TargetLowering.cpp revision 193574
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29namespace llvm {
30TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
31  bool isLocal = GV->hasLocalLinkage();
32  bool isDeclaration = GV->isDeclaration();
33  // FIXME: what should we do for protected and internal visibility?
34  // For variables, is internal different from hidden?
35  bool isHidden = GV->hasHiddenVisibility();
36
37  if (reloc == Reloc::PIC_) {
38    if (isLocal || isHidden)
39      return TLSModel::LocalDynamic;
40    else
41      return TLSModel::GeneralDynamic;
42  } else {
43    if (!isDeclaration || isHidden)
44      return TLSModel::LocalExec;
45    else
46      return TLSModel::InitialExec;
47  }
48}
49}
50
51/// InitLibcallNames - Set default libcall names.
52///
53static void InitLibcallNames(const char **Names) {
54  Names[RTLIB::SHL_I16] = "__ashlhi3";
55  Names[RTLIB::SHL_I32] = "__ashlsi3";
56  Names[RTLIB::SHL_I64] = "__ashldi3";
57  Names[RTLIB::SHL_I128] = "__ashlti3";
58  Names[RTLIB::SRL_I16] = "__lshrhi3";
59  Names[RTLIB::SRL_I32] = "__lshrsi3";
60  Names[RTLIB::SRL_I64] = "__lshrdi3";
61  Names[RTLIB::SRL_I128] = "__lshrti3";
62  Names[RTLIB::SRA_I16] = "__ashrhi3";
63  Names[RTLIB::SRA_I32] = "__ashrsi3";
64  Names[RTLIB::SRA_I64] = "__ashrdi3";
65  Names[RTLIB::SRA_I128] = "__ashrti3";
66  Names[RTLIB::MUL_I16] = "__mulhi3";
67  Names[RTLIB::MUL_I32] = "__mulsi3";
68  Names[RTLIB::MUL_I64] = "__muldi3";
69  Names[RTLIB::MUL_I128] = "__multi3";
70  Names[RTLIB::SDIV_I16] = "__divhi3";
71  Names[RTLIB::SDIV_I32] = "__divsi3";
72  Names[RTLIB::SDIV_I64] = "__divdi3";
73  Names[RTLIB::SDIV_I128] = "__divti3";
74  Names[RTLIB::UDIV_I16] = "__udivhi3";
75  Names[RTLIB::UDIV_I32] = "__udivsi3";
76  Names[RTLIB::UDIV_I64] = "__udivdi3";
77  Names[RTLIB::UDIV_I128] = "__udivti3";
78  Names[RTLIB::SREM_I16] = "__modhi3";
79  Names[RTLIB::SREM_I32] = "__modsi3";
80  Names[RTLIB::SREM_I64] = "__moddi3";
81  Names[RTLIB::SREM_I128] = "__modti3";
82  Names[RTLIB::UREM_I16] = "__umodhi3";
83  Names[RTLIB::UREM_I32] = "__umodsi3";
84  Names[RTLIB::UREM_I64] = "__umoddi3";
85  Names[RTLIB::UREM_I128] = "__umodti3";
86  Names[RTLIB::NEG_I32] = "__negsi2";
87  Names[RTLIB::NEG_I64] = "__negdi2";
88  Names[RTLIB::ADD_F32] = "__addsf3";
89  Names[RTLIB::ADD_F64] = "__adddf3";
90  Names[RTLIB::ADD_F80] = "__addxf3";
91  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
92  Names[RTLIB::SUB_F32] = "__subsf3";
93  Names[RTLIB::SUB_F64] = "__subdf3";
94  Names[RTLIB::SUB_F80] = "__subxf3";
95  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
96  Names[RTLIB::MUL_F32] = "__mulsf3";
97  Names[RTLIB::MUL_F64] = "__muldf3";
98  Names[RTLIB::MUL_F80] = "__mulxf3";
99  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
100  Names[RTLIB::DIV_F32] = "__divsf3";
101  Names[RTLIB::DIV_F64] = "__divdf3";
102  Names[RTLIB::DIV_F80] = "__divxf3";
103  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
104  Names[RTLIB::REM_F32] = "fmodf";
105  Names[RTLIB::REM_F64] = "fmod";
106  Names[RTLIB::REM_F80] = "fmodl";
107  Names[RTLIB::REM_PPCF128] = "fmodl";
108  Names[RTLIB::POWI_F32] = "__powisf2";
109  Names[RTLIB::POWI_F64] = "__powidf2";
110  Names[RTLIB::POWI_F80] = "__powixf2";
111  Names[RTLIB::POWI_PPCF128] = "__powitf2";
112  Names[RTLIB::SQRT_F32] = "sqrtf";
113  Names[RTLIB::SQRT_F64] = "sqrt";
114  Names[RTLIB::SQRT_F80] = "sqrtl";
115  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
116  Names[RTLIB::LOG_F32] = "logf";
117  Names[RTLIB::LOG_F64] = "log";
118  Names[RTLIB::LOG_F80] = "logl";
119  Names[RTLIB::LOG_PPCF128] = "logl";
120  Names[RTLIB::LOG2_F32] = "log2f";
121  Names[RTLIB::LOG2_F64] = "log2";
122  Names[RTLIB::LOG2_F80] = "log2l";
123  Names[RTLIB::LOG2_PPCF128] = "log2l";
124  Names[RTLIB::LOG10_F32] = "log10f";
125  Names[RTLIB::LOG10_F64] = "log10";
126  Names[RTLIB::LOG10_F80] = "log10l";
127  Names[RTLIB::LOG10_PPCF128] = "log10l";
128  Names[RTLIB::EXP_F32] = "expf";
129  Names[RTLIB::EXP_F64] = "exp";
130  Names[RTLIB::EXP_F80] = "expl";
131  Names[RTLIB::EXP_PPCF128] = "expl";
132  Names[RTLIB::EXP2_F32] = "exp2f";
133  Names[RTLIB::EXP2_F64] = "exp2";
134  Names[RTLIB::EXP2_F80] = "exp2l";
135  Names[RTLIB::EXP2_PPCF128] = "exp2l";
136  Names[RTLIB::SIN_F32] = "sinf";
137  Names[RTLIB::SIN_F64] = "sin";
138  Names[RTLIB::SIN_F80] = "sinl";
139  Names[RTLIB::SIN_PPCF128] = "sinl";
140  Names[RTLIB::COS_F32] = "cosf";
141  Names[RTLIB::COS_F64] = "cos";
142  Names[RTLIB::COS_F80] = "cosl";
143  Names[RTLIB::COS_PPCF128] = "cosl";
144  Names[RTLIB::POW_F32] = "powf";
145  Names[RTLIB::POW_F64] = "pow";
146  Names[RTLIB::POW_F80] = "powl";
147  Names[RTLIB::POW_PPCF128] = "powl";
148  Names[RTLIB::CEIL_F32] = "ceilf";
149  Names[RTLIB::CEIL_F64] = "ceil";
150  Names[RTLIB::CEIL_F80] = "ceill";
151  Names[RTLIB::CEIL_PPCF128] = "ceill";
152  Names[RTLIB::TRUNC_F32] = "truncf";
153  Names[RTLIB::TRUNC_F64] = "trunc";
154  Names[RTLIB::TRUNC_F80] = "truncl";
155  Names[RTLIB::TRUNC_PPCF128] = "truncl";
156  Names[RTLIB::RINT_F32] = "rintf";
157  Names[RTLIB::RINT_F64] = "rint";
158  Names[RTLIB::RINT_F80] = "rintl";
159  Names[RTLIB::RINT_PPCF128] = "rintl";
160  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
161  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
162  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
163  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
164  Names[RTLIB::FLOOR_F32] = "floorf";
165  Names[RTLIB::FLOOR_F64] = "floor";
166  Names[RTLIB::FLOOR_F80] = "floorl";
167  Names[RTLIB::FLOOR_PPCF128] = "floorl";
168  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
169  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
170  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
171  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
172  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
173  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
174  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
175  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
176  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
177  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
178  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
179  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
180  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
181  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
182  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
183  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
184  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
185  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
186  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
187  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
188  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
189  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
190  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
191  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
192  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
193  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
194  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
195  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
196  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
197  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
198  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
199  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
200  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
201  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
202  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
203  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
204  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
205  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
206  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
207  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
208  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
209  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
210  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
211  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
212  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
213  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
214  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
215  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
216  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
217  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
218  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
219  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
220  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
221  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
222  Names[RTLIB::OEQ_F32] = "__eqsf2";
223  Names[RTLIB::OEQ_F64] = "__eqdf2";
224  Names[RTLIB::UNE_F32] = "__nesf2";
225  Names[RTLIB::UNE_F64] = "__nedf2";
226  Names[RTLIB::OGE_F32] = "__gesf2";
227  Names[RTLIB::OGE_F64] = "__gedf2";
228  Names[RTLIB::OLT_F32] = "__ltsf2";
229  Names[RTLIB::OLT_F64] = "__ltdf2";
230  Names[RTLIB::OLE_F32] = "__lesf2";
231  Names[RTLIB::OLE_F64] = "__ledf2";
232  Names[RTLIB::OGT_F32] = "__gtsf2";
233  Names[RTLIB::OGT_F64] = "__gtdf2";
234  Names[RTLIB::UO_F32] = "__unordsf2";
235  Names[RTLIB::UO_F64] = "__unorddf2";
236  Names[RTLIB::O_F32] = "__unordsf2";
237  Names[RTLIB::O_F64] = "__unorddf2";
238  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
239}
240
241/// getFPEXT - Return the FPEXT_*_* value for the given types, or
242/// UNKNOWN_LIBCALL if there is none.
243RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
244  if (OpVT == MVT::f32) {
245    if (RetVT == MVT::f64)
246      return FPEXT_F32_F64;
247  }
248  return UNKNOWN_LIBCALL;
249}
250
251/// getFPROUND - Return the FPROUND_*_* value for the given types, or
252/// UNKNOWN_LIBCALL if there is none.
253RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
254  if (RetVT == MVT::f32) {
255    if (OpVT == MVT::f64)
256      return FPROUND_F64_F32;
257    if (OpVT == MVT::f80)
258      return FPROUND_F80_F32;
259    if (OpVT == MVT::ppcf128)
260      return FPROUND_PPCF128_F32;
261  } else if (RetVT == MVT::f64) {
262    if (OpVT == MVT::f80)
263      return FPROUND_F80_F64;
264    if (OpVT == MVT::ppcf128)
265      return FPROUND_PPCF128_F64;
266  }
267  return UNKNOWN_LIBCALL;
268}
269
270/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
271/// UNKNOWN_LIBCALL if there is none.
272RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
273  if (OpVT == MVT::f32) {
274    if (RetVT == MVT::i32)
275      return FPTOSINT_F32_I32;
276    if (RetVT == MVT::i64)
277      return FPTOSINT_F32_I64;
278    if (RetVT == MVT::i128)
279      return FPTOSINT_F32_I128;
280  } else if (OpVT == MVT::f64) {
281    if (RetVT == MVT::i32)
282      return FPTOSINT_F64_I32;
283    if (RetVT == MVT::i64)
284      return FPTOSINT_F64_I64;
285    if (RetVT == MVT::i128)
286      return FPTOSINT_F64_I128;
287  } else if (OpVT == MVT::f80) {
288    if (RetVT == MVT::i32)
289      return FPTOSINT_F80_I32;
290    if (RetVT == MVT::i64)
291      return FPTOSINT_F80_I64;
292    if (RetVT == MVT::i128)
293      return FPTOSINT_F80_I128;
294  } else if (OpVT == MVT::ppcf128) {
295    if (RetVT == MVT::i32)
296      return FPTOSINT_PPCF128_I32;
297    if (RetVT == MVT::i64)
298      return FPTOSINT_PPCF128_I64;
299    if (RetVT == MVT::i128)
300      return FPTOSINT_PPCF128_I128;
301  }
302  return UNKNOWN_LIBCALL;
303}
304
305/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
306/// UNKNOWN_LIBCALL if there is none.
307RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
308  if (OpVT == MVT::f32) {
309    if (RetVT == MVT::i32)
310      return FPTOUINT_F32_I32;
311    if (RetVT == MVT::i64)
312      return FPTOUINT_F32_I64;
313    if (RetVT == MVT::i128)
314      return FPTOUINT_F32_I128;
315  } else if (OpVT == MVT::f64) {
316    if (RetVT == MVT::i32)
317      return FPTOUINT_F64_I32;
318    if (RetVT == MVT::i64)
319      return FPTOUINT_F64_I64;
320    if (RetVT == MVT::i128)
321      return FPTOUINT_F64_I128;
322  } else if (OpVT == MVT::f80) {
323    if (RetVT == MVT::i32)
324      return FPTOUINT_F80_I32;
325    if (RetVT == MVT::i64)
326      return FPTOUINT_F80_I64;
327    if (RetVT == MVT::i128)
328      return FPTOUINT_F80_I128;
329  } else if (OpVT == MVT::ppcf128) {
330    if (RetVT == MVT::i32)
331      return FPTOUINT_PPCF128_I32;
332    if (RetVT == MVT::i64)
333      return FPTOUINT_PPCF128_I64;
334    if (RetVT == MVT::i128)
335      return FPTOUINT_PPCF128_I128;
336  }
337  return UNKNOWN_LIBCALL;
338}
339
340/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
341/// UNKNOWN_LIBCALL if there is none.
342RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
343  if (OpVT == MVT::i32) {
344    if (RetVT == MVT::f32)
345      return SINTTOFP_I32_F32;
346    else if (RetVT == MVT::f64)
347      return SINTTOFP_I32_F64;
348    else if (RetVT == MVT::f80)
349      return SINTTOFP_I32_F80;
350    else if (RetVT == MVT::ppcf128)
351      return SINTTOFP_I32_PPCF128;
352  } else if (OpVT == MVT::i64) {
353    if (RetVT == MVT::f32)
354      return SINTTOFP_I64_F32;
355    else if (RetVT == MVT::f64)
356      return SINTTOFP_I64_F64;
357    else if (RetVT == MVT::f80)
358      return SINTTOFP_I64_F80;
359    else if (RetVT == MVT::ppcf128)
360      return SINTTOFP_I64_PPCF128;
361  } else if (OpVT == MVT::i128) {
362    if (RetVT == MVT::f32)
363      return SINTTOFP_I128_F32;
364    else if (RetVT == MVT::f64)
365      return SINTTOFP_I128_F64;
366    else if (RetVT == MVT::f80)
367      return SINTTOFP_I128_F80;
368    else if (RetVT == MVT::ppcf128)
369      return SINTTOFP_I128_PPCF128;
370  }
371  return UNKNOWN_LIBCALL;
372}
373
374/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
375/// UNKNOWN_LIBCALL if there is none.
376RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
377  if (OpVT == MVT::i32) {
378    if (RetVT == MVT::f32)
379      return UINTTOFP_I32_F32;
380    else if (RetVT == MVT::f64)
381      return UINTTOFP_I32_F64;
382    else if (RetVT == MVT::f80)
383      return UINTTOFP_I32_F80;
384    else if (RetVT == MVT::ppcf128)
385      return UINTTOFP_I32_PPCF128;
386  } else if (OpVT == MVT::i64) {
387    if (RetVT == MVT::f32)
388      return UINTTOFP_I64_F32;
389    else if (RetVT == MVT::f64)
390      return UINTTOFP_I64_F64;
391    else if (RetVT == MVT::f80)
392      return UINTTOFP_I64_F80;
393    else if (RetVT == MVT::ppcf128)
394      return UINTTOFP_I64_PPCF128;
395  } else if (OpVT == MVT::i128) {
396    if (RetVT == MVT::f32)
397      return UINTTOFP_I128_F32;
398    else if (RetVT == MVT::f64)
399      return UINTTOFP_I128_F64;
400    else if (RetVT == MVT::f80)
401      return UINTTOFP_I128_F80;
402    else if (RetVT == MVT::ppcf128)
403      return UINTTOFP_I128_PPCF128;
404  }
405  return UNKNOWN_LIBCALL;
406}
407
408/// InitCmpLibcallCCs - Set default comparison libcall CC.
409///
410static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
411  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
412  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
413  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
414  CCs[RTLIB::UNE_F32] = ISD::SETNE;
415  CCs[RTLIB::UNE_F64] = ISD::SETNE;
416  CCs[RTLIB::OGE_F32] = ISD::SETGE;
417  CCs[RTLIB::OGE_F64] = ISD::SETGE;
418  CCs[RTLIB::OLT_F32] = ISD::SETLT;
419  CCs[RTLIB::OLT_F64] = ISD::SETLT;
420  CCs[RTLIB::OLE_F32] = ISD::SETLE;
421  CCs[RTLIB::OLE_F64] = ISD::SETLE;
422  CCs[RTLIB::OGT_F32] = ISD::SETGT;
423  CCs[RTLIB::OGT_F64] = ISD::SETGT;
424  CCs[RTLIB::UO_F32] = ISD::SETNE;
425  CCs[RTLIB::UO_F64] = ISD::SETNE;
426  CCs[RTLIB::O_F32] = ISD::SETEQ;
427  CCs[RTLIB::O_F64] = ISD::SETEQ;
428}
429
430TargetLowering::TargetLowering(TargetMachine &tm)
431  : TM(tm), TD(TM.getTargetData()) {
432  // All operations default to being supported.
433  memset(OpActions, 0, sizeof(OpActions));
434  memset(LoadExtActions, 0, sizeof(LoadExtActions));
435  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
436  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
437  memset(ConvertActions, 0, sizeof(ConvertActions));
438  memset(CondCodeActions, 0, sizeof(CondCodeActions));
439
440  // Set default actions for various operations.
441  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
442    // Default all indexed load / store to expand.
443    for (unsigned IM = (unsigned)ISD::PRE_INC;
444         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
445      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
446      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
447    }
448
449    // These operations default to expand.
450    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
451    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
452  }
453
454  // Most targets ignore the @llvm.prefetch intrinsic.
455  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
456
457  // ConstantFP nodes default to expand.  Targets can either change this to
458  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
459  // to optimize expansions for certain constants.
460  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
461  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
462  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
463
464  // These library functions default to expand.
465  setOperationAction(ISD::FLOG , MVT::f64, Expand);
466  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
467  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
468  setOperationAction(ISD::FEXP , MVT::f64, Expand);
469  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
470  setOperationAction(ISD::FLOG , MVT::f32, Expand);
471  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
472  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
473  setOperationAction(ISD::FEXP , MVT::f32, Expand);
474  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
475
476  // Default ISD::TRAP to expand (which turns it into abort).
477  setOperationAction(ISD::TRAP, MVT::Other, Expand);
478
479  IsLittleEndian = TD->isLittleEndian();
480  UsesGlobalOffsetTable = false;
481  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
482  ShiftAmtHandling = Undefined;
483  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
484  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
485  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
486  allowUnalignedMemoryAccesses = false;
487  benefitFromCodePlacementOpt = false;
488  UseUnderscoreSetJmp = false;
489  UseUnderscoreLongJmp = false;
490  SelectIsExpensive = false;
491  IntDivIsCheap = false;
492  Pow2DivIsCheap = false;
493  StackPointerRegisterToSaveRestore = 0;
494  ExceptionPointerRegister = 0;
495  ExceptionSelectorRegister = 0;
496  BooleanContents = UndefinedBooleanContent;
497  SchedPreferenceInfo = SchedulingForLatency;
498  JumpBufSize = 0;
499  JumpBufAlignment = 0;
500  IfCvtBlockSizeLimit = 2;
501  IfCvtDupBlockSizeLimit = 0;
502  PrefLoopAlignment = 0;
503
504  InitLibcallNames(LibcallRoutineNames);
505  InitCmpLibcallCCs(CmpLibcallCCs);
506
507  // Tell Legalize whether the assembler supports DEBUG_LOC.
508  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
509  if (!TASM || !TASM->hasDotLocAndDotFile())
510    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
511}
512
513TargetLowering::~TargetLowering() {}
514
515/// computeRegisterProperties - Once all of the register classes are added,
516/// this allows us to compute derived properties we expose.
517void TargetLowering::computeRegisterProperties() {
518  assert(MVT::LAST_VALUETYPE <= 32 &&
519         "Too many value types for ValueTypeActions to hold!");
520
521  // Everything defaults to needing one register.
522  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
523    NumRegistersForVT[i] = 1;
524    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
525  }
526  // ...except isVoid, which doesn't need any registers.
527  NumRegistersForVT[MVT::isVoid] = 0;
528
529  // Find the largest integer register class.
530  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
531  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
532    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
533
534  // Every integer value type larger than this largest register takes twice as
535  // many registers to represent as the previous ValueType.
536  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
537    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
538    if (!EVT.isInteger())
539      break;
540    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
541    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
542    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
543    ValueTypeActions.setTypeAction(EVT, Expand);
544  }
545
546  // Inspect all of the ValueType's smaller than the largest integer
547  // register to see which ones need promotion.
548  unsigned LegalIntReg = LargestIntReg;
549  for (unsigned IntReg = LargestIntReg - 1;
550       IntReg >= (unsigned)MVT::i1; --IntReg) {
551    MVT IVT = (MVT::SimpleValueType)IntReg;
552    if (isTypeLegal(IVT)) {
553      LegalIntReg = IntReg;
554    } else {
555      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
556        (MVT::SimpleValueType)LegalIntReg;
557      ValueTypeActions.setTypeAction(IVT, Promote);
558    }
559  }
560
561  // ppcf128 type is really two f64's.
562  if (!isTypeLegal(MVT::ppcf128)) {
563    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
564    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
565    TransformToType[MVT::ppcf128] = MVT::f64;
566    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
567  }
568
569  // Decide how to handle f64. If the target does not have native f64 support,
570  // expand it to i64 and we will be generating soft float library calls.
571  if (!isTypeLegal(MVT::f64)) {
572    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
573    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
574    TransformToType[MVT::f64] = MVT::i64;
575    ValueTypeActions.setTypeAction(MVT::f64, Expand);
576  }
577
578  // Decide how to handle f32. If the target does not have native support for
579  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
580  if (!isTypeLegal(MVT::f32)) {
581    if (isTypeLegal(MVT::f64)) {
582      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
583      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
584      TransformToType[MVT::f32] = MVT::f64;
585      ValueTypeActions.setTypeAction(MVT::f32, Promote);
586    } else {
587      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
588      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
589      TransformToType[MVT::f32] = MVT::i32;
590      ValueTypeActions.setTypeAction(MVT::f32, Expand);
591    }
592  }
593
594  // Loop over all of the vector value types to see which need transformations.
595  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
596       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
597    MVT VT = (MVT::SimpleValueType)i;
598    if (!isTypeLegal(VT)) {
599      MVT IntermediateVT, RegisterVT;
600      unsigned NumIntermediates;
601      NumRegistersForVT[i] =
602        getVectorTypeBreakdown(VT,
603                               IntermediateVT, NumIntermediates,
604                               RegisterVT);
605      RegisterTypeForVT[i] = RegisterVT;
606
607      // Determine if there is a legal wider type.
608      bool IsLegalWiderType = false;
609      MVT EltVT = VT.getVectorElementType();
610      unsigned NElts = VT.getVectorNumElements();
611      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
612        MVT SVT = (MVT::SimpleValueType)nVT;
613        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
614            SVT.getVectorNumElements() > NElts) {
615          TransformToType[i] = SVT;
616          ValueTypeActions.setTypeAction(VT, Promote);
617          IsLegalWiderType = true;
618          break;
619        }
620      }
621      if (!IsLegalWiderType) {
622        MVT NVT = VT.getPow2VectorType();
623        if (NVT == VT) {
624          // Type is already a power of 2.  The default action is to split.
625          TransformToType[i] = MVT::Other;
626          ValueTypeActions.setTypeAction(VT, Expand);
627        } else {
628          TransformToType[i] = NVT;
629          ValueTypeActions.setTypeAction(VT, Promote);
630        }
631      }
632    }
633  }
634}
635
636const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
637  return NULL;
638}
639
640
641MVT TargetLowering::getSetCCResultType(MVT VT) const {
642  return getValueType(TD->getIntPtrType());
643}
644
645
646/// getVectorTypeBreakdown - Vector types are broken down into some number of
647/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
648/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
649/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
650///
651/// This method returns the number of registers needed, and the VT for each
652/// register.  It also returns the VT and quantity of the intermediate values
653/// before they are promoted/expanded.
654///
655unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
656                                                MVT &IntermediateVT,
657                                                unsigned &NumIntermediates,
658                                      MVT &RegisterVT) const {
659  // Figure out the right, legal destination reg to copy into.
660  unsigned NumElts = VT.getVectorNumElements();
661  MVT EltTy = VT.getVectorElementType();
662
663  unsigned NumVectorRegs = 1;
664
665  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
666  // could break down into LHS/RHS like LegalizeDAG does.
667  if (!isPowerOf2_32(NumElts)) {
668    NumVectorRegs = NumElts;
669    NumElts = 1;
670  }
671
672  // Divide the input until we get to a supported size.  This will always
673  // end with a scalar if the target doesn't support vectors.
674  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
675    NumElts >>= 1;
676    NumVectorRegs <<= 1;
677  }
678
679  NumIntermediates = NumVectorRegs;
680
681  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
682  if (!isTypeLegal(NewVT))
683    NewVT = EltTy;
684  IntermediateVT = NewVT;
685
686  MVT DestVT = getRegisterType(NewVT);
687  RegisterVT = DestVT;
688  if (DestVT.bitsLT(NewVT)) {
689    // Value is expanded, e.g. i64 -> i16.
690    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
691  } else {
692    // Otherwise, promotion or legal types use the same number of registers as
693    // the vector decimated to the appropriate level.
694    return NumVectorRegs;
695  }
696
697  return 1;
698}
699
700/// getWidenVectorType: given a vector type, returns the type to widen to
701/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
702/// If there is no vector type that we want to widen to, returns MVT::Other
703/// When and where to widen is target dependent based on the cost of
704/// scalarizing vs using the wider vector type.
705MVT TargetLowering::getWidenVectorType(MVT VT) const {
706  assert(VT.isVector());
707  if (isTypeLegal(VT))
708    return VT;
709
710  // Default is not to widen until moved to LegalizeTypes
711  return MVT::Other;
712}
713
714/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
715/// function arguments in the caller parameter area.  This is the actual
716/// alignment, not its logarithm.
717unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
718  return TD->getCallFrameTypeAlignment(Ty);
719}
720
721SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
722                                                 SelectionDAG &DAG) const {
723  if (usesGlobalOffsetTable())
724    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
725  return Table;
726}
727
728bool
729TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
730  // Assume that everything is safe in static mode.
731  if (getTargetMachine().getRelocationModel() == Reloc::Static)
732    return true;
733
734  // In dynamic-no-pic mode, assume that known defined values are safe.
735  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
736      GA &&
737      !GA->getGlobal()->isDeclaration() &&
738      !GA->getGlobal()->isWeakForLinker())
739    return true;
740
741  // Otherwise assume nothing is safe.
742  return false;
743}
744
745//===----------------------------------------------------------------------===//
746//  Optimization Methods
747//===----------------------------------------------------------------------===//
748
749/// ShrinkDemandedConstant - Check to see if the specified operand of the
750/// specified instruction is a constant integer.  If so, check to see if there
751/// are any bits set in the constant that are not demanded.  If so, shrink the
752/// constant and return true.
753bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
754                                                        const APInt &Demanded) {
755  DebugLoc dl = Op.getDebugLoc();
756
757  // FIXME: ISD::SELECT, ISD::SELECT_CC
758  switch (Op.getOpcode()) {
759  default: break;
760  case ISD::XOR:
761  case ISD::AND:
762  case ISD::OR: {
763    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
764    if (!C) return false;
765
766    if (Op.getOpcode() == ISD::XOR &&
767        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
768      return false;
769
770    // if we can expand it to have all bits set, do it
771    if (C->getAPIntValue().intersects(~Demanded)) {
772      MVT VT = Op.getValueType();
773      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
774                                DAG.getConstant(Demanded &
775                                                C->getAPIntValue(),
776                                                VT));
777      return CombineTo(Op, New);
778    }
779
780    break;
781  }
782  }
783
784  return false;
785}
786
787/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
788/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
789/// cast, but it could be generalized for targets with other types of
790/// implicit widening casts.
791bool
792TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
793                                                    unsigned BitWidth,
794                                                    const APInt &Demanded,
795                                                    DebugLoc dl) {
796  assert(Op.getNumOperands() == 2 &&
797         "ShrinkDemandedOp only supports binary operators!");
798  assert(Op.getNode()->getNumValues() == 1 &&
799         "ShrinkDemandedOp only supports nodes with one result!");
800
801  // Don't do this if the node has another user, which may require the
802  // full value.
803  if (!Op.getNode()->hasOneUse())
804    return false;
805
806  // Search for the smallest integer type with free casts to and from
807  // Op's type. For expedience, just check power-of-2 integer types.
808  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
809  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
810  if (!isPowerOf2_32(SmallVTBits))
811    SmallVTBits = NextPowerOf2(SmallVTBits);
812  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
813    MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
814    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
815        TLI.isZExtFree(SmallVT, Op.getValueType())) {
816      // We found a type with free casts.
817      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
818                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
819                                          Op.getNode()->getOperand(0)),
820                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
821                                          Op.getNode()->getOperand(1)));
822      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
823      return CombineTo(Op, Z);
824    }
825  }
826  return false;
827}
828
829/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
830/// DemandedMask bits of the result of Op are ever used downstream.  If we can
831/// use this information to simplify Op, create a new simplified DAG node and
832/// return true, returning the original and new nodes in Old and New. Otherwise,
833/// analyze the expression and return a mask of KnownOne and KnownZero bits for
834/// the expression (used to simplify the caller).  The KnownZero/One bits may
835/// only be accurate for those bits in the DemandedMask.
836bool TargetLowering::SimplifyDemandedBits(SDValue Op,
837                                          const APInt &DemandedMask,
838                                          APInt &KnownZero,
839                                          APInt &KnownOne,
840                                          TargetLoweringOpt &TLO,
841                                          unsigned Depth) const {
842  unsigned BitWidth = DemandedMask.getBitWidth();
843  assert(Op.getValueSizeInBits() == BitWidth &&
844         "Mask size mismatches value type size!");
845  APInt NewMask = DemandedMask;
846  DebugLoc dl = Op.getDebugLoc();
847
848  // Don't know anything.
849  KnownZero = KnownOne = APInt(BitWidth, 0);
850
851  // Other users may use these bits.
852  if (!Op.getNode()->hasOneUse()) {
853    if (Depth != 0) {
854      // If not at the root, Just compute the KnownZero/KnownOne bits to
855      // simplify things downstream.
856      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
857      return false;
858    }
859    // If this is the root being simplified, allow it to have multiple uses,
860    // just set the NewMask to all bits.
861    NewMask = APInt::getAllOnesValue(BitWidth);
862  } else if (DemandedMask == 0) {
863    // Not demanding any bits from Op.
864    if (Op.getOpcode() != ISD::UNDEF)
865      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
866    return false;
867  } else if (Depth == 6) {        // Limit search depth.
868    return false;
869  }
870
871  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
872  switch (Op.getOpcode()) {
873  case ISD::Constant:
874    // We know all of the bits for a constant!
875    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
876    KnownZero = ~KnownOne & NewMask;
877    return false;   // Don't fall through, will infinitely loop.
878  case ISD::AND:
879    // If the RHS is a constant, check to see if the LHS would be zero without
880    // using the bits from the RHS.  Below, we use knowledge about the RHS to
881    // simplify the LHS, here we're using information from the LHS to simplify
882    // the RHS.
883    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
884      APInt LHSZero, LHSOne;
885      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
886                                LHSZero, LHSOne, Depth+1);
887      // If the LHS already has zeros where RHSC does, this and is dead.
888      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
889        return TLO.CombineTo(Op, Op.getOperand(0));
890      // If any of the set bits in the RHS are known zero on the LHS, shrink
891      // the constant.
892      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
893        return true;
894    }
895
896    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
897                             KnownOne, TLO, Depth+1))
898      return true;
899    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
900    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
901                             KnownZero2, KnownOne2, TLO, Depth+1))
902      return true;
903    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
904
905    // If all of the demanded bits are known one on one side, return the other.
906    // These bits cannot contribute to the result of the 'and'.
907    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
908      return TLO.CombineTo(Op, Op.getOperand(0));
909    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
910      return TLO.CombineTo(Op, Op.getOperand(1));
911    // If all of the demanded bits in the inputs are known zeros, return zero.
912    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
913      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
914    // If the RHS is a constant, see if we can simplify it.
915    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
916      return true;
917    // If the operation can be done in a smaller type, do so.
918    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
919      return true;
920
921    // Output known-1 bits are only known if set in both the LHS & RHS.
922    KnownOne &= KnownOne2;
923    // Output known-0 are known to be clear if zero in either the LHS | RHS.
924    KnownZero |= KnownZero2;
925    break;
926  case ISD::OR:
927    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
928                             KnownOne, TLO, Depth+1))
929      return true;
930    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
931    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
932                             KnownZero2, KnownOne2, TLO, Depth+1))
933      return true;
934    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
935
936    // If all of the demanded bits are known zero on one side, return the other.
937    // These bits cannot contribute to the result of the 'or'.
938    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
939      return TLO.CombineTo(Op, Op.getOperand(0));
940    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
941      return TLO.CombineTo(Op, Op.getOperand(1));
942    // If all of the potentially set bits on one side are known to be set on
943    // the other side, just use the 'other' side.
944    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
945      return TLO.CombineTo(Op, Op.getOperand(0));
946    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
947      return TLO.CombineTo(Op, Op.getOperand(1));
948    // If the RHS is a constant, see if we can simplify it.
949    if (TLO.ShrinkDemandedConstant(Op, NewMask))
950      return true;
951    // If the operation can be done in a smaller type, do so.
952    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
953      return true;
954
955    // Output known-0 bits are only known if clear in both the LHS & RHS.
956    KnownZero &= KnownZero2;
957    // Output known-1 are known to be set if set in either the LHS | RHS.
958    KnownOne |= KnownOne2;
959    break;
960  case ISD::XOR:
961    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
962                             KnownOne, TLO, Depth+1))
963      return true;
964    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
965    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
966                             KnownOne2, TLO, Depth+1))
967      return true;
968    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
969
970    // If all of the demanded bits are known zero on one side, return the other.
971    // These bits cannot contribute to the result of the 'xor'.
972    if ((KnownZero & NewMask) == NewMask)
973      return TLO.CombineTo(Op, Op.getOperand(0));
974    if ((KnownZero2 & NewMask) == NewMask)
975      return TLO.CombineTo(Op, Op.getOperand(1));
976    // If the operation can be done in a smaller type, do so.
977    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
978      return true;
979
980    // If all of the unknown bits are known to be zero on one side or the other
981    // (but not both) turn this into an *inclusive* or.
982    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
983    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
984      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
985                                               Op.getOperand(0),
986                                               Op.getOperand(1)));
987
988    // Output known-0 bits are known if clear or set in both the LHS & RHS.
989    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
990    // Output known-1 are known to be set if set in only one of the LHS, RHS.
991    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
992
993    // If all of the demanded bits on one side are known, and all of the set
994    // bits on that side are also known to be set on the other side, turn this
995    // into an AND, as we know the bits will be cleared.
996    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
997    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
998      if ((KnownOne & KnownOne2) == KnownOne) {
999        MVT VT = Op.getValueType();
1000        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1001        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1002                                                 Op.getOperand(0), ANDC));
1003      }
1004    }
1005
1006    // If the RHS is a constant, see if we can simplify it.
1007    // for XOR, we prefer to force bits to 1 if they will make a -1.
1008    // if we can't force bits, try to shrink constant
1009    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1010      APInt Expanded = C->getAPIntValue() | (~NewMask);
1011      // if we can expand it to have all bits set, do it
1012      if (Expanded.isAllOnesValue()) {
1013        if (Expanded != C->getAPIntValue()) {
1014          MVT VT = Op.getValueType();
1015          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1016                                          TLO.DAG.getConstant(Expanded, VT));
1017          return TLO.CombineTo(Op, New);
1018        }
1019        // if it already has all the bits set, nothing to change
1020        // but don't shrink either!
1021      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1022        return true;
1023      }
1024    }
1025
1026    KnownZero = KnownZeroOut;
1027    KnownOne  = KnownOneOut;
1028    break;
1029  case ISD::SELECT:
1030    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1031                             KnownOne, TLO, Depth+1))
1032      return true;
1033    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1034                             KnownOne2, TLO, Depth+1))
1035      return true;
1036    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1037    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1038
1039    // If the operands are constants, see if we can simplify them.
1040    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1041      return true;
1042
1043    // Only known if known in both the LHS and RHS.
1044    KnownOne &= KnownOne2;
1045    KnownZero &= KnownZero2;
1046    break;
1047  case ISD::SELECT_CC:
1048    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1049                             KnownOne, TLO, Depth+1))
1050      return true;
1051    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1052                             KnownOne2, TLO, Depth+1))
1053      return true;
1054    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1055    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1056
1057    // If the operands are constants, see if we can simplify them.
1058    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1059      return true;
1060
1061    // Only known if known in both the LHS and RHS.
1062    KnownOne &= KnownOne2;
1063    KnownZero &= KnownZero2;
1064    break;
1065  case ISD::SHL:
1066    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1067      unsigned ShAmt = SA->getZExtValue();
1068      SDValue InOp = Op.getOperand(0);
1069
1070      // If the shift count is an invalid immediate, don't do anything.
1071      if (ShAmt >= BitWidth)
1072        break;
1073
1074      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1075      // single shift.  We can do this if the bottom bits (which are shifted
1076      // out) are never demanded.
1077      if (InOp.getOpcode() == ISD::SRL &&
1078          isa<ConstantSDNode>(InOp.getOperand(1))) {
1079        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1080          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1081          unsigned Opc = ISD::SHL;
1082          int Diff = ShAmt-C1;
1083          if (Diff < 0) {
1084            Diff = -Diff;
1085            Opc = ISD::SRL;
1086          }
1087
1088          SDValue NewSA =
1089            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1090          MVT VT = Op.getValueType();
1091          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1092                                                   InOp.getOperand(0), NewSA));
1093        }
1094      }
1095
1096      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1097                               KnownZero, KnownOne, TLO, Depth+1))
1098        return true;
1099      KnownZero <<= SA->getZExtValue();
1100      KnownOne  <<= SA->getZExtValue();
1101      // low bits known zero.
1102      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1103    }
1104    break;
1105  case ISD::SRL:
1106    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1107      MVT VT = Op.getValueType();
1108      unsigned ShAmt = SA->getZExtValue();
1109      unsigned VTSize = VT.getSizeInBits();
1110      SDValue InOp = Op.getOperand(0);
1111
1112      // If the shift count is an invalid immediate, don't do anything.
1113      if (ShAmt >= BitWidth)
1114        break;
1115
1116      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1117      // single shift.  We can do this if the top bits (which are shifted out)
1118      // are never demanded.
1119      if (InOp.getOpcode() == ISD::SHL &&
1120          isa<ConstantSDNode>(InOp.getOperand(1))) {
1121        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1122          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1123          unsigned Opc = ISD::SRL;
1124          int Diff = ShAmt-C1;
1125          if (Diff < 0) {
1126            Diff = -Diff;
1127            Opc = ISD::SHL;
1128          }
1129
1130          SDValue NewSA =
1131            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1132          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1133                                                   InOp.getOperand(0), NewSA));
1134        }
1135      }
1136
1137      // Compute the new bits that are at the top now.
1138      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1139                               KnownZero, KnownOne, TLO, Depth+1))
1140        return true;
1141      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1142      KnownZero = KnownZero.lshr(ShAmt);
1143      KnownOne  = KnownOne.lshr(ShAmt);
1144
1145      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1146      KnownZero |= HighBits;  // High bits known zero.
1147    }
1148    break;
1149  case ISD::SRA:
1150    // If this is an arithmetic shift right and only the low-bit is set, we can
1151    // always convert this into a logical shr, even if the shift amount is
1152    // variable.  The low bit of the shift cannot be an input sign bit unless
1153    // the shift amount is >= the size of the datatype, which is undefined.
1154    if (DemandedMask == 1)
1155      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1156                                               Op.getOperand(0), Op.getOperand(1)));
1157
1158    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1159      MVT VT = Op.getValueType();
1160      unsigned ShAmt = SA->getZExtValue();
1161
1162      // If the shift count is an invalid immediate, don't do anything.
1163      if (ShAmt >= BitWidth)
1164        break;
1165
1166      APInt InDemandedMask = (NewMask << ShAmt);
1167
1168      // If any of the demanded bits are produced by the sign extension, we also
1169      // demand the input sign bit.
1170      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1171      if (HighBits.intersects(NewMask))
1172        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1173
1174      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1175                               KnownZero, KnownOne, TLO, Depth+1))
1176        return true;
1177      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1178      KnownZero = KnownZero.lshr(ShAmt);
1179      KnownOne  = KnownOne.lshr(ShAmt);
1180
1181      // Handle the sign bit, adjusted to where it is now in the mask.
1182      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1183
1184      // If the input sign bit is known to be zero, or if none of the top bits
1185      // are demanded, turn this into an unsigned shift right.
1186      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1187        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1188                                                 Op.getOperand(0),
1189                                                 Op.getOperand(1)));
1190      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1191        KnownOne |= HighBits;
1192      }
1193    }
1194    break;
1195  case ISD::SIGN_EXTEND_INREG: {
1196    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1197
1198    // Sign extension.  Compute the demanded bits in the result that are not
1199    // present in the input.
1200    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1201                                          BitWidth - EVT.getSizeInBits()) &
1202                    NewMask;
1203
1204    // If none of the extended bits are demanded, eliminate the sextinreg.
1205    if (NewBits == 0)
1206      return TLO.CombineTo(Op, Op.getOperand(0));
1207
1208    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1209    InSignBit.zext(BitWidth);
1210    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1211                                                   EVT.getSizeInBits()) &
1212                              NewMask;
1213
1214    // Since the sign extended bits are demanded, we know that the sign
1215    // bit is demanded.
1216    InputDemandedBits |= InSignBit;
1217
1218    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1219                             KnownZero, KnownOne, TLO, Depth+1))
1220      return true;
1221    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1222
1223    // If the sign bit of the input is known set or clear, then we know the
1224    // top bits of the result.
1225
1226    // If the input sign bit is known zero, convert this into a zero extension.
1227    if (KnownZero.intersects(InSignBit))
1228      return TLO.CombineTo(Op,
1229                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1230
1231    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1232      KnownOne |= NewBits;
1233      KnownZero &= ~NewBits;
1234    } else {                       // Input sign bit unknown
1235      KnownZero &= ~NewBits;
1236      KnownOne &= ~NewBits;
1237    }
1238    break;
1239  }
1240  case ISD::ZERO_EXTEND: {
1241    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1242    APInt InMask = NewMask;
1243    InMask.trunc(OperandBitWidth);
1244
1245    // If none of the top bits are demanded, convert this into an any_extend.
1246    APInt NewBits =
1247      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1248    if (!NewBits.intersects(NewMask))
1249      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1250                                               Op.getValueType(),
1251                                               Op.getOperand(0)));
1252
1253    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1254                             KnownZero, KnownOne, TLO, Depth+1))
1255      return true;
1256    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1257    KnownZero.zext(BitWidth);
1258    KnownOne.zext(BitWidth);
1259    KnownZero |= NewBits;
1260    break;
1261  }
1262  case ISD::SIGN_EXTEND: {
1263    MVT InVT = Op.getOperand(0).getValueType();
1264    unsigned InBits = InVT.getSizeInBits();
1265    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1266    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1267    APInt NewBits   = ~InMask & NewMask;
1268
1269    // If none of the top bits are demanded, convert this into an any_extend.
1270    if (NewBits == 0)
1271      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1272                                              Op.getValueType(),
1273                                              Op.getOperand(0)));
1274
1275    // Since some of the sign extended bits are demanded, we know that the sign
1276    // bit is demanded.
1277    APInt InDemandedBits = InMask & NewMask;
1278    InDemandedBits |= InSignBit;
1279    InDemandedBits.trunc(InBits);
1280
1281    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1282                             KnownOne, TLO, Depth+1))
1283      return true;
1284    KnownZero.zext(BitWidth);
1285    KnownOne.zext(BitWidth);
1286
1287    // If the sign bit is known zero, convert this to a zero extend.
1288    if (KnownZero.intersects(InSignBit))
1289      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1290                                               Op.getValueType(),
1291                                               Op.getOperand(0)));
1292
1293    // If the sign bit is known one, the top bits match.
1294    if (KnownOne.intersects(InSignBit)) {
1295      KnownOne  |= NewBits;
1296      KnownZero &= ~NewBits;
1297    } else {   // Otherwise, top bits aren't known.
1298      KnownOne  &= ~NewBits;
1299      KnownZero &= ~NewBits;
1300    }
1301    break;
1302  }
1303  case ISD::ANY_EXTEND: {
1304    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1305    APInt InMask = NewMask;
1306    InMask.trunc(OperandBitWidth);
1307    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1308                             KnownZero, KnownOne, TLO, Depth+1))
1309      return true;
1310    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1311    KnownZero.zext(BitWidth);
1312    KnownOne.zext(BitWidth);
1313    break;
1314  }
1315  case ISD::TRUNCATE: {
1316    // Simplify the input, using demanded bit information, and compute the known
1317    // zero/one bits live out.
1318    APInt TruncMask = NewMask;
1319    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1320    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1321                             KnownZero, KnownOne, TLO, Depth+1))
1322      return true;
1323    KnownZero.trunc(BitWidth);
1324    KnownOne.trunc(BitWidth);
1325
1326    // If the input is only used by this truncate, see if we can shrink it based
1327    // on the known demanded bits.
1328    if (Op.getOperand(0).getNode()->hasOneUse()) {
1329      SDValue In = Op.getOperand(0);
1330      unsigned InBitWidth = In.getValueSizeInBits();
1331      switch (In.getOpcode()) {
1332      default: break;
1333      case ISD::SRL:
1334        // Shrink SRL by a constant if none of the high bits shifted in are
1335        // demanded.
1336        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1337          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1338                                                 InBitWidth - BitWidth);
1339          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1340          HighBits.trunc(BitWidth);
1341
1342          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1343            // None of the shifted in bits are needed.  Add a truncate of the
1344            // shift input, then shift it.
1345            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1346                                                 Op.getValueType(),
1347                                                 In.getOperand(0));
1348            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1349                                                     Op.getValueType(),
1350                                                     NewTrunc,
1351                                                     In.getOperand(1)));
1352          }
1353        }
1354        break;
1355      }
1356    }
1357
1358    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1359    break;
1360  }
1361  case ISD::AssertZext: {
1362    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1363    APInt InMask = APInt::getLowBitsSet(BitWidth,
1364                                        VT.getSizeInBits());
1365    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1366                             KnownZero, KnownOne, TLO, Depth+1))
1367      return true;
1368    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1369    KnownZero |= ~InMask & NewMask;
1370    break;
1371  }
1372  case ISD::BIT_CONVERT:
1373#if 0
1374    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1375    // is demanded, turn this into a FGETSIGN.
1376    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1377        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1378        !MVT::isVector(Op.getOperand(0).getValueType())) {
1379      // Only do this xform if FGETSIGN is valid or if before legalize.
1380      if (!TLO.AfterLegalize ||
1381          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1382        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1383        // place.  We expect the SHL to be eliminated by other optimizations.
1384        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1385                                         Op.getOperand(0));
1386        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1387        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1388        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1389                                                 Sign, ShAmt));
1390      }
1391    }
1392#endif
1393    break;
1394  case ISD::ADD:
1395  case ISD::MUL:
1396  case ISD::SUB: {
1397    // Add, Sub, and Mul don't demand any bits in positions beyond that
1398    // of the highest bit demanded of them.
1399    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1400                                        BitWidth - NewMask.countLeadingZeros());
1401    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1402                             KnownOne2, TLO, Depth+1))
1403      return true;
1404    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1405                             KnownOne2, TLO, Depth+1))
1406      return true;
1407    // See if the operation should be performed at a smaller bit width.
1408    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1409      return true;
1410  }
1411  // FALL THROUGH
1412  default:
1413    // Just use ComputeMaskedBits to compute output bits.
1414    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1415    break;
1416  }
1417
1418  // If we know the value of all of the demanded bits, return this as a
1419  // constant.
1420  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1421    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1422
1423  return false;
1424}
1425
1426/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1427/// in Mask are known to be either zero or one and return them in the
1428/// KnownZero/KnownOne bitsets.
1429void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1430                                                    const APInt &Mask,
1431                                                    APInt &KnownZero,
1432                                                    APInt &KnownOne,
1433                                                    const SelectionDAG &DAG,
1434                                                    unsigned Depth) const {
1435  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1436          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1437          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1438          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1439         "Should use MaskedValueIsZero if you don't know whether Op"
1440         " is a target node!");
1441  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1442}
1443
1444/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1445/// targets that want to expose additional information about sign bits to the
1446/// DAG Combiner.
1447unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1448                                                         unsigned Depth) const {
1449  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1450          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1451          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1452          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1453         "Should use ComputeNumSignBits if you don't know whether Op"
1454         " is a target node!");
1455  return 1;
1456}
1457
1458/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1459/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1460/// determine which bit is set.
1461///
1462static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1463  // A left-shift of a constant one will have exactly one bit set, because
1464  // shifting the bit off the end is undefined.
1465  if (Val.getOpcode() == ISD::SHL)
1466    if (ConstantSDNode *C =
1467         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1468      if (C->getAPIntValue() == 1)
1469        return true;
1470
1471  // Similarly, a right-shift of a constant sign-bit will have exactly
1472  // one bit set.
1473  if (Val.getOpcode() == ISD::SRL)
1474    if (ConstantSDNode *C =
1475         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1476      if (C->getAPIntValue().isSignBit())
1477        return true;
1478
1479  // More could be done here, though the above checks are enough
1480  // to handle some common cases.
1481
1482  // Fall back to ComputeMaskedBits to catch other known cases.
1483  MVT OpVT = Val.getValueType();
1484  unsigned BitWidth = OpVT.getSizeInBits();
1485  APInt Mask = APInt::getAllOnesValue(BitWidth);
1486  APInt KnownZero, KnownOne;
1487  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1488  return (KnownZero.countPopulation() == BitWidth - 1) &&
1489         (KnownOne.countPopulation() == 1);
1490}
1491
1492/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1493/// and cc. If it is unable to simplify it, return a null SDValue.
1494SDValue
1495TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1496                              ISD::CondCode Cond, bool foldBooleans,
1497                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1498  SelectionDAG &DAG = DCI.DAG;
1499
1500  // These setcc operations always fold.
1501  switch (Cond) {
1502  default: break;
1503  case ISD::SETFALSE:
1504  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1505  case ISD::SETTRUE:
1506  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1507  }
1508
1509  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1510    const APInt &C1 = N1C->getAPIntValue();
1511    if (isa<ConstantSDNode>(N0.getNode())) {
1512      return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1513    } else {
1514      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1515      // equality comparison, then we're just comparing whether X itself is
1516      // zero.
1517      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1518          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1519          N0.getOperand(1).getOpcode() == ISD::Constant) {
1520        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1521        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1522            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1523          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1524            // (srl (ctlz x), 5) == 0  -> X != 0
1525            // (srl (ctlz x), 5) != 1  -> X != 0
1526            Cond = ISD::SETNE;
1527          } else {
1528            // (srl (ctlz x), 5) != 0  -> X == 0
1529            // (srl (ctlz x), 5) == 1  -> X == 0
1530            Cond = ISD::SETEQ;
1531          }
1532          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1533          return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1534                              Zero, Cond);
1535        }
1536      }
1537
1538      // If the LHS is '(and load, const)', the RHS is 0,
1539      // the test is for equality or unsigned, and all 1 bits of the const are
1540      // in the same partial word, see if we can shorten the load.
1541      if (DCI.isBeforeLegalize() &&
1542          N0.getOpcode() == ISD::AND && C1 == 0 &&
1543          N0.getNode()->hasOneUse() &&
1544          isa<LoadSDNode>(N0.getOperand(0)) &&
1545          N0.getOperand(0).getNode()->hasOneUse() &&
1546          isa<ConstantSDNode>(N0.getOperand(1))) {
1547        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1548        uint64_t bestMask = 0;
1549        unsigned bestWidth = 0, bestOffset = 0;
1550        if (!Lod->isVolatile() && Lod->isUnindexed() &&
1551            // FIXME: This uses getZExtValue() below so it only works on i64 and
1552            // below.
1553            N0.getValueType().getSizeInBits() <= 64) {
1554          unsigned origWidth = N0.getValueType().getSizeInBits();
1555          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1556          // 8 bits, but have to be careful...
1557          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1558            origWidth = Lod->getMemoryVT().getSizeInBits();
1559          uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1560          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1561            uint64_t newMask = (1ULL << width) - 1;
1562            for (unsigned offset=0; offset<origWidth/width; offset++) {
1563              if ((newMask & Mask) == Mask) {
1564                if (!TD->isLittleEndian())
1565                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1566                else
1567                  bestOffset = (uint64_t)offset * (width/8);
1568                bestMask = Mask >> (offset * (width/8) * 8);
1569                bestWidth = width;
1570                break;
1571              }
1572              newMask = newMask << width;
1573            }
1574          }
1575        }
1576        if (bestWidth) {
1577          MVT newVT = MVT::getIntegerVT(bestWidth);
1578          if (newVT.isRound()) {
1579            MVT PtrType = Lod->getOperand(1).getValueType();
1580            SDValue Ptr = Lod->getBasePtr();
1581            if (bestOffset != 0)
1582              Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1583                                DAG.getConstant(bestOffset, PtrType));
1584            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1585            SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1586                                          Lod->getSrcValue(),
1587                                          Lod->getSrcValueOffset() + bestOffset,
1588                                          false, NewAlign);
1589            return DAG.getSetCC(dl, VT,
1590                                DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1591                                            DAG.getConstant(bestMask, newVT)),
1592                                DAG.getConstant(0LL, newVT), Cond);
1593          }
1594        }
1595      }
1596
1597      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1598      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1599        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1600
1601        // If the comparison constant has bits in the upper part, the
1602        // zero-extended value could never match.
1603        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1604                                                C1.getBitWidth() - InSize))) {
1605          switch (Cond) {
1606          case ISD::SETUGT:
1607          case ISD::SETUGE:
1608          case ISD::SETEQ: return DAG.getConstant(0, VT);
1609          case ISD::SETULT:
1610          case ISD::SETULE:
1611          case ISD::SETNE: return DAG.getConstant(1, VT);
1612          case ISD::SETGT:
1613          case ISD::SETGE:
1614            // True if the sign bit of C1 is set.
1615            return DAG.getConstant(C1.isNegative(), VT);
1616          case ISD::SETLT:
1617          case ISD::SETLE:
1618            // True if the sign bit of C1 isn't set.
1619            return DAG.getConstant(C1.isNonNegative(), VT);
1620          default:
1621            break;
1622          }
1623        }
1624
1625        // Otherwise, we can perform the comparison with the low bits.
1626        switch (Cond) {
1627        case ISD::SETEQ:
1628        case ISD::SETNE:
1629        case ISD::SETUGT:
1630        case ISD::SETUGE:
1631        case ISD::SETULT:
1632        case ISD::SETULE:
1633          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1634                          DAG.getConstant(APInt(C1).trunc(InSize),
1635                                          N0.getOperand(0).getValueType()),
1636                          Cond);
1637        default:
1638          break;   // todo, be more careful with signed comparisons
1639        }
1640      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1641                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1642        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1643        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1644        MVT ExtDstTy = N0.getValueType();
1645        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1646
1647        // If the extended part has any inconsistent bits, it cannot ever
1648        // compare equal.  In other words, they have to be all ones or all
1649        // zeros.
1650        APInt ExtBits =
1651          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1652        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1653          return DAG.getConstant(Cond == ISD::SETNE, VT);
1654
1655        SDValue ZextOp;
1656        MVT Op0Ty = N0.getOperand(0).getValueType();
1657        if (Op0Ty == ExtSrcTy) {
1658          ZextOp = N0.getOperand(0);
1659        } else {
1660          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1661          ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1662                               DAG.getConstant(Imm, Op0Ty));
1663        }
1664        if (!DCI.isCalledByLegalizer())
1665          DCI.AddToWorklist(ZextOp.getNode());
1666        // Otherwise, make this a use of a zext.
1667        return DAG.getSetCC(dl, VT, ZextOp,
1668                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1669                                                               ExtDstTyBits,
1670                                                               ExtSrcTyBits),
1671                                            ExtDstTy),
1672                            Cond);
1673      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1674                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1675
1676        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1677        if (N0.getOpcode() == ISD::SETCC) {
1678          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1679          if (TrueWhenTrue)
1680            return N0;
1681
1682          // Invert the condition.
1683          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1684          CC = ISD::getSetCCInverse(CC,
1685                                   N0.getOperand(0).getValueType().isInteger());
1686          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1687        }
1688
1689        if ((N0.getOpcode() == ISD::XOR ||
1690             (N0.getOpcode() == ISD::AND &&
1691              N0.getOperand(0).getOpcode() == ISD::XOR &&
1692              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1693            isa<ConstantSDNode>(N0.getOperand(1)) &&
1694            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1695          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1696          // can only do this if the top bits are known zero.
1697          unsigned BitWidth = N0.getValueSizeInBits();
1698          if (DAG.MaskedValueIsZero(N0,
1699                                    APInt::getHighBitsSet(BitWidth,
1700                                                          BitWidth-1))) {
1701            // Okay, get the un-inverted input value.
1702            SDValue Val;
1703            if (N0.getOpcode() == ISD::XOR)
1704              Val = N0.getOperand(0);
1705            else {
1706              assert(N0.getOpcode() == ISD::AND &&
1707                     N0.getOperand(0).getOpcode() == ISD::XOR);
1708              // ((X^1)&1)^1 -> X & 1
1709              Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1710                                N0.getOperand(0).getOperand(0),
1711                                N0.getOperand(1));
1712            }
1713            return DAG.getSetCC(dl, VT, Val, N1,
1714                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1715          }
1716        }
1717      }
1718
1719      APInt MinVal, MaxVal;
1720      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1721      if (ISD::isSignedIntSetCC(Cond)) {
1722        MinVal = APInt::getSignedMinValue(OperandBitSize);
1723        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1724      } else {
1725        MinVal = APInt::getMinValue(OperandBitSize);
1726        MaxVal = APInt::getMaxValue(OperandBitSize);
1727      }
1728
1729      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1730      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1731        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1732        // X >= C0 --> X > (C0-1)
1733        return DAG.getSetCC(dl, VT, N0,
1734                            DAG.getConstant(C1-1, N1.getValueType()),
1735                            (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1736      }
1737
1738      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1739        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1740        // X <= C0 --> X < (C0+1)
1741        return DAG.getSetCC(dl, VT, N0,
1742                            DAG.getConstant(C1+1, N1.getValueType()),
1743                            (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1744      }
1745
1746      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1747        return DAG.getConstant(0, VT);      // X < MIN --> false
1748      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1749        return DAG.getConstant(1, VT);      // X >= MIN --> true
1750      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1751        return DAG.getConstant(0, VT);      // X > MAX --> false
1752      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1753        return DAG.getConstant(1, VT);      // X <= MAX --> true
1754
1755      // Canonicalize setgt X, Min --> setne X, Min
1756      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1757        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1758      // Canonicalize setlt X, Max --> setne X, Max
1759      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1760        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1761
1762      // If we have setult X, 1, turn it into seteq X, 0
1763      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1764        return DAG.getSetCC(dl, VT, N0,
1765                            DAG.getConstant(MinVal, N0.getValueType()),
1766                            ISD::SETEQ);
1767      // If we have setugt X, Max-1, turn it into seteq X, Max
1768      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1769        return DAG.getSetCC(dl, VT, N0,
1770                            DAG.getConstant(MaxVal, N0.getValueType()),
1771                            ISD::SETEQ);
1772
1773      // If we have "setcc X, C0", check to see if we can shrink the immediate
1774      // by changing cc.
1775
1776      // SETUGT X, SINTMAX  -> SETLT X, 0
1777      if (Cond == ISD::SETUGT &&
1778          C1 == APInt::getSignedMaxValue(OperandBitSize))
1779        return DAG.getSetCC(dl, VT, N0,
1780                            DAG.getConstant(0, N1.getValueType()),
1781                            ISD::SETLT);
1782
1783      // SETULT X, SINTMIN  -> SETGT X, -1
1784      if (Cond == ISD::SETULT &&
1785          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1786        SDValue ConstMinusOne =
1787            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1788                            N1.getValueType());
1789        return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1790      }
1791
1792      // Fold bit comparisons when we can.
1793      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1794          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1795        if (ConstantSDNode *AndRHS =
1796                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1797          MVT ShiftTy = DCI.isBeforeLegalize() ?
1798            getPointerTy() : getShiftAmountTy();
1799          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1800            // Perform the xform if the AND RHS is a single bit.
1801            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1802              return DAG.getNode(ISD::SRL, dl, VT, N0,
1803                                 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1804                                                 ShiftTy));
1805            }
1806          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1807            // (X & 8) == 8  -->  (X & 8) >> 3
1808            // Perform the xform if C1 is a single bit.
1809            if (C1.isPowerOf2()) {
1810              return DAG.getNode(ISD::SRL, dl, VT, N0,
1811                                 DAG.getConstant(C1.logBase2(), ShiftTy));
1812            }
1813          }
1814        }
1815    }
1816  } else if (isa<ConstantSDNode>(N0.getNode())) {
1817      // Ensure that the constant occurs on the RHS.
1818    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1819  }
1820
1821  if (isa<ConstantFPSDNode>(N0.getNode())) {
1822    // Constant fold or commute setcc.
1823    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1824    if (O.getNode()) return O;
1825  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1826    // If the RHS of an FP comparison is a constant, simplify it away in
1827    // some cases.
1828    if (CFP->getValueAPF().isNaN()) {
1829      // If an operand is known to be a nan, we can fold it.
1830      switch (ISD::getUnorderedFlavor(Cond)) {
1831      default: assert(0 && "Unknown flavor!");
1832      case 0:  // Known false.
1833        return DAG.getConstant(0, VT);
1834      case 1:  // Known true.
1835        return DAG.getConstant(1, VT);
1836      case 2:  // Undefined.
1837        return DAG.getUNDEF(VT);
1838      }
1839    }
1840
1841    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1842    // constant if knowing that the operand is non-nan is enough.  We prefer to
1843    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1844    // materialize 0.0.
1845    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1846      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1847  }
1848
1849  if (N0 == N1) {
1850    // We can always fold X == X for integer setcc's.
1851    if (N0.getValueType().isInteger())
1852      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1853    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1854    if (UOF == 2)   // FP operators that are undefined on NaNs.
1855      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1856    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1857      return DAG.getConstant(UOF, VT);
1858    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1859    // if it is not already.
1860    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1861    if (NewCond != Cond)
1862      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1863  }
1864
1865  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1866      N0.getValueType().isInteger()) {
1867    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1868        N0.getOpcode() == ISD::XOR) {
1869      // Simplify (X+Y) == (X+Z) -->  Y == Z
1870      if (N0.getOpcode() == N1.getOpcode()) {
1871        if (N0.getOperand(0) == N1.getOperand(0))
1872          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1873        if (N0.getOperand(1) == N1.getOperand(1))
1874          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1875        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1876          // If X op Y == Y op X, try other combinations.
1877          if (N0.getOperand(0) == N1.getOperand(1))
1878            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1879                                Cond);
1880          if (N0.getOperand(1) == N1.getOperand(0))
1881            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1882                                Cond);
1883        }
1884      }
1885
1886      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1887        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1888          // Turn (X+C1) == C2 --> X == C2-C1
1889          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1890            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1891                                DAG.getConstant(RHSC->getAPIntValue()-
1892                                                LHSR->getAPIntValue(),
1893                                N0.getValueType()), Cond);
1894          }
1895
1896          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1897          if (N0.getOpcode() == ISD::XOR)
1898            // If we know that all of the inverted bits are zero, don't bother
1899            // performing the inversion.
1900            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1901              return
1902                DAG.getSetCC(dl, VT, N0.getOperand(0),
1903                             DAG.getConstant(LHSR->getAPIntValue() ^
1904                                               RHSC->getAPIntValue(),
1905                                             N0.getValueType()),
1906                             Cond);
1907        }
1908
1909        // Turn (C1-X) == C2 --> X == C1-C2
1910        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1911          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1912            return
1913              DAG.getSetCC(dl, VT, N0.getOperand(1),
1914                           DAG.getConstant(SUBC->getAPIntValue() -
1915                                             RHSC->getAPIntValue(),
1916                                           N0.getValueType()),
1917                           Cond);
1918          }
1919        }
1920      }
1921
1922      // Simplify (X+Z) == X -->  Z == 0
1923      if (N0.getOperand(0) == N1)
1924        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1925                        DAG.getConstant(0, N0.getValueType()), Cond);
1926      if (N0.getOperand(1) == N1) {
1927        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1928          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1929                          DAG.getConstant(0, N0.getValueType()), Cond);
1930        else if (N0.getNode()->hasOneUse()) {
1931          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1932          // (Z-X) == X  --> Z == X<<1
1933          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1934                                     N1,
1935                                     DAG.getConstant(1, getShiftAmountTy()));
1936          if (!DCI.isCalledByLegalizer())
1937            DCI.AddToWorklist(SH.getNode());
1938          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1939        }
1940      }
1941    }
1942
1943    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1944        N1.getOpcode() == ISD::XOR) {
1945      // Simplify  X == (X+Z) -->  Z == 0
1946      if (N1.getOperand(0) == N0) {
1947        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1948                        DAG.getConstant(0, N1.getValueType()), Cond);
1949      } else if (N1.getOperand(1) == N0) {
1950        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1951          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1952                          DAG.getConstant(0, N1.getValueType()), Cond);
1953        } else if (N1.getNode()->hasOneUse()) {
1954          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1955          // X == (Z-X)  --> X<<1 == Z
1956          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1957                                     DAG.getConstant(1, getShiftAmountTy()));
1958          if (!DCI.isCalledByLegalizer())
1959            DCI.AddToWorklist(SH.getNode());
1960          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1961        }
1962      }
1963    }
1964
1965    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1966    // Note that where y is variable and is known to have at most
1967    // one bit set (for example, if it is z&1) we cannot do this;
1968    // the expressions are not equivalent when y==0.
1969    if (N0.getOpcode() == ISD::AND)
1970      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1971        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1972          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1973          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1974          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1975        }
1976      }
1977    if (N1.getOpcode() == ISD::AND)
1978      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1979        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1980          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1981          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1982          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1983        }
1984      }
1985  }
1986
1987  // Fold away ALL boolean setcc's.
1988  SDValue Temp;
1989  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1990    switch (Cond) {
1991    default: assert(0 && "Unknown integer setcc!");
1992    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1993      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1994      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1995      if (!DCI.isCalledByLegalizer())
1996        DCI.AddToWorklist(Temp.getNode());
1997      break;
1998    case ISD::SETNE:  // X != Y   -->  (X^Y)
1999      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2000      break;
2001    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2002    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2003      Temp = DAG.getNOT(dl, N0, MVT::i1);
2004      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2005      if (!DCI.isCalledByLegalizer())
2006        DCI.AddToWorklist(Temp.getNode());
2007      break;
2008    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2009    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2010      Temp = DAG.getNOT(dl, N1, MVT::i1);
2011      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2012      if (!DCI.isCalledByLegalizer())
2013        DCI.AddToWorklist(Temp.getNode());
2014      break;
2015    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2016    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2017      Temp = DAG.getNOT(dl, N0, MVT::i1);
2018      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2019      if (!DCI.isCalledByLegalizer())
2020        DCI.AddToWorklist(Temp.getNode());
2021      break;
2022    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2023    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2024      Temp = DAG.getNOT(dl, N1, MVT::i1);
2025      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2026      break;
2027    }
2028    if (VT != MVT::i1) {
2029      if (!DCI.isCalledByLegalizer())
2030        DCI.AddToWorklist(N0.getNode());
2031      // FIXME: If running after legalize, we probably can't do this.
2032      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2033    }
2034    return N0;
2035  }
2036
2037  // Could not fold it.
2038  return SDValue();
2039}
2040
2041/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2042/// node is a GlobalAddress + offset.
2043bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2044                                    int64_t &Offset) const {
2045  if (isa<GlobalAddressSDNode>(N)) {
2046    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2047    GA = GASD->getGlobal();
2048    Offset += GASD->getOffset();
2049    return true;
2050  }
2051
2052  if (N->getOpcode() == ISD::ADD) {
2053    SDValue N1 = N->getOperand(0);
2054    SDValue N2 = N->getOperand(1);
2055    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2056      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2057      if (V) {
2058        Offset += V->getSExtValue();
2059        return true;
2060      }
2061    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2062      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2063      if (V) {
2064        Offset += V->getSExtValue();
2065        return true;
2066      }
2067    }
2068  }
2069  return false;
2070}
2071
2072
2073/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2074/// location that is 'Dist' units away from the location that the 'Base' load
2075/// is loading from.
2076bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
2077                                       unsigned Bytes, int Dist,
2078                                       const MachineFrameInfo *MFI) const {
2079  if (LD->getChain() != Base->getChain())
2080    return false;
2081  MVT VT = LD->getValueType(0);
2082  if (VT.getSizeInBits() / 8 != Bytes)
2083    return false;
2084
2085  SDValue Loc = LD->getOperand(1);
2086  SDValue BaseLoc = Base->getOperand(1);
2087  if (Loc.getOpcode() == ISD::FrameIndex) {
2088    if (BaseLoc.getOpcode() != ISD::FrameIndex)
2089      return false;
2090    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
2091    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2092    int FS  = MFI->getObjectSize(FI);
2093    int BFS = MFI->getObjectSize(BFI);
2094    if (FS != BFS || FS != (int)Bytes) return false;
2095    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2096  }
2097  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
2098    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
2099    if (V && (V->getSExtValue() == Dist*Bytes))
2100      return true;
2101  }
2102
2103  GlobalValue *GV1 = NULL;
2104  GlobalValue *GV2 = NULL;
2105  int64_t Offset1 = 0;
2106  int64_t Offset2 = 0;
2107  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2108  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2109  if (isGA1 && isGA2 && GV1 == GV2)
2110    return Offset1 == (Offset2 + Dist*Bytes);
2111  return false;
2112}
2113
2114
2115SDValue TargetLowering::
2116PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2117  // Default implementation: no optimization.
2118  return SDValue();
2119}
2120
2121//===----------------------------------------------------------------------===//
2122//  Inline Assembler Implementation Methods
2123//===----------------------------------------------------------------------===//
2124
2125
2126TargetLowering::ConstraintType
2127TargetLowering::getConstraintType(const std::string &Constraint) const {
2128  // FIXME: lots more standard ones to handle.
2129  if (Constraint.size() == 1) {
2130    switch (Constraint[0]) {
2131    default: break;
2132    case 'r': return C_RegisterClass;
2133    case 'm':    // memory
2134    case 'o':    // offsetable
2135    case 'V':    // not offsetable
2136      return C_Memory;
2137    case 'i':    // Simple Integer or Relocatable Constant
2138    case 'n':    // Simple Integer
2139    case 's':    // Relocatable Constant
2140    case 'X':    // Allow ANY value.
2141    case 'I':    // Target registers.
2142    case 'J':
2143    case 'K':
2144    case 'L':
2145    case 'M':
2146    case 'N':
2147    case 'O':
2148    case 'P':
2149      return C_Other;
2150    }
2151  }
2152
2153  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2154      Constraint[Constraint.size()-1] == '}')
2155    return C_Register;
2156  return C_Unknown;
2157}
2158
2159/// LowerXConstraint - try to replace an X constraint, which matches anything,
2160/// with another that has more specific requirements based on the type of the
2161/// corresponding operand.
2162const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2163  if (ConstraintVT.isInteger())
2164    return "r";
2165  if (ConstraintVT.isFloatingPoint())
2166    return "f";      // works for many targets
2167  return 0;
2168}
2169
2170/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2171/// vector.  If it is invalid, don't add anything to Ops.
2172void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2173                                                  char ConstraintLetter,
2174                                                  bool hasMemory,
2175                                                  std::vector<SDValue> &Ops,
2176                                                  SelectionDAG &DAG) const {
2177  switch (ConstraintLetter) {
2178  default: break;
2179  case 'X':     // Allows any operand; labels (basic block) use this.
2180    if (Op.getOpcode() == ISD::BasicBlock) {
2181      Ops.push_back(Op);
2182      return;
2183    }
2184    // fall through
2185  case 'i':    // Simple Integer or Relocatable Constant
2186  case 'n':    // Simple Integer
2187  case 's': {  // Relocatable Constant
2188    // These operands are interested in values of the form (GV+C), where C may
2189    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2190    // is possible and fine if either GV or C are missing.
2191    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2192    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2193
2194    // If we have "(add GV, C)", pull out GV/C
2195    if (Op.getOpcode() == ISD::ADD) {
2196      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2197      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2198      if (C == 0 || GA == 0) {
2199        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2200        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2201      }
2202      if (C == 0 || GA == 0)
2203        C = 0, GA = 0;
2204    }
2205
2206    // If we find a valid operand, map to the TargetXXX version so that the
2207    // value itself doesn't get selected.
2208    if (GA) {   // Either &GV   or   &GV+C
2209      if (ConstraintLetter != 'n') {
2210        int64_t Offs = GA->getOffset();
2211        if (C) Offs += C->getZExtValue();
2212        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2213                                                 Op.getValueType(), Offs));
2214        return;
2215      }
2216    }
2217    if (C) {   // just C, no GV.
2218      // Simple constants are not allowed for 's'.
2219      if (ConstraintLetter != 's') {
2220        // gcc prints these as sign extended.  Sign extend value to 64 bits
2221        // now; without this it would get ZExt'd later in
2222        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2223        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2224                                            MVT::i64));
2225        return;
2226      }
2227    }
2228    break;
2229  }
2230  }
2231}
2232
2233std::vector<unsigned> TargetLowering::
2234getRegClassForInlineAsmConstraint(const std::string &Constraint,
2235                                  MVT VT) const {
2236  return std::vector<unsigned>();
2237}
2238
2239
2240std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2241getRegForInlineAsmConstraint(const std::string &Constraint,
2242                             MVT VT) const {
2243  if (Constraint[0] != '{')
2244    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2245  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2246
2247  // Remove the braces from around the name.
2248  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2249
2250  // Figure out which register class contains this reg.
2251  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2252  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2253       E = RI->regclass_end(); RCI != E; ++RCI) {
2254    const TargetRegisterClass *RC = *RCI;
2255
2256    // If none of the the value types for this register class are valid, we
2257    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2258    bool isLegal = false;
2259    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2260         I != E; ++I) {
2261      if (isTypeLegal(*I)) {
2262        isLegal = true;
2263        break;
2264      }
2265    }
2266
2267    if (!isLegal) continue;
2268
2269    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2270         I != E; ++I) {
2271      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2272        return std::make_pair(*I, RC);
2273    }
2274  }
2275
2276  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2277}
2278
2279//===----------------------------------------------------------------------===//
2280// Constraint Selection.
2281
2282/// isMatchingInputConstraint - Return true of this is an input operand that is
2283/// a matching constraint like "4".
2284bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2285  assert(!ConstraintCode.empty() && "No known constraint!");
2286  return isdigit(ConstraintCode[0]);
2287}
2288
2289/// getMatchedOperand - If this is an input matching constraint, this method
2290/// returns the output operand it matches.
2291unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2292  assert(!ConstraintCode.empty() && "No known constraint!");
2293  return atoi(ConstraintCode.c_str());
2294}
2295
2296
2297/// getConstraintGenerality - Return an integer indicating how general CT
2298/// is.
2299static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2300  switch (CT) {
2301  default: assert(0 && "Unknown constraint type!");
2302  case TargetLowering::C_Other:
2303  case TargetLowering::C_Unknown:
2304    return 0;
2305  case TargetLowering::C_Register:
2306    return 1;
2307  case TargetLowering::C_RegisterClass:
2308    return 2;
2309  case TargetLowering::C_Memory:
2310    return 3;
2311  }
2312}
2313
2314/// ChooseConstraint - If there are multiple different constraints that we
2315/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2316/// This is somewhat tricky: constraints fall into four classes:
2317///    Other         -> immediates and magic values
2318///    Register      -> one specific register
2319///    RegisterClass -> a group of regs
2320///    Memory        -> memory
2321/// Ideally, we would pick the most specific constraint possible: if we have
2322/// something that fits into a register, we would pick it.  The problem here
2323/// is that if we have something that could either be in a register or in
2324/// memory that use of the register could cause selection of *other*
2325/// operands to fail: they might only succeed if we pick memory.  Because of
2326/// this the heuristic we use is:
2327///
2328///  1) If there is an 'other' constraint, and if the operand is valid for
2329///     that constraint, use it.  This makes us take advantage of 'i'
2330///     constraints when available.
2331///  2) Otherwise, pick the most general constraint present.  This prefers
2332///     'm' over 'r', for example.
2333///
2334static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2335                             bool hasMemory,  const TargetLowering &TLI,
2336                             SDValue Op, SelectionDAG *DAG) {
2337  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2338  unsigned BestIdx = 0;
2339  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2340  int BestGenerality = -1;
2341
2342  // Loop over the options, keeping track of the most general one.
2343  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2344    TargetLowering::ConstraintType CType =
2345      TLI.getConstraintType(OpInfo.Codes[i]);
2346
2347    // If this is an 'other' constraint, see if the operand is valid for it.
2348    // For example, on X86 we might have an 'rI' constraint.  If the operand
2349    // is an integer in the range [0..31] we want to use I (saving a load
2350    // of a register), otherwise we must use 'r'.
2351    if (CType == TargetLowering::C_Other && Op.getNode()) {
2352      assert(OpInfo.Codes[i].size() == 1 &&
2353             "Unhandled multi-letter 'other' constraint");
2354      std::vector<SDValue> ResultOps;
2355      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2356                                       ResultOps, *DAG);
2357      if (!ResultOps.empty()) {
2358        BestType = CType;
2359        BestIdx = i;
2360        break;
2361      }
2362    }
2363
2364    // This constraint letter is more general than the previous one, use it.
2365    int Generality = getConstraintGenerality(CType);
2366    if (Generality > BestGenerality) {
2367      BestType = CType;
2368      BestIdx = i;
2369      BestGenerality = Generality;
2370    }
2371  }
2372
2373  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2374  OpInfo.ConstraintType = BestType;
2375}
2376
2377/// ComputeConstraintToUse - Determines the constraint code and constraint
2378/// type to use for the specific AsmOperandInfo, setting
2379/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2380void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2381                                            SDValue Op,
2382                                            bool hasMemory,
2383                                            SelectionDAG *DAG) const {
2384  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2385
2386  // Single-letter constraints ('r') are very common.
2387  if (OpInfo.Codes.size() == 1) {
2388    OpInfo.ConstraintCode = OpInfo.Codes[0];
2389    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2390  } else {
2391    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2392  }
2393
2394  // 'X' matches anything.
2395  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2396    // Labels and constants are handled elsewhere ('X' is the only thing
2397    // that matches labels).
2398    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2399        isa<ConstantInt>(OpInfo.CallOperandVal))
2400      return;
2401
2402    // Otherwise, try to resolve it to something we know about by looking at
2403    // the actual operand type.
2404    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2405      OpInfo.ConstraintCode = Repl;
2406      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2407    }
2408  }
2409}
2410
2411//===----------------------------------------------------------------------===//
2412//  Loop Strength Reduction hooks
2413//===----------------------------------------------------------------------===//
2414
2415/// isLegalAddressingMode - Return true if the addressing mode represented
2416/// by AM is legal for this target, for a load/store of the specified type.
2417bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2418                                           const Type *Ty) const {
2419  // The default implementation of this implements a conservative RISCy, r+r and
2420  // r+i addr mode.
2421
2422  // Allows a sign-extended 16-bit immediate field.
2423  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2424    return false;
2425
2426  // No global is ever allowed as a base.
2427  if (AM.BaseGV)
2428    return false;
2429
2430  // Only support r+r,
2431  switch (AM.Scale) {
2432  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2433    break;
2434  case 1:
2435    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2436      return false;
2437    // Otherwise we have r+r or r+i.
2438    break;
2439  case 2:
2440    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2441      return false;
2442    // Allow 2*r as r+r.
2443    break;
2444  }
2445
2446  return true;
2447}
2448
2449/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2450/// return a DAG expression to select that will generate the same value by
2451/// multiplying by a magic number.  See:
2452/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2453SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2454                                  std::vector<SDNode*>* Created) const {
2455  MVT VT = N->getValueType(0);
2456  DebugLoc dl= N->getDebugLoc();
2457
2458  // Check to see if we can do this.
2459  // FIXME: We should be more aggressive here.
2460  if (!isTypeLegal(VT))
2461    return SDValue();
2462
2463  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2464  APInt::ms magics = d.magic();
2465
2466  // Multiply the numerator (operand 0) by the magic value
2467  // FIXME: We should support doing a MUL in a wider type
2468  SDValue Q;
2469  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2470    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2471                    DAG.getConstant(magics.m, VT));
2472  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2473    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2474                              N->getOperand(0),
2475                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2476  else
2477    return SDValue();       // No mulhs or equvialent
2478  // If d > 0 and m < 0, add the numerator
2479  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2480    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2481    if (Created)
2482      Created->push_back(Q.getNode());
2483  }
2484  // If d < 0 and m > 0, subtract the numerator.
2485  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2486    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2487    if (Created)
2488      Created->push_back(Q.getNode());
2489  }
2490  // Shift right algebraic if shift value is nonzero
2491  if (magics.s > 0) {
2492    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2493                    DAG.getConstant(magics.s, getShiftAmountTy()));
2494    if (Created)
2495      Created->push_back(Q.getNode());
2496  }
2497  // Extract the sign bit and add it to the quotient
2498  SDValue T =
2499    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2500                                                 getShiftAmountTy()));
2501  if (Created)
2502    Created->push_back(T.getNode());
2503  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2504}
2505
2506/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2507/// return a DAG expression to select that will generate the same value by
2508/// multiplying by a magic number.  See:
2509/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2510SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2511                                  std::vector<SDNode*>* Created) const {
2512  MVT VT = N->getValueType(0);
2513  DebugLoc dl = N->getDebugLoc();
2514
2515  // Check to see if we can do this.
2516  // FIXME: We should be more aggressive here.
2517  if (!isTypeLegal(VT))
2518    return SDValue();
2519
2520  // FIXME: We should use a narrower constant when the upper
2521  // bits are known to be zero.
2522  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2523  APInt::mu magics = N1C->getAPIntValue().magicu();
2524
2525  // Multiply the numerator (operand 0) by the magic value
2526  // FIXME: We should support doing a MUL in a wider type
2527  SDValue Q;
2528  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2529    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2530                    DAG.getConstant(magics.m, VT));
2531  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2532    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2533                              N->getOperand(0),
2534                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2535  else
2536    return SDValue();       // No mulhu or equvialent
2537  if (Created)
2538    Created->push_back(Q.getNode());
2539
2540  if (magics.a == 0) {
2541    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2542           "We shouldn't generate an undefined shift!");
2543    return DAG.getNode(ISD::SRL, dl, VT, Q,
2544                       DAG.getConstant(magics.s, getShiftAmountTy()));
2545  } else {
2546    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2547    if (Created)
2548      Created->push_back(NPQ.getNode());
2549    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2550                      DAG.getConstant(1, getShiftAmountTy()));
2551    if (Created)
2552      Created->push_back(NPQ.getNode());
2553    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2554    if (Created)
2555      Created->push_back(NPQ.getNode());
2556    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2557                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2558  }
2559}
2560
2561/// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2562/// node that don't prevent tail call optimization.
2563static SDValue IgnoreHarmlessInstructions(SDValue node) {
2564  // Found call return.
2565  if (node.getOpcode() == ISD::CALL) return node;
2566  // Ignore MERGE_VALUES. Will have at least one operand.
2567  if (node.getOpcode() == ISD::MERGE_VALUES)
2568    return IgnoreHarmlessInstructions(node.getOperand(0));
2569  // Ignore ANY_EXTEND node.
2570  if (node.getOpcode() == ISD::ANY_EXTEND)
2571    return IgnoreHarmlessInstructions(node.getOperand(0));
2572  if (node.getOpcode() == ISD::TRUNCATE)
2573    return IgnoreHarmlessInstructions(node.getOperand(0));
2574  // Any other node type.
2575  return node;
2576}
2577
2578bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
2579                                                    SDValue Ret) {
2580  unsigned NumOps = Ret.getNumOperands();
2581  // ISD::CALL results:(value0, ..., valuen, chain)
2582  // ISD::RET  operands:(chain, value0, flag0, ..., valuen, flagn)
2583  // Value return:
2584  // Check that operand of the RET node sources from the CALL node. The RET node
2585  // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2586  // value.
2587  if (NumOps > 1 &&
2588      IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0))
2589    return true;
2590  // void return: The RET node  has the chain result value of the CALL node as
2591  // input.
2592  if (NumOps == 1 &&
2593      Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2594    return true;
2595
2596  return false;
2597}
2598