> ResultOps;
2507      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2508                                       ResultOps, *DAG);
2509      if (!ResultOps.empty()) {
2510        BestType = CType;
2511        BestIdx = i;
2512        break;
2513      }
2514    }
2515
2516    // This constraint letter is more general than the previous one, use it.
2517    int Generality = getConstraintGenerality(CType);
2518    if (Generality > BestGenerality) {
2519      BestType = CType;
2520      BestIdx = i;
2521      BestGenerality = Generality;
2522    }
2523  }
2524
2525  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2526  OpInfo.ConstraintType = BestType;
2527}
2528
2529/// ComputeConstraintToUse - Determines the constraint code and constraint
2530/// type to use for the specific AsmOperandInfo, setting
2531/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2532void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2533                                            SDValue Op,
2534                                            bool hasMemory,
2535                                            SelectionDAG *DAG) const {
2536  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2537
2538  // Single-letter constraints ('r') are very common.
2539  if (OpInfo.Codes.size() == 1) {
2540    OpInfo.ConstraintCode = OpInfo.Codes[0];
2541    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2542  } else {
2543    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2544  }
2545
2546  // 'X' matches anything.
2547  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2548    // Labels and constants are handled elsewhere ('X' is the only thing
2549    // that matches labels).  For Functions, the type here is the type of
2550    // the result, which is not what we want to look at; leave them alone.
2551    Value *v = OpInfo.CallOperandVal;
2552    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2553      OpInfo.CallOperandVal = v;
2554      return;
2555    }
2556
2557    // Otherwise, try to resolve it to something we know about by looking at
2558    // the actual operand type.
2559    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2560      OpInfo.ConstraintCode = Repl;
2561      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2562    }
2563  }
2564}
2565
2566//===----------------------------------------------------------------------===//
2567//  Loop Strength Reduction hooks
2568//===----------------------------------------------------------------------===//
2569
2570/// isLegalAddressingMode - Return true if the addressing mode represented
2571/// by AM is legal for this target, for a load/store of the specified type.
2572bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2573                                           const Type *Ty) const {
2574  // The default implementation of this implements a conservative RISCy, r+r and
2575  // r+i addr mode.
2576
2577  // Allows a sign-extended 16-bit immediate field.
2578  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2579    return false;
2580
2581  // No global is ever allowed as a base.
2582  if (AM.BaseGV)
2583    return false;
2584
2585  // Only support r+r,
2586  switch (AM.Scale) {
2587  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2588    break;
2589  case 1:
2590    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2591      return false;
2592    // Otherwise we have r+r or r+i.
2593    break;
2594  case 2:
2595    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2596      return false;
2597    // Allow 2*r as r+r.
2598    break;
2599  }
2600
2601  return true;
2602}
2603
2604/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2605/// return a DAG expression to select that will generate the same value by
2606/// multiplying by a magic number.  See:
2607/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2608SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2609                                  std::vector<SDNode*>* Created) const {
2610  EVT VT = N->getValueType(0);
2611  DebugLoc dl= N->getDebugLoc();
2612
2613  // Check to see if we can do this.
2614  // FIXME: We should be more aggressive here.
2615  if (!isTypeLegal(VT))
2616    return SDValue();
2617
2618  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2619  APInt::ms magics = d.magic();
2620
2621  // Multiply the numerator (operand 0) by the magic value
2622  // FIXME: We should support doing a MUL in a wider type
2623  SDValue Q;
2624  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2625    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2626                    DAG.getConstant(magics.m, VT));
2627  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2628    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2629                              N->getOperand(0),
2630                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2631  else
2632    return SDValue();       // No mulhs or equvialent
2633  // If d > 0 and m < 0, add the numerator
2634  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2635    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2636    if (Created)
2637      Created->push_back(Q.getNode());
2638  }
2639  // If d < 0 and m > 0, subtract the numerator.
2640  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2641    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2642    if (Created)
2643      Created->push_back(Q.getNode());
2644  }
2645  // Shift right algebraic if shift value is nonzero
2646  if (magics.s > 0) {
2647    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2648                    DAG.getConstant(magics.s, getShiftAmountTy()));
2649    if (Created)
2650      Created->push_back(Q.getNode());
2651  }
2652  // Extract the sign bit and add it to the quotient
2653  SDValue T =
2654    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2655                                                 getShiftAmountTy()));
2656  if (Created)
2657    Created->push_back(T.getNode());
2658  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2659}
2660
2661/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2662/// return a DAG expression to select that will generate the same value by
2663/// multiplying by a magic number.  See:
2664/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2665SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2666                                  std::vector<SDNode*>* Created) const {
2667  EVT VT = N->getValueType(0);
2668  DebugLoc dl = N->getDebugLoc();
2669
2670  // Check to see if we can do this.
2671  // FIXME: We should be more aggressive here.
2672  if (!isTypeLegal(VT))
2673    return SDValue();
2674
2675  // FIXME: We should use a narrower constant when the upper
2676  // bits are known to be zero.
2677  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2678  APInt::mu magics = N1C->getAPIntValue().magicu();
2679
2680  // Multiply the numerator (operand 0) by the magic value
2681  // FIXME: We should support doing a MUL in a wider type
2682  SDValue Q;
2683  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2684    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2685                    DAG.getConstant(magics.m, VT));
2686  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2687    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2688                              N->getOperand(0),
2689                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2690  else
2691    return SDValue();       // No mulhu or equvialent
2692  if (Created)
2693    Created->push_back(Q.getNode());
2694
2695  if (magics.a == 0) {
2696    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2697           "We shouldn't generate an undefined shift!");
2698    return DAG.getNode(ISD::SRL, dl, VT, Q,
2699                       DAG.getConstant(magics.s, getShiftAmountTy()));
2700  } else {
2701    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2702    if (Created)
2703      Created->push_back(NPQ.getNode());
2704    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2705                      DAG.getConstant(1, getShiftAmountTy()));
2706    if (Created)
2707      Created->push_back(NPQ.getNode());
2708    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2709    if (Created)
2710      Created->push_back(NPQ.getNode());
2711    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2712                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2713  }
2714}
2715