TargetLowering.cpp revision 199481
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetLoweringObjectFile.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Target/TargetSubtarget.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28using namespace llvm;
29
30namespace llvm {
31TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
32  bool isLocal = GV->hasLocalLinkage();
33  bool isDeclaration = GV->isDeclaration();
34  // FIXME: what should we do for protected and internal visibility?
35  // For variables, is internal different from hidden?
36  bool isHidden = GV->hasHiddenVisibility();
37
38  if (reloc == Reloc::PIC_) {
39    if (isLocal || isHidden)
40      return TLSModel::LocalDynamic;
41    else
42      return TLSModel::GeneralDynamic;
43  } else {
44    if (!isDeclaration || isHidden)
45      return TLSModel::LocalExec;
46    else
47      return TLSModel::InitialExec;
48  }
49}
50}
51
52/// InitLibcallNames - Set default libcall names.
53///
54static void InitLibcallNames(const char **Names) {
55  Names[RTLIB::SHL_I16] = "__ashlhi3";
56  Names[RTLIB::SHL_I32] = "__ashlsi3";
57  Names[RTLIB::SHL_I64] = "__ashldi3";
58  Names[RTLIB::SHL_I128] = "__ashlti3";
59  Names[RTLIB::SRL_I16] = "__lshrhi3";
60  Names[RTLIB::SRL_I32] = "__lshrsi3";
61  Names[RTLIB::SRL_I64] = "__lshrdi3";
62  Names[RTLIB::SRL_I128] = "__lshrti3";
63  Names[RTLIB::SRA_I16] = "__ashrhi3";
64  Names[RTLIB::SRA_I32] = "__ashrsi3";
65  Names[RTLIB::SRA_I64] = "__ashrdi3";
66  Names[RTLIB::SRA_I128] = "__ashrti3";
67  Names[RTLIB::MUL_I8] = "__mulqi3";
68  Names[RTLIB::MUL_I16] = "__mulhi3";
69  Names[RTLIB::MUL_I32] = "__mulsi3";
70  Names[RTLIB::MUL_I64] = "__muldi3";
71  Names[RTLIB::MUL_I128] = "__multi3";
72  Names[RTLIB::SDIV_I8] = "__divqi3";
73  Names[RTLIB::SDIV_I16] = "__divhi3";
74  Names[RTLIB::SDIV_I32] = "__divsi3";
75  Names[RTLIB::SDIV_I64] = "__divdi3";
76  Names[RTLIB::SDIV_I128] = "__divti3";
77  Names[RTLIB::UDIV_I8] = "__udivqi3";
78  Names[RTLIB::UDIV_I16] = "__udivhi3";
79  Names[RTLIB::UDIV_I32] = "__udivsi3";
80  Names[RTLIB::UDIV_I64] = "__udivdi3";
81  Names[RTLIB::UDIV_I128] = "__udivti3";
82  Names[RTLIB::SREM_I8] = "__modqi3";
83  Names[RTLIB::SREM_I16] = "__modhi3";
84  Names[RTLIB::SREM_I32] = "__modsi3";
85  Names[RTLIB::SREM_I64] = "__moddi3";
86  Names[RTLIB::SREM_I128] = "__modti3";
87  Names[RTLIB::UREM_I8] = "__umodqi3";
88  Names[RTLIB::UREM_I16] = "__umodhi3";
89  Names[RTLIB::UREM_I32] = "__umodsi3";
90  Names[RTLIB::UREM_I64] = "__umoddi3";
91  Names[RTLIB::UREM_I128] = "__umodti3";
92  Names[RTLIB::NEG_I32] = "__negsi2";
93  Names[RTLIB::NEG_I64] = "__negdi2";
94  Names[RTLIB::ADD_F32] = "__addsf3";
95  Names[RTLIB::ADD_F64] = "__adddf3";
96  Names[RTLIB::ADD_F80] = "__addxf3";
97  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
98  Names[RTLIB::SUB_F32] = "__subsf3";
99  Names[RTLIB::SUB_F64] = "__subdf3";
100  Names[RTLIB::SUB_F80] = "__subxf3";
101  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
102  Names[RTLIB::MUL_F32] = "__mulsf3";
103  Names[RTLIB::MUL_F64] = "__muldf3";
104  Names[RTLIB::MUL_F80] = "__mulxf3";
105  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
106  Names[RTLIB::DIV_F32] = "__divsf3";
107  Names[RTLIB::DIV_F64] = "__divdf3";
108  Names[RTLIB::DIV_F80] = "__divxf3";
109  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
110  Names[RTLIB::REM_F32] = "fmodf";
111  Names[RTLIB::REM_F64] = "fmod";
112  Names[RTLIB::REM_F80] = "fmodl";
113  Names[RTLIB::REM_PPCF128] = "fmodl";
114  Names[RTLIB::POWI_F32] = "__powisf2";
115  Names[RTLIB::POWI_F64] = "__powidf2";
116  Names[RTLIB::POWI_F80] = "__powixf2";
117  Names[RTLIB::POWI_PPCF128] = "__powitf2";
118  Names[RTLIB::SQRT_F32] = "sqrtf";
119  Names[RTLIB::SQRT_F64] = "sqrt";
120  Names[RTLIB::SQRT_F80] = "sqrtl";
121  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
122  Names[RTLIB::LOG_F32] = "logf";
123  Names[RTLIB::LOG_F64] = "log";
124  Names[RTLIB::LOG_F80] = "logl";
125  Names[RTLIB::LOG_PPCF128] = "logl";
126  Names[RTLIB::LOG2_F32] = "log2f";
127  Names[RTLIB::LOG2_F64] = "log2";
128  Names[RTLIB::LOG2_F80] = "log2l";
129  Names[RTLIB::LOG2_PPCF128] = "log2l";
130  Names[RTLIB::LOG10_F32] = "log10f";
131  Names[RTLIB::LOG10_F64] = "log10";
132  Names[RTLIB::LOG10_F80] = "log10l";
133  Names[RTLIB::LOG10_PPCF128] = "log10l";
134  Names[RTLIB::EXP_F32] = "expf";
135  Names[RTLIB::EXP_F64] = "exp";
136  Names[RTLIB::EXP_F80] = "expl";
137  Names[RTLIB::EXP_PPCF128] = "expl";
138  Names[RTLIB::EXP2_F32] = "exp2f";
139  Names[RTLIB::EXP2_F64] = "exp2";
140  Names[RTLIB::EXP2_F80] = "exp2l";
141  Names[RTLIB::EXP2_PPCF128] = "exp2l";
142  Names[RTLIB::SIN_F32] = "sinf";
143  Names[RTLIB::SIN_F64] = "sin";
144  Names[RTLIB::SIN_F80] = "sinl";
145  Names[RTLIB::SIN_PPCF128] = "sinl";
146  Names[RTLIB::COS_F32] = "cosf";
147  Names[RTLIB::COS_F64] = "cos";
148  Names[RTLIB::COS_F80] = "cosl";
149  Names[RTLIB::COS_PPCF128] = "cosl";
150  Names[RTLIB::POW_F32] = "powf";
151  Names[RTLIB::POW_F64] = "pow";
152  Names[RTLIB::POW_F80] = "powl";
153  Names[RTLIB::POW_PPCF128] = "powl";
154  Names[RTLIB::CEIL_F32] = "ceilf";
155  Names[RTLIB::CEIL_F64] = "ceil";
156  Names[RTLIB::CEIL_F80] = "ceill";
157  Names[RTLIB::CEIL_PPCF128] = "ceill";
158  Names[RTLIB::TRUNC_F32] = "truncf";
159  Names[RTLIB::TRUNC_F64] = "trunc";
160  Names[RTLIB::TRUNC_F80] = "truncl";
161  Names[RTLIB::TRUNC_PPCF128] = "truncl";
162  Names[RTLIB::RINT_F32] = "rintf";
163  Names[RTLIB::RINT_F64] = "rint";
164  Names[RTLIB::RINT_F80] = "rintl";
165  Names[RTLIB::RINT_PPCF128] = "rintl";
166  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
167  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
168  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
169  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
170  Names[RTLIB::FLOOR_F32] = "floorf";
171  Names[RTLIB::FLOOR_F64] = "floor";
172  Names[RTLIB::FLOOR_F80] = "floorl";
173  Names[RTLIB::FLOOR_PPCF128] = "floorl";
174  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
175  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
176  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
177  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
178  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
179  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
180  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
181  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
182  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
183  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
184  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
185  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
186  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
187  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
188  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
189  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
190  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
191  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
192  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
193  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
194  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
195  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
196  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
197  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
198  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
199  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
200  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
201  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
202  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
203  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
204  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
205  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
206  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
207  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
208  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
209  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
210  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
211  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
212  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
213  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
214  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
215  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
216  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
217  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
218  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
219  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
220  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
221  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
222  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
223  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
224  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
225  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
226  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
227  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
228  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
229  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
230  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
231  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
232  Names[RTLIB::OEQ_F32] = "__eqsf2";
233  Names[RTLIB::OEQ_F64] = "__eqdf2";
234  Names[RTLIB::UNE_F32] = "__nesf2";
235  Names[RTLIB::UNE_F64] = "__nedf2";
236  Names[RTLIB::OGE_F32] = "__gesf2";
237  Names[RTLIB::OGE_F64] = "__gedf2";
238  Names[RTLIB::OLT_F32] = "__ltsf2";
239  Names[RTLIB::OLT_F64] = "__ltdf2";
240  Names[RTLIB::OLE_F32] = "__lesf2";
241  Names[RTLIB::OLE_F64] = "__ledf2";
242  Names[RTLIB::OGT_F32] = "__gtsf2";
243  Names[RTLIB::OGT_F64] = "__gtdf2";
244  Names[RTLIB::UO_F32] = "__unordsf2";
245  Names[RTLIB::UO_F64] = "__unorddf2";
246  Names[RTLIB::O_F32] = "__unordsf2";
247  Names[RTLIB::O_F64] = "__unorddf2";
248  Names[RTLIB::MEMCPY] = "memcpy";
249  Names[RTLIB::MEMMOVE] = "memmove";
250  Names[RTLIB::MEMSET] = "memset";
251  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
252}
253
254/// InitLibcallCallingConvs - Set default libcall CallingConvs.
255///
256static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
257  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
258    CCs[i] = CallingConv::C;
259  }
260}
261
262/// getFPEXT - Return the FPEXT_*_* value for the given types, or
263/// UNKNOWN_LIBCALL if there is none.
264RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
265  if (OpVT == MVT::f32) {
266    if (RetVT == MVT::f64)
267      return FPEXT_F32_F64;
268  }
269  return UNKNOWN_LIBCALL;
270}
271
272/// getFPROUND - Return the FPROUND_*_* value for the given types, or
273/// UNKNOWN_LIBCALL if there is none.
274RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
275  if (RetVT == MVT::f32) {
276    if (OpVT == MVT::f64)
277      return FPROUND_F64_F32;
278    if (OpVT == MVT::f80)
279      return FPROUND_F80_F32;
280    if (OpVT == MVT::ppcf128)
281      return FPROUND_PPCF128_F32;
282  } else if (RetVT == MVT::f64) {
283    if (OpVT == MVT::f80)
284      return FPROUND_F80_F64;
285    if (OpVT == MVT::ppcf128)
286      return FPROUND_PPCF128_F64;
287  }
288  return UNKNOWN_LIBCALL;
289}
290
291/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
292/// UNKNOWN_LIBCALL if there is none.
293RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
294  if (OpVT == MVT::f32) {
295    if (RetVT == MVT::i8)
296      return FPTOSINT_F32_I8;
297    if (RetVT == MVT::i16)
298      return FPTOSINT_F32_I16;
299    if (RetVT == MVT::i32)
300      return FPTOSINT_F32_I32;
301    if (RetVT == MVT::i64)
302      return FPTOSINT_F32_I64;
303    if (RetVT == MVT::i128)
304      return FPTOSINT_F32_I128;
305  } else if (OpVT == MVT::f64) {
306    if (RetVT == MVT::i32)
307      return FPTOSINT_F64_I32;
308    if (RetVT == MVT::i64)
309      return FPTOSINT_F64_I64;
310    if (RetVT == MVT::i128)
311      return FPTOSINT_F64_I128;
312  } else if (OpVT == MVT::f80) {
313    if (RetVT == MVT::i32)
314      return FPTOSINT_F80_I32;
315    if (RetVT == MVT::i64)
316      return FPTOSINT_F80_I64;
317    if (RetVT == MVT::i128)
318      return FPTOSINT_F80_I128;
319  } else if (OpVT == MVT::ppcf128) {
320    if (RetVT == MVT::i32)
321      return FPTOSINT_PPCF128_I32;
322    if (RetVT == MVT::i64)
323      return FPTOSINT_PPCF128_I64;
324    if (RetVT == MVT::i128)
325      return FPTOSINT_PPCF128_I128;
326  }
327  return UNKNOWN_LIBCALL;
328}
329
330/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
331/// UNKNOWN_LIBCALL if there is none.
332RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
333  if (OpVT == MVT::f32) {
334    if (RetVT == MVT::i8)
335      return FPTOUINT_F32_I8;
336    if (RetVT == MVT::i16)
337      return FPTOUINT_F32_I16;
338    if (RetVT == MVT::i32)
339      return FPTOUINT_F32_I32;
340    if (RetVT == MVT::i64)
341      return FPTOUINT_F32_I64;
342    if (RetVT == MVT::i128)
343      return FPTOUINT_F32_I128;
344  } else if (OpVT == MVT::f64) {
345    if (RetVT == MVT::i32)
346      return FPTOUINT_F64_I32;
347    if (RetVT == MVT::i64)
348      return FPTOUINT_F64_I64;
349    if (RetVT == MVT::i128)
350      return FPTOUINT_F64_I128;
351  } else if (OpVT == MVT::f80) {
352    if (RetVT == MVT::i32)
353      return FPTOUINT_F80_I32;
354    if (RetVT == MVT::i64)
355      return FPTOUINT_F80_I64;
356    if (RetVT == MVT::i128)
357      return FPTOUINT_F80_I128;
358  } else if (OpVT == MVT::ppcf128) {
359    if (RetVT == MVT::i32)
360      return FPTOUINT_PPCF128_I32;
361    if (RetVT == MVT::i64)
362      return FPTOUINT_PPCF128_I64;
363    if (RetVT == MVT::i128)
364      return FPTOUINT_PPCF128_I128;
365  }
366  return UNKNOWN_LIBCALL;
367}
368
369/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
370/// UNKNOWN_LIBCALL if there is none.
371RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
372  if (OpVT == MVT::i32) {
373    if (RetVT == MVT::f32)
374      return SINTTOFP_I32_F32;
375    else if (RetVT == MVT::f64)
376      return SINTTOFP_I32_F64;
377    else if (RetVT == MVT::f80)
378      return SINTTOFP_I32_F80;
379    else if (RetVT == MVT::ppcf128)
380      return SINTTOFP_I32_PPCF128;
381  } else if (OpVT == MVT::i64) {
382    if (RetVT == MVT::f32)
383      return SINTTOFP_I64_F32;
384    else if (RetVT == MVT::f64)
385      return SINTTOFP_I64_F64;
386    else if (RetVT == MVT::f80)
387      return SINTTOFP_I64_F80;
388    else if (RetVT == MVT::ppcf128)
389      return SINTTOFP_I64_PPCF128;
390  } else if (OpVT == MVT::i128) {
391    if (RetVT == MVT::f32)
392      return SINTTOFP_I128_F32;
393    else if (RetVT == MVT::f64)
394      return SINTTOFP_I128_F64;
395    else if (RetVT == MVT::f80)
396      return SINTTOFP_I128_F80;
397    else if (RetVT == MVT::ppcf128)
398      return SINTTOFP_I128_PPCF128;
399  }
400  return UNKNOWN_LIBCALL;
401}
402
403/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
404/// UNKNOWN_LIBCALL if there is none.
405RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
406  if (OpVT == MVT::i32) {
407    if (RetVT == MVT::f32)
408      return UINTTOFP_I32_F32;
409    else if (RetVT == MVT::f64)
410      return UINTTOFP_I32_F64;
411    else if (RetVT == MVT::f80)
412      return UINTTOFP_I32_F80;
413    else if (RetVT == MVT::ppcf128)
414      return UINTTOFP_I32_PPCF128;
415  } else if (OpVT == MVT::i64) {
416    if (RetVT == MVT::f32)
417      return UINTTOFP_I64_F32;
418    else if (RetVT == MVT::f64)
419      return UINTTOFP_I64_F64;
420    else if (RetVT == MVT::f80)
421      return UINTTOFP_I64_F80;
422    else if (RetVT == MVT::ppcf128)
423      return UINTTOFP_I64_PPCF128;
424  } else if (OpVT == MVT::i128) {
425    if (RetVT == MVT::f32)
426      return UINTTOFP_I128_F32;
427    else if (RetVT == MVT::f64)
428      return UINTTOFP_I128_F64;
429    else if (RetVT == MVT::f80)
430      return UINTTOFP_I128_F80;
431    else if (RetVT == MVT::ppcf128)
432      return UINTTOFP_I128_PPCF128;
433  }
434  return UNKNOWN_LIBCALL;
435}
436
437/// InitCmpLibcallCCs - Set default comparison libcall CC.
438///
439static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
440  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
441  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
442  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
443  CCs[RTLIB::UNE_F32] = ISD::SETNE;
444  CCs[RTLIB::UNE_F64] = ISD::SETNE;
445  CCs[RTLIB::OGE_F32] = ISD::SETGE;
446  CCs[RTLIB::OGE_F64] = ISD::SETGE;
447  CCs[RTLIB::OLT_F32] = ISD::SETLT;
448  CCs[RTLIB::OLT_F64] = ISD::SETLT;
449  CCs[RTLIB::OLE_F32] = ISD::SETLE;
450  CCs[RTLIB::OLE_F64] = ISD::SETLE;
451  CCs[RTLIB::OGT_F32] = ISD::SETGT;
452  CCs[RTLIB::OGT_F64] = ISD::SETGT;
453  CCs[RTLIB::UO_F32] = ISD::SETNE;
454  CCs[RTLIB::UO_F64] = ISD::SETNE;
455  CCs[RTLIB::O_F32] = ISD::SETEQ;
456  CCs[RTLIB::O_F64] = ISD::SETEQ;
457}
458
459/// NOTE: The constructor takes ownership of TLOF.
460TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
461  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
462  // All operations default to being supported.
463  memset(OpActions, 0, sizeof(OpActions));
464  memset(LoadExtActions, 0, sizeof(LoadExtActions));
465  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
466  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
467  memset(ConvertActions, 0, sizeof(ConvertActions));
468  memset(CondCodeActions, 0, sizeof(CondCodeActions));
469
470  // Set default actions for various operations.
471  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
472    // Default all indexed load / store to expand.
473    for (unsigned IM = (unsigned)ISD::PRE_INC;
474         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
475      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
476      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
477    }
478
479    // These operations default to expand.
480    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
481    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
482  }
483
484  // Most targets ignore the @llvm.prefetch intrinsic.
485  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
486
487  // ConstantFP nodes default to expand.  Targets can either change this to
488  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
489  // to optimize expansions for certain constants.
490  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
491  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
492  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
493
494  // These library functions default to expand.
495  setOperationAction(ISD::FLOG , MVT::f64, Expand);
496  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
497  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
498  setOperationAction(ISD::FEXP , MVT::f64, Expand);
499  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
500  setOperationAction(ISD::FLOG , MVT::f32, Expand);
501  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
502  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
503  setOperationAction(ISD::FEXP , MVT::f32, Expand);
504  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
505
506  // Default ISD::TRAP to expand (which turns it into abort).
507  setOperationAction(ISD::TRAP, MVT::Other, Expand);
508
509  IsLittleEndian = TD->isLittleEndian();
510  UsesGlobalOffsetTable = false;
511  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
512  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
513  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
514  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
515  benefitFromCodePlacementOpt = false;
516  UseUnderscoreSetJmp = false;
517  UseUnderscoreLongJmp = false;
518  SelectIsExpensive = false;
519  IntDivIsCheap = false;
520  Pow2DivIsCheap = false;
521  StackPointerRegisterToSaveRestore = 0;
522  ExceptionPointerRegister = 0;
523  ExceptionSelectorRegister = 0;
524  BooleanContents = UndefinedBooleanContent;
525  SchedPreferenceInfo = SchedulingForLatency;
526  JumpBufSize = 0;
527  JumpBufAlignment = 0;
528  IfCvtBlockSizeLimit = 2;
529  IfCvtDupBlockSizeLimit = 0;
530  PrefLoopAlignment = 0;
531
532  InitLibcallNames(LibcallRoutineNames);
533  InitCmpLibcallCCs(CmpLibcallCCs);
534  InitLibcallCallingConvs(LibcallCallingConvs);
535
536  // Tell Legalize whether the assembler supports DEBUG_LOC.
537  const MCAsmInfo *TASM = TM.getMCAsmInfo();
538  if (!TASM || !TASM->hasDotLocAndDotFile())
539    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
540}
541
542TargetLowering::~TargetLowering() {
543  delete &TLOF;
544}
545
546static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
547                                       unsigned &NumIntermediates,
548                                       EVT &RegisterVT,
549                                       TargetLowering* TLI) {
550  // Figure out the right, legal destination reg to copy into.
551  unsigned NumElts = VT.getVectorNumElements();
552  MVT EltTy = VT.getVectorElementType();
553
554  unsigned NumVectorRegs = 1;
555
556  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
557  // could break down into LHS/RHS like LegalizeDAG does.
558  if (!isPowerOf2_32(NumElts)) {
559    NumVectorRegs = NumElts;
560    NumElts = 1;
561  }
562
563  // Divide the input until we get to a supported size.  This will always
564  // end with a scalar if the target doesn't support vectors.
565  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
566    NumElts >>= 1;
567    NumVectorRegs <<= 1;
568  }
569
570  NumIntermediates = NumVectorRegs;
571
572  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
573  if (!TLI->isTypeLegal(NewVT))
574    NewVT = EltTy;
575  IntermediateVT = NewVT;
576
577  EVT DestVT = TLI->getRegisterType(NewVT);
578  RegisterVT = DestVT;
579  if (EVT(DestVT).bitsLT(NewVT)) {
580    // Value is expanded, e.g. i64 -> i16.
581    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
582  } else {
583    // Otherwise, promotion or legal types use the same number of registers as
584    // the vector decimated to the appropriate level.
585    return NumVectorRegs;
586  }
587
588  return 1;
589}
590
591/// computeRegisterProperties - Once all of the register classes are added,
592/// this allows us to compute derived properties we expose.
593void TargetLowering::computeRegisterProperties() {
594  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
595         "Too many value types for ValueTypeActions to hold!");
596
597  // Everything defaults to needing one register.
598  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
599    NumRegistersForVT[i] = 1;
600    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
601  }
602  // ...except isVoid, which doesn't need any registers.
603  NumRegistersForVT[MVT::isVoid] = 0;
604
605  // Find the largest integer register class.
606  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
607  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
608    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
609
610  // Every integer value type larger than this largest register takes twice as
611  // many registers to represent as the previous ValueType.
612  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
613    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
614    if (!ExpandedVT.isInteger())
615      break;
616    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
617    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
618    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
619    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
620  }
621
622  // Inspect all of the ValueType's smaller than the largest integer
623  // register to see which ones need promotion.
624  unsigned LegalIntReg = LargestIntReg;
625  for (unsigned IntReg = LargestIntReg - 1;
626       IntReg >= (unsigned)MVT::i1; --IntReg) {
627    EVT IVT = (MVT::SimpleValueType)IntReg;
628    if (isTypeLegal(IVT)) {
629      LegalIntReg = IntReg;
630    } else {
631      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
632        (MVT::SimpleValueType)LegalIntReg;
633      ValueTypeActions.setTypeAction(IVT, Promote);
634    }
635  }
636
637  // ppcf128 type is really two f64's.
638  if (!isTypeLegal(MVT::ppcf128)) {
639    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
640    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
641    TransformToType[MVT::ppcf128] = MVT::f64;
642    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
643  }
644
645  // Decide how to handle f64. If the target does not have native f64 support,
646  // expand it to i64 and we will be generating soft float library calls.
647  if (!isTypeLegal(MVT::f64)) {
648    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
649    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
650    TransformToType[MVT::f64] = MVT::i64;
651    ValueTypeActions.setTypeAction(MVT::f64, Expand);
652  }
653
654  // Decide how to handle f32. If the target does not have native support for
655  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
656  if (!isTypeLegal(MVT::f32)) {
657    if (isTypeLegal(MVT::f64)) {
658      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
659      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
660      TransformToType[MVT::f32] = MVT::f64;
661      ValueTypeActions.setTypeAction(MVT::f32, Promote);
662    } else {
663      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
664      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
665      TransformToType[MVT::f32] = MVT::i32;
666      ValueTypeActions.setTypeAction(MVT::f32, Expand);
667    }
668  }
669
670  // Loop over all of the vector value types to see which need transformations.
671  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
672       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
673    MVT VT = (MVT::SimpleValueType)i;
674    if (!isTypeLegal(VT)) {
675      MVT IntermediateVT;
676      EVT RegisterVT;
677      unsigned NumIntermediates;
678      NumRegistersForVT[i] =
679        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
680                                  RegisterVT, this);
681      RegisterTypeForVT[i] = RegisterVT;
682
683      // Determine if there is a legal wider type.
684      bool IsLegalWiderType = false;
685      EVT EltVT = VT.getVectorElementType();
686      unsigned NElts = VT.getVectorNumElements();
687      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
688        EVT SVT = (MVT::SimpleValueType)nVT;
689        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
690            SVT.getVectorNumElements() > NElts) {
691          TransformToType[i] = SVT;
692          ValueTypeActions.setTypeAction(VT, Promote);
693          IsLegalWiderType = true;
694          break;
695        }
696      }
697      if (!IsLegalWiderType) {
698        EVT NVT = VT.getPow2VectorType();
699        if (NVT == VT) {
700          // Type is already a power of 2.  The default action is to split.
701          TransformToType[i] = MVT::Other;
702          ValueTypeActions.setTypeAction(VT, Expand);
703        } else {
704          TransformToType[i] = NVT;
705          ValueTypeActions.setTypeAction(VT, Promote);
706        }
707      }
708    }
709  }
710}
711
712const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
713  return NULL;
714}
715
716
717MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
718  return PointerTy.SimpleTy;
719}
720
721/// getVectorTypeBreakdown - Vector types are broken down into some number of
722/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
723/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
724/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
725///
726/// This method returns the number of registers needed, and the VT for each
727/// register.  It also returns the VT and quantity of the intermediate values
728/// before they are promoted/expanded.
729///
730unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
731                                                EVT &IntermediateVT,
732                                                unsigned &NumIntermediates,
733                                                EVT &RegisterVT) const {
734  // Figure out the right, legal destination reg to copy into.
735  unsigned NumElts = VT.getVectorNumElements();
736  EVT EltTy = VT.getVectorElementType();
737
738  unsigned NumVectorRegs = 1;
739
740  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
741  // could break down into LHS/RHS like LegalizeDAG does.
742  if (!isPowerOf2_32(NumElts)) {
743    NumVectorRegs = NumElts;
744    NumElts = 1;
745  }
746
747  // Divide the input until we get to a supported size.  This will always
748  // end with a scalar if the target doesn't support vectors.
749  while (NumElts > 1 && !isTypeLegal(
750                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
751    NumElts >>= 1;
752    NumVectorRegs <<= 1;
753  }
754
755  NumIntermediates = NumVectorRegs;
756
757  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
758  if (!isTypeLegal(NewVT))
759    NewVT = EltTy;
760  IntermediateVT = NewVT;
761
762  EVT DestVT = getRegisterType(Context, NewVT);
763  RegisterVT = DestVT;
764  if (DestVT.bitsLT(NewVT)) {
765    // Value is expanded, e.g. i64 -> i16.
766    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
767  } else {
768    // Otherwise, promotion or legal types use the same number of registers as
769    // the vector decimated to the appropriate level.
770    return NumVectorRegs;
771  }
772
773  return 1;
774}
775
776/// getWidenVectorType: given a vector type, returns the type to widen to
777/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
778/// If there is no vector type that we want to widen to, returns MVT::Other
779/// When and where to widen is target dependent based on the cost of
780/// scalarizing vs using the wider vector type.
781EVT TargetLowering::getWidenVectorType(EVT VT) const {
782  assert(VT.isVector());
783  if (isTypeLegal(VT))
784    return VT;
785
786  // Default is not to widen until moved to LegalizeTypes
787  return MVT::Other;
788}
789
790/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
791/// function arguments in the caller parameter area.  This is the actual
792/// alignment, not its logarithm.
793unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
794  return TD->getCallFrameTypeAlignment(Ty);
795}
796
797SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
798                                                 SelectionDAG &DAG) const {
799  if (usesGlobalOffsetTable())
800    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
801  return Table;
802}
803
804bool
805TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
806  // Assume that everything is safe in static mode.
807  if (getTargetMachine().getRelocationModel() == Reloc::Static)
808    return true;
809
810  // In dynamic-no-pic mode, assume that known defined values are safe.
811  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
812      GA &&
813      !GA->getGlobal()->isDeclaration() &&
814      !GA->getGlobal()->isWeakForLinker())
815    return true;
816
817  // Otherwise assume nothing is safe.
818  return false;
819}
820
821//===----------------------------------------------------------------------===//
822//  Optimization Methods
823//===----------------------------------------------------------------------===//
824
825/// ShrinkDemandedConstant - Check to see if the specified operand of the
826/// specified instruction is a constant integer.  If so, check to see if there
827/// are any bits set in the constant that are not demanded.  If so, shrink the
828/// constant and return true.
829bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
830                                                        const APInt &Demanded) {
831  DebugLoc dl = Op.getDebugLoc();
832
833  // FIXME: ISD::SELECT, ISD::SELECT_CC
834  switch (Op.getOpcode()) {
835  default: break;
836  case ISD::XOR:
837  case ISD::AND:
838  case ISD::OR: {
839    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
840    if (!C) return false;
841
842    if (Op.getOpcode() == ISD::XOR &&
843        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
844      return false;
845
846    // if we can expand it to have all bits set, do it
847    if (C->getAPIntValue().intersects(~Demanded)) {
848      EVT VT = Op.getValueType();
849      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
850                                DAG.getConstant(Demanded &
851                                                C->getAPIntValue(),
852                                                VT));
853      return CombineTo(Op, New);
854    }
855
856    break;
857  }
858  }
859
860  return false;
861}
862
863/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
864/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
865/// cast, but it could be generalized for targets with other types of
866/// implicit widening casts.
867bool
868TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
869                                                    unsigned BitWidth,
870                                                    const APInt &Demanded,
871                                                    DebugLoc dl) {
872  assert(Op.getNumOperands() == 2 &&
873         "ShrinkDemandedOp only supports binary operators!");
874  assert(Op.getNode()->getNumValues() == 1 &&
875         "ShrinkDemandedOp only supports nodes with one result!");
876
877  // Don't do this if the node has another user, which may require the
878  // full value.
879  if (!Op.getNode()->hasOneUse())
880    return false;
881
882  // Search for the smallest integer type with free casts to and from
883  // Op's type. For expedience, just check power-of-2 integer types.
884  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
885  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
886  if (!isPowerOf2_32(SmallVTBits))
887    SmallVTBits = NextPowerOf2(SmallVTBits);
888  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
889    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
890    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
891        TLI.isZExtFree(SmallVT, Op.getValueType())) {
892      // We found a type with free casts.
893      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
894                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
895                                          Op.getNode()->getOperand(0)),
896                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
897                                          Op.getNode()->getOperand(1)));
898      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
899      return CombineTo(Op, Z);
900    }
901  }
902  return false;
903}
904
905/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
906/// DemandedMask bits of the result of Op are ever used downstream.  If we can
907/// use this information to simplify Op, create a new simplified DAG node and
908/// return true, returning the original and new nodes in Old and New. Otherwise,
909/// analyze the expression and return a mask of KnownOne and KnownZero bits for
910/// the expression (used to simplify the caller).  The KnownZero/One bits may
911/// only be accurate for those bits in the DemandedMask.
912bool TargetLowering::SimplifyDemandedBits(SDValue Op,
913                                          const APInt &DemandedMask,
914                                          APInt &KnownZero,
915                                          APInt &KnownOne,
916                                          TargetLoweringOpt &TLO,
917                                          unsigned Depth) const {
918  unsigned BitWidth = DemandedMask.getBitWidth();
919  assert(Op.getValueSizeInBits() == BitWidth &&
920         "Mask size mismatches value type size!");
921  APInt NewMask = DemandedMask;
922  DebugLoc dl = Op.getDebugLoc();
923
924  // Don't know anything.
925  KnownZero = KnownOne = APInt(BitWidth, 0);
926
927  // Other users may use these bits.
928  if (!Op.getNode()->hasOneUse()) {
929    if (Depth != 0) {
930      // If not at the root, Just compute the KnownZero/KnownOne bits to
931      // simplify things downstream.
932      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
933      return false;
934    }
935    // If this is the root being simplified, allow it to have multiple uses,
936    // just set the NewMask to all bits.
937    NewMask = APInt::getAllOnesValue(BitWidth);
938  } else if (DemandedMask == 0) {
939    // Not demanding any bits from Op.
940    if (Op.getOpcode() != ISD::UNDEF)
941      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
942    return false;
943  } else if (Depth == 6) {        // Limit search depth.
944    return false;
945  }
946
947  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
948  switch (Op.getOpcode()) {
949  case ISD::Constant:
950    // We know all of the bits for a constant!
951    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
952    KnownZero = ~KnownOne & NewMask;
953    return false;   // Don't fall through, will infinitely loop.
954  case ISD::AND:
955    // If the RHS is a constant, check to see if the LHS would be zero without
956    // using the bits from the RHS.  Below, we use knowledge about the RHS to
957    // simplify the LHS, here we're using information from the LHS to simplify
958    // the RHS.
959    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
960      APInt LHSZero, LHSOne;
961      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
962                                LHSZero, LHSOne, Depth+1);
963      // If the LHS already has zeros where RHSC does, this and is dead.
964      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
965        return TLO.CombineTo(Op, Op.getOperand(0));
966      // If any of the set bits in the RHS are known zero on the LHS, shrink
967      // the constant.
968      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
969        return true;
970    }
971
972    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
973                             KnownOne, TLO, Depth+1))
974      return true;
975    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
976    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
977                             KnownZero2, KnownOne2, TLO, Depth+1))
978      return true;
979    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
980
981    // If all of the demanded bits are known one on one side, return the other.
982    // These bits cannot contribute to the result of the 'and'.
983    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
984      return TLO.CombineTo(Op, Op.getOperand(0));
985    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
986      return TLO.CombineTo(Op, Op.getOperand(1));
987    // If all of the demanded bits in the inputs are known zeros, return zero.
988    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
989      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
990    // If the RHS is a constant, see if we can simplify it.
991    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
992      return true;
993    // If the operation can be done in a smaller type, do so.
994    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
995      return true;
996
997    // Output known-1 bits are only known if set in both the LHS & RHS.
998    KnownOne &= KnownOne2;
999    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1000    KnownZero |= KnownZero2;
1001    break;
1002  case ISD::OR:
1003    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1004                             KnownOne, TLO, Depth+1))
1005      return true;
1006    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1007    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1008                             KnownZero2, KnownOne2, TLO, Depth+1))
1009      return true;
1010    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1011
1012    // If all of the demanded bits are known zero on one side, return the other.
1013    // These bits cannot contribute to the result of the 'or'.
1014    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1015      return TLO.CombineTo(Op, Op.getOperand(0));
1016    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1017      return TLO.CombineTo(Op, Op.getOperand(1));
1018    // If all of the potentially set bits on one side are known to be set on
1019    // the other side, just use the 'other' side.
1020    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1021      return TLO.CombineTo(Op, Op.getOperand(0));
1022    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1023      return TLO.CombineTo(Op, Op.getOperand(1));
1024    // If the RHS is a constant, see if we can simplify it.
1025    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1026      return true;
1027    // If the operation can be done in a smaller type, do so.
1028    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1029      return true;
1030
1031    // Output known-0 bits are only known if clear in both the LHS & RHS.
1032    KnownZero &= KnownZero2;
1033    // Output known-1 are known to be set if set in either the LHS | RHS.
1034    KnownOne |= KnownOne2;
1035    break;
1036  case ISD::XOR:
1037    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1038                             KnownOne, TLO, Depth+1))
1039      return true;
1040    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1041    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1042                             KnownOne2, TLO, Depth+1))
1043      return true;
1044    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1045
1046    // If all of the demanded bits are known zero on one side, return the other.
1047    // These bits cannot contribute to the result of the 'xor'.
1048    if ((KnownZero & NewMask) == NewMask)
1049      return TLO.CombineTo(Op, Op.getOperand(0));
1050    if ((KnownZero2 & NewMask) == NewMask)
1051      return TLO.CombineTo(Op, Op.getOperand(1));
1052    // If the operation can be done in a smaller type, do so.
1053    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1054      return true;
1055
1056    // If all of the unknown bits are known to be zero on one side or the other
1057    // (but not both) turn this into an *inclusive* or.
1058    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1059    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1060      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1061                                               Op.getOperand(0),
1062                                               Op.getOperand(1)));
1063
1064    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1065    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1066    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1067    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1068
1069    // If all of the demanded bits on one side are known, and all of the set
1070    // bits on that side are also known to be set on the other side, turn this
1071    // into an AND, as we know the bits will be cleared.
1072    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1073    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1074      if ((KnownOne & KnownOne2) == KnownOne) {
1075        EVT VT = Op.getValueType();
1076        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1077        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1078                                                 Op.getOperand(0), ANDC));
1079      }
1080    }
1081
1082    // If the RHS is a constant, see if we can simplify it.
1083    // for XOR, we prefer to force bits to 1 if they will make a -1.
1084    // if we can't force bits, try to shrink constant
1085    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1086      APInt Expanded = C->getAPIntValue() | (~NewMask);
1087      // if we can expand it to have all bits set, do it
1088      if (Expanded.isAllOnesValue()) {
1089        if (Expanded != C->getAPIntValue()) {
1090          EVT VT = Op.getValueType();
1091          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1092                                          TLO.DAG.getConstant(Expanded, VT));
1093          return TLO.CombineTo(Op, New);
1094        }
1095        // if it already has all the bits set, nothing to change
1096        // but don't shrink either!
1097      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1098        return true;
1099      }
1100    }
1101
1102    KnownZero = KnownZeroOut;
1103    KnownOne  = KnownOneOut;
1104    break;
1105  case ISD::SELECT:
1106    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1107                             KnownOne, TLO, Depth+1))
1108      return true;
1109    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1110                             KnownOne2, TLO, Depth+1))
1111      return true;
1112    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1113    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1114
1115    // If the operands are constants, see if we can simplify them.
1116    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1117      return true;
1118
1119    // Only known if known in both the LHS and RHS.
1120    KnownOne &= KnownOne2;
1121    KnownZero &= KnownZero2;
1122    break;
1123  case ISD::SELECT_CC:
1124    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1125                             KnownOne, TLO, Depth+1))
1126      return true;
1127    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1128                             KnownOne2, TLO, Depth+1))
1129      return true;
1130    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1131    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1132
1133    // If the operands are constants, see if we can simplify them.
1134    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1135      return true;
1136
1137    // Only known if known in both the LHS and RHS.
1138    KnownOne &= KnownOne2;
1139    KnownZero &= KnownZero2;
1140    break;
1141  case ISD::SHL:
1142    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1143      unsigned ShAmt = SA->getZExtValue();
1144      SDValue InOp = Op.getOperand(0);
1145
1146      // If the shift count is an invalid immediate, don't do anything.
1147      if (ShAmt >= BitWidth)
1148        break;
1149
1150      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1151      // single shift.  We can do this if the bottom bits (which are shifted
1152      // out) are never demanded.
1153      if (InOp.getOpcode() == ISD::SRL &&
1154          isa<ConstantSDNode>(InOp.getOperand(1))) {
1155        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1156          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1157          unsigned Opc = ISD::SHL;
1158          int Diff = ShAmt-C1;
1159          if (Diff < 0) {
1160            Diff = -Diff;
1161            Opc = ISD::SRL;
1162          }
1163
1164          SDValue NewSA =
1165            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1166          EVT VT = Op.getValueType();
1167          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1168                                                   InOp.getOperand(0), NewSA));
1169        }
1170      }
1171
1172      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1173                               KnownZero, KnownOne, TLO, Depth+1))
1174        return true;
1175      KnownZero <<= SA->getZExtValue();
1176      KnownOne  <<= SA->getZExtValue();
1177      // low bits known zero.
1178      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1179    }
1180    break;
1181  case ISD::SRL:
1182    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1183      EVT VT = Op.getValueType();
1184      unsigned ShAmt = SA->getZExtValue();
1185      unsigned VTSize = VT.getSizeInBits();
1186      SDValue InOp = Op.getOperand(0);
1187
1188      // If the shift count is an invalid immediate, don't do anything.
1189      if (ShAmt >= BitWidth)
1190        break;
1191
1192      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1193      // single shift.  We can do this if the top bits (which are shifted out)
1194      // are never demanded.
1195      if (InOp.getOpcode() == ISD::SHL &&
1196          isa<ConstantSDNode>(InOp.getOperand(1))) {
1197        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1198          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1199          unsigned Opc = ISD::SRL;
1200          int Diff = ShAmt-C1;
1201          if (Diff < 0) {
1202            Diff = -Diff;
1203            Opc = ISD::SHL;
1204          }
1205
1206          SDValue NewSA =
1207            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1208          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1209                                                   InOp.getOperand(0), NewSA));
1210        }
1211      }
1212
1213      // Compute the new bits that are at the top now.
1214      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1215                               KnownZero, KnownOne, TLO, Depth+1))
1216        return true;
1217      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1218      KnownZero = KnownZero.lshr(ShAmt);
1219      KnownOne  = KnownOne.lshr(ShAmt);
1220
1221      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1222      KnownZero |= HighBits;  // High bits known zero.
1223    }
1224    break;
1225  case ISD::SRA:
1226    // If this is an arithmetic shift right and only the low-bit is set, we can
1227    // always convert this into a logical shr, even if the shift amount is
1228    // variable.  The low bit of the shift cannot be an input sign bit unless
1229    // the shift amount is >= the size of the datatype, which is undefined.
1230    if (DemandedMask == 1)
1231      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1232                                               Op.getOperand(0), Op.getOperand(1)));
1233
1234    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1235      EVT VT = Op.getValueType();
1236      unsigned ShAmt = SA->getZExtValue();
1237
1238      // If the shift count is an invalid immediate, don't do anything.
1239      if (ShAmt >= BitWidth)
1240        break;
1241
1242      APInt InDemandedMask = (NewMask << ShAmt);
1243
1244      // If any of the demanded bits are produced by the sign extension, we also
1245      // demand the input sign bit.
1246      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1247      if (HighBits.intersects(NewMask))
1248        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1249
1250      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1251                               KnownZero, KnownOne, TLO, Depth+1))
1252        return true;
1253      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1254      KnownZero = KnownZero.lshr(ShAmt);
1255      KnownOne  = KnownOne.lshr(ShAmt);
1256
1257      // Handle the sign bit, adjusted to where it is now in the mask.
1258      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1259
1260      // If the input sign bit is known to be zero, or if none of the top bits
1261      // are demanded, turn this into an unsigned shift right.
1262      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1263        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1264                                                 Op.getOperand(0),
1265                                                 Op.getOperand(1)));
1266      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1267        KnownOne |= HighBits;
1268      }
1269    }
1270    break;
1271  case ISD::SIGN_EXTEND_INREG: {
1272    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1273
1274    // Sign extension.  Compute the demanded bits in the result that are not
1275    // present in the input.
1276    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1277                                          BitWidth - EVT.getSizeInBits()) &
1278                    NewMask;
1279
1280    // If none of the extended bits are demanded, eliminate the sextinreg.
1281    if (NewBits == 0)
1282      return TLO.CombineTo(Op, Op.getOperand(0));
1283
1284    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1285    InSignBit.zext(BitWidth);
1286    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1287                                                   EVT.getSizeInBits()) &
1288                              NewMask;
1289
1290    // Since the sign extended bits are demanded, we know that the sign
1291    // bit is demanded.
1292    InputDemandedBits |= InSignBit;
1293
1294    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1295                             KnownZero, KnownOne, TLO, Depth+1))
1296      return true;
1297    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1298
1299    // If the sign bit of the input is known set or clear, then we know the
1300    // top bits of the result.
1301
1302    // If the input sign bit is known zero, convert this into a zero extension.
1303    if (KnownZero.intersects(InSignBit))
1304      return TLO.CombineTo(Op,
1305                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1306
1307    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1308      KnownOne |= NewBits;
1309      KnownZero &= ~NewBits;
1310    } else {                       // Input sign bit unknown
1311      KnownZero &= ~NewBits;
1312      KnownOne &= ~NewBits;
1313    }
1314    break;
1315  }
1316  case ISD::ZERO_EXTEND: {
1317    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1318    APInt InMask = NewMask;
1319    InMask.trunc(OperandBitWidth);
1320
1321    // If none of the top bits are demanded, convert this into an any_extend.
1322    APInt NewBits =
1323      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1324    if (!NewBits.intersects(NewMask))
1325      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1326                                               Op.getValueType(),
1327                                               Op.getOperand(0)));
1328
1329    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1330                             KnownZero, KnownOne, TLO, Depth+1))
1331      return true;
1332    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1333    KnownZero.zext(BitWidth);
1334    KnownOne.zext(BitWidth);
1335    KnownZero |= NewBits;
1336    break;
1337  }
1338  case ISD::SIGN_EXTEND: {
1339    EVT InVT = Op.getOperand(0).getValueType();
1340    unsigned InBits = InVT.getSizeInBits();
1341    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1342    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1343    APInt NewBits   = ~InMask & NewMask;
1344
1345    // If none of the top bits are demanded, convert this into an any_extend.
1346    if (NewBits == 0)
1347      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1348                                              Op.getValueType(),
1349                                              Op.getOperand(0)));
1350
1351    // Since some of the sign extended bits are demanded, we know that the sign
1352    // bit is demanded.
1353    APInt InDemandedBits = InMask & NewMask;
1354    InDemandedBits |= InSignBit;
1355    InDemandedBits.trunc(InBits);
1356
1357    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1358                             KnownOne, TLO, Depth+1))
1359      return true;
1360    KnownZero.zext(BitWidth);
1361    KnownOne.zext(BitWidth);
1362
1363    // If the sign bit is known zero, convert this to a zero extend.
1364    if (KnownZero.intersects(InSignBit))
1365      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1366                                               Op.getValueType(),
1367                                               Op.getOperand(0)));
1368
1369    // If the sign bit is known one, the top bits match.
1370    if (KnownOne.intersects(InSignBit)) {
1371      KnownOne  |= NewBits;
1372      KnownZero &= ~NewBits;
1373    } else {   // Otherwise, top bits aren't known.
1374      KnownOne  &= ~NewBits;
1375      KnownZero &= ~NewBits;
1376    }
1377    break;
1378  }
1379  case ISD::ANY_EXTEND: {
1380    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1381    APInt InMask = NewMask;
1382    InMask.trunc(OperandBitWidth);
1383    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1384                             KnownZero, KnownOne, TLO, Depth+1))
1385      return true;
1386    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1387    KnownZero.zext(BitWidth);
1388    KnownOne.zext(BitWidth);
1389    break;
1390  }
1391  case ISD::TRUNCATE: {
1392    // Simplify the input, using demanded bit information, and compute the known
1393    // zero/one bits live out.
1394    APInt TruncMask = NewMask;
1395    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1396    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1397                             KnownZero, KnownOne, TLO, Depth+1))
1398      return true;
1399    KnownZero.trunc(BitWidth);
1400    KnownOne.trunc(BitWidth);
1401
1402    // If the input is only used by this truncate, see if we can shrink it based
1403    // on the known demanded bits.
1404    if (Op.getOperand(0).getNode()->hasOneUse()) {
1405      SDValue In = Op.getOperand(0);
1406      unsigned InBitWidth = In.getValueSizeInBits();
1407      switch (In.getOpcode()) {
1408      default: break;
1409      case ISD::SRL:
1410        // Shrink SRL by a constant if none of the high bits shifted in are
1411        // demanded.
1412        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1413          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1414                                                 InBitWidth - BitWidth);
1415          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1416          HighBits.trunc(BitWidth);
1417
1418          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1419            // None of the shifted in bits are needed.  Add a truncate of the
1420            // shift input, then shift it.
1421            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1422                                                 Op.getValueType(),
1423                                                 In.getOperand(0));
1424            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1425                                                     Op.getValueType(),
1426                                                     NewTrunc,
1427                                                     In.getOperand(1)));
1428          }
1429        }
1430        break;
1431      }
1432    }
1433
1434    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1435    break;
1436  }
1437  case ISD::AssertZext: {
1438    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1439    APInt InMask = APInt::getLowBitsSet(BitWidth,
1440                                        VT.getSizeInBits());
1441    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1442                             KnownZero, KnownOne, TLO, Depth+1))
1443      return true;
1444    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1445    KnownZero |= ~InMask & NewMask;
1446    break;
1447  }
1448  case ISD::BIT_CONVERT:
1449#if 0
1450    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1451    // is demanded, turn this into a FGETSIGN.
1452    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1453        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1454        !MVT::isVector(Op.getOperand(0).getValueType())) {
1455      // Only do this xform if FGETSIGN is valid or if before legalize.
1456      if (!TLO.AfterLegalize ||
1457          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1458        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1459        // place.  We expect the SHL to be eliminated by other optimizations.
1460        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1461                                         Op.getOperand(0));
1462        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1463        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1464        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1465                                                 Sign, ShAmt));
1466      }
1467    }
1468#endif
1469    break;
1470  case ISD::ADD:
1471  case ISD::MUL:
1472  case ISD::SUB: {
1473    // Add, Sub, and Mul don't demand any bits in positions beyond that
1474    // of the highest bit demanded of them.
1475    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1476                                        BitWidth - NewMask.countLeadingZeros());
1477    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1478                             KnownOne2, TLO, Depth+1))
1479      return true;
1480    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1481                             KnownOne2, TLO, Depth+1))
1482      return true;
1483    // See if the operation should be performed at a smaller bit width.
1484    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1485      return true;
1486  }
1487  // FALL THROUGH
1488  default:
1489    // Just use ComputeMaskedBits to compute output bits.
1490    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1491    break;
1492  }
1493
1494  // If we know the value of all of the demanded bits, return this as a
1495  // constant.
1496  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1497    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1498
1499  return false;
1500}
1501
1502/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1503/// in Mask are known to be either zero or one and return them in the
1504/// KnownZero/KnownOne bitsets.
1505void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1506                                                    const APInt &Mask,
1507                                                    APInt &KnownZero,
1508                                                    APInt &KnownOne,
1509                                                    const SelectionDAG &DAG,
1510                                                    unsigned Depth) const {
1511  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1512          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1513          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1514          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1515         "Should use MaskedValueIsZero if you don't know whether Op"
1516         " is a target node!");
1517  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1518}
1519
1520/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1521/// targets that want to expose additional information about sign bits to the
1522/// DAG Combiner.
1523unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1524                                                         unsigned Depth) const {
1525  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1526          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1527          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1528          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1529         "Should use ComputeNumSignBits if you don't know whether Op"
1530         " is a target node!");
1531  return 1;
1532}
1533
1534/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1535/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1536/// determine which bit is set.
1537///
1538static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1539  // A left-shift of a constant one will have exactly one bit set, because
1540  // shifting the bit off the end is undefined.
1541  if (Val.getOpcode() == ISD::SHL)
1542    if (ConstantSDNode *C =
1543         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1544      if (C->getAPIntValue() == 1)
1545        return true;
1546
1547  // Similarly, a right-shift of a constant sign-bit will have exactly
1548  // one bit set.
1549  if (Val.getOpcode() == ISD::SRL)
1550    if (ConstantSDNode *C =
1551         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1552      if (C->getAPIntValue().isSignBit())
1553        return true;
1554
1555  // More could be done here, though the above checks are enough
1556  // to handle some common cases.
1557
1558  // Fall back to ComputeMaskedBits to catch other known cases.
1559  EVT OpVT = Val.getValueType();
1560  unsigned BitWidth = OpVT.getSizeInBits();
1561  APInt Mask = APInt::getAllOnesValue(BitWidth);
1562  APInt KnownZero, KnownOne;
1563  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1564  return (KnownZero.countPopulation() == BitWidth - 1) &&
1565         (KnownOne.countPopulation() == 1);
1566}
1567
1568/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1569/// and cc. If it is unable to simplify it, return a null SDValue.
1570SDValue
1571TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1572                              ISD::CondCode Cond, bool foldBooleans,
1573                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1574  SelectionDAG &DAG = DCI.DAG;
1575  LLVMContext &Context = *DAG.getContext();
1576
1577  // These setcc operations always fold.
1578  switch (Cond) {
1579  default: break;
1580  case ISD::SETFALSE:
1581  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1582  case ISD::SETTRUE:
1583  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1584  }
1585
1586  if (isa<ConstantSDNode>(N0.getNode())) {
1587    // Ensure that the constant occurs on the RHS, and fold constant
1588    // comparisons.
1589    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1590  }
1591
1592  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1593    const APInt &C1 = N1C->getAPIntValue();
1594
1595    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1596    // equality comparison, then we're just comparing whether X itself is
1597    // zero.
1598    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1599        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1600        N0.getOperand(1).getOpcode() == ISD::Constant) {
1601      unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1602      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1603          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1604        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1605          // (srl (ctlz x), 5) == 0  -> X != 0
1606          // (srl (ctlz x), 5) != 1  -> X != 0
1607          Cond = ISD::SETNE;
1608        } else {
1609          // (srl (ctlz x), 5) != 0  -> X == 0
1610          // (srl (ctlz x), 5) == 1  -> X == 0
1611          Cond = ISD::SETEQ;
1612        }
1613        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1614        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1615                            Zero, Cond);
1616      }
1617    }
1618
1619    // If the LHS is '(and load, const)', the RHS is 0,
1620    // the test is for equality or unsigned, and all 1 bits of the const are
1621    // in the same partial word, see if we can shorten the load.
1622    if (DCI.isBeforeLegalize() &&
1623        N0.getOpcode() == ISD::AND && C1 == 0 &&
1624        N0.getNode()->hasOneUse() &&
1625        isa<LoadSDNode>(N0.getOperand(0)) &&
1626        N0.getOperand(0).getNode()->hasOneUse() &&
1627        isa<ConstantSDNode>(N0.getOperand(1))) {
1628      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1629      uint64_t bestMask = 0;
1630      unsigned bestWidth = 0, bestOffset = 0;
1631      if (!Lod->isVolatile() && Lod->isUnindexed() &&
1632          // FIXME: This uses getZExtValue() below so it only works on i64 and
1633          // below.
1634          N0.getValueType().getSizeInBits() <= 64) {
1635        unsigned origWidth = N0.getValueType().getSizeInBits();
1636        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1637        // 8 bits, but have to be careful...
1638        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1639          origWidth = Lod->getMemoryVT().getSizeInBits();
1640        uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1641        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1642          uint64_t newMask = (1ULL << width) - 1;
1643          for (unsigned offset=0; offset<origWidth/width; offset++) {
1644            if ((newMask & Mask) == Mask) {
1645              if (!TD->isLittleEndian())
1646                bestOffset = (origWidth/width - offset - 1) * (width/8);
1647              else
1648                bestOffset = (uint64_t)offset * (width/8);
1649              bestMask = Mask >> (offset * (width/8) * 8);
1650              bestWidth = width;
1651              break;
1652            }
1653            newMask = newMask << width;
1654          }
1655        }
1656      }
1657      if (bestWidth) {
1658        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1659        if (newVT.isRound()) {
1660          EVT PtrType = Lod->getOperand(1).getValueType();
1661          SDValue Ptr = Lod->getBasePtr();
1662          if (bestOffset != 0)
1663            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1664                              DAG.getConstant(bestOffset, PtrType));
1665          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1666          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1667                                        Lod->getSrcValue(),
1668                                        Lod->getSrcValueOffset() + bestOffset,
1669                                        false, NewAlign);
1670          return DAG.getSetCC(dl, VT,
1671                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1672                                          DAG.getConstant(bestMask, newVT)),
1673                              DAG.getConstant(0LL, newVT), Cond);
1674        }
1675      }
1676    }
1677
1678    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1679    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1680      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1681
1682      // If the comparison constant has bits in the upper part, the
1683      // zero-extended value could never match.
1684      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1685                                              C1.getBitWidth() - InSize))) {
1686        switch (Cond) {
1687        case ISD::SETUGT:
1688        case ISD::SETUGE:
1689        case ISD::SETEQ: return DAG.getConstant(0, VT);
1690        case ISD::SETULT:
1691        case ISD::SETULE:
1692        case ISD::SETNE: return DAG.getConstant(1, VT);
1693        case ISD::SETGT:
1694        case ISD::SETGE:
1695          // True if the sign bit of C1 is set.
1696          return DAG.getConstant(C1.isNegative(), VT);
1697        case ISD::SETLT:
1698        case ISD::SETLE:
1699          // True if the sign bit of C1 isn't set.
1700          return DAG.getConstant(C1.isNonNegative(), VT);
1701        default:
1702          break;
1703        }
1704      }
1705
1706      // Otherwise, we can perform the comparison with the low bits.
1707      switch (Cond) {
1708      case ISD::SETEQ:
1709      case ISD::SETNE:
1710      case ISD::SETUGT:
1711      case ISD::SETUGE:
1712      case ISD::SETULT:
1713      case ISD::SETULE: {
1714        EVT newVT = N0.getOperand(0).getValueType();
1715        if (DCI.isBeforeLegalizeOps() ||
1716            (isOperationLegal(ISD::SETCC, newVT) &&
1717              getCondCodeAction(Cond, newVT)==Legal))
1718          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1719                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1720                              Cond);
1721        break;
1722      }
1723      default:
1724        break;   // todo, be more careful with signed comparisons
1725      }
1726    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1727                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1728      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1729      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1730      EVT ExtDstTy = N0.getValueType();
1731      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1732
1733      // If the extended part has any inconsistent bits, it cannot ever
1734      // compare equal.  In other words, they have to be all ones or all
1735      // zeros.
1736      APInt ExtBits =
1737        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1738      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1739        return DAG.getConstant(Cond == ISD::SETNE, VT);
1740
1741      SDValue ZextOp;
1742      EVT Op0Ty = N0.getOperand(0).getValueType();
1743      if (Op0Ty == ExtSrcTy) {
1744        ZextOp = N0.getOperand(0);
1745      } else {
1746        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1747        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1748                              DAG.getConstant(Imm, Op0Ty));
1749      }
1750      if (!DCI.isCalledByLegalizer())
1751        DCI.AddToWorklist(ZextOp.getNode());
1752      // Otherwise, make this a use of a zext.
1753      return DAG.getSetCC(dl, VT, ZextOp,
1754                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1755                                                              ExtDstTyBits,
1756                                                              ExtSrcTyBits),
1757                                          ExtDstTy),
1758                          Cond);
1759    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1760                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1761
1762      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1763      if (N0.getOpcode() == ISD::SETCC) {
1764        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1765        if (TrueWhenTrue)
1766          return N0;
1767
1768        // Invert the condition.
1769        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1770        CC = ISD::getSetCCInverse(CC,
1771                                  N0.getOperand(0).getValueType().isInteger());
1772        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1773      }
1774
1775      if ((N0.getOpcode() == ISD::XOR ||
1776            (N0.getOpcode() == ISD::AND &&
1777            N0.getOperand(0).getOpcode() == ISD::XOR &&
1778            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1779          isa<ConstantSDNode>(N0.getOperand(1)) &&
1780          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1781        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1782        // can only do this if the top bits are known zero.
1783        unsigned BitWidth = N0.getValueSizeInBits();
1784        if (DAG.MaskedValueIsZero(N0,
1785                                  APInt::getHighBitsSet(BitWidth,
1786                                                        BitWidth-1))) {
1787          // Okay, get the un-inverted input value.
1788          SDValue Val;
1789          if (N0.getOpcode() == ISD::XOR)
1790            Val = N0.getOperand(0);
1791          else {
1792            assert(N0.getOpcode() == ISD::AND &&
1793                    N0.getOperand(0).getOpcode() == ISD::XOR);
1794            // ((X^1)&1)^1 -> X & 1
1795            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1796                              N0.getOperand(0).getOperand(0),
1797                              N0.getOperand(1));
1798          }
1799          return DAG.getSetCC(dl, VT, Val, N1,
1800                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1801        }
1802      }
1803    }
1804
1805    APInt MinVal, MaxVal;
1806    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1807    if (ISD::isSignedIntSetCC(Cond)) {
1808      MinVal = APInt::getSignedMinValue(OperandBitSize);
1809      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1810    } else {
1811      MinVal = APInt::getMinValue(OperandBitSize);
1812      MaxVal = APInt::getMaxValue(OperandBitSize);
1813    }
1814
1815    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1816    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1817      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1818      // X >= C0 --> X > (C0-1)
1819      return DAG.getSetCC(dl, VT, N0,
1820                          DAG.getConstant(C1-1, N1.getValueType()),
1821                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1822    }
1823
1824    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1825      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1826      // X <= C0 --> X < (C0+1)
1827      return DAG.getSetCC(dl, VT, N0,
1828                          DAG.getConstant(C1+1, N1.getValueType()),
1829                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1830    }
1831
1832    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1833      return DAG.getConstant(0, VT);      // X < MIN --> false
1834    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1835      return DAG.getConstant(1, VT);      // X >= MIN --> true
1836    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1837      return DAG.getConstant(0, VT);      // X > MAX --> false
1838    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1839      return DAG.getConstant(1, VT);      // X <= MAX --> true
1840
1841    // Canonicalize setgt X, Min --> setne X, Min
1842    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1843      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1844    // Canonicalize setlt X, Max --> setne X, Max
1845    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1846      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1847
1848    // If we have setult X, 1, turn it into seteq X, 0
1849    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1850      return DAG.getSetCC(dl, VT, N0,
1851                          DAG.getConstant(MinVal, N0.getValueType()),
1852                          ISD::SETEQ);
1853    // If we have setugt X, Max-1, turn it into seteq X, Max
1854    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1855      return DAG.getSetCC(dl, VT, N0,
1856                          DAG.getConstant(MaxVal, N0.getValueType()),
1857                          ISD::SETEQ);
1858
1859    // If we have "setcc X, C0", check to see if we can shrink the immediate
1860    // by changing cc.
1861
1862    // SETUGT X, SINTMAX  -> SETLT X, 0
1863    if (Cond == ISD::SETUGT &&
1864        C1 == APInt::getSignedMaxValue(OperandBitSize))
1865      return DAG.getSetCC(dl, VT, N0,
1866                          DAG.getConstant(0, N1.getValueType()),
1867                          ISD::SETLT);
1868
1869    // SETULT X, SINTMIN  -> SETGT X, -1
1870    if (Cond == ISD::SETULT &&
1871        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1872      SDValue ConstMinusOne =
1873          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1874                          N1.getValueType());
1875      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1876    }
1877
1878    // Fold bit comparisons when we can.
1879    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1880        VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1881      if (ConstantSDNode *AndRHS =
1882                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1883        EVT ShiftTy = DCI.isBeforeLegalize() ?
1884          getPointerTy() : getShiftAmountTy();
1885        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1886          // Perform the xform if the AND RHS is a single bit.
1887          if (isPowerOf2_64(AndRHS->getZExtValue())) {
1888            return DAG.getNode(ISD::SRL, dl, VT, N0,
1889                                DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1890                                                ShiftTy));
1891          }
1892        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1893          // (X & 8) == 8  -->  (X & 8) >> 3
1894          // Perform the xform if C1 is a single bit.
1895          if (C1.isPowerOf2()) {
1896            return DAG.getNode(ISD::SRL, dl, VT, N0,
1897                                DAG.getConstant(C1.logBase2(), ShiftTy));
1898          }
1899        }
1900      }
1901  }
1902
1903  if (isa<ConstantFPSDNode>(N0.getNode())) {
1904    // Constant fold or commute setcc.
1905    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1906    if (O.getNode()) return O;
1907  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1908    // If the RHS of an FP comparison is a constant, simplify it away in
1909    // some cases.
1910    if (CFP->getValueAPF().isNaN()) {
1911      // If an operand is known to be a nan, we can fold it.
1912      switch (ISD::getUnorderedFlavor(Cond)) {
1913      default: llvm_unreachable("Unknown flavor!");
1914      case 0:  // Known false.
1915        return DAG.getConstant(0, VT);
1916      case 1:  // Known true.
1917        return DAG.getConstant(1, VT);
1918      case 2:  // Undefined.
1919        return DAG.getUNDEF(VT);
1920      }
1921    }
1922
1923    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1924    // constant if knowing that the operand is non-nan is enough.  We prefer to
1925    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1926    // materialize 0.0.
1927    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1928      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1929
1930    // If the condition is not legal, see if we can find an equivalent one
1931    // which is legal.
1932    if (!isCondCodeLegal(Cond, N0.getValueType())) {
1933      // If the comparison was an awkward floating-point == or != and one of
1934      // the comparison operands is infinity or negative infinity, convert the
1935      // condition to a less-awkward <= or >=.
1936      if (CFP->getValueAPF().isInfinity()) {
1937        if (CFP->getValueAPF().isNegative()) {
1938          if (Cond == ISD::SETOEQ &&
1939              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
1940            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1941          if (Cond == ISD::SETUEQ &&
1942              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
1943            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1944          if (Cond == ISD::SETUNE &&
1945              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
1946            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1947          if (Cond == ISD::SETONE &&
1948              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
1949            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1950        } else {
1951          if (Cond == ISD::SETOEQ &&
1952              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
1953            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1954          if (Cond == ISD::SETUEQ &&
1955              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
1956            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1957          if (Cond == ISD::SETUNE &&
1958              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
1959            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1960          if (Cond == ISD::SETONE &&
1961              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
1962            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1963        }
1964      }
1965    }
1966  }
1967
1968  if (N0 == N1) {
1969    // We can always fold X == X for integer setcc's.
1970    if (N0.getValueType().isInteger())
1971      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1972    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1973    if (UOF == 2)   // FP operators that are undefined on NaNs.
1974      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1975    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1976      return DAG.getConstant(UOF, VT);
1977    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1978    // if it is not already.
1979    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1980    if (NewCond != Cond)
1981      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1982  }
1983
1984  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1985      N0.getValueType().isInteger()) {
1986    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1987        N0.getOpcode() == ISD::XOR) {
1988      // Simplify (X+Y) == (X+Z) -->  Y == Z
1989      if (N0.getOpcode() == N1.getOpcode()) {
1990        if (N0.getOperand(0) == N1.getOperand(0))
1991          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1992        if (N0.getOperand(1) == N1.getOperand(1))
1993          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1994        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1995          // If X op Y == Y op X, try other combinations.
1996          if (N0.getOperand(0) == N1.getOperand(1))
1997            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1998                                Cond);
1999          if (N0.getOperand(1) == N1.getOperand(0))
2000            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2001                                Cond);
2002        }
2003      }
2004
2005      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2006        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2007          // Turn (X+C1) == C2 --> X == C2-C1
2008          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2009            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2010                                DAG.getConstant(RHSC->getAPIntValue()-
2011                                                LHSR->getAPIntValue(),
2012                                N0.getValueType()), Cond);
2013          }
2014
2015          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2016          if (N0.getOpcode() == ISD::XOR)
2017            // If we know that all of the inverted bits are zero, don't bother
2018            // performing the inversion.
2019            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2020              return
2021                DAG.getSetCC(dl, VT, N0.getOperand(0),
2022                             DAG.getConstant(LHSR->getAPIntValue() ^
2023                                               RHSC->getAPIntValue(),
2024                                             N0.getValueType()),
2025                             Cond);
2026        }
2027
2028        // Turn (C1-X) == C2 --> X == C1-C2
2029        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2030          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2031            return
2032              DAG.getSetCC(dl, VT, N0.getOperand(1),
2033                           DAG.getConstant(SUBC->getAPIntValue() -
2034                                             RHSC->getAPIntValue(),
2035                                           N0.getValueType()),
2036                           Cond);
2037          }
2038        }
2039      }
2040
2041      // Simplify (X+Z) == X -->  Z == 0
2042      if (N0.getOperand(0) == N1)
2043        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2044                        DAG.getConstant(0, N0.getValueType()), Cond);
2045      if (N0.getOperand(1) == N1) {
2046        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2047          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2048                          DAG.getConstant(0, N0.getValueType()), Cond);
2049        else if (N0.getNode()->hasOneUse()) {
2050          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2051          // (Z-X) == X  --> Z == X<<1
2052          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2053                                     N1,
2054                                     DAG.getConstant(1, getShiftAmountTy()));
2055          if (!DCI.isCalledByLegalizer())
2056            DCI.AddToWorklist(SH.getNode());
2057          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2058        }
2059      }
2060    }
2061
2062    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2063        N1.getOpcode() == ISD::XOR) {
2064      // Simplify  X == (X+Z) -->  Z == 0
2065      if (N1.getOperand(0) == N0) {
2066        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2067                        DAG.getConstant(0, N1.getValueType()), Cond);
2068      } else if (N1.getOperand(1) == N0) {
2069        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2070          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2071                          DAG.getConstant(0, N1.getValueType()), Cond);
2072        } else if (N1.getNode()->hasOneUse()) {
2073          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2074          // X == (Z-X)  --> X<<1 == Z
2075          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2076                                     DAG.getConstant(1, getShiftAmountTy()));
2077          if (!DCI.isCalledByLegalizer())
2078            DCI.AddToWorklist(SH.getNode());
2079          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2080        }
2081      }
2082    }
2083
2084    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2085    // Note that where y is variable and is known to have at most
2086    // one bit set (for example, if it is z&1) we cannot do this;
2087    // the expressions are not equivalent when y==0.
2088    if (N0.getOpcode() == ISD::AND)
2089      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2090        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2091          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2092          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2093          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2094        }
2095      }
2096    if (N1.getOpcode() == ISD::AND)
2097      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2098        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2099          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2100          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2101          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2102        }
2103      }
2104  }
2105
2106  // Fold away ALL boolean setcc's.
2107  SDValue Temp;
2108  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2109    switch (Cond) {
2110    default: llvm_unreachable("Unknown integer setcc!");
2111    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2112      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2113      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2114      if (!DCI.isCalledByLegalizer())
2115        DCI.AddToWorklist(Temp.getNode());
2116      break;
2117    case ISD::SETNE:  // X != Y   -->  (X^Y)
2118      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2119      break;
2120    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2121    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2122      Temp = DAG.getNOT(dl, N0, MVT::i1);
2123      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2124      if (!DCI.isCalledByLegalizer())
2125        DCI.AddToWorklist(Temp.getNode());
2126      break;
2127    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2128    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2129      Temp = DAG.getNOT(dl, N1, MVT::i1);
2130      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2131      if (!DCI.isCalledByLegalizer())
2132        DCI.AddToWorklist(Temp.getNode());
2133      break;
2134    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2135    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2136      Temp = DAG.getNOT(dl, N0, MVT::i1);
2137      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2138      if (!DCI.isCalledByLegalizer())
2139        DCI.AddToWorklist(Temp.getNode());
2140      break;
2141    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2142    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2143      Temp = DAG.getNOT(dl, N1, MVT::i1);
2144      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2145      break;
2146    }
2147    if (VT != MVT::i1) {
2148      if (!DCI.isCalledByLegalizer())
2149        DCI.AddToWorklist(N0.getNode());
2150      // FIXME: If running after legalize, we probably can't do this.
2151      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2152    }
2153    return N0;
2154  }
2155
2156  // Could not fold it.
2157  return SDValue();
2158}
2159
2160/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2161/// node is a GlobalAddress + offset.
2162bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2163                                    int64_t &Offset) const {
2164  if (isa<GlobalAddressSDNode>(N)) {
2165    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2166    GA = GASD->getGlobal();
2167    Offset += GASD->getOffset();
2168    return true;
2169  }
2170
2171  if (N->getOpcode() == ISD::ADD) {
2172    SDValue N1 = N->getOperand(0);
2173    SDValue N2 = N->getOperand(1);
2174    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2175      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2176      if (V) {
2177        Offset += V->getSExtValue();
2178        return true;
2179      }
2180    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2181      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2182      if (V) {
2183        Offset += V->getSExtValue();
2184        return true;
2185      }
2186    }
2187  }
2188  return false;
2189}
2190
2191
2192/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2193/// location that is 'Dist' units away from the location that the 'Base' load
2194/// is loading from.
2195bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
2196                                       unsigned Bytes, int Dist,
2197                                       const MachineFrameInfo *MFI) const {
2198  if (LD->getChain() != Base->getChain())
2199    return false;
2200  EVT VT = LD->getValueType(0);
2201  if (VT.getSizeInBits() / 8 != Bytes)
2202    return false;
2203
2204  SDValue Loc = LD->getOperand(1);
2205  SDValue BaseLoc = Base->getOperand(1);
2206  if (Loc.getOpcode() == ISD::FrameIndex) {
2207    if (BaseLoc.getOpcode() != ISD::FrameIndex)
2208      return false;
2209    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
2210    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2211    int FS  = MFI->getObjectSize(FI);
2212    int BFS = MFI->getObjectSize(BFI);
2213    if (FS != BFS || FS != (int)Bytes) return false;
2214    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2215  }
2216  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
2217    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
2218    if (V && (V->getSExtValue() == Dist*Bytes))
2219      return true;
2220  }
2221
2222  GlobalValue *GV1 = NULL;
2223  GlobalValue *GV2 = NULL;
2224  int64_t Offset1 = 0;
2225  int64_t Offset2 = 0;
2226  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2227  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2228  if (isGA1 && isGA2 && GV1 == GV2)
2229    return Offset1 == (Offset2 + Dist*Bytes);
2230  return false;
2231}
2232
2233
2234SDValue TargetLowering::
2235PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2236  // Default implementation: no optimization.
2237  return SDValue();
2238}
2239
2240//===----------------------------------------------------------------------===//
2241//  Inline Assembler Implementation Methods
2242//===----------------------------------------------------------------------===//
2243
2244
2245TargetLowering::ConstraintType
2246TargetLowering::getConstraintType(const std::string &Constraint) const {
2247  // FIXME: lots more standard ones to handle.
2248  if (Constraint.size() == 1) {
2249    switch (Constraint[0]) {
2250    default: break;
2251    case 'r': return C_RegisterClass;
2252    case 'm':    // memory
2253    case 'o':    // offsetable
2254    case 'V':    // not offsetable
2255      return C_Memory;
2256    case 'i':    // Simple Integer or Relocatable Constant
2257    case 'n':    // Simple Integer
2258    case 's':    // Relocatable Constant
2259    case 'X':    // Allow ANY value.
2260    case 'I':    // Target registers.
2261    case 'J':
2262    case 'K':
2263    case 'L':
2264    case 'M':
2265    case 'N':
2266    case 'O':
2267    case 'P':
2268      return C_Other;
2269    }
2270  }
2271
2272  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2273      Constraint[Constraint.size()-1] == '}')
2274    return C_Register;
2275  return C_Unknown;
2276}
2277
2278/// LowerXConstraint - try to replace an X constraint, which matches anything,
2279/// with another that has more specific requirements based on the type of the
2280/// corresponding operand.
2281const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2282  if (ConstraintVT.isInteger())
2283    return "r";
2284  if (ConstraintVT.isFloatingPoint())
2285    return "f";      // works for many targets
2286  return 0;
2287}
2288
2289/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2290/// vector.  If it is invalid, don't add anything to Ops.
2291void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2292                                                  char ConstraintLetter,
2293                                                  bool hasMemory,
2294                                                  std::vector<SDValue> &Ops,
2295                                                  SelectionDAG &DAG) const {
2296  switch (ConstraintLetter) {
2297  default: break;
2298  case 'X':     // Allows any operand; labels (basic block) use this.
2299    if (Op.getOpcode() == ISD::BasicBlock) {
2300      Ops.push_back(Op);
2301      return;
2302    }
2303    // fall through
2304  case 'i':    // Simple Integer or Relocatable Constant
2305  case 'n':    // Simple Integer
2306  case 's': {  // Relocatable Constant
2307    // These operands are interested in values of the form (GV+C), where C may
2308    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2309    // is possible and fine if either GV or C are missing.
2310    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2311    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2312
2313    // If we have "(add GV, C)", pull out GV/C
2314    if (Op.getOpcode() == ISD::ADD) {
2315      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2316      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2317      if (C == 0 || GA == 0) {
2318        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2319        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2320      }
2321      if (C == 0 || GA == 0)
2322        C = 0, GA = 0;
2323    }
2324
2325    // If we find a valid operand, map to the TargetXXX version so that the
2326    // value itself doesn't get selected.
2327    if (GA) {   // Either &GV   or   &GV+C
2328      if (ConstraintLetter != 'n') {
2329        int64_t Offs = GA->getOffset();
2330        if (C) Offs += C->getZExtValue();
2331        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2332                                                 Op.getValueType(), Offs));
2333        return;
2334      }
2335    }
2336    if (C) {   // just C, no GV.
2337      // Simple constants are not allowed for 's'.
2338      if (ConstraintLetter != 's') {
2339        // gcc prints these as sign extended.  Sign extend value to 64 bits
2340        // now; without this it would get ZExt'd later in
2341        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2342        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2343                                            MVT::i64));
2344        return;
2345      }
2346    }
2347    break;
2348  }
2349  }
2350}
2351
2352std::vector<unsigned> TargetLowering::
2353getRegClassForInlineAsmConstraint(const std::string &Constraint,
2354                                  EVT VT) const {
2355  return std::vector<unsigned>();
2356}
2357
2358
2359std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2360getRegForInlineAsmConstraint(const std::string &Constraint,
2361                             EVT VT) const {
2362  if (Constraint[0] != '{')
2363    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2364  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2365
2366  // Remove the braces from around the name.
2367  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2368
2369  // Figure out which register class contains this reg.
2370  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2371  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2372       E = RI->regclass_end(); RCI != E; ++RCI) {
2373    const TargetRegisterClass *RC = *RCI;
2374
2375    // If none of the the value types for this register class are valid, we
2376    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2377    bool isLegal = false;
2378    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2379         I != E; ++I) {
2380      if (isTypeLegal(*I)) {
2381        isLegal = true;
2382        break;
2383      }
2384    }
2385
2386    if (!isLegal) continue;
2387
2388    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2389         I != E; ++I) {
2390      if (RegName.equals_lower(RI->getName(*I)))
2391        return std::make_pair(*I, RC);
2392    }
2393  }
2394
2395  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2396}
2397
2398//===----------------------------------------------------------------------===//
2399// Constraint Selection.
2400
2401/// isMatchingInputConstraint - Return true of this is an input operand that is
2402/// a matching constraint like "4".
2403bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2404  assert(!ConstraintCode.empty() && "No known constraint!");
2405  return isdigit(ConstraintCode[0]);
2406}
2407
2408/// getMatchedOperand - If this is an input matching constraint, this method
2409/// returns the output operand it matches.
2410unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2411  assert(!ConstraintCode.empty() && "No known constraint!");
2412  return atoi(ConstraintCode.c_str());
2413}
2414
2415
2416/// getConstraintGenerality - Return an integer indicating how general CT
2417/// is.
2418static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2419  switch (CT) {
2420  default: llvm_unreachable("Unknown constraint type!");
2421  case TargetLowering::C_Other:
2422  case TargetLowering::C_Unknown:
2423    return 0;
2424  case TargetLowering::C_Register:
2425    return 1;
2426  case TargetLowering::C_RegisterClass:
2427    return 2;
2428  case TargetLowering::C_Memory:
2429    return 3;
2430  }
2431}
2432
2433/// ChooseConstraint - If there are multiple different constraints that we
2434/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2435/// This is somewhat tricky: constraints fall into four classes:
2436///    Other         -> immediates and magic values
2437///    Register      -> one specific register
2438///    RegisterClass -> a group of regs
2439///    Memory        -> memory
2440/// Ideally, we would pick the most specific constraint possible: if we have
2441/// something that fits into a register, we would pick it.  The problem here
2442/// is that if we have something that could either be in a register or in
2443/// memory that use of the register could cause selection of *other*
2444/// operands to fail: they might only succeed if we pick memory.  Because of
2445/// this the heuristic we use is:
2446///
2447///  1) If there is an 'other' constraint, and if the operand is valid for
2448///     that constraint, use it.  This makes us take advantage of 'i'
2449///     constraints when available.
2450///  2) Otherwise, pick the most general constraint present.  This prefers
2451///     'm' over 'r', for example.
2452///
2453static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2454                             bool hasMemory,  const TargetLowering &TLI,
2455                             SDValue Op, SelectionDAG *DAG) {
2456  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2457  unsigned BestIdx = 0;
2458  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2459  int BestGenerality = -1;
2460
2461  // Loop over the options, keeping track of the most general one.
2462  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2463    TargetLowering::ConstraintType CType =
2464      TLI.getConstraintType(OpInfo.Codes[i]);
2465
2466    // If this is an 'other' constraint, see if the operand is valid for it.
2467    // For example, on X86 we might have an 'rI' constraint.  If the operand
2468    // is an integer in the range [0..31] we want to use I (saving a load
2469    // of a register), otherwise we must use 'r'.
2470    if (CType == TargetLowering::C_Other && Op.getNode()) {
2471      assert(OpInfo.Codes[i].size() == 1 &&
2472             "Unhandled multi-letter 'other' constraint");
2473      std::vector<SDValue> ResultOps;
2474      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2475                                       ResultOps, *DAG);
2476      if (!ResultOps.empty()) {
2477        BestType = CType;
2478        BestIdx = i;
2479        break;
2480      }
2481    }
2482
2483    // This constraint letter is more general than the previous one, use it.
2484    int Generality = getConstraintGenerality(CType);
2485    if (Generality > BestGenerality) {
2486      BestType = CType;
2487      BestIdx = i;
2488      BestGenerality = Generality;
2489    }
2490  }
2491
2492  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2493  OpInfo.ConstraintType = BestType;
2494}
2495
2496/// ComputeConstraintToUse - Determines the constraint code and constraint
2497/// type to use for the specific AsmOperandInfo, setting
2498/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2499void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2500                                            SDValue Op,
2501                                            bool hasMemory,
2502                                            SelectionDAG *DAG) const {
2503  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2504
2505  // Single-letter constraints ('r') are very common.
2506  if (OpInfo.Codes.size() == 1) {
2507    OpInfo.ConstraintCode = OpInfo.Codes[0];
2508    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2509  } else {
2510    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2511  }
2512
2513  // 'X' matches anything.
2514  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2515    // Labels and constants are handled elsewhere ('X' is the only thing
2516    // that matches labels).  For Functions, the type here is the type of
2517    // the result, which is not what we want to look at; leave them alone.
2518    Value *v = OpInfo.CallOperandVal;
2519    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2520      OpInfo.CallOperandVal = v;
2521      return;
2522    }
2523
2524    // Otherwise, try to resolve it to something we know about by looking at
2525    // the actual operand type.
2526    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2527      OpInfo.ConstraintCode = Repl;
2528      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2529    }
2530  }
2531}
2532
2533//===----------------------------------------------------------------------===//
2534//  Loop Strength Reduction hooks
2535//===----------------------------------------------------------------------===//
2536
2537/// isLegalAddressingMode - Return true if the addressing mode represented
2538/// by AM is legal for this target, for a load/store of the specified type.
2539bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2540                                           const Type *Ty) const {
2541  // The default implementation of this implements a conservative RISCy, r+r and
2542  // r+i addr mode.
2543
2544  // Allows a sign-extended 16-bit immediate field.
2545  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2546    return false;
2547
2548  // No global is ever allowed as a base.
2549  if (AM.BaseGV)
2550    return false;
2551
2552  // Only support r+r,
2553  switch (AM.Scale) {
2554  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2555    break;
2556  case 1:
2557    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2558      return false;
2559    // Otherwise we have r+r or r+i.
2560    break;
2561  case 2:
2562    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2563      return false;
2564    // Allow 2*r as r+r.
2565    break;
2566  }
2567
2568  return true;
2569}
2570
2571/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2572/// return a DAG expression to select that will generate the same value by
2573/// multiplying by a magic number.  See:
2574/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2575SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2576                                  std::vector<SDNode*>* Created) const {
2577  EVT VT = N->getValueType(0);
2578  DebugLoc dl= N->getDebugLoc();
2579
2580  // Check to see if we can do this.
2581  // FIXME: We should be more aggressive here.
2582  if (!isTypeLegal(VT))
2583    return SDValue();
2584
2585  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2586  APInt::ms magics = d.magic();
2587
2588  // Multiply the numerator (operand 0) by the magic value
2589  // FIXME: We should support doing a MUL in a wider type
2590  SDValue Q;
2591  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2592    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2593                    DAG.getConstant(magics.m, VT));
2594  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2595    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2596                              N->getOperand(0),
2597                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2598  else
2599    return SDValue();       // No mulhs or equvialent
2600  // If d > 0 and m < 0, add the numerator
2601  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2602    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2603    if (Created)
2604      Created->push_back(Q.getNode());
2605  }
2606  // If d < 0 and m > 0, subtract the numerator.
2607  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2608    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2609    if (Created)
2610      Created->push_back(Q.getNode());
2611  }
2612  // Shift right algebraic if shift value is nonzero
2613  if (magics.s > 0) {
2614    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2615                    DAG.getConstant(magics.s, getShiftAmountTy()));
2616    if (Created)
2617      Created->push_back(Q.getNode());
2618  }
2619  // Extract the sign bit and add it to the quotient
2620  SDValue T =
2621    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2622                                                 getShiftAmountTy()));
2623  if (Created)
2624    Created->push_back(T.getNode());
2625  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2626}
2627
2628/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2629/// return a DAG expression to select that will generate the same value by
2630/// multiplying by a magic number.  See:
2631/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2632SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2633                                  std::vector<SDNode*>* Created) const {
2634  EVT VT = N->getValueType(0);
2635  DebugLoc dl = N->getDebugLoc();
2636
2637  // Check to see if we can do this.
2638  // FIXME: We should be more aggressive here.
2639  if (!isTypeLegal(VT))
2640    return SDValue();
2641
2642  // FIXME: We should use a narrower constant when the upper
2643  // bits are known to be zero.
2644  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2645  APInt::mu magics = N1C->getAPIntValue().magicu();
2646
2647  // Multiply the numerator (operand 0) by the magic value
2648  // FIXME: We should support doing a MUL in a wider type
2649  SDValue Q;
2650  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2651    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2652                    DAG.getConstant(magics.m, VT));
2653  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2654    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2655                              N->getOperand(0),
2656                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2657  else
2658    return SDValue();       // No mulhu or equvialent
2659  if (Created)
2660    Created->push_back(Q.getNode());
2661
2662  if (magics.a == 0) {
2663    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2664           "We shouldn't generate an undefined shift!");
2665    return DAG.getNode(ISD::SRL, dl, VT, Q,
2666                       DAG.getConstant(magics.s, getShiftAmountTy()));
2667  } else {
2668    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2669    if (Created)
2670      Created->push_back(NPQ.getNode());
2671    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2672                      DAG.getConstant(1, getShiftAmountTy()));
2673    if (Created)
2674      Created->push_back(NPQ.getNode());
2675    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2676    if (Created)
2677      Created->push_back(NPQ.getNode());
2678    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2679                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2680  }
2681}
2682