SelectionDAGBuilder.cpp revision 256281
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GlobalVariable.h"
42#include "llvm/IR/InlineAsm.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Module.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/IntegersSubsetMapping.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      MVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, MVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  EVT PartEVT = Val.getValueType();
183
184  if (PartEVT == ValueVT)
185    return Val;
186
187  if (PartEVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartEVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      MVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT;
231    MVT RegisterVT;
232    unsigned NumIntermediates;
233    unsigned NumRegs =
234    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
235                               NumIntermediates, RegisterVT);
236    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
237    NumParts = NumRegs; // Silence a compiler warning.
238    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
239    assert(RegisterVT == Parts[0].getSimpleValueType() &&
240           "Part type doesn't match part!");
241
242    // Assemble the parts into intermediate operands.
243    SmallVector<SDValue, 8> Ops(NumIntermediates);
244    if (NumIntermediates == NumParts) {
245      // If the register was not expanded, truncate or copy the value,
246      // as appropriate.
247      for (unsigned i = 0; i != NumParts; ++i)
248        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
249                                  PartVT, IntermediateVT, V);
250    } else if (NumParts > 0) {
251      // If the intermediate type was expanded, build the intermediate
252      // operands from the parts.
253      assert(NumParts % NumIntermediates == 0 &&
254             "Must expand into a divisible number of parts!");
255      unsigned Factor = NumParts / NumIntermediates;
256      for (unsigned i = 0; i != NumIntermediates; ++i)
257        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
258                                  PartVT, IntermediateVT, V);
259    }
260
261    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
262    // intermediate operands.
263    Val = DAG.getNode(IntermediateVT.isVector() ?
264                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
265                      ValueVT, &Ops[0], NumIntermediates);
266  }
267
268  // There is now one part, held in Val.  Correct it to match ValueVT.
269  EVT PartEVT = Val.getValueType();
270
271  if (PartEVT == ValueVT)
272    return Val;
273
274  if (PartEVT.isVector()) {
275    // If the element type of the source/dest vectors are the same, but the
276    // parts vector has more elements than the value vector, then we have a
277    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
278    // elements we want.
279    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
280      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
281             "Cannot narrow, it would be a lossy transformation");
282      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
283                         DAG.getIntPtrConstant(0));
284    }
285
286    // Vector/Vector bitcast.
287    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
288      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
289
290    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
291      "Cannot handle this kind of promotion");
292    // Promoted vector extract
293    bool Smaller = ValueVT.bitsLE(PartEVT);
294    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
295                       DL, ValueVT, Val);
296
297  }
298
299  // Trivial bitcast if the types are the same size and the destination
300  // vector type is legal.
301  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
302      TLI.isTypeLegal(ValueVT))
303    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
304
305  // Handle cases such as i8 -> <1 x i1>
306  if (ValueVT.getVectorNumElements() != 1) {
307    LLVMContext &Ctx = *DAG.getContext();
308    Twine ErrMsg("non-trivial scalar-to-vector conversion");
309    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
310      if (const CallInst *CI = dyn_cast<CallInst>(I))
311        if (isa<InlineAsm>(CI->getCalledValue()))
312          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
313      Ctx.emitError(I, ErrMsg);
314    } else {
315      Ctx.emitError(ErrMsg);
316    }
317    return DAG.getUNDEF(ValueVT);
318  }
319
320  if (ValueVT.getVectorNumElements() == 1 &&
321      ValueVT.getVectorElementType() != PartEVT) {
322    bool Smaller = ValueVT.bitsLE(PartEVT);
323    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
324                       DL, ValueVT.getScalarType(), Val);
325  }
326
327  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
328}
329
330static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
331                                 SDValue Val, SDValue *Parts, unsigned NumParts,
332                                 MVT PartVT, const Value *V);
333
334/// getCopyToParts - Create a series of nodes that contain the specified value
335/// split into legal parts.  If the parts contain more bits than Val, then, for
336/// integers, ExtendKind can be used to specify how to generate the extra bits.
337static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
338                           SDValue Val, SDValue *Parts, unsigned NumParts,
339                           MVT PartVT, const Value *V,
340                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
341  EVT ValueVT = Val.getValueType();
342
343  // Handle the vector case separately.
344  if (ValueVT.isVector())
345    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
346
347  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348  unsigned PartBits = PartVT.getSizeInBits();
349  unsigned OrigNumParts = NumParts;
350  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
351
352  if (NumParts == 0)
353    return;
354
355  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
356  EVT PartEVT = PartVT;
357  if (PartEVT == ValueVT) {
358    assert(NumParts == 1 && "No-op copy with multiple parts!");
359    Parts[0] = Val;
360    return;
361  }
362
363  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
364    // If the parts cover more bits than the value has, promote the value.
365    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
366      assert(NumParts == 1 && "Do not know what to promote to!");
367      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
368    } else {
369      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370             ValueVT.isInteger() &&
371             "Unknown mismatch!");
372      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
374      if (PartVT == MVT::x86mmx)
375        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376    }
377  } else if (PartBits == ValueVT.getSizeInBits()) {
378    // Different types of the same size.
379    assert(NumParts == 1 && PartEVT != ValueVT);
380    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
381  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
382    // If the parts cover less bits than value has, truncate the value.
383    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384           ValueVT.isInteger() &&
385           "Unknown mismatch!");
386    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
388    if (PartVT == MVT::x86mmx)
389      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390  }
391
392  // The value may have changed - recompute ValueVT.
393  ValueVT = Val.getValueType();
394  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
395         "Failed to tile the value with PartVT!");
396
397  if (NumParts == 1) {
398    if (PartEVT != ValueVT) {
399      LLVMContext &Ctx = *DAG.getContext();
400      Twine ErrMsg("scalar-to-vector conversion failed");
401      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
402        if (const CallInst *CI = dyn_cast<CallInst>(I))
403          if (isa<InlineAsm>(CI->getCalledValue()))
404            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
405        Ctx.emitError(I, ErrMsg);
406      } else {
407        Ctx.emitError(ErrMsg);
408      }
409    }
410
411    Parts[0] = Val;
412    return;
413  }
414
415  // Expand the value into multiple parts.
416  if (NumParts & (NumParts - 1)) {
417    // The number of parts is not a power of 2.  Split off and copy the tail.
418    assert(PartVT.isInteger() && ValueVT.isInteger() &&
419           "Do not know what to expand to!");
420    unsigned RoundParts = 1 << Log2_32(NumParts);
421    unsigned RoundBits = RoundParts * PartBits;
422    unsigned OddParts = NumParts - RoundParts;
423    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                 DAG.getIntPtrConstant(RoundBits));
425    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427    if (TLI.isBigEndian())
428      // The odd parts were reversed by getCopyToParts - unreverse them.
429      std::reverse(Parts + RoundParts, Parts + NumParts);
430
431    NumParts = RoundParts;
432    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434  }
435
436  // The number of parts is a power of 2.  Repeatedly bisect the value using
437  // EXTRACT_ELEMENT.
438  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                         EVT::getIntegerVT(*DAG.getContext(),
440                                           ValueVT.getSizeInBits()),
441                         Val);
442
443  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444    for (unsigned i = 0; i < NumParts; i += StepSize) {
445      unsigned ThisBits = StepSize * PartBits / 2;
446      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447      SDValue &Part0 = Parts[i];
448      SDValue &Part1 = Parts[i+StepSize/2];
449
450      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(1));
452      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455      if (ThisBits == PartBits && ThisVT != PartVT) {
456        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458      }
459    }
460  }
461
462  if (TLI.isBigEndian())
463    std::reverse(Parts, Parts + OrigNumParts);
464}
465
466
467/// getCopyToPartsVector - Create a series of nodes that contain the specified
468/// value split into legal parts.
469static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
470                                 SDValue Val, SDValue *Parts, unsigned NumParts,
471                                 MVT PartVT, const Value *V) {
472  EVT ValueVT = Val.getValueType();
473  assert(ValueVT.isVector() && "Not a vector");
474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476  if (NumParts == 1) {
477    EVT PartEVT = PartVT;
478    if (PartEVT == ValueVT) {
479      // Nothing to do.
480    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481      // Bitconvert vector->vector case.
482      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483    } else if (PartVT.isVector() &&
484               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486      EVT ElementVT = PartVT.getVectorElementType();
487      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
488      // undef elements.
489      SmallVector<SDValue, 16> Ops;
490      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
493
494      for (unsigned i = ValueVT.getVectorNumElements(),
495           e = PartVT.getVectorNumElements(); i != e; ++i)
496        Ops.push_back(DAG.getUNDEF(ElementVT));
497
498      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
499
500      // FIXME: Use CONCAT for 2x -> 4x.
501
502      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
503      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
504    } else if (PartVT.isVector() &&
505               PartEVT.getVectorElementType().bitsGE(
506                 ValueVT.getVectorElementType()) &&
507               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
508
509      // Promoted vector extract
510      bool Smaller = PartEVT.bitsLE(ValueVT);
511      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
512                        DL, PartVT, Val);
513    } else{
514      // Vector -> scalar conversion.
515      assert(ValueVT.getVectorNumElements() == 1 &&
516             "Only trivial vector-to-scalar conversions should get here!");
517      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                        PartVT, Val, DAG.getIntPtrConstant(0));
519
520      bool Smaller = ValueVT.bitsLE(PartVT);
521      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
522                         DL, PartVT, Val);
523    }
524
525    Parts[0] = Val;
526    return;
527  }
528
529  // Handle a multi-element vector.
530  EVT IntermediateVT;
531  MVT RegisterVT;
532  unsigned NumIntermediates;
533  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
534                                                IntermediateVT,
535                                                NumIntermediates, RegisterVT);
536  unsigned NumElements = ValueVT.getVectorNumElements();
537
538  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
539  NumParts = NumRegs; // Silence a compiler warning.
540  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
541
542  // Split the vector into intermediate operands.
543  SmallVector<SDValue, 8> Ops(NumIntermediates);
544  for (unsigned i = 0; i != NumIntermediates; ++i) {
545    if (IntermediateVT.isVector())
546      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
547                           IntermediateVT, Val,
548                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
549    else
550      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
551                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
552  }
553
554  // Split the intermediate operands into legal parts.
555  if (NumParts == NumIntermediates) {
556    // If the register was not expanded, promote or copy the value,
557    // as appropriate.
558    for (unsigned i = 0; i != NumParts; ++i)
559      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
560  } else if (NumParts > 0) {
561    // If the intermediate type was expanded, split each the value into
562    // legal parts.
563    assert(NumParts % NumIntermediates == 0 &&
564           "Must expand into a divisible number of parts!");
565    unsigned Factor = NumParts / NumIntermediates;
566    for (unsigned i = 0; i != NumIntermediates; ++i)
567      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
568  }
569}
570
571namespace {
572  /// RegsForValue - This struct represents the registers (physical or virtual)
573  /// that a particular set of values is assigned, and the type information
574  /// about the value. The most common situation is to represent one value at a
575  /// time, but struct or array values are handled element-wise as multiple
576  /// values.  The splitting of aggregates is performed recursively, so that we
577  /// never have aggregate-typed registers. The values at this point do not
578  /// necessarily have legal types, so each value may require one or more
579  /// registers of some legal type.
580  ///
581  struct RegsForValue {
582    /// ValueVTs - The value types of the values, which may not be legal, and
583    /// may need be promoted or synthesized from one or more registers.
584    ///
585    SmallVector<EVT, 4> ValueVTs;
586
587    /// RegVTs - The value types of the registers. This is the same size as
588    /// ValueVTs and it records, for each value, what the type of the assigned
589    /// register or registers are. (Individual values are never synthesized
590    /// from more than one type of register.)
591    ///
592    /// With virtual registers, the contents of RegVTs is redundant with TLI's
593    /// getRegisterType member function, however when with physical registers
594    /// it is necessary to have a separate record of the types.
595    ///
596    SmallVector<MVT, 4> RegVTs;
597
598    /// Regs - This list holds the registers assigned to the values.
599    /// Each legal or promoted value requires one register, and each
600    /// expanded value requires multiple registers.
601    ///
602    SmallVector<unsigned, 4> Regs;
603
604    RegsForValue() {}
605
606    RegsForValue(const SmallVector<unsigned, 4> &regs,
607                 MVT regvt, EVT valuevt)
608      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
609
610    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
611                 unsigned Reg, Type *Ty) {
612      ComputeValueVTs(tli, Ty, ValueVTs);
613
614      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
615        EVT ValueVT = ValueVTs[Value];
616        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
617        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
618        for (unsigned i = 0; i != NumRegs; ++i)
619          Regs.push_back(Reg + i);
620        RegVTs.push_back(RegisterVT);
621        Reg += NumRegs;
622      }
623    }
624
625    /// areValueTypesLegal - Return true if types of all the values are legal.
626    bool areValueTypesLegal(const TargetLowering &TLI) {
627      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
628        MVT RegisterVT = RegVTs[Value];
629        if (!TLI.isTypeLegal(RegisterVT))
630          return false;
631      }
632      return true;
633    }
634
635    /// append - Add the specified values to this one.
636    void append(const RegsForValue &RHS) {
637      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
638      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
639      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
640    }
641
642    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643    /// this value and returns the result as a ValueVTs value.  This uses
644    /// Chain/Flag as the input and updates them for the output Chain/Flag.
645    /// If the Flag pointer is NULL, no flag is used.
646    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
647                            DebugLoc dl,
648                            SDValue &Chain, SDValue *Flag,
649                            const Value *V = 0) const;
650
651    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
652    /// specified value into the registers specified by this object.  This uses
653    /// Chain/Flag as the input and updates them for the output Chain/Flag.
654    /// If the Flag pointer is NULL, no flag is used.
655    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
656                       SDValue &Chain, SDValue *Flag, const Value *V) const;
657
658    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659    /// operand list.  This adds the code marker, matching input operand index
660    /// (if applicable), and includes the number of values added into it.
661    void AddInlineAsmOperands(unsigned Kind,
662                              bool HasMatching, unsigned MatchingIdx,
663                              SelectionDAG &DAG,
664                              std::vector<SDValue> &Ops) const;
665  };
666}
667
668/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669/// this value and returns the result as a ValueVT value.  This uses
670/// Chain/Flag as the input and updates them for the output Chain/Flag.
671/// If the Flag pointer is NULL, no flag is used.
672SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673                                      FunctionLoweringInfo &FuncInfo,
674                                      DebugLoc dl,
675                                      SDValue &Chain, SDValue *Flag,
676                                      const Value *V) const {
677  // A Value with type {} or [0 x %t] needs no registers.
678  if (ValueVTs.empty())
679    return SDValue();
680
681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683  // Assemble the legal parts into the final values.
684  SmallVector<SDValue, 4> Values(ValueVTs.size());
685  SmallVector<SDValue, 8> Parts;
686  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687    // Copy the legal parts from the registers.
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    MVT RegisterVT = RegVTs[Value];
691
692    Parts.resize(NumRegs);
693    for (unsigned i = 0; i != NumRegs; ++i) {
694      SDValue P;
695      if (Flag == 0) {
696        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697      } else {
698        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699        *Flag = P.getValue(2);
700      }
701
702      Chain = P.getValue(1);
703      Parts[i] = P;
704
705      // If the source register was virtual and if we know something about it,
706      // add an assert node.
707      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708          !RegisterVT.isInteger() || RegisterVT.isVector())
709        continue;
710
711      const FunctionLoweringInfo::LiveOutInfo *LOI =
712        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713      if (!LOI)
714        continue;
715
716      unsigned RegSize = RegisterVT.getSizeInBits();
717      unsigned NumSignBits = LOI->NumSignBits;
718      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719
720      // FIXME: We capture more information than the dag can represent.  For
721      // now, just use the tightest assertzext/assertsext possible.
722      bool isSExt = true;
723      EVT FromVT(MVT::Other);
724      if (NumSignBits == RegSize)
725        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
726      else if (NumZeroBits >= RegSize-1)
727        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
728      else if (NumSignBits > RegSize-8)
729        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
730      else if (NumZeroBits >= RegSize-8)
731        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
732      else if (NumSignBits > RegSize-16)
733        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
734      else if (NumZeroBits >= RegSize-16)
735        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
736      else if (NumSignBits > RegSize-32)
737        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
738      else if (NumZeroBits >= RegSize-32)
739        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
740      else
741        continue;
742
743      // Add an assertion node.
744      assert(FromVT != MVT::Other);
745      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
746                             RegisterVT, P, DAG.getValueType(FromVT));
747    }
748
749    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
750                                     NumRegs, RegisterVT, ValueVT, V);
751    Part += NumRegs;
752    Parts.clear();
753  }
754
755  return DAG.getNode(ISD::MERGE_VALUES, dl,
756                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
757                     &Values[0], ValueVTs.size());
758}
759
760/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
761/// specified value into the registers specified by this object.  This uses
762/// Chain/Flag as the input and updates them for the output Chain/Flag.
763/// If the Flag pointer is NULL, no flag is used.
764void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
765                                 SDValue &Chain, SDValue *Flag,
766                                 const Value *V) const {
767  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
768
769  // Get the list of the values's legal parts.
770  unsigned NumRegs = Regs.size();
771  SmallVector<SDValue, 8> Parts(NumRegs);
772  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
773    EVT ValueVT = ValueVTs[Value];
774    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
775    MVT RegisterVT = RegVTs[Value];
776    ISD::NodeType ExtendKind =
777      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
778
779    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
780                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
781    Part += NumParts;
782  }
783
784  // Copy the parts into the registers.
785  SmallVector<SDValue, 8> Chains(NumRegs);
786  for (unsigned i = 0; i != NumRegs; ++i) {
787    SDValue Part;
788    if (Flag == 0) {
789      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
790    } else {
791      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
792      *Flag = Part.getValue(1);
793    }
794
795    Chains[i] = Part.getValue(0);
796  }
797
798  if (NumRegs == 1 || Flag)
799    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
800    // flagged to it. That is the CopyToReg nodes and the user are considered
801    // a single scheduling unit. If we create a TokenFactor and return it as
802    // chain, then the TokenFactor is both a predecessor (operand) of the
803    // user as well as a successor (the TF operands are flagged to the user).
804    // c1, f1 = CopyToReg
805    // c2, f2 = CopyToReg
806    // c3     = TokenFactor c1, c2
807    // ...
808    //        = op c3, ..., f2
809    Chain = Chains[NumRegs-1];
810  else
811    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
812}
813
814/// AddInlineAsmOperands - Add this value to the specified inlineasm node
815/// operand list.  This adds the code marker and includes the number of
816/// values added into it.
817void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
818                                        unsigned MatchingIdx,
819                                        SelectionDAG &DAG,
820                                        std::vector<SDValue> &Ops) const {
821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822
823  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
824  if (HasMatching)
825    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
826  else if (!Regs.empty() &&
827           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
828    // Put the register class of the virtual registers in the flag word.  That
829    // way, later passes can recompute register class constraints for inline
830    // assembly as well as normal instructions.
831    // Don't do this for tied operands that can use the regclass information
832    // from the def.
833    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
834    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
835    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
836  }
837
838  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
839  Ops.push_back(Res);
840
841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843    MVT RegisterVT = RegVTs[Value];
844    for (unsigned i = 0; i != NumRegs; ++i) {
845      assert(Reg < Regs.size() && "Mismatch in # registers expected");
846      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
847    }
848  }
849}
850
851void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
852                               const TargetLibraryInfo *li) {
853  AA = &aa;
854  GFI = gfi;
855  LibInfo = li;
856  TD = DAG.getTarget().getDataLayout();
857  Context = DAG.getContext();
858  LPadToCallSiteMap.clear();
859}
860
861/// clear - Clear out the current SelectionDAG and the associated
862/// state and prepare this SelectionDAGBuilder object to be used
863/// for a new block. This doesn't clear out information about
864/// additional blocks that are needed to complete switch lowering
865/// or PHI node updating; that information is cleared out as it is
866/// consumed.
867void SelectionDAGBuilder::clear() {
868  NodeMap.clear();
869  UnusedArgNodeMap.clear();
870  PendingLoads.clear();
871  PendingExports.clear();
872  CurDebugLoc = DebugLoc();
873  HasTailCall = false;
874}
875
876/// clearDanglingDebugInfo - Clear the dangling debug information
877/// map. This function is separated from the clear so that debug
878/// information that is dangling in a basic block can be properly
879/// resolved in a different basic block. This allows the
880/// SelectionDAG to resolve dangling debug information attached
881/// to PHI nodes.
882void SelectionDAGBuilder::clearDanglingDebugInfo() {
883  DanglingDebugInfoMap.clear();
884}
885
886/// getRoot - Return the current virtual root of the Selection DAG,
887/// flushing any PendingLoad items. This must be done before emitting
888/// a store or any other node that may need to be ordered after any
889/// prior load instructions.
890///
891SDValue SelectionDAGBuilder::getRoot() {
892  if (PendingLoads.empty())
893    return DAG.getRoot();
894
895  if (PendingLoads.size() == 1) {
896    SDValue Root = PendingLoads[0];
897    DAG.setRoot(Root);
898    PendingLoads.clear();
899    return Root;
900  }
901
902  // Otherwise, we have to make a token factor node.
903  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
904                               &PendingLoads[0], PendingLoads.size());
905  PendingLoads.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910/// getControlRoot - Similar to getRoot, but instead of flushing all the
911/// PendingLoad items, flush all the PendingExports items. It is necessary
912/// to do this before emitting a terminator instruction.
913///
914SDValue SelectionDAGBuilder::getControlRoot() {
915  SDValue Root = DAG.getRoot();
916
917  if (PendingExports.empty())
918    return Root;
919
920  // Turn all of the CopyToReg chains into one factored node.
921  if (Root.getOpcode() != ISD::EntryToken) {
922    unsigned i = 0, e = PendingExports.size();
923    for (; i != e; ++i) {
924      assert(PendingExports[i].getNode()->getNumOperands() > 1);
925      if (PendingExports[i].getNode()->getOperand(0) == Root)
926        break;  // Don't add the root if we already indirectly depend on it.
927    }
928
929    if (i == e)
930      PendingExports.push_back(Root);
931  }
932
933  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
934                     &PendingExports[0],
935                     PendingExports.size());
936  PendingExports.clear();
937  DAG.setRoot(Root);
938  return Root;
939}
940
941void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
942  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
943  DAG.AssignOrdering(Node, SDNodeOrder);
944
945  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
946    AssignOrderingToNode(Node->getOperand(I).getNode());
947}
948
949void SelectionDAGBuilder::visit(const Instruction &I) {
950  // Set up outgoing PHI node register values before emitting the terminator.
951  if (isa<TerminatorInst>(&I))
952    HandlePHINodesInSuccessorBlocks(I.getParent());
953
954  CurDebugLoc = I.getDebugLoc();
955
956  visit(I.getOpcode(), I);
957
958  if (!isa<TerminatorInst>(&I) && !HasTailCall)
959    CopyToExportRegsIfNeeded(&I);
960
961  CurDebugLoc = DebugLoc();
962}
963
964void SelectionDAGBuilder::visitPHI(const PHINode &) {
965  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
966}
967
968void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
969  // Note: this doesn't use InstVisitor, because it has to work with
970  // ConstantExpr's in addition to instructions.
971  switch (Opcode) {
972  default: llvm_unreachable("Unknown instruction type encountered!");
973    // Build the switch statement using the Instruction.def file.
974#define HANDLE_INST(NUM, OPCODE, CLASS) \
975    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
976#include "llvm/IR/Instruction.def"
977  }
978
979  // Assign the ordering to the freshly created DAG nodes.
980  if (NodeMap.count(&I)) {
981    ++SDNodeOrder;
982    AssignOrderingToNode(getValue(&I).getNode());
983  }
984}
985
986// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987// generate the debug data structures now that we've seen its definition.
988void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
989                                                   SDValue Val) {
990  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
991  if (DDI.getDI()) {
992    const DbgValueInst *DI = DDI.getDI();
993    DebugLoc dl = DDI.getdl();
994    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995    MDNode *Variable = DI->getVariable();
996    uint64_t Offset = DI->getOffset();
997    SDDbgValue *SDV;
998    if (Val.getNode()) {
999      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002        DAG.AddDbgValue(SDV, Val.getNode(), false);
1003      }
1004    } else
1005      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1006    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1007  }
1008}
1009
1010/// getValue - Return an SDValue for the given Value.
1011SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012  // If we already have an SDValue for this value, use it. It's important
1013  // to do this first, so that we don't create a CopyFromReg if we already
1014  // have a regular SDValue.
1015  SDValue &N = NodeMap[V];
1016  if (N.getNode()) return N;
1017
1018  // If there's a virtual register allocated and initialized for this
1019  // value, use it.
1020  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021  if (It != FuncInfo.ValueMap.end()) {
1022    unsigned InReg = It->second;
1023    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1024    SDValue Chain = DAG.getEntryNode();
1025    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1026    resolveDanglingDebugInfo(V, N);
1027    return N;
1028  }
1029
1030  // Otherwise create a new SDValue and remember it.
1031  SDValue Val = getValueImpl(V);
1032  NodeMap[V] = Val;
1033  resolveDanglingDebugInfo(V, Val);
1034  return Val;
1035}
1036
1037/// getNonRegisterValue - Return an SDValue for the given Value, but
1038/// don't look in FuncInfo.ValueMap for a virtual register.
1039SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1040  // If we already have an SDValue for this value, use it.
1041  SDValue &N = NodeMap[V];
1042  if (N.getNode()) return N;
1043
1044  // Otherwise create a new SDValue and remember it.
1045  SDValue Val = getValueImpl(V);
1046  NodeMap[V] = Val;
1047  resolveDanglingDebugInfo(V, Val);
1048  return Val;
1049}
1050
1051/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1052/// Create an SDValue for the given value.
1053SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI.getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return DAG.getConstant(0, TLI.getPointerTy());
1065
1066    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return DAG.getConstantFP(*CFP, VT);
1068
1069    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070      return DAG.getUNDEF(VT);
1071
1072    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDValue N1 = NodeMap[V];
1075      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076      return N1;
1077    }
1078
1079    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080      SmallVector<SDValue, 4> Constants;
1081      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082           OI != OE; ++OI) {
1083        SDNode *Val = getValue(*OI).getNode();
1084        // If the operand is an empty aggregate, there are no values.
1085        if (!Val) continue;
1086        // Add each leaf value from the operand to the Constants list
1087        // to form a flattened list of all the values.
1088        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089          Constants.push_back(SDValue(Val, i));
1090      }
1091
1092      return DAG.getMergeValues(&Constants[0], Constants.size(),
1093                                getCurDebugLoc());
1094    }
1095
1096    if (const ConstantDataSequential *CDS =
1097          dyn_cast<ConstantDataSequential>(C)) {
1098      SmallVector<SDValue, 4> Ops;
1099      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101        // Add each leaf value from the operand to the Constants list
1102        // to form a flattened list of all the values.
1103        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104          Ops.push_back(SDValue(Val, i));
1105      }
1106
1107      if (isa<ArrayType>(CDS->getType()))
1108        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1109      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1110                                      VT, &Ops[0], Ops.size());
1111    }
1112
1113    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115             "Unknown struct or array constant!");
1116
1117      SmallVector<EVT, 4> ValueVTs;
1118      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1119      unsigned NumElts = ValueVTs.size();
1120      if (NumElts == 0)
1121        return SDValue(); // empty struct
1122      SmallVector<SDValue, 4> Constants(NumElts);
1123      for (unsigned i = 0; i != NumElts; ++i) {
1124        EVT EltVT = ValueVTs[i];
1125        if (isa<UndefValue>(C))
1126          Constants[i] = DAG.getUNDEF(EltVT);
1127        else if (EltVT.isFloatingPoint())
1128          Constants[i] = DAG.getConstantFP(0, EltVT);
1129        else
1130          Constants[i] = DAG.getConstant(0, EltVT);
1131      }
1132
1133      return DAG.getMergeValues(&Constants[0], NumElts,
1134                                getCurDebugLoc());
1135    }
1136
1137    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138      return DAG.getBlockAddress(BA, VT);
1139
1140    VectorType *VecTy = cast<VectorType>(V->getType());
1141    unsigned NumElements = VecTy->getNumElements();
1142
1143    // Now that we know the number and type of the elements, get that number of
1144    // elements into the Ops array based on what kind of constant it is.
1145    SmallVector<SDValue, 16> Ops;
1146    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147      for (unsigned i = 0; i != NumElements; ++i)
1148        Ops.push_back(getValue(CV->getOperand(i)));
1149    } else {
1150      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1152
1153      SDValue Op;
1154      if (EltVT.isFloatingPoint())
1155        Op = DAG.getConstantFP(0, EltVT);
1156      else
1157        Op = DAG.getConstant(0, EltVT);
1158      Ops.assign(NumElements, Op);
1159    }
1160
1161    // Create a BUILD_VECTOR node.
1162    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1163                                    VT, &Ops[0], Ops.size());
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  SDValue Chain = getControlRoot();
1188  SmallVector<ISD::OutputArg, 8> Outs;
1189  SmallVector<SDValue, 8> OutVals;
1190
1191  if (!FuncInfo.CanLowerReturn) {
1192    unsigned DemoteReg = FuncInfo.DemoteRegister;
1193    const Function *F = I.getParent()->getParent();
1194
1195    // Emit a store of the return value through the virtual register.
1196    // Leave Outs empty so that LowerReturn won't try to load return
1197    // registers the usual way.
1198    SmallVector<EVT, 1> PtrValueVTs;
1199    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1200                    PtrValueVTs);
1201
1202    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1203    SDValue RetOp = getValue(I.getOperand(0));
1204
1205    SmallVector<EVT, 4> ValueVTs;
1206    SmallVector<uint64_t, 4> Offsets;
1207    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1208    unsigned NumValues = ValueVTs.size();
1209
1210    SmallVector<SDValue, 4> Chains(NumValues);
1211    for (unsigned i = 0; i != NumValues; ++i) {
1212      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1213                                RetPtr.getValueType(), RetPtr,
1214                                DAG.getIntPtrConstant(Offsets[i]));
1215      Chains[i] =
1216        DAG.getStore(Chain, getCurDebugLoc(),
1217                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1218                     // FIXME: better loc info would be nice.
1219                     Add, MachinePointerInfo(), false, false, 0);
1220    }
1221
1222    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1223                        MVT::Other, &Chains[0], NumValues);
1224  } else if (I.getNumOperands() != 0) {
1225    SmallVector<EVT, 4> ValueVTs;
1226    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1227    unsigned NumValues = ValueVTs.size();
1228    if (NumValues) {
1229      SDValue RetOp = getValue(I.getOperand(0));
1230      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1231        EVT VT = ValueVTs[j];
1232
1233        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1234
1235        const Function *F = I.getParent()->getParent();
1236        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1237                                            Attribute::SExt))
1238          ExtendKind = ISD::SIGN_EXTEND;
1239        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1240                                                 Attribute::ZExt))
1241          ExtendKind = ISD::ZERO_EXTEND;
1242
1243        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1244          VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1245
1246        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1247        MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1248        SmallVector<SDValue, 4> Parts(NumParts);
1249        getCopyToParts(DAG, getCurDebugLoc(),
1250                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1251                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1252
1253        // 'inreg' on function refers to return value
1254        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1255        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1256                                            Attribute::InReg))
1257          Flags.setInReg();
1258
1259        // Propagate extension type if any
1260        if (ExtendKind == ISD::SIGN_EXTEND)
1261          Flags.setSExt();
1262        else if (ExtendKind == ISD::ZERO_EXTEND)
1263          Flags.setZExt();
1264
1265        for (unsigned i = 0; i < NumParts; ++i) {
1266          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1267                                        /*isfixed=*/true, 0, 0));
1268          OutVals.push_back(Parts[i]);
1269        }
1270      }
1271    }
1272  }
1273
1274  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1275  CallingConv::ID CallConv =
1276    DAG.getMachineFunction().getFunction()->getCallingConv();
1277  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1278                          Outs, OutVals, getCurDebugLoc(), DAG);
1279
1280  // Verify that the target's LowerReturn behaved as expected.
1281  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1282         "LowerReturn didn't return a valid chain!");
1283
1284  // Update the DAG with the new chain value resulting from return lowering.
1285  DAG.setRoot(Chain);
1286}
1287
1288/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1289/// created for it, emit nodes to copy the value into the virtual
1290/// registers.
1291void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1292  // Skip empty types
1293  if (V->getType()->isEmptyTy())
1294    return;
1295
1296  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1297  if (VMI != FuncInfo.ValueMap.end()) {
1298    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1299    CopyValueToVirtualRegister(V, VMI->second);
1300  }
1301}
1302
1303/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1304/// the current basic block, add it to ValueMap now so that we'll get a
1305/// CopyTo/FromReg.
1306void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1307  // No need to export constants.
1308  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1309
1310  // Already exported?
1311  if (FuncInfo.isExportedInst(V)) return;
1312
1313  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1314  CopyValueToVirtualRegister(V, Reg);
1315}
1316
1317bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1318                                                     const BasicBlock *FromBB) {
1319  // The operands of the setcc have to be in this block.  We don't know
1320  // how to export them from some other block.
1321  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1322    // Can export from current BB.
1323    if (VI->getParent() == FromBB)
1324      return true;
1325
1326    // Is already exported, noop.
1327    return FuncInfo.isExportedInst(V);
1328  }
1329
1330  // If this is an argument, we can export it if the BB is the entry block or
1331  // if it is already exported.
1332  if (isa<Argument>(V)) {
1333    if (FromBB == &FromBB->getParent()->getEntryBlock())
1334      return true;
1335
1336    // Otherwise, can only export this if it is already exported.
1337    return FuncInfo.isExportedInst(V);
1338  }
1339
1340  // Otherwise, constants can always be exported.
1341  return true;
1342}
1343
1344/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1345uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1346                                            const MachineBasicBlock *Dst) const {
1347  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1348  if (!BPI)
1349    return 0;
1350  const BasicBlock *SrcBB = Src->getBasicBlock();
1351  const BasicBlock *DstBB = Dst->getBasicBlock();
1352  return BPI->getEdgeWeight(SrcBB, DstBB);
1353}
1354
1355void SelectionDAGBuilder::
1356addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1357                       uint32_t Weight /* = 0 */) {
1358  if (!Weight)
1359    Weight = getEdgeWeight(Src, Dst);
1360  Src->addSuccessor(Dst, Weight);
1361}
1362
1363
1364static bool InBlock(const Value *V, const BasicBlock *BB) {
1365  if (const Instruction *I = dyn_cast<Instruction>(V))
1366    return I->getParent() == BB;
1367  return true;
1368}
1369
1370/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1371/// This function emits a branch and is used at the leaves of an OR or an
1372/// AND operator tree.
1373///
1374void
1375SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1376                                                  MachineBasicBlock *TBB,
1377                                                  MachineBasicBlock *FBB,
1378                                                  MachineBasicBlock *CurBB,
1379                                                  MachineBasicBlock *SwitchBB) {
1380  const BasicBlock *BB = CurBB->getBasicBlock();
1381
1382  // If the leaf of the tree is a comparison, merge the condition into
1383  // the caseblock.
1384  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1385    // The operands of the cmp have to be in this block.  We don't know
1386    // how to export them from some other block.  If this is the first block
1387    // of the sequence, no exporting is needed.
1388    if (CurBB == SwitchBB ||
1389        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1390         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1391      ISD::CondCode Condition;
1392      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1393        Condition = getICmpCondCode(IC->getPredicate());
1394      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1395        Condition = getFCmpCondCode(FC->getPredicate());
1396        if (TM.Options.NoNaNsFPMath)
1397          Condition = getFCmpCodeWithoutNaN(Condition);
1398      } else {
1399        Condition = ISD::SETEQ; // silence warning.
1400        llvm_unreachable("Unknown compare instruction");
1401      }
1402
1403      CaseBlock CB(Condition, BOp->getOperand(0),
1404                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1405      SwitchCases.push_back(CB);
1406      return;
1407    }
1408  }
1409
1410  // Create a CaseBlock record representing this branch.
1411  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1412               NULL, TBB, FBB, CurBB);
1413  SwitchCases.push_back(CB);
1414}
1415
1416/// FindMergedConditions - If Cond is an expression like
1417void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1418                                               MachineBasicBlock *TBB,
1419                                               MachineBasicBlock *FBB,
1420                                               MachineBasicBlock *CurBB,
1421                                               MachineBasicBlock *SwitchBB,
1422                                               unsigned Opc) {
1423  // If this node is not part of the or/and tree, emit it as a branch.
1424  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1425  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1426      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1427      BOp->getParent() != CurBB->getBasicBlock() ||
1428      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1429      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1430    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1431    return;
1432  }
1433
1434  //  Create TmpBB after CurBB.
1435  MachineFunction::iterator BBI = CurBB;
1436  MachineFunction &MF = DAG.getMachineFunction();
1437  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1438  CurBB->getParent()->insert(++BBI, TmpBB);
1439
1440  if (Opc == Instruction::Or) {
1441    // Codegen X | Y as:
1442    //   jmp_if_X TBB
1443    //   jmp TmpBB
1444    // TmpBB:
1445    //   jmp_if_Y TBB
1446    //   jmp FBB
1447    //
1448
1449    // Emit the LHS condition.
1450    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1451
1452    // Emit the RHS condition into TmpBB.
1453    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1454  } else {
1455    assert(Opc == Instruction::And && "Unknown merge op!");
1456    // Codegen X & Y as:
1457    //   jmp_if_X TmpBB
1458    //   jmp FBB
1459    // TmpBB:
1460    //   jmp_if_Y TBB
1461    //   jmp FBB
1462    //
1463    //  This requires creation of TmpBB after CurBB.
1464
1465    // Emit the LHS condition.
1466    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1467
1468    // Emit the RHS condition into TmpBB.
1469    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1470  }
1471}
1472
1473/// If the set of cases should be emitted as a series of branches, return true.
1474/// If we should emit this as a bunch of and/or'd together conditions, return
1475/// false.
1476bool
1477SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1478  if (Cases.size() != 2) return true;
1479
1480  // If this is two comparisons of the same values or'd or and'd together, they
1481  // will get folded into a single comparison, so don't emit two blocks.
1482  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1483       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1484      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1485       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1486    return false;
1487  }
1488
1489  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1490  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1491  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1492      Cases[0].CC == Cases[1].CC &&
1493      isa<Constant>(Cases[0].CmpRHS) &&
1494      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1495    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1496      return false;
1497    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1498      return false;
1499  }
1500
1501  return true;
1502}
1503
1504void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1505  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1506
1507  // Update machine-CFG edges.
1508  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1509
1510  // Figure out which block is immediately after the current one.
1511  MachineBasicBlock *NextBlock = 0;
1512  MachineFunction::iterator BBI = BrMBB;
1513  if (++BBI != FuncInfo.MF->end())
1514    NextBlock = BBI;
1515
1516  if (I.isUnconditional()) {
1517    // Update machine-CFG edges.
1518    BrMBB->addSuccessor(Succ0MBB);
1519
1520    // If this is not a fall-through branch, emit the branch.
1521    if (Succ0MBB != NextBlock)
1522      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1523                              MVT::Other, getControlRoot(),
1524                              DAG.getBasicBlock(Succ0MBB)));
1525
1526    return;
1527  }
1528
1529  // If this condition is one of the special cases we handle, do special stuff
1530  // now.
1531  const Value *CondVal = I.getCondition();
1532  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1533
1534  // If this is a series of conditions that are or'd or and'd together, emit
1535  // this as a sequence of branches instead of setcc's with and/or operations.
1536  // As long as jumps are not expensive, this should improve performance.
1537  // For example, instead of something like:
1538  //     cmp A, B
1539  //     C = seteq
1540  //     cmp D, E
1541  //     F = setle
1542  //     or C, F
1543  //     jnz foo
1544  // Emit:
1545  //     cmp A, B
1546  //     je foo
1547  //     cmp D, E
1548  //     jle foo
1549  //
1550  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1551    if (!TLI.isJumpExpensive() &&
1552        BOp->hasOneUse() &&
1553        (BOp->getOpcode() == Instruction::And ||
1554         BOp->getOpcode() == Instruction::Or)) {
1555      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1556                           BOp->getOpcode());
1557      // If the compares in later blocks need to use values not currently
1558      // exported from this block, export them now.  This block should always
1559      // be the first entry.
1560      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1561
1562      // Allow some cases to be rejected.
1563      if (ShouldEmitAsBranches(SwitchCases)) {
1564        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1565          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1566          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1567        }
1568
1569        // Emit the branch for this block.
1570        visitSwitchCase(SwitchCases[0], BrMBB);
1571        SwitchCases.erase(SwitchCases.begin());
1572        return;
1573      }
1574
1575      // Okay, we decided not to do this, remove any inserted MBB's and clear
1576      // SwitchCases.
1577      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1578        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1579
1580      SwitchCases.clear();
1581    }
1582  }
1583
1584  // Create a CaseBlock record representing this branch.
1585  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1586               NULL, Succ0MBB, Succ1MBB, BrMBB);
1587
1588  // Use visitSwitchCase to actually insert the fast branch sequence for this
1589  // cond branch.
1590  visitSwitchCase(CB, BrMBB);
1591}
1592
1593/// visitSwitchCase - Emits the necessary code to represent a single node in
1594/// the binary search tree resulting from lowering a switch instruction.
1595void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1596                                          MachineBasicBlock *SwitchBB) {
1597  SDValue Cond;
1598  SDValue CondLHS = getValue(CB.CmpLHS);
1599  DebugLoc dl = getCurDebugLoc();
1600
1601  // Build the setcc now.
1602  if (CB.CmpMHS == NULL) {
1603    // Fold "(X == true)" to X and "(X == false)" to !X to
1604    // handle common cases produced by branch lowering.
1605    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1606        CB.CC == ISD::SETEQ)
1607      Cond = CondLHS;
1608    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1609             CB.CC == ISD::SETEQ) {
1610      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1611      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1612    } else
1613      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1614  } else {
1615    assert(CB.CC == ISD::SETCC_INVALID &&
1616           "Condition is undefined for to-the-range belonging check.");
1617
1618    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1619    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1620
1621    SDValue CmpOp = getValue(CB.CmpMHS);
1622    EVT VT = CmpOp.getValueType();
1623
1624    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1625      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1626                          ISD::SETULE);
1627    } else {
1628      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1629                                VT, CmpOp, DAG.getConstant(Low, VT));
1630      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1631                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1632    }
1633  }
1634
1635  // Update successor info
1636  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1637  // TrueBB and FalseBB are always different unless the incoming IR is
1638  // degenerate. This only happens when running llc on weird IR.
1639  if (CB.TrueBB != CB.FalseBB)
1640    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1641
1642  // Set NextBlock to be the MBB immediately after the current one, if any.
1643  // This is used to avoid emitting unnecessary branches to the next block.
1644  MachineBasicBlock *NextBlock = 0;
1645  MachineFunction::iterator BBI = SwitchBB;
1646  if (++BBI != FuncInfo.MF->end())
1647    NextBlock = BBI;
1648
1649  // If the lhs block is the next block, invert the condition so that we can
1650  // fall through to the lhs instead of the rhs block.
1651  if (CB.TrueBB == NextBlock) {
1652    std::swap(CB.TrueBB, CB.FalseBB);
1653    SDValue True = DAG.getConstant(1, Cond.getValueType());
1654    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1655  }
1656
1657  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1658                               MVT::Other, getControlRoot(), Cond,
1659                               DAG.getBasicBlock(CB.TrueBB));
1660
1661  // Insert the false branch. Do this even if it's a fall through branch,
1662  // this makes it easier to do DAG optimizations which require inverting
1663  // the branch condition.
1664  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1665                       DAG.getBasicBlock(CB.FalseBB));
1666
1667  DAG.setRoot(BrCond);
1668}
1669
1670/// visitJumpTable - Emit JumpTable node in the current MBB
1671void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1672  // Emit the code for the jump table
1673  assert(JT.Reg != -1U && "Should lower JT Header first!");
1674  EVT PTy = TLI.getPointerTy();
1675  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1676                                     JT.Reg, PTy);
1677  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1678  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1679                                    MVT::Other, Index.getValue(1),
1680                                    Table, Index);
1681  DAG.setRoot(BrJumpTable);
1682}
1683
1684/// visitJumpTableHeader - This function emits necessary code to produce index
1685/// in the JumpTable from switch case.
1686void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1687                                               JumpTableHeader &JTH,
1688                                               MachineBasicBlock *SwitchBB) {
1689  // Subtract the lowest switch case value from the value being switched on and
1690  // conditional branch to default mbb if the result is greater than the
1691  // difference between smallest and largest cases.
1692  SDValue SwitchOp = getValue(JTH.SValue);
1693  EVT VT = SwitchOp.getValueType();
1694  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1695                            DAG.getConstant(JTH.First, VT));
1696
1697  // The SDNode we just created, which holds the value being switched on minus
1698  // the smallest case value, needs to be copied to a virtual register so it
1699  // can be used as an index into the jump table in a subsequent basic block.
1700  // This value may be smaller or larger than the target's pointer type, and
1701  // therefore require extension or truncating.
1702  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1703
1704  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1705  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1706                                    JumpTableReg, SwitchOp);
1707  JT.Reg = JumpTableReg;
1708
1709  // Emit the range check for the jump table, and branch to the default block
1710  // for the switch statement if the value being switched on exceeds the largest
1711  // case in the switch.
1712  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1713                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1714                             DAG.getConstant(JTH.Last-JTH.First,VT),
1715                             ISD::SETUGT);
1716
1717  // Set NextBlock to be the MBB immediately after the current one, if any.
1718  // This is used to avoid emitting unnecessary branches to the next block.
1719  MachineBasicBlock *NextBlock = 0;
1720  MachineFunction::iterator BBI = SwitchBB;
1721
1722  if (++BBI != FuncInfo.MF->end())
1723    NextBlock = BBI;
1724
1725  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1726                               MVT::Other, CopyTo, CMP,
1727                               DAG.getBasicBlock(JT.Default));
1728
1729  if (JT.MBB != NextBlock)
1730    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1731                         DAG.getBasicBlock(JT.MBB));
1732
1733  DAG.setRoot(BrCond);
1734}
1735
1736/// visitBitTestHeader - This function emits necessary code to produce value
1737/// suitable for "bit tests"
1738void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1739                                             MachineBasicBlock *SwitchBB) {
1740  // Subtract the minimum value
1741  SDValue SwitchOp = getValue(B.SValue);
1742  EVT VT = SwitchOp.getValueType();
1743  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1744                            DAG.getConstant(B.First, VT));
1745
1746  // Check range
1747  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1748                                  TLI.getSetCCResultType(Sub.getValueType()),
1749                                  Sub, DAG.getConstant(B.Range, VT),
1750                                  ISD::SETUGT);
1751
1752  // Determine the type of the test operands.
1753  bool UsePtrType = false;
1754  if (!TLI.isTypeLegal(VT))
1755    UsePtrType = true;
1756  else {
1757    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1758      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1759        // Switch table case range are encoded into series of masks.
1760        // Just use pointer type, it's guaranteed to fit.
1761        UsePtrType = true;
1762        break;
1763      }
1764  }
1765  if (UsePtrType) {
1766    VT = TLI.getPointerTy();
1767    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1768  }
1769
1770  B.RegVT = VT.getSimpleVT();
1771  B.Reg = FuncInfo.CreateReg(B.RegVT);
1772  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1773                                    B.Reg, Sub);
1774
1775  // Set NextBlock to be the MBB immediately after the current one, if any.
1776  // This is used to avoid emitting unnecessary branches to the next block.
1777  MachineBasicBlock *NextBlock = 0;
1778  MachineFunction::iterator BBI = SwitchBB;
1779  if (++BBI != FuncInfo.MF->end())
1780    NextBlock = BBI;
1781
1782  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1783
1784  addSuccessorWithWeight(SwitchBB, B.Default);
1785  addSuccessorWithWeight(SwitchBB, MBB);
1786
1787  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1788                                MVT::Other, CopyTo, RangeCmp,
1789                                DAG.getBasicBlock(B.Default));
1790
1791  if (MBB != NextBlock)
1792    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1793                          DAG.getBasicBlock(MBB));
1794
1795  DAG.setRoot(BrRange);
1796}
1797
1798/// visitBitTestCase - this function produces one "bit test"
1799void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1800                                           MachineBasicBlock* NextMBB,
1801                                           uint32_t BranchWeightToNext,
1802                                           unsigned Reg,
1803                                           BitTestCase &B,
1804                                           MachineBasicBlock *SwitchBB) {
1805  MVT VT = BB.RegVT;
1806  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1807                                       Reg, VT);
1808  SDValue Cmp;
1809  unsigned PopCount = CountPopulation_64(B.Mask);
1810  if (PopCount == 1) {
1811    // Testing for a single bit; just compare the shift count with what it
1812    // would need to be to shift a 1 bit in that position.
1813    Cmp = DAG.getSetCC(getCurDebugLoc(),
1814                       TLI.getSetCCResultType(VT),
1815                       ShiftOp,
1816                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1817                       ISD::SETEQ);
1818  } else if (PopCount == BB.Range) {
1819    // There is only one zero bit in the range, test for it directly.
1820    Cmp = DAG.getSetCC(getCurDebugLoc(),
1821                       TLI.getSetCCResultType(VT),
1822                       ShiftOp,
1823                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1824                       ISD::SETNE);
1825  } else {
1826    // Make desired shift
1827    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1828                                    DAG.getConstant(1, VT), ShiftOp);
1829
1830    // Emit bit tests and jumps
1831    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1832                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1833    Cmp = DAG.getSetCC(getCurDebugLoc(),
1834                       TLI.getSetCCResultType(VT),
1835                       AndOp, DAG.getConstant(0, VT),
1836                       ISD::SETNE);
1837  }
1838
1839  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1840  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1841  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1842  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1843
1844  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1845                              MVT::Other, getControlRoot(),
1846                              Cmp, DAG.getBasicBlock(B.TargetBB));
1847
1848  // Set NextBlock to be the MBB immediately after the current one, if any.
1849  // This is used to avoid emitting unnecessary branches to the next block.
1850  MachineBasicBlock *NextBlock = 0;
1851  MachineFunction::iterator BBI = SwitchBB;
1852  if (++BBI != FuncInfo.MF->end())
1853    NextBlock = BBI;
1854
1855  if (NextMBB != NextBlock)
1856    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1857                        DAG.getBasicBlock(NextMBB));
1858
1859  DAG.setRoot(BrAnd);
1860}
1861
1862void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1863  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1864
1865  // Retrieve successors.
1866  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1867  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1868
1869  const Value *Callee(I.getCalledValue());
1870  const Function *Fn = dyn_cast<Function>(Callee);
1871  if (isa<InlineAsm>(Callee))
1872    visitInlineAsm(&I);
1873  else if (Fn && Fn->isIntrinsic()) {
1874    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1875    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1876  } else
1877    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1878
1879  // If the value of the invoke is used outside of its defining block, make it
1880  // available as a virtual register.
1881  CopyToExportRegsIfNeeded(&I);
1882
1883  // Update successor info
1884  addSuccessorWithWeight(InvokeMBB, Return);
1885  addSuccessorWithWeight(InvokeMBB, LandingPad);
1886
1887  // Drop into normal successor.
1888  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1889                          MVT::Other, getControlRoot(),
1890                          DAG.getBasicBlock(Return)));
1891}
1892
1893void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1894  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1895}
1896
1897void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1898  assert(FuncInfo.MBB->isLandingPad() &&
1899         "Call to landingpad not in landing pad!");
1900
1901  MachineBasicBlock *MBB = FuncInfo.MBB;
1902  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1903  AddLandingPadInfo(LP, MMI, MBB);
1904
1905  // If there aren't registers to copy the values into (e.g., during SjLj
1906  // exceptions), then don't bother to create these DAG nodes.
1907  if (TLI.getExceptionPointerRegister() == 0 &&
1908      TLI.getExceptionSelectorRegister() == 0)
1909    return;
1910
1911  SmallVector<EVT, 2> ValueVTs;
1912  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1913  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
1914
1915  // Get the two live-in registers as SDValues. The physregs have already been
1916  // copied into virtual registers.
1917  SDValue Ops[2];
1918  Ops[0] = DAG.getZExtOrTrunc(
1919    DAG.getCopyFromReg(DAG.getEntryNode(), getCurDebugLoc(),
1920                       FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
1921    getCurDebugLoc(), ValueVTs[0]);
1922  Ops[1] = DAG.getZExtOrTrunc(
1923    DAG.getCopyFromReg(DAG.getEntryNode(), getCurDebugLoc(),
1924                       FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
1925    getCurDebugLoc(), ValueVTs[1]);
1926
1927  // Merge into one.
1928  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1929                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1930                            &Ops[0], 2);
1931  setValue(&LP, Res);
1932}
1933
1934/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1935/// small case ranges).
1936bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1937                                                 CaseRecVector& WorkList,
1938                                                 const Value* SV,
1939                                                 MachineBasicBlock *Default,
1940                                                 MachineBasicBlock *SwitchBB) {
1941  // Size is the number of Cases represented by this range.
1942  size_t Size = CR.Range.second - CR.Range.first;
1943  if (Size > 3)
1944    return false;
1945
1946  // Get the MachineFunction which holds the current MBB.  This is used when
1947  // inserting any additional MBBs necessary to represent the switch.
1948  MachineFunction *CurMF = FuncInfo.MF;
1949
1950  // Figure out which block is immediately after the current one.
1951  MachineBasicBlock *NextBlock = 0;
1952  MachineFunction::iterator BBI = CR.CaseBB;
1953
1954  if (++BBI != FuncInfo.MF->end())
1955    NextBlock = BBI;
1956
1957  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1958  // If any two of the cases has the same destination, and if one value
1959  // is the same as the other, but has one bit unset that the other has set,
1960  // use bit manipulation to do two compares at once.  For example:
1961  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1962  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1963  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1964  if (Size == 2 && CR.CaseBB == SwitchBB) {
1965    Case &Small = *CR.Range.first;
1966    Case &Big = *(CR.Range.second-1);
1967
1968    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1969      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1970      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1971
1972      // Check that there is only one bit different.
1973      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1974          (SmallValue | BigValue) == BigValue) {
1975        // Isolate the common bit.
1976        APInt CommonBit = BigValue & ~SmallValue;
1977        assert((SmallValue | CommonBit) == BigValue &&
1978               CommonBit.countPopulation() == 1 && "Not a common bit?");
1979
1980        SDValue CondLHS = getValue(SV);
1981        EVT VT = CondLHS.getValueType();
1982        DebugLoc DL = getCurDebugLoc();
1983
1984        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1985                                 DAG.getConstant(CommonBit, VT));
1986        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1987                                    Or, DAG.getConstant(BigValue, VT),
1988                                    ISD::SETEQ);
1989
1990        // Update successor info.
1991        // Both Small and Big will jump to Small.BB, so we sum up the weights.
1992        addSuccessorWithWeight(SwitchBB, Small.BB,
1993                               Small.ExtraWeight + Big.ExtraWeight);
1994        addSuccessorWithWeight(SwitchBB, Default,
1995          // The default destination is the first successor in IR.
1996          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
1997
1998        // Insert the true branch.
1999        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2000                                     getControlRoot(), Cond,
2001                                     DAG.getBasicBlock(Small.BB));
2002
2003        // Insert the false branch.
2004        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2005                             DAG.getBasicBlock(Default));
2006
2007        DAG.setRoot(BrCond);
2008        return true;
2009      }
2010    }
2011  }
2012
2013  // Order cases by weight so the most likely case will be checked first.
2014  uint32_t UnhandledWeights = 0;
2015  if (BPI) {
2016    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2017      uint32_t IWeight = I->ExtraWeight;
2018      UnhandledWeights += IWeight;
2019      for (CaseItr J = CR.Range.first; J < I; ++J) {
2020        uint32_t JWeight = J->ExtraWeight;
2021        if (IWeight > JWeight)
2022          std::swap(*I, *J);
2023      }
2024    }
2025  }
2026  // Rearrange the case blocks so that the last one falls through if possible.
2027  Case &BackCase = *(CR.Range.second-1);
2028  if (Size > 1 &&
2029      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2030    // The last case block won't fall through into 'NextBlock' if we emit the
2031    // branches in this order.  See if rearranging a case value would help.
2032    // We start at the bottom as it's the case with the least weight.
2033    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2034      if (I->BB == NextBlock) {
2035        std::swap(*I, BackCase);
2036        break;
2037      }
2038    }
2039  }
2040
2041  // Create a CaseBlock record representing a conditional branch to
2042  // the Case's target mbb if the value being switched on SV is equal
2043  // to C.
2044  MachineBasicBlock *CurBlock = CR.CaseBB;
2045  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2046    MachineBasicBlock *FallThrough;
2047    if (I != E-1) {
2048      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2049      CurMF->insert(BBI, FallThrough);
2050
2051      // Put SV in a virtual register to make it available from the new blocks.
2052      ExportFromCurrentBlock(SV);
2053    } else {
2054      // If the last case doesn't match, go to the default block.
2055      FallThrough = Default;
2056    }
2057
2058    const Value *RHS, *LHS, *MHS;
2059    ISD::CondCode CC;
2060    if (I->High == I->Low) {
2061      // This is just small small case range :) containing exactly 1 case
2062      CC = ISD::SETEQ;
2063      LHS = SV; RHS = I->High; MHS = NULL;
2064    } else {
2065      CC = ISD::SETCC_INVALID;
2066      LHS = I->Low; MHS = SV; RHS = I->High;
2067    }
2068
2069    // The false weight should be sum of all un-handled cases.
2070    UnhandledWeights -= I->ExtraWeight;
2071    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2072                 /* me */ CurBlock,
2073                 /* trueweight */ I->ExtraWeight,
2074                 /* falseweight */ UnhandledWeights);
2075
2076    // If emitting the first comparison, just call visitSwitchCase to emit the
2077    // code into the current block.  Otherwise, push the CaseBlock onto the
2078    // vector to be later processed by SDISel, and insert the node's MBB
2079    // before the next MBB.
2080    if (CurBlock == SwitchBB)
2081      visitSwitchCase(CB, SwitchBB);
2082    else
2083      SwitchCases.push_back(CB);
2084
2085    CurBlock = FallThrough;
2086  }
2087
2088  return true;
2089}
2090
2091static inline bool areJTsAllowed(const TargetLowering &TLI) {
2092  return TLI.supportJumpTables() &&
2093          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2094           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2095}
2096
2097static APInt ComputeRange(const APInt &First, const APInt &Last) {
2098  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2099  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2100  return (LastExt - FirstExt + 1ULL);
2101}
2102
2103/// handleJTSwitchCase - Emit jumptable for current switch case range
2104bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2105                                             CaseRecVector &WorkList,
2106                                             const Value *SV,
2107                                             MachineBasicBlock *Default,
2108                                             MachineBasicBlock *SwitchBB) {
2109  Case& FrontCase = *CR.Range.first;
2110  Case& BackCase  = *(CR.Range.second-1);
2111
2112  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2113  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2114
2115  APInt TSize(First.getBitWidth(), 0);
2116  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2117    TSize += I->size();
2118
2119  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2120    return false;
2121
2122  APInt Range = ComputeRange(First, Last);
2123  // The density is TSize / Range. Require at least 40%.
2124  // It should not be possible for IntTSize to saturate for sane code, but make
2125  // sure we handle Range saturation correctly.
2126  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2127  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2128  if (IntTSize * 10 < IntRange * 4)
2129    return false;
2130
2131  DEBUG(dbgs() << "Lowering jump table\n"
2132               << "First entry: " << First << ". Last entry: " << Last << '\n'
2133               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2134
2135  // Get the MachineFunction which holds the current MBB.  This is used when
2136  // inserting any additional MBBs necessary to represent the switch.
2137  MachineFunction *CurMF = FuncInfo.MF;
2138
2139  // Figure out which block is immediately after the current one.
2140  MachineFunction::iterator BBI = CR.CaseBB;
2141  ++BBI;
2142
2143  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2144
2145  // Create a new basic block to hold the code for loading the address
2146  // of the jump table, and jumping to it.  Update successor information;
2147  // we will either branch to the default case for the switch, or the jump
2148  // table.
2149  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2150  CurMF->insert(BBI, JumpTableBB);
2151
2152  addSuccessorWithWeight(CR.CaseBB, Default);
2153  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2154
2155  // Build a vector of destination BBs, corresponding to each target
2156  // of the jump table. If the value of the jump table slot corresponds to
2157  // a case statement, push the case's BB onto the vector, otherwise, push
2158  // the default BB.
2159  std::vector<MachineBasicBlock*> DestBBs;
2160  APInt TEI = First;
2161  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2162    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2163    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2164
2165    if (Low.ule(TEI) && TEI.ule(High)) {
2166      DestBBs.push_back(I->BB);
2167      if (TEI==High)
2168        ++I;
2169    } else {
2170      DestBBs.push_back(Default);
2171    }
2172  }
2173
2174  // Calculate weight for each unique destination in CR.
2175  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2176  if (FuncInfo.BPI)
2177    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2178      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2179          DestWeights.find(I->BB);
2180      if (Itr != DestWeights.end())
2181        Itr->second += I->ExtraWeight;
2182      else
2183        DestWeights[I->BB] = I->ExtraWeight;
2184    }
2185
2186  // Update successor info. Add one edge to each unique successor.
2187  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2188  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2189         E = DestBBs.end(); I != E; ++I) {
2190    if (!SuccsHandled[(*I)->getNumber()]) {
2191      SuccsHandled[(*I)->getNumber()] = true;
2192      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2193          DestWeights.find(*I);
2194      addSuccessorWithWeight(JumpTableBB, *I,
2195                             Itr != DestWeights.end() ? Itr->second : 0);
2196    }
2197  }
2198
2199  // Create a jump table index for this jump table.
2200  unsigned JTEncoding = TLI.getJumpTableEncoding();
2201  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2202                       ->createJumpTableIndex(DestBBs);
2203
2204  // Set the jump table information so that we can codegen it as a second
2205  // MachineBasicBlock
2206  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2207  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2208  if (CR.CaseBB == SwitchBB)
2209    visitJumpTableHeader(JT, JTH, SwitchBB);
2210
2211  JTCases.push_back(JumpTableBlock(JTH, JT));
2212  return true;
2213}
2214
2215/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2216/// 2 subtrees.
2217bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2218                                                  CaseRecVector& WorkList,
2219                                                  const Value* SV,
2220                                                  MachineBasicBlock *Default,
2221                                                  MachineBasicBlock *SwitchBB) {
2222  // Get the MachineFunction which holds the current MBB.  This is used when
2223  // inserting any additional MBBs necessary to represent the switch.
2224  MachineFunction *CurMF = FuncInfo.MF;
2225
2226  // Figure out which block is immediately after the current one.
2227  MachineFunction::iterator BBI = CR.CaseBB;
2228  ++BBI;
2229
2230  Case& FrontCase = *CR.Range.first;
2231  Case& BackCase  = *(CR.Range.second-1);
2232  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2233
2234  // Size is the number of Cases represented by this range.
2235  unsigned Size = CR.Range.second - CR.Range.first;
2236
2237  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2238  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2239  double FMetric = 0;
2240  CaseItr Pivot = CR.Range.first + Size/2;
2241
2242  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2243  // (heuristically) allow us to emit JumpTable's later.
2244  APInt TSize(First.getBitWidth(), 0);
2245  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2246       I!=E; ++I)
2247    TSize += I->size();
2248
2249  APInt LSize = FrontCase.size();
2250  APInt RSize = TSize-LSize;
2251  DEBUG(dbgs() << "Selecting best pivot: \n"
2252               << "First: " << First << ", Last: " << Last <<'\n'
2253               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2254  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2255       J!=E; ++I, ++J) {
2256    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2257    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2258    APInt Range = ComputeRange(LEnd, RBegin);
2259    assert((Range - 2ULL).isNonNegative() &&
2260           "Invalid case distance");
2261    // Use volatile double here to avoid excess precision issues on some hosts,
2262    // e.g. that use 80-bit X87 registers.
2263    volatile double LDensity =
2264       (double)LSize.roundToDouble() /
2265                           (LEnd - First + 1ULL).roundToDouble();
2266    volatile double RDensity =
2267      (double)RSize.roundToDouble() /
2268                           (Last - RBegin + 1ULL).roundToDouble();
2269    double Metric = Range.logBase2()*(LDensity+RDensity);
2270    // Should always split in some non-trivial place
2271    DEBUG(dbgs() <<"=>Step\n"
2272                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2273                 << "LDensity: " << LDensity
2274                 << ", RDensity: " << RDensity << '\n'
2275                 << "Metric: " << Metric << '\n');
2276    if (FMetric < Metric) {
2277      Pivot = J;
2278      FMetric = Metric;
2279      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2280    }
2281
2282    LSize += J->size();
2283    RSize -= J->size();
2284  }
2285  if (areJTsAllowed(TLI)) {
2286    // If our case is dense we *really* should handle it earlier!
2287    assert((FMetric > 0) && "Should handle dense range earlier!");
2288  } else {
2289    Pivot = CR.Range.first + Size/2;
2290  }
2291
2292  CaseRange LHSR(CR.Range.first, Pivot);
2293  CaseRange RHSR(Pivot, CR.Range.second);
2294  const Constant *C = Pivot->Low;
2295  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2296
2297  // We know that we branch to the LHS if the Value being switched on is
2298  // less than the Pivot value, C.  We use this to optimize our binary
2299  // tree a bit, by recognizing that if SV is greater than or equal to the
2300  // LHS's Case Value, and that Case Value is exactly one less than the
2301  // Pivot's Value, then we can branch directly to the LHS's Target,
2302  // rather than creating a leaf node for it.
2303  if ((LHSR.second - LHSR.first) == 1 &&
2304      LHSR.first->High == CR.GE &&
2305      cast<ConstantInt>(C)->getValue() ==
2306      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2307    TrueBB = LHSR.first->BB;
2308  } else {
2309    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2310    CurMF->insert(BBI, TrueBB);
2311    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2312
2313    // Put SV in a virtual register to make it available from the new blocks.
2314    ExportFromCurrentBlock(SV);
2315  }
2316
2317  // Similar to the optimization above, if the Value being switched on is
2318  // known to be less than the Constant CR.LT, and the current Case Value
2319  // is CR.LT - 1, then we can branch directly to the target block for
2320  // the current Case Value, rather than emitting a RHS leaf node for it.
2321  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2322      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2323      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2324    FalseBB = RHSR.first->BB;
2325  } else {
2326    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2327    CurMF->insert(BBI, FalseBB);
2328    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2329
2330    // Put SV in a virtual register to make it available from the new blocks.
2331    ExportFromCurrentBlock(SV);
2332  }
2333
2334  // Create a CaseBlock record representing a conditional branch to
2335  // the LHS node if the value being switched on SV is less than C.
2336  // Otherwise, branch to LHS.
2337  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2338
2339  if (CR.CaseBB == SwitchBB)
2340    visitSwitchCase(CB, SwitchBB);
2341  else
2342    SwitchCases.push_back(CB);
2343
2344  return true;
2345}
2346
2347/// handleBitTestsSwitchCase - if current case range has few destination and
2348/// range span less, than machine word bitwidth, encode case range into series
2349/// of masks and emit bit tests with these masks.
2350bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2351                                                   CaseRecVector& WorkList,
2352                                                   const Value* SV,
2353                                                   MachineBasicBlock* Default,
2354                                                   MachineBasicBlock *SwitchBB){
2355  EVT PTy = TLI.getPointerTy();
2356  unsigned IntPtrBits = PTy.getSizeInBits();
2357
2358  Case& FrontCase = *CR.Range.first;
2359  Case& BackCase  = *(CR.Range.second-1);
2360
2361  // Get the MachineFunction which holds the current MBB.  This is used when
2362  // inserting any additional MBBs necessary to represent the switch.
2363  MachineFunction *CurMF = FuncInfo.MF;
2364
2365  // If target does not have legal shift left, do not emit bit tests at all.
2366  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2367    return false;
2368
2369  size_t numCmps = 0;
2370  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2371       I!=E; ++I) {
2372    // Single case counts one, case range - two.
2373    numCmps += (I->Low == I->High ? 1 : 2);
2374  }
2375
2376  // Count unique destinations
2377  SmallSet<MachineBasicBlock*, 4> Dests;
2378  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2379    Dests.insert(I->BB);
2380    if (Dests.size() > 3)
2381      // Don't bother the code below, if there are too much unique destinations
2382      return false;
2383  }
2384  DEBUG(dbgs() << "Total number of unique destinations: "
2385        << Dests.size() << '\n'
2386        << "Total number of comparisons: " << numCmps << '\n');
2387
2388  // Compute span of values.
2389  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2390  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2391  APInt cmpRange = maxValue - minValue;
2392
2393  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2394               << "Low bound: " << minValue << '\n'
2395               << "High bound: " << maxValue << '\n');
2396
2397  if (cmpRange.uge(IntPtrBits) ||
2398      (!(Dests.size() == 1 && numCmps >= 3) &&
2399       !(Dests.size() == 2 && numCmps >= 5) &&
2400       !(Dests.size() >= 3 && numCmps >= 6)))
2401    return false;
2402
2403  DEBUG(dbgs() << "Emitting bit tests\n");
2404  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2405
2406  // Optimize the case where all the case values fit in a
2407  // word without having to subtract minValue. In this case,
2408  // we can optimize away the subtraction.
2409  if (maxValue.ult(IntPtrBits)) {
2410    cmpRange = maxValue;
2411  } else {
2412    lowBound = minValue;
2413  }
2414
2415  CaseBitsVector CasesBits;
2416  unsigned i, count = 0;
2417
2418  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2419    MachineBasicBlock* Dest = I->BB;
2420    for (i = 0; i < count; ++i)
2421      if (Dest == CasesBits[i].BB)
2422        break;
2423
2424    if (i == count) {
2425      assert((count < 3) && "Too much destinations to test!");
2426      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2427      count++;
2428    }
2429
2430    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2431    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2432
2433    uint64_t lo = (lowValue - lowBound).getZExtValue();
2434    uint64_t hi = (highValue - lowBound).getZExtValue();
2435    CasesBits[i].ExtraWeight += I->ExtraWeight;
2436
2437    for (uint64_t j = lo; j <= hi; j++) {
2438      CasesBits[i].Mask |=  1ULL << j;
2439      CasesBits[i].Bits++;
2440    }
2441
2442  }
2443  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2444
2445  BitTestInfo BTC;
2446
2447  // Figure out which block is immediately after the current one.
2448  MachineFunction::iterator BBI = CR.CaseBB;
2449  ++BBI;
2450
2451  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2452
2453  DEBUG(dbgs() << "Cases:\n");
2454  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2455    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2456                 << ", Bits: " << CasesBits[i].Bits
2457                 << ", BB: " << CasesBits[i].BB << '\n');
2458
2459    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2460    CurMF->insert(BBI, CaseBB);
2461    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2462                              CaseBB,
2463                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2464
2465    // Put SV in a virtual register to make it available from the new blocks.
2466    ExportFromCurrentBlock(SV);
2467  }
2468
2469  BitTestBlock BTB(lowBound, cmpRange, SV,
2470                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2471                   CR.CaseBB, Default, BTC);
2472
2473  if (CR.CaseBB == SwitchBB)
2474    visitBitTestHeader(BTB, SwitchBB);
2475
2476  BitTestCases.push_back(BTB);
2477
2478  return true;
2479}
2480
2481/// Clusterify - Transform simple list of Cases into list of CaseRange's
2482size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2483                                       const SwitchInst& SI) {
2484
2485  /// Use a shorter form of declaration, and also
2486  /// show the we want to use CRSBuilder as Clusterifier.
2487  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2488
2489  Clusterifier TheClusterifier;
2490
2491  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2492  // Start with "simple" cases
2493  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2494       i != e; ++i) {
2495    const BasicBlock *SuccBB = i.getCaseSuccessor();
2496    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2497
2498    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2499        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2500  }
2501
2502  TheClusterifier.optimize();
2503
2504  size_t numCmps = 0;
2505  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2506       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2507    Clusterifier::Cluster &C = *i;
2508    // Update edge weight for the cluster.
2509    unsigned W = C.first.Weight;
2510
2511    // FIXME: Currently work with ConstantInt based numbers.
2512    // Changing it to APInt based is a pretty heavy for this commit.
2513    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2514                         C.first.getHigh().toConstantInt(), C.second, W));
2515
2516    if (C.first.getLow() != C.first.getHigh())
2517    // A range counts double, since it requires two compares.
2518    ++numCmps;
2519  }
2520
2521  return numCmps;
2522}
2523
2524void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2525                                           MachineBasicBlock *Last) {
2526  // Update JTCases.
2527  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2528    if (JTCases[i].first.HeaderBB == First)
2529      JTCases[i].first.HeaderBB = Last;
2530
2531  // Update BitTestCases.
2532  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2533    if (BitTestCases[i].Parent == First)
2534      BitTestCases[i].Parent = Last;
2535}
2536
2537void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2538  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2539
2540  // Figure out which block is immediately after the current one.
2541  MachineBasicBlock *NextBlock = 0;
2542  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2543
2544  // If there is only the default destination, branch to it if it is not the
2545  // next basic block.  Otherwise, just fall through.
2546  if (!SI.getNumCases()) {
2547    // Update machine-CFG edges.
2548
2549    // If this is not a fall-through branch, emit the branch.
2550    SwitchMBB->addSuccessor(Default);
2551    if (Default != NextBlock)
2552      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2553                              MVT::Other, getControlRoot(),
2554                              DAG.getBasicBlock(Default)));
2555
2556    return;
2557  }
2558
2559  // If there are any non-default case statements, create a vector of Cases
2560  // representing each one, and sort the vector so that we can efficiently
2561  // create a binary search tree from them.
2562  CaseVector Cases;
2563  size_t numCmps = Clusterify(Cases, SI);
2564  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2565               << ". Total compares: " << numCmps << '\n');
2566  (void)numCmps;
2567
2568  // Get the Value to be switched on and default basic blocks, which will be
2569  // inserted into CaseBlock records, representing basic blocks in the binary
2570  // search tree.
2571  const Value *SV = SI.getCondition();
2572
2573  // Push the initial CaseRec onto the worklist
2574  CaseRecVector WorkList;
2575  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2576                             CaseRange(Cases.begin(),Cases.end())));
2577
2578  while (!WorkList.empty()) {
2579    // Grab a record representing a case range to process off the worklist
2580    CaseRec CR = WorkList.back();
2581    WorkList.pop_back();
2582
2583    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2584      continue;
2585
2586    // If the range has few cases (two or less) emit a series of specific
2587    // tests.
2588    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2589      continue;
2590
2591    // If the switch has more than N blocks, and is at least 40% dense, and the
2592    // target supports indirect branches, then emit a jump table rather than
2593    // lowering the switch to a binary tree of conditional branches.
2594    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2595    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2596      continue;
2597
2598    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2599    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2600    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2601  }
2602}
2603
2604void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2605  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2606
2607  // Update machine-CFG edges with unique successors.
2608  SmallSet<BasicBlock*, 32> Done;
2609  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2610    BasicBlock *BB = I.getSuccessor(i);
2611    bool Inserted = Done.insert(BB);
2612    if (!Inserted)
2613        continue;
2614
2615    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2616    addSuccessorWithWeight(IndirectBrMBB, Succ);
2617  }
2618
2619  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2620                          MVT::Other, getControlRoot(),
2621                          getValue(I.getAddress())));
2622}
2623
2624void SelectionDAGBuilder::visitFSub(const User &I) {
2625  // -0.0 - X --> fneg
2626  Type *Ty = I.getType();
2627  if (isa<Constant>(I.getOperand(0)) &&
2628      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2629    SDValue Op2 = getValue(I.getOperand(1));
2630    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2631                             Op2.getValueType(), Op2));
2632    return;
2633  }
2634
2635  visitBinary(I, ISD::FSUB);
2636}
2637
2638void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2639  SDValue Op1 = getValue(I.getOperand(0));
2640  SDValue Op2 = getValue(I.getOperand(1));
2641  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2642                           Op1.getValueType(), Op1, Op2));
2643}
2644
2645void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2646  SDValue Op1 = getValue(I.getOperand(0));
2647  SDValue Op2 = getValue(I.getOperand(1));
2648
2649  EVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2650
2651  // Coerce the shift amount to the right type if we can.
2652  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2653    unsigned ShiftSize = ShiftTy.getSizeInBits();
2654    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2655    DebugLoc DL = getCurDebugLoc();
2656
2657    // If the operand is smaller than the shift count type, promote it.
2658    if (ShiftSize > Op2Size)
2659      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2660
2661    // If the operand is larger than the shift count type but the shift
2662    // count type has enough bits to represent any shift value, truncate
2663    // it now. This is a common case and it exposes the truncate to
2664    // optimization early.
2665    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2666      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2667    // Otherwise we'll need to temporarily settle for some other convenient
2668    // type.  Type legalization will make adjustments once the shiftee is split.
2669    else
2670      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2671  }
2672
2673  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2674                           Op1.getValueType(), Op1, Op2));
2675}
2676
2677void SelectionDAGBuilder::visitSDiv(const User &I) {
2678  SDValue Op1 = getValue(I.getOperand(0));
2679  SDValue Op2 = getValue(I.getOperand(1));
2680
2681  // Turn exact SDivs into multiplications.
2682  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2683  // exact bit.
2684  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2685      !isa<ConstantSDNode>(Op1) &&
2686      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2687    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2688  else
2689    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2690                             Op1, Op2));
2691}
2692
2693void SelectionDAGBuilder::visitICmp(const User &I) {
2694  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2695  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2696    predicate = IC->getPredicate();
2697  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2698    predicate = ICmpInst::Predicate(IC->getPredicate());
2699  SDValue Op1 = getValue(I.getOperand(0));
2700  SDValue Op2 = getValue(I.getOperand(1));
2701  ISD::CondCode Opcode = getICmpCondCode(predicate);
2702
2703  EVT DestVT = TLI.getValueType(I.getType());
2704  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2705}
2706
2707void SelectionDAGBuilder::visitFCmp(const User &I) {
2708  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2709  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2710    predicate = FC->getPredicate();
2711  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2712    predicate = FCmpInst::Predicate(FC->getPredicate());
2713  SDValue Op1 = getValue(I.getOperand(0));
2714  SDValue Op2 = getValue(I.getOperand(1));
2715  ISD::CondCode Condition = getFCmpCondCode(predicate);
2716  if (TM.Options.NoNaNsFPMath)
2717    Condition = getFCmpCodeWithoutNaN(Condition);
2718  EVT DestVT = TLI.getValueType(I.getType());
2719  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2720}
2721
2722void SelectionDAGBuilder::visitSelect(const User &I) {
2723  SmallVector<EVT, 4> ValueVTs;
2724  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2725  unsigned NumValues = ValueVTs.size();
2726  if (NumValues == 0) return;
2727
2728  SmallVector<SDValue, 4> Values(NumValues);
2729  SDValue Cond     = getValue(I.getOperand(0));
2730  SDValue TrueVal  = getValue(I.getOperand(1));
2731  SDValue FalseVal = getValue(I.getOperand(2));
2732  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2733    ISD::VSELECT : ISD::SELECT;
2734
2735  for (unsigned i = 0; i != NumValues; ++i)
2736    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2737                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2738                            Cond,
2739                            SDValue(TrueVal.getNode(),
2740                                    TrueVal.getResNo() + i),
2741                            SDValue(FalseVal.getNode(),
2742                                    FalseVal.getResNo() + i));
2743
2744  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2745                           DAG.getVTList(&ValueVTs[0], NumValues),
2746                           &Values[0], NumValues));
2747}
2748
2749void SelectionDAGBuilder::visitTrunc(const User &I) {
2750  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2751  SDValue N = getValue(I.getOperand(0));
2752  EVT DestVT = TLI.getValueType(I.getType());
2753  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2754}
2755
2756void SelectionDAGBuilder::visitZExt(const User &I) {
2757  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2758  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2759  SDValue N = getValue(I.getOperand(0));
2760  EVT DestVT = TLI.getValueType(I.getType());
2761  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2762}
2763
2764void SelectionDAGBuilder::visitSExt(const User &I) {
2765  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2766  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2767  SDValue N = getValue(I.getOperand(0));
2768  EVT DestVT = TLI.getValueType(I.getType());
2769  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2770}
2771
2772void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2773  // FPTrunc is never a no-op cast, no need to check
2774  SDValue N = getValue(I.getOperand(0));
2775  EVT DestVT = TLI.getValueType(I.getType());
2776  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2777                           DestVT, N,
2778                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2779}
2780
2781void SelectionDAGBuilder::visitFPExt(const User &I){
2782  // FPExt is never a no-op cast, no need to check
2783  SDValue N = getValue(I.getOperand(0));
2784  EVT DestVT = TLI.getValueType(I.getType());
2785  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2786}
2787
2788void SelectionDAGBuilder::visitFPToUI(const User &I) {
2789  // FPToUI is never a no-op cast, no need to check
2790  SDValue N = getValue(I.getOperand(0));
2791  EVT DestVT = TLI.getValueType(I.getType());
2792  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2793}
2794
2795void SelectionDAGBuilder::visitFPToSI(const User &I) {
2796  // FPToSI is never a no-op cast, no need to check
2797  SDValue N = getValue(I.getOperand(0));
2798  EVT DestVT = TLI.getValueType(I.getType());
2799  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2800}
2801
2802void SelectionDAGBuilder::visitUIToFP(const User &I) {
2803  // UIToFP is never a no-op cast, no need to check
2804  SDValue N = getValue(I.getOperand(0));
2805  EVT DestVT = TLI.getValueType(I.getType());
2806  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2807}
2808
2809void SelectionDAGBuilder::visitSIToFP(const User &I){
2810  // SIToFP is never a no-op cast, no need to check
2811  SDValue N = getValue(I.getOperand(0));
2812  EVT DestVT = TLI.getValueType(I.getType());
2813  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2814}
2815
2816void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2817  // What to do depends on the size of the integer and the size of the pointer.
2818  // We can either truncate, zero extend, or no-op, accordingly.
2819  SDValue N = getValue(I.getOperand(0));
2820  EVT DestVT = TLI.getValueType(I.getType());
2821  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2822}
2823
2824void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2825  // What to do depends on the size of the integer and the size of the pointer.
2826  // We can either truncate, zero extend, or no-op, accordingly.
2827  SDValue N = getValue(I.getOperand(0));
2828  EVT DestVT = TLI.getValueType(I.getType());
2829  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2830}
2831
2832void SelectionDAGBuilder::visitBitCast(const User &I) {
2833  SDValue N = getValue(I.getOperand(0));
2834  EVT DestVT = TLI.getValueType(I.getType());
2835
2836  // BitCast assures us that source and destination are the same size so this is
2837  // either a BITCAST or a no-op.
2838  if (DestVT != N.getValueType())
2839    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2840                             DestVT, N)); // convert types.
2841  else
2842    setValue(&I, N);            // noop cast.
2843}
2844
2845void SelectionDAGBuilder::visitInsertElement(const User &I) {
2846  SDValue InVec = getValue(I.getOperand(0));
2847  SDValue InVal = getValue(I.getOperand(1));
2848  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2849                              TLI.getPointerTy(),
2850                              getValue(I.getOperand(2)));
2851  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2852                           TLI.getValueType(I.getType()),
2853                           InVec, InVal, InIdx));
2854}
2855
2856void SelectionDAGBuilder::visitExtractElement(const User &I) {
2857  SDValue InVec = getValue(I.getOperand(0));
2858  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2859                              TLI.getPointerTy(),
2860                              getValue(I.getOperand(1)));
2861  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2862                           TLI.getValueType(I.getType()), InVec, InIdx));
2863}
2864
2865// Utility for visitShuffleVector - Return true if every element in Mask,
2866// beginning from position Pos and ending in Pos+Size, falls within the
2867// specified sequential range [L, L+Pos). or is undef.
2868static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2869                                unsigned Pos, unsigned Size, int Low) {
2870  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2871    if (Mask[i] >= 0 && Mask[i] != Low)
2872      return false;
2873  return true;
2874}
2875
2876void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2877  SDValue Src1 = getValue(I.getOperand(0));
2878  SDValue Src2 = getValue(I.getOperand(1));
2879
2880  SmallVector<int, 8> Mask;
2881  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2882  unsigned MaskNumElts = Mask.size();
2883
2884  EVT VT = TLI.getValueType(I.getType());
2885  EVT SrcVT = Src1.getValueType();
2886  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2887
2888  if (SrcNumElts == MaskNumElts) {
2889    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2890                                      &Mask[0]));
2891    return;
2892  }
2893
2894  // Normalize the shuffle vector since mask and vector length don't match.
2895  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2896    // Mask is longer than the source vectors and is a multiple of the source
2897    // vectors.  We can use concatenate vector to make the mask and vectors
2898    // lengths match.
2899    if (SrcNumElts*2 == MaskNumElts) {
2900      // First check for Src1 in low and Src2 in high
2901      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2902          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2903        // The shuffle is concatenating two vectors together.
2904        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2905                                 VT, Src1, Src2));
2906        return;
2907      }
2908      // Then check for Src2 in low and Src1 in high
2909      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2910          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2911        // The shuffle is concatenating two vectors together.
2912        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2913                                 VT, Src2, Src1));
2914        return;
2915      }
2916    }
2917
2918    // Pad both vectors with undefs to make them the same length as the mask.
2919    unsigned NumConcat = MaskNumElts / SrcNumElts;
2920    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2921    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2922    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2923
2924    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2925    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2926    MOps1[0] = Src1;
2927    MOps2[0] = Src2;
2928
2929    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2930                                                  getCurDebugLoc(), VT,
2931                                                  &MOps1[0], NumConcat);
2932    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2933                                                  getCurDebugLoc(), VT,
2934                                                  &MOps2[0], NumConcat);
2935
2936    // Readjust mask for new input vector length.
2937    SmallVector<int, 8> MappedOps;
2938    for (unsigned i = 0; i != MaskNumElts; ++i) {
2939      int Idx = Mask[i];
2940      if (Idx >= (int)SrcNumElts)
2941        Idx -= SrcNumElts - MaskNumElts;
2942      MappedOps.push_back(Idx);
2943    }
2944
2945    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2946                                      &MappedOps[0]));
2947    return;
2948  }
2949
2950  if (SrcNumElts > MaskNumElts) {
2951    // Analyze the access pattern of the vector to see if we can extract
2952    // two subvectors and do the shuffle. The analysis is done by calculating
2953    // the range of elements the mask access on both vectors.
2954    int MinRange[2] = { static_cast<int>(SrcNumElts),
2955                        static_cast<int>(SrcNumElts)};
2956    int MaxRange[2] = {-1, -1};
2957
2958    for (unsigned i = 0; i != MaskNumElts; ++i) {
2959      int Idx = Mask[i];
2960      unsigned Input = 0;
2961      if (Idx < 0)
2962        continue;
2963
2964      if (Idx >= (int)SrcNumElts) {
2965        Input = 1;
2966        Idx -= SrcNumElts;
2967      }
2968      if (Idx > MaxRange[Input])
2969        MaxRange[Input] = Idx;
2970      if (Idx < MinRange[Input])
2971        MinRange[Input] = Idx;
2972    }
2973
2974    // Check if the access is smaller than the vector size and can we find
2975    // a reasonable extract index.
2976    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2977                                   // Extract.
2978    int StartIdx[2];  // StartIdx to extract from
2979    for (unsigned Input = 0; Input < 2; ++Input) {
2980      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2981        RangeUse[Input] = 0; // Unused
2982        StartIdx[Input] = 0;
2983        continue;
2984      }
2985
2986      // Find a good start index that is a multiple of the mask length. Then
2987      // see if the rest of the elements are in range.
2988      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2989      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2990          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2991        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2992    }
2993
2994    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2995      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2996      return;
2997    }
2998    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2999      // Extract appropriate subvector and generate a vector shuffle
3000      for (unsigned Input = 0; Input < 2; ++Input) {
3001        SDValue &Src = Input == 0 ? Src1 : Src2;
3002        if (RangeUse[Input] == 0)
3003          Src = DAG.getUNDEF(VT);
3004        else
3005          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
3006                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3007      }
3008
3009      // Calculate new mask.
3010      SmallVector<int, 8> MappedOps;
3011      for (unsigned i = 0; i != MaskNumElts; ++i) {
3012        int Idx = Mask[i];
3013        if (Idx >= 0) {
3014          if (Idx < (int)SrcNumElts)
3015            Idx -= StartIdx[0];
3016          else
3017            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3018        }
3019        MappedOps.push_back(Idx);
3020      }
3021
3022      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3023                                        &MappedOps[0]));
3024      return;
3025    }
3026  }
3027
3028  // We can't use either concat vectors or extract subvectors so fall back to
3029  // replacing the shuffle with extract and build vector.
3030  // to insert and build vector.
3031  EVT EltVT = VT.getVectorElementType();
3032  EVT PtrVT = TLI.getPointerTy();
3033  SmallVector<SDValue,8> Ops;
3034  for (unsigned i = 0; i != MaskNumElts; ++i) {
3035    int Idx = Mask[i];
3036    SDValue Res;
3037
3038    if (Idx < 0) {
3039      Res = DAG.getUNDEF(EltVT);
3040    } else {
3041      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3042      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3043
3044      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3045                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3046    }
3047
3048    Ops.push_back(Res);
3049  }
3050
3051  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3052                           VT, &Ops[0], Ops.size()));
3053}
3054
3055void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3056  const Value *Op0 = I.getOperand(0);
3057  const Value *Op1 = I.getOperand(1);
3058  Type *AggTy = I.getType();
3059  Type *ValTy = Op1->getType();
3060  bool IntoUndef = isa<UndefValue>(Op0);
3061  bool FromUndef = isa<UndefValue>(Op1);
3062
3063  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3064
3065  SmallVector<EVT, 4> AggValueVTs;
3066  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3067  SmallVector<EVT, 4> ValValueVTs;
3068  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3069
3070  unsigned NumAggValues = AggValueVTs.size();
3071  unsigned NumValValues = ValValueVTs.size();
3072  SmallVector<SDValue, 4> Values(NumAggValues);
3073
3074  SDValue Agg = getValue(Op0);
3075  unsigned i = 0;
3076  // Copy the beginning value(s) from the original aggregate.
3077  for (; i != LinearIndex; ++i)
3078    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3079                SDValue(Agg.getNode(), Agg.getResNo() + i);
3080  // Copy values from the inserted value(s).
3081  if (NumValValues) {
3082    SDValue Val = getValue(Op1);
3083    for (; i != LinearIndex + NumValValues; ++i)
3084      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3085                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3086  }
3087  // Copy remaining value(s) from the original aggregate.
3088  for (; i != NumAggValues; ++i)
3089    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3090                SDValue(Agg.getNode(), Agg.getResNo() + i);
3091
3092  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3093                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3094                           &Values[0], NumAggValues));
3095}
3096
3097void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3098  const Value *Op0 = I.getOperand(0);
3099  Type *AggTy = Op0->getType();
3100  Type *ValTy = I.getType();
3101  bool OutOfUndef = isa<UndefValue>(Op0);
3102
3103  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3104
3105  SmallVector<EVT, 4> ValValueVTs;
3106  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3107
3108  unsigned NumValValues = ValValueVTs.size();
3109
3110  // Ignore a extractvalue that produces an empty object
3111  if (!NumValValues) {
3112    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3113    return;
3114  }
3115
3116  SmallVector<SDValue, 4> Values(NumValValues);
3117
3118  SDValue Agg = getValue(Op0);
3119  // Copy out the selected value(s).
3120  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3121    Values[i - LinearIndex] =
3122      OutOfUndef ?
3123        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3124        SDValue(Agg.getNode(), Agg.getResNo() + i);
3125
3126  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3127                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3128                           &Values[0], NumValValues));
3129}
3130
3131void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3132  SDValue N = getValue(I.getOperand(0));
3133  // Note that the pointer operand may be a vector of pointers. Take the scalar
3134  // element which holds a pointer.
3135  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3136
3137  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3138       OI != E; ++OI) {
3139    const Value *Idx = *OI;
3140    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3141      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3142      if (Field) {
3143        // N = N + Offset
3144        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3145        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3146                        DAG.getConstant(Offset, N.getValueType()));
3147      }
3148
3149      Ty = StTy->getElementType(Field);
3150    } else {
3151      Ty = cast<SequentialType>(Ty)->getElementType();
3152
3153      // If this is a constant subscript, handle it quickly.
3154      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3155        if (CI->isZero()) continue;
3156        uint64_t Offs =
3157            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3158        SDValue OffsVal;
3159        EVT PTy = TLI.getPointerTy();
3160        unsigned PtrBits = PTy.getSizeInBits();
3161        if (PtrBits < 64)
3162          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3163                                TLI.getPointerTy(),
3164                                DAG.getConstant(Offs, MVT::i64));
3165        else
3166          OffsVal = DAG.getIntPtrConstant(Offs);
3167
3168        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3169                        OffsVal);
3170        continue;
3171      }
3172
3173      // N = N + Idx * ElementSize;
3174      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3175                                TD->getTypeAllocSize(Ty));
3176      SDValue IdxN = getValue(Idx);
3177
3178      // If the index is smaller or larger than intptr_t, truncate or extend
3179      // it.
3180      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3181
3182      // If this is a multiply by a power of two, turn it into a shl
3183      // immediately.  This is a very common case.
3184      if (ElementSize != 1) {
3185        if (ElementSize.isPowerOf2()) {
3186          unsigned Amt = ElementSize.logBase2();
3187          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3188                             N.getValueType(), IdxN,
3189                             DAG.getConstant(Amt, IdxN.getValueType()));
3190        } else {
3191          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3192          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3193                             N.getValueType(), IdxN, Scale);
3194        }
3195      }
3196
3197      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3198                      N.getValueType(), N, IdxN);
3199    }
3200  }
3201
3202  setValue(&I, N);
3203}
3204
3205void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3206  // If this is a fixed sized alloca in the entry block of the function,
3207  // allocate it statically on the stack.
3208  if (FuncInfo.StaticAllocaMap.count(&I))
3209    return;   // getValue will auto-populate this.
3210
3211  Type *Ty = I.getAllocatedType();
3212  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3213  unsigned Align =
3214    std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3215             I.getAlignment());
3216
3217  SDValue AllocSize = getValue(I.getArraySize());
3218
3219  EVT IntPtr = TLI.getPointerTy();
3220  if (AllocSize.getValueType() != IntPtr)
3221    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3222
3223  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3224                          AllocSize,
3225                          DAG.getConstant(TySize, IntPtr));
3226
3227  // Handle alignment.  If the requested alignment is less than or equal to
3228  // the stack alignment, ignore it.  If the size is greater than or equal to
3229  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3230  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3231  if (Align <= StackAlign)
3232    Align = 0;
3233
3234  // Round the size of the allocation up to the stack alignment size
3235  // by add SA-1 to the size.
3236  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3237                          AllocSize.getValueType(), AllocSize,
3238                          DAG.getIntPtrConstant(StackAlign-1));
3239
3240  // Mask out the low bits for alignment purposes.
3241  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3242                          AllocSize.getValueType(), AllocSize,
3243                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3244
3245  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3246  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3247  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3248                            VTs, Ops, 3);
3249  setValue(&I, DSA);
3250  DAG.setRoot(DSA.getValue(1));
3251
3252  // Inform the Frame Information that we have just allocated a variable-sized
3253  // object.
3254  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3255}
3256
3257void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3258  if (I.isAtomic())
3259    return visitAtomicLoad(I);
3260
3261  const Value *SV = I.getOperand(0);
3262  SDValue Ptr = getValue(SV);
3263
3264  Type *Ty = I.getType();
3265
3266  bool isVolatile = I.isVolatile();
3267  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3268  bool isInvariant = I.getMetadata("invariant.load") != 0;
3269  unsigned Alignment = I.getAlignment();
3270  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3271  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3272
3273  SmallVector<EVT, 4> ValueVTs;
3274  SmallVector<uint64_t, 4> Offsets;
3275  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3276  unsigned NumValues = ValueVTs.size();
3277  if (NumValues == 0)
3278    return;
3279
3280  SDValue Root;
3281  bool ConstantMemory = false;
3282  if (I.isVolatile() || NumValues > MaxParallelChains)
3283    // Serialize volatile loads with other side effects.
3284    Root = getRoot();
3285  else if (AA->pointsToConstantMemory(
3286             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3287    // Do not serialize (non-volatile) loads of constant memory with anything.
3288    Root = DAG.getEntryNode();
3289    ConstantMemory = true;
3290  } else {
3291    // Do not serialize non-volatile loads against each other.
3292    Root = DAG.getRoot();
3293  }
3294
3295  SmallVector<SDValue, 4> Values(NumValues);
3296  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3297                                          NumValues));
3298  EVT PtrVT = Ptr.getValueType();
3299  unsigned ChainI = 0;
3300  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3301    // Serializing loads here may result in excessive register pressure, and
3302    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3303    // could recover a bit by hoisting nodes upward in the chain by recognizing
3304    // they are side-effect free or do not alias. The optimizer should really
3305    // avoid this case by converting large object/array copies to llvm.memcpy
3306    // (MaxParallelChains should always remain as failsafe).
3307    if (ChainI == MaxParallelChains) {
3308      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3309      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3310                                  MVT::Other, &Chains[0], ChainI);
3311      Root = Chain;
3312      ChainI = 0;
3313    }
3314    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3315                            PtrVT, Ptr,
3316                            DAG.getConstant(Offsets[i], PtrVT));
3317    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3318                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3319                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3320                            Ranges);
3321
3322    Values[i] = L;
3323    Chains[ChainI] = L.getValue(1);
3324  }
3325
3326  if (!ConstantMemory) {
3327    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3328                                MVT::Other, &Chains[0], ChainI);
3329    if (isVolatile)
3330      DAG.setRoot(Chain);
3331    else
3332      PendingLoads.push_back(Chain);
3333  }
3334
3335  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3336                           DAG.getVTList(&ValueVTs[0], NumValues),
3337                           &Values[0], NumValues));
3338}
3339
3340void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3341  if (I.isAtomic())
3342    return visitAtomicStore(I);
3343
3344  const Value *SrcV = I.getOperand(0);
3345  const Value *PtrV = I.getOperand(1);
3346
3347  SmallVector<EVT, 4> ValueVTs;
3348  SmallVector<uint64_t, 4> Offsets;
3349  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3350  unsigned NumValues = ValueVTs.size();
3351  if (NumValues == 0)
3352    return;
3353
3354  // Get the lowered operands. Note that we do this after
3355  // checking if NumResults is zero, because with zero results
3356  // the operands won't have values in the map.
3357  SDValue Src = getValue(SrcV);
3358  SDValue Ptr = getValue(PtrV);
3359
3360  SDValue Root = getRoot();
3361  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3362                                          NumValues));
3363  EVT PtrVT = Ptr.getValueType();
3364  bool isVolatile = I.isVolatile();
3365  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3366  unsigned Alignment = I.getAlignment();
3367  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3368
3369  unsigned ChainI = 0;
3370  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3371    // See visitLoad comments.
3372    if (ChainI == MaxParallelChains) {
3373      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3374                                  MVT::Other, &Chains[0], ChainI);
3375      Root = Chain;
3376      ChainI = 0;
3377    }
3378    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3379                              DAG.getConstant(Offsets[i], PtrVT));
3380    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3381                              SDValue(Src.getNode(), Src.getResNo() + i),
3382                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3383                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3384    Chains[ChainI] = St;
3385  }
3386
3387  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3388                                  MVT::Other, &Chains[0], ChainI);
3389  ++SDNodeOrder;
3390  AssignOrderingToNode(StoreNode.getNode());
3391  DAG.setRoot(StoreNode);
3392}
3393
3394static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3395                                    SynchronizationScope Scope,
3396                                    bool Before, DebugLoc dl,
3397                                    SelectionDAG &DAG,
3398                                    const TargetLowering &TLI) {
3399  // Fence, if necessary
3400  if (Before) {
3401    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3402      Order = Release;
3403    else if (Order == Acquire || Order == Monotonic)
3404      return Chain;
3405  } else {
3406    if (Order == AcquireRelease)
3407      Order = Acquire;
3408    else if (Order == Release || Order == Monotonic)
3409      return Chain;
3410  }
3411  SDValue Ops[3];
3412  Ops[0] = Chain;
3413  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3414  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3415  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3416}
3417
3418void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3419  DebugLoc dl = getCurDebugLoc();
3420  AtomicOrdering Order = I.getOrdering();
3421  SynchronizationScope Scope = I.getSynchScope();
3422
3423  SDValue InChain = getRoot();
3424
3425  if (TLI.getInsertFencesForAtomic())
3426    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3427                                   DAG, TLI);
3428
3429  SDValue L =
3430    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3431                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3432                  InChain,
3433                  getValue(I.getPointerOperand()),
3434                  getValue(I.getCompareOperand()),
3435                  getValue(I.getNewValOperand()),
3436                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3437                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3438                  Scope);
3439
3440  SDValue OutChain = L.getValue(1);
3441
3442  if (TLI.getInsertFencesForAtomic())
3443    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3444                                    DAG, TLI);
3445
3446  setValue(&I, L);
3447  DAG.setRoot(OutChain);
3448}
3449
3450void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3451  DebugLoc dl = getCurDebugLoc();
3452  ISD::NodeType NT;
3453  switch (I.getOperation()) {
3454  default: llvm_unreachable("Unknown atomicrmw operation");
3455  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3456  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3457  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3458  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3459  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3460  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3461  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3462  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3463  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3464  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3465  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3466  }
3467  AtomicOrdering Order = I.getOrdering();
3468  SynchronizationScope Scope = I.getSynchScope();
3469
3470  SDValue InChain = getRoot();
3471
3472  if (TLI.getInsertFencesForAtomic())
3473    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3474                                   DAG, TLI);
3475
3476  SDValue L =
3477    DAG.getAtomic(NT, dl,
3478                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3479                  InChain,
3480                  getValue(I.getPointerOperand()),
3481                  getValue(I.getValOperand()),
3482                  I.getPointerOperand(), 0 /* Alignment */,
3483                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3484                  Scope);
3485
3486  SDValue OutChain = L.getValue(1);
3487
3488  if (TLI.getInsertFencesForAtomic())
3489    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3490                                    DAG, TLI);
3491
3492  setValue(&I, L);
3493  DAG.setRoot(OutChain);
3494}
3495
3496void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3497  DebugLoc dl = getCurDebugLoc();
3498  SDValue Ops[3];
3499  Ops[0] = getRoot();
3500  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3501  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3502  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3503}
3504
3505void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3506  DebugLoc dl = getCurDebugLoc();
3507  AtomicOrdering Order = I.getOrdering();
3508  SynchronizationScope Scope = I.getSynchScope();
3509
3510  SDValue InChain = getRoot();
3511
3512  EVT VT = TLI.getValueType(I.getType());
3513
3514  if (I.getAlignment() < VT.getSizeInBits() / 8)
3515    report_fatal_error("Cannot generate unaligned atomic load");
3516
3517  SDValue L =
3518    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3519                  getValue(I.getPointerOperand()),
3520                  I.getPointerOperand(), I.getAlignment(),
3521                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3522                  Scope);
3523
3524  SDValue OutChain = L.getValue(1);
3525
3526  if (TLI.getInsertFencesForAtomic())
3527    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3528                                    DAG, TLI);
3529
3530  setValue(&I, L);
3531  DAG.setRoot(OutChain);
3532}
3533
3534void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3535  DebugLoc dl = getCurDebugLoc();
3536
3537  AtomicOrdering Order = I.getOrdering();
3538  SynchronizationScope Scope = I.getSynchScope();
3539
3540  SDValue InChain = getRoot();
3541
3542  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3543
3544  if (I.getAlignment() < VT.getSizeInBits() / 8)
3545    report_fatal_error("Cannot generate unaligned atomic store");
3546
3547  if (TLI.getInsertFencesForAtomic())
3548    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3549                                   DAG, TLI);
3550
3551  SDValue OutChain =
3552    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3553                  InChain,
3554                  getValue(I.getPointerOperand()),
3555                  getValue(I.getValueOperand()),
3556                  I.getPointerOperand(), I.getAlignment(),
3557                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3558                  Scope);
3559
3560  if (TLI.getInsertFencesForAtomic())
3561    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3562                                    DAG, TLI);
3563
3564  DAG.setRoot(OutChain);
3565}
3566
3567/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3568/// node.
3569void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3570                                               unsigned Intrinsic) {
3571  bool HasChain = !I.doesNotAccessMemory();
3572  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3573
3574  // Build the operand list.
3575  SmallVector<SDValue, 8> Ops;
3576  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3577    if (OnlyLoad) {
3578      // We don't need to serialize loads against other loads.
3579      Ops.push_back(DAG.getRoot());
3580    } else {
3581      Ops.push_back(getRoot());
3582    }
3583  }
3584
3585  // Info is set by getTgtMemInstrinsic
3586  TargetLowering::IntrinsicInfo Info;
3587  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3588
3589  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3590  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3591      Info.opc == ISD::INTRINSIC_W_CHAIN)
3592    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3593
3594  // Add all operands of the call to the operand list.
3595  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3596    SDValue Op = getValue(I.getArgOperand(i));
3597    Ops.push_back(Op);
3598  }
3599
3600  SmallVector<EVT, 4> ValueVTs;
3601  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3602
3603  if (HasChain)
3604    ValueVTs.push_back(MVT::Other);
3605
3606  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3607
3608  // Create the node.
3609  SDValue Result;
3610  if (IsTgtIntrinsic) {
3611    // This is target intrinsic that touches memory
3612    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3613                                     VTs, &Ops[0], Ops.size(),
3614                                     Info.memVT,
3615                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3616                                     Info.align, Info.vol,
3617                                     Info.readMem, Info.writeMem);
3618  } else if (!HasChain) {
3619    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3620                         VTs, &Ops[0], Ops.size());
3621  } else if (!I.getType()->isVoidTy()) {
3622    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3623                         VTs, &Ops[0], Ops.size());
3624  } else {
3625    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3626                         VTs, &Ops[0], Ops.size());
3627  }
3628
3629  if (HasChain) {
3630    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3631    if (OnlyLoad)
3632      PendingLoads.push_back(Chain);
3633    else
3634      DAG.setRoot(Chain);
3635  }
3636
3637  if (!I.getType()->isVoidTy()) {
3638    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3639      EVT VT = TLI.getValueType(PTy);
3640      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3641    }
3642
3643    setValue(&I, Result);
3644  } else {
3645    // Assign order to result here. If the intrinsic does not produce a result,
3646    // it won't be mapped to a SDNode and visit() will not assign it an order
3647    // number.
3648    ++SDNodeOrder;
3649    AssignOrderingToNode(Result.getNode());
3650  }
3651}
3652
3653/// GetSignificand - Get the significand and build it into a floating-point
3654/// number with exponent of 1:
3655///
3656///   Op = (Op & 0x007fffff) | 0x3f800000;
3657///
3658/// where Op is the hexadecimal representation of floating point value.
3659static SDValue
3660GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3661  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3662                           DAG.getConstant(0x007fffff, MVT::i32));
3663  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3664                           DAG.getConstant(0x3f800000, MVT::i32));
3665  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3666}
3667
3668/// GetExponent - Get the exponent:
3669///
3670///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3671///
3672/// where Op is the hexadecimal representation of floating point value.
3673static SDValue
3674GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3675            DebugLoc dl) {
3676  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3677                           DAG.getConstant(0x7f800000, MVT::i32));
3678  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3679                           DAG.getConstant(23, TLI.getPointerTy()));
3680  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3681                           DAG.getConstant(127, MVT::i32));
3682  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3683}
3684
3685/// getF32Constant - Get 32-bit floating point constant.
3686static SDValue
3687getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3688  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3689                           MVT::f32);
3690}
3691
3692/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3693/// limited-precision mode.
3694static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3695                         const TargetLowering &TLI) {
3696  if (Op.getValueType() == MVT::f32 &&
3697      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3698
3699    // Put the exponent in the right bit position for later addition to the
3700    // final result:
3701    //
3702    //   #define LOG2OFe 1.4426950f
3703    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3704    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3705                             getF32Constant(DAG, 0x3fb8aa3b));
3706    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3707
3708    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3709    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3710    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3711
3712    //   IntegerPartOfX <<= 23;
3713    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3714                                 DAG.getConstant(23, TLI.getPointerTy()));
3715
3716    SDValue TwoToFracPartOfX;
3717    if (LimitFloatPrecision <= 6) {
3718      // For floating-point precision of 6:
3719      //
3720      //   TwoToFractionalPartOfX =
3721      //     0.997535578f +
3722      //       (0.735607626f + 0.252464424f * x) * x;
3723      //
3724      // error 0.0144103317, which is 6 bits
3725      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3726                               getF32Constant(DAG, 0x3e814304));
3727      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3728                               getF32Constant(DAG, 0x3f3c50c8));
3729      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3730      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3731                                     getF32Constant(DAG, 0x3f7f5e7e));
3732    } else if (LimitFloatPrecision <= 12) {
3733      // For floating-point precision of 12:
3734      //
3735      //   TwoToFractionalPartOfX =
3736      //     0.999892986f +
3737      //       (0.696457318f +
3738      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3739      //
3740      // 0.000107046256 error, which is 13 to 14 bits
3741      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3742                               getF32Constant(DAG, 0x3da235e3));
3743      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3744                               getF32Constant(DAG, 0x3e65b8f3));
3745      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3746      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3747                               getF32Constant(DAG, 0x3f324b07));
3748      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3749      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3750                                     getF32Constant(DAG, 0x3f7ff8fd));
3751    } else { // LimitFloatPrecision <= 18
3752      // For floating-point precision of 18:
3753      //
3754      //   TwoToFractionalPartOfX =
3755      //     0.999999982f +
3756      //       (0.693148872f +
3757      //         (0.240227044f +
3758      //           (0.554906021e-1f +
3759      //             (0.961591928e-2f +
3760      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3761      //
3762      // error 2.47208000*10^(-7), which is better than 18 bits
3763      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3764                               getF32Constant(DAG, 0x3924b03e));
3765      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3766                               getF32Constant(DAG, 0x3ab24b87));
3767      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3768      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3769                               getF32Constant(DAG, 0x3c1d8c17));
3770      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3771      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3772                               getF32Constant(DAG, 0x3d634a1d));
3773      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3774      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3775                               getF32Constant(DAG, 0x3e75fe14));
3776      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3777      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3778                                getF32Constant(DAG, 0x3f317234));
3779      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3780      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3781                                     getF32Constant(DAG, 0x3f800000));
3782    }
3783
3784    // Add the exponent into the result in integer domain.
3785    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3786    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3787                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3788                                   t13, IntegerPartOfX));
3789  }
3790
3791  // No special expansion.
3792  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3793}
3794
3795/// expandLog - Lower a log intrinsic. Handles the special sequences for
3796/// limited-precision mode.
3797static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3798                         const TargetLowering &TLI) {
3799  if (Op.getValueType() == MVT::f32 &&
3800      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3801    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3802
3803    // Scale the exponent by log(2) [0.69314718f].
3804    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3805    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3806                                        getF32Constant(DAG, 0x3f317218));
3807
3808    // Get the significand and build it into a floating-point number with
3809    // exponent of 1.
3810    SDValue X = GetSignificand(DAG, Op1, dl);
3811
3812    SDValue LogOfMantissa;
3813    if (LimitFloatPrecision <= 6) {
3814      // For floating-point precision of 6:
3815      //
3816      //   LogofMantissa =
3817      //     -1.1609546f +
3818      //       (1.4034025f - 0.23903021f * x) * x;
3819      //
3820      // error 0.0034276066, which is better than 8 bits
3821      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3822                               getF32Constant(DAG, 0xbe74c456));
3823      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3824                               getF32Constant(DAG, 0x3fb3a2b1));
3825      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3826      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3827                                  getF32Constant(DAG, 0x3f949a29));
3828    } else if (LimitFloatPrecision <= 12) {
3829      // For floating-point precision of 12:
3830      //
3831      //   LogOfMantissa =
3832      //     -1.7417939f +
3833      //       (2.8212026f +
3834      //         (-1.4699568f +
3835      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3836      //
3837      // error 0.000061011436, which is 14 bits
3838      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3839                               getF32Constant(DAG, 0xbd67b6d6));
3840      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3841                               getF32Constant(DAG, 0x3ee4f4b8));
3842      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3843      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3844                               getF32Constant(DAG, 0x3fbc278b));
3845      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3846      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3847                               getF32Constant(DAG, 0x40348e95));
3848      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3849      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3850                                  getF32Constant(DAG, 0x3fdef31a));
3851    } else { // LimitFloatPrecision <= 18
3852      // For floating-point precision of 18:
3853      //
3854      //   LogOfMantissa =
3855      //     -2.1072184f +
3856      //       (4.2372794f +
3857      //         (-3.7029485f +
3858      //           (2.2781945f +
3859      //             (-0.87823314f +
3860      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3861      //
3862      // error 0.0000023660568, which is better than 18 bits
3863      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3864                               getF32Constant(DAG, 0xbc91e5ac));
3865      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3866                               getF32Constant(DAG, 0x3e4350aa));
3867      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3868      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3869                               getF32Constant(DAG, 0x3f60d3e3));
3870      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3871      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3872                               getF32Constant(DAG, 0x4011cdf0));
3873      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3874      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3875                               getF32Constant(DAG, 0x406cfd1c));
3876      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3877      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3878                               getF32Constant(DAG, 0x408797cb));
3879      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3880      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3881                                  getF32Constant(DAG, 0x4006dcab));
3882    }
3883
3884    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3885  }
3886
3887  // No special expansion.
3888  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3889}
3890
3891/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3892/// limited-precision mode.
3893static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3894                          const TargetLowering &TLI) {
3895  if (Op.getValueType() == MVT::f32 &&
3896      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3897    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3898
3899    // Get the exponent.
3900    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3901
3902    // Get the significand and build it into a floating-point number with
3903    // exponent of 1.
3904    SDValue X = GetSignificand(DAG, Op1, dl);
3905
3906    // Different possible minimax approximations of significand in
3907    // floating-point for various degrees of accuracy over [1,2].
3908    SDValue Log2ofMantissa;
3909    if (LimitFloatPrecision <= 6) {
3910      // For floating-point precision of 6:
3911      //
3912      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3913      //
3914      // error 0.0049451742, which is more than 7 bits
3915      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3916                               getF32Constant(DAG, 0xbeb08fe0));
3917      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3918                               getF32Constant(DAG, 0x40019463));
3919      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3920      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3921                                   getF32Constant(DAG, 0x3fd6633d));
3922    } else if (LimitFloatPrecision <= 12) {
3923      // For floating-point precision of 12:
3924      //
3925      //   Log2ofMantissa =
3926      //     -2.51285454f +
3927      //       (4.07009056f +
3928      //         (-2.12067489f +
3929      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3930      //
3931      // error 0.0000876136000, which is better than 13 bits
3932      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3933                               getF32Constant(DAG, 0xbda7262e));
3934      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3935                               getF32Constant(DAG, 0x3f25280b));
3936      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3937      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3938                               getF32Constant(DAG, 0x4007b923));
3939      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3940      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3941                               getF32Constant(DAG, 0x40823e2f));
3942      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3943      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3944                                   getF32Constant(DAG, 0x4020d29c));
3945    } else { // LimitFloatPrecision <= 18
3946      // For floating-point precision of 18:
3947      //
3948      //   Log2ofMantissa =
3949      //     -3.0400495f +
3950      //       (6.1129976f +
3951      //         (-5.3420409f +
3952      //           (3.2865683f +
3953      //             (-1.2669343f +
3954      //               (0.27515199f -
3955      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3956      //
3957      // error 0.0000018516, which is better than 18 bits
3958      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3959                               getF32Constant(DAG, 0xbcd2769e));
3960      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3961                               getF32Constant(DAG, 0x3e8ce0b9));
3962      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3963      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3964                               getF32Constant(DAG, 0x3fa22ae7));
3965      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3966      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3967                               getF32Constant(DAG, 0x40525723));
3968      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3969      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3970                               getF32Constant(DAG, 0x40aaf200));
3971      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3972      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3973                               getF32Constant(DAG, 0x40c39dad));
3974      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3975      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3976                                   getF32Constant(DAG, 0x4042902c));
3977    }
3978
3979    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3980  }
3981
3982  // No special expansion.
3983  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3984}
3985
3986/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3987/// limited-precision mode.
3988static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3989                           const TargetLowering &TLI) {
3990  if (Op.getValueType() == MVT::f32 &&
3991      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3992    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3993
3994    // Scale the exponent by log10(2) [0.30102999f].
3995    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3996    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3997                                        getF32Constant(DAG, 0x3e9a209a));
3998
3999    // Get the significand and build it into a floating-point number with
4000    // exponent of 1.
4001    SDValue X = GetSignificand(DAG, Op1, dl);
4002
4003    SDValue Log10ofMantissa;
4004    if (LimitFloatPrecision <= 6) {
4005      // For floating-point precision of 6:
4006      //
4007      //   Log10ofMantissa =
4008      //     -0.50419619f +
4009      //       (0.60948995f - 0.10380950f * x) * x;
4010      //
4011      // error 0.0014886165, which is 6 bits
4012      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4013                               getF32Constant(DAG, 0xbdd49a13));
4014      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4015                               getF32Constant(DAG, 0x3f1c0789));
4016      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4017      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4018                                    getF32Constant(DAG, 0x3f011300));
4019    } else if (LimitFloatPrecision <= 12) {
4020      // For floating-point precision of 12:
4021      //
4022      //   Log10ofMantissa =
4023      //     -0.64831180f +
4024      //       (0.91751397f +
4025      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4026      //
4027      // error 0.00019228036, which is better than 12 bits
4028      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4029                               getF32Constant(DAG, 0x3d431f31));
4030      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4031                               getF32Constant(DAG, 0x3ea21fb2));
4032      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4033      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4034                               getF32Constant(DAG, 0x3f6ae232));
4035      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4036      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4037                                    getF32Constant(DAG, 0x3f25f7c3));
4038    } else { // LimitFloatPrecision <= 18
4039      // For floating-point precision of 18:
4040      //
4041      //   Log10ofMantissa =
4042      //     -0.84299375f +
4043      //       (1.5327582f +
4044      //         (-1.0688956f +
4045      //           (0.49102474f +
4046      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4047      //
4048      // error 0.0000037995730, which is better than 18 bits
4049      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4050                               getF32Constant(DAG, 0x3c5d51ce));
4051      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4052                               getF32Constant(DAG, 0x3e00685a));
4053      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4054      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4055                               getF32Constant(DAG, 0x3efb6798));
4056      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4057      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4058                               getF32Constant(DAG, 0x3f88d192));
4059      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4060      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4061                               getF32Constant(DAG, 0x3fc4316c));
4062      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4063      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4064                                    getF32Constant(DAG, 0x3f57ce70));
4065    }
4066
4067    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4068  }
4069
4070  // No special expansion.
4071  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4072}
4073
4074/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4075/// limited-precision mode.
4076static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
4077                          const TargetLowering &TLI) {
4078  if (Op.getValueType() == MVT::f32 &&
4079      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4080    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4081
4082    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4083    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4084    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4085
4086    //   IntegerPartOfX <<= 23;
4087    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4088                                 DAG.getConstant(23, TLI.getPointerTy()));
4089
4090    SDValue TwoToFractionalPartOfX;
4091    if (LimitFloatPrecision <= 6) {
4092      // For floating-point precision of 6:
4093      //
4094      //   TwoToFractionalPartOfX =
4095      //     0.997535578f +
4096      //       (0.735607626f + 0.252464424f * x) * x;
4097      //
4098      // error 0.0144103317, which is 6 bits
4099      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4100                               getF32Constant(DAG, 0x3e814304));
4101      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4102                               getF32Constant(DAG, 0x3f3c50c8));
4103      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4104      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4105                                           getF32Constant(DAG, 0x3f7f5e7e));
4106    } else if (LimitFloatPrecision <= 12) {
4107      // For floating-point precision of 12:
4108      //
4109      //   TwoToFractionalPartOfX =
4110      //     0.999892986f +
4111      //       (0.696457318f +
4112      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4113      //
4114      // error 0.000107046256, which is 13 to 14 bits
4115      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4116                               getF32Constant(DAG, 0x3da235e3));
4117      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4118                               getF32Constant(DAG, 0x3e65b8f3));
4119      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4120      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4121                               getF32Constant(DAG, 0x3f324b07));
4122      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4123      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4124                                           getF32Constant(DAG, 0x3f7ff8fd));
4125    } else { // LimitFloatPrecision <= 18
4126      // For floating-point precision of 18:
4127      //
4128      //   TwoToFractionalPartOfX =
4129      //     0.999999982f +
4130      //       (0.693148872f +
4131      //         (0.240227044f +
4132      //           (0.554906021e-1f +
4133      //             (0.961591928e-2f +
4134      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4135      // error 2.47208000*10^(-7), which is better than 18 bits
4136      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4137                               getF32Constant(DAG, 0x3924b03e));
4138      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4139                               getF32Constant(DAG, 0x3ab24b87));
4140      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4141      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4142                               getF32Constant(DAG, 0x3c1d8c17));
4143      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4144      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4145                               getF32Constant(DAG, 0x3d634a1d));
4146      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4147      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4148                               getF32Constant(DAG, 0x3e75fe14));
4149      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4150      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4151                                getF32Constant(DAG, 0x3f317234));
4152      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4153      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4154                                           getF32Constant(DAG, 0x3f800000));
4155    }
4156
4157    // Add the exponent into the result in integer domain.
4158    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4159                              TwoToFractionalPartOfX);
4160    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4161                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4162                                   t13, IntegerPartOfX));
4163  }
4164
4165  // No special expansion.
4166  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4167}
4168
4169/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4170/// limited-precision mode with x == 10.0f.
4171static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS,
4172                         SelectionDAG &DAG, const TargetLowering &TLI) {
4173  bool IsExp10 = false;
4174  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4175      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4176    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4177      APFloat Ten(10.0f);
4178      IsExp10 = LHSC->isExactlyValue(Ten);
4179    }
4180  }
4181
4182  if (IsExp10) {
4183    // Put the exponent in the right bit position for later addition to the
4184    // final result:
4185    //
4186    //   #define LOG2OF10 3.3219281f
4187    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4188    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4189                             getF32Constant(DAG, 0x40549a78));
4190    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4191
4192    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4193    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4194    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4195
4196    //   IntegerPartOfX <<= 23;
4197    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4198                                 DAG.getConstant(23, TLI.getPointerTy()));
4199
4200    SDValue TwoToFractionalPartOfX;
4201    if (LimitFloatPrecision <= 6) {
4202      // For floating-point precision of 6:
4203      //
4204      //   twoToFractionalPartOfX =
4205      //     0.997535578f +
4206      //       (0.735607626f + 0.252464424f * x) * x;
4207      //
4208      // error 0.0144103317, which is 6 bits
4209      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4210                               getF32Constant(DAG, 0x3e814304));
4211      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4212                               getF32Constant(DAG, 0x3f3c50c8));
4213      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4214      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4215                                           getF32Constant(DAG, 0x3f7f5e7e));
4216    } else if (LimitFloatPrecision <= 12) {
4217      // For floating-point precision of 12:
4218      //
4219      //   TwoToFractionalPartOfX =
4220      //     0.999892986f +
4221      //       (0.696457318f +
4222      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4223      //
4224      // error 0.000107046256, which is 13 to 14 bits
4225      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4226                               getF32Constant(DAG, 0x3da235e3));
4227      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4228                               getF32Constant(DAG, 0x3e65b8f3));
4229      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4230      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4231                               getF32Constant(DAG, 0x3f324b07));
4232      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4233      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4234                                           getF32Constant(DAG, 0x3f7ff8fd));
4235    } else { // LimitFloatPrecision <= 18
4236      // For floating-point precision of 18:
4237      //
4238      //   TwoToFractionalPartOfX =
4239      //     0.999999982f +
4240      //       (0.693148872f +
4241      //         (0.240227044f +
4242      //           (0.554906021e-1f +
4243      //             (0.961591928e-2f +
4244      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4245      // error 2.47208000*10^(-7), which is better than 18 bits
4246      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4247                               getF32Constant(DAG, 0x3924b03e));
4248      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4249                               getF32Constant(DAG, 0x3ab24b87));
4250      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4251      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4252                               getF32Constant(DAG, 0x3c1d8c17));
4253      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4254      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4255                               getF32Constant(DAG, 0x3d634a1d));
4256      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4257      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4258                               getF32Constant(DAG, 0x3e75fe14));
4259      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4260      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4261                                getF32Constant(DAG, 0x3f317234));
4262      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4263      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4264                                           getF32Constant(DAG, 0x3f800000));
4265    }
4266
4267    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4268    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4269                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4270                                   t13, IntegerPartOfX));
4271  }
4272
4273  // No special expansion.
4274  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4275}
4276
4277
4278/// ExpandPowI - Expand a llvm.powi intrinsic.
4279static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4280                          SelectionDAG &DAG) {
4281  // If RHS is a constant, we can expand this out to a multiplication tree,
4282  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4283  // optimizing for size, we only want to do this if the expansion would produce
4284  // a small number of multiplies, otherwise we do the full expansion.
4285  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4286    // Get the exponent as a positive value.
4287    unsigned Val = RHSC->getSExtValue();
4288    if ((int)Val < 0) Val = -Val;
4289
4290    // powi(x, 0) -> 1.0
4291    if (Val == 0)
4292      return DAG.getConstantFP(1.0, LHS.getValueType());
4293
4294    const Function *F = DAG.getMachineFunction().getFunction();
4295    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4296                                         Attribute::OptimizeForSize) ||
4297        // If optimizing for size, don't insert too many multiplies.  This
4298        // inserts up to 5 multiplies.
4299        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4300      // We use the simple binary decomposition method to generate the multiply
4301      // sequence.  There are more optimal ways to do this (for example,
4302      // powi(x,15) generates one more multiply than it should), but this has
4303      // the benefit of being both really simple and much better than a libcall.
4304      SDValue Res;  // Logically starts equal to 1.0
4305      SDValue CurSquare = LHS;
4306      while (Val) {
4307        if (Val & 1) {
4308          if (Res.getNode())
4309            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4310          else
4311            Res = CurSquare;  // 1.0*CurSquare.
4312        }
4313
4314        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4315                                CurSquare, CurSquare);
4316        Val >>= 1;
4317      }
4318
4319      // If the original was negative, invert the result, producing 1/(x*x*x).
4320      if (RHSC->getSExtValue() < 0)
4321        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4322                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4323      return Res;
4324    }
4325  }
4326
4327  // Otherwise, expand to a libcall.
4328  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4329}
4330
4331// getTruncatedArgReg - Find underlying register used for an truncated
4332// argument.
4333static unsigned getTruncatedArgReg(const SDValue &N) {
4334  if (N.getOpcode() != ISD::TRUNCATE)
4335    return 0;
4336
4337  const SDValue &Ext = N.getOperand(0);
4338  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4339    const SDValue &CFR = Ext.getOperand(0);
4340    if (CFR.getOpcode() == ISD::CopyFromReg)
4341      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4342    if (CFR.getOpcode() == ISD::TRUNCATE)
4343      return getTruncatedArgReg(CFR);
4344  }
4345  return 0;
4346}
4347
4348/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4349/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4350/// At the end of instruction selection, they will be inserted to the entry BB.
4351bool
4352SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4353                                              int64_t Offset,
4354                                              const SDValue &N) {
4355  const Argument *Arg = dyn_cast<Argument>(V);
4356  if (!Arg)
4357    return false;
4358
4359  MachineFunction &MF = DAG.getMachineFunction();
4360  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4361  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4362
4363  // Ignore inlined function arguments here.
4364  DIVariable DV(Variable);
4365  if (DV.isInlinedFnArgument(MF.getFunction()))
4366    return false;
4367
4368  unsigned Reg = 0;
4369  // Some arguments' frame index is recorded during argument lowering.
4370  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4371  if (Offset)
4372    Reg = TRI->getFrameRegister(MF);
4373
4374  if (!Reg && N.getNode()) {
4375    if (N.getOpcode() == ISD::CopyFromReg)
4376      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4377    else
4378      Reg = getTruncatedArgReg(N);
4379    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4380      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4381      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4382      if (PR)
4383        Reg = PR;
4384    }
4385  }
4386
4387  if (!Reg) {
4388    // Check if ValueMap has reg number.
4389    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4390    if (VMI != FuncInfo.ValueMap.end())
4391      Reg = VMI->second;
4392  }
4393
4394  if (!Reg && N.getNode()) {
4395    // Check if frame index is available.
4396    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4397      if (FrameIndexSDNode *FINode =
4398          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4399        Reg = TRI->getFrameRegister(MF);
4400        Offset = FINode->getIndex();
4401      }
4402  }
4403
4404  if (!Reg)
4405    return false;
4406
4407  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4408                                    TII->get(TargetOpcode::DBG_VALUE))
4409    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4410  FuncInfo.ArgDbgValues.push_back(&*MIB);
4411  return true;
4412}
4413
4414// VisualStudio defines setjmp as _setjmp
4415#if defined(_MSC_VER) && defined(setjmp) && \
4416                         !defined(setjmp_undefined_for_msvc)
4417#  pragma push_macro("setjmp")
4418#  undef setjmp
4419#  define setjmp_undefined_for_msvc
4420#endif
4421
4422/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4423/// we want to emit this as a call to a named external function, return the name
4424/// otherwise lower it and return null.
4425const char *
4426SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4427  DebugLoc dl = getCurDebugLoc();
4428  SDValue Res;
4429
4430  switch (Intrinsic) {
4431  default:
4432    // By default, turn this into a target intrinsic node.
4433    visitTargetIntrinsic(I, Intrinsic);
4434    return 0;
4435  case Intrinsic::vastart:  visitVAStart(I); return 0;
4436  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4437  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4438  case Intrinsic::returnaddress:
4439    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4440                             getValue(I.getArgOperand(0))));
4441    return 0;
4442  case Intrinsic::frameaddress:
4443    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4444                             getValue(I.getArgOperand(0))));
4445    return 0;
4446  case Intrinsic::setjmp:
4447    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4448  case Intrinsic::longjmp:
4449    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4450  case Intrinsic::memcpy: {
4451    // Assert for address < 256 since we support only user defined address
4452    // spaces.
4453    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4454           < 256 &&
4455           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4456           < 256 &&
4457           "Unknown address space");
4458    SDValue Op1 = getValue(I.getArgOperand(0));
4459    SDValue Op2 = getValue(I.getArgOperand(1));
4460    SDValue Op3 = getValue(I.getArgOperand(2));
4461    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4462    if (!Align)
4463      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4464    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4465    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4466                              MachinePointerInfo(I.getArgOperand(0)),
4467                              MachinePointerInfo(I.getArgOperand(1))));
4468    return 0;
4469  }
4470  case Intrinsic::memset: {
4471    // Assert for address < 256 since we support only user defined address
4472    // spaces.
4473    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4474           < 256 &&
4475           "Unknown address space");
4476    SDValue Op1 = getValue(I.getArgOperand(0));
4477    SDValue Op2 = getValue(I.getArgOperand(1));
4478    SDValue Op3 = getValue(I.getArgOperand(2));
4479    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4480    if (!Align)
4481      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4482    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4483    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4484                              MachinePointerInfo(I.getArgOperand(0))));
4485    return 0;
4486  }
4487  case Intrinsic::memmove: {
4488    // Assert for address < 256 since we support only user defined address
4489    // spaces.
4490    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4491           < 256 &&
4492           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4493           < 256 &&
4494           "Unknown address space");
4495    SDValue Op1 = getValue(I.getArgOperand(0));
4496    SDValue Op2 = getValue(I.getArgOperand(1));
4497    SDValue Op3 = getValue(I.getArgOperand(2));
4498    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4499    if (!Align)
4500      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4501    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4502    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4503                               MachinePointerInfo(I.getArgOperand(0)),
4504                               MachinePointerInfo(I.getArgOperand(1))));
4505    return 0;
4506  }
4507  case Intrinsic::dbg_declare: {
4508    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4509    MDNode *Variable = DI.getVariable();
4510    const Value *Address = DI.getAddress();
4511    if (!Address || !DIVariable(Variable).Verify()) {
4512      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4513      return 0;
4514    }
4515
4516    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4517    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4518    // absolute, but not relative, values are different depending on whether
4519    // debug info exists.
4520    ++SDNodeOrder;
4521
4522    // Check if address has undef value.
4523    if (isa<UndefValue>(Address) ||
4524        (Address->use_empty() && !isa<Argument>(Address))) {
4525      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4526      return 0;
4527    }
4528
4529    SDValue &N = NodeMap[Address];
4530    if (!N.getNode() && isa<Argument>(Address))
4531      // Check unused arguments map.
4532      N = UnusedArgNodeMap[Address];
4533    SDDbgValue *SDV;
4534    if (N.getNode()) {
4535      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4536        Address = BCI->getOperand(0);
4537      // Parameters are handled specially.
4538      bool isParameter =
4539        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4540         isa<Argument>(Address));
4541
4542      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4543
4544      if (isParameter && !AI) {
4545        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4546        if (FINode)
4547          // Byval parameter.  We have a frame index at this point.
4548          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4549                                0, dl, SDNodeOrder);
4550        else {
4551          // Address is an argument, so try to emit its dbg value using
4552          // virtual register info from the FuncInfo.ValueMap.
4553          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4554          return 0;
4555        }
4556      } else if (AI)
4557        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4558                              0, dl, SDNodeOrder);
4559      else {
4560        // Can't do anything with other non-AI cases yet.
4561        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4562        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4563        DEBUG(Address->dump());
4564        return 0;
4565      }
4566      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4567    } else {
4568      // If Address is an argument then try to emit its dbg value using
4569      // virtual register info from the FuncInfo.ValueMap.
4570      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4571        // If variable is pinned by a alloca in dominating bb then
4572        // use StaticAllocaMap.
4573        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4574          if (AI->getParent() != DI.getParent()) {
4575            DenseMap<const AllocaInst*, int>::iterator SI =
4576              FuncInfo.StaticAllocaMap.find(AI);
4577            if (SI != FuncInfo.StaticAllocaMap.end()) {
4578              SDV = DAG.getDbgValue(Variable, SI->second,
4579                                    0, dl, SDNodeOrder);
4580              DAG.AddDbgValue(SDV, 0, false);
4581              return 0;
4582            }
4583          }
4584        }
4585        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4586      }
4587    }
4588    return 0;
4589  }
4590  case Intrinsic::dbg_value: {
4591    const DbgValueInst &DI = cast<DbgValueInst>(I);
4592    if (!DIVariable(DI.getVariable()).Verify())
4593      return 0;
4594
4595    MDNode *Variable = DI.getVariable();
4596    uint64_t Offset = DI.getOffset();
4597    const Value *V = DI.getValue();
4598    if (!V)
4599      return 0;
4600
4601    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4602    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4603    // absolute, but not relative, values are different depending on whether
4604    // debug info exists.
4605    ++SDNodeOrder;
4606    SDDbgValue *SDV;
4607    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4608      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4609      DAG.AddDbgValue(SDV, 0, false);
4610    } else {
4611      // Do not use getValue() in here; we don't want to generate code at
4612      // this point if it hasn't been done yet.
4613      SDValue N = NodeMap[V];
4614      if (!N.getNode() && isa<Argument>(V))
4615        // Check unused arguments map.
4616        N = UnusedArgNodeMap[V];
4617      if (N.getNode()) {
4618        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4619          SDV = DAG.getDbgValue(Variable, N.getNode(),
4620                                N.getResNo(), Offset, dl, SDNodeOrder);
4621          DAG.AddDbgValue(SDV, N.getNode(), false);
4622        }
4623      } else if (!V->use_empty() ) {
4624        // Do not call getValue(V) yet, as we don't want to generate code.
4625        // Remember it for later.
4626        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4627        DanglingDebugInfoMap[V] = DDI;
4628      } else {
4629        // We may expand this to cover more cases.  One case where we have no
4630        // data available is an unreferenced parameter.
4631        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4632      }
4633    }
4634
4635    // Build a debug info table entry.
4636    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4637      V = BCI->getOperand(0);
4638    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4639    // Don't handle byval struct arguments or VLAs, for example.
4640    if (!AI) {
4641      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4642      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4643      return 0;
4644    }
4645    DenseMap<const AllocaInst*, int>::iterator SI =
4646      FuncInfo.StaticAllocaMap.find(AI);
4647    if (SI == FuncInfo.StaticAllocaMap.end())
4648      return 0; // VLAs.
4649    int FI = SI->second;
4650
4651    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4652    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4653      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4654    return 0;
4655  }
4656
4657  case Intrinsic::eh_typeid_for: {
4658    // Find the type id for the given typeinfo.
4659    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4660    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4661    Res = DAG.getConstant(TypeID, MVT::i32);
4662    setValue(&I, Res);
4663    return 0;
4664  }
4665
4666  case Intrinsic::eh_return_i32:
4667  case Intrinsic::eh_return_i64:
4668    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4669    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4670                            MVT::Other,
4671                            getControlRoot(),
4672                            getValue(I.getArgOperand(0)),
4673                            getValue(I.getArgOperand(1))));
4674    return 0;
4675  case Intrinsic::eh_unwind_init:
4676    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4677    return 0;
4678  case Intrinsic::eh_dwarf_cfa: {
4679    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4680                                        TLI.getPointerTy());
4681    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4682                                 TLI.getPointerTy(),
4683                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4684                                             TLI.getPointerTy()),
4685                                 CfaArg);
4686    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4687                             TLI.getPointerTy(),
4688                             DAG.getConstant(0, TLI.getPointerTy()));
4689    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4690                             FA, Offset));
4691    return 0;
4692  }
4693  case Intrinsic::eh_sjlj_callsite: {
4694    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4695    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4696    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4697    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4698
4699    MMI.setCurrentCallSite(CI->getZExtValue());
4700    return 0;
4701  }
4702  case Intrinsic::eh_sjlj_functioncontext: {
4703    // Get and store the index of the function context.
4704    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4705    AllocaInst *FnCtx =
4706      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4707    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4708    MFI->setFunctionContextIndex(FI);
4709    return 0;
4710  }
4711  case Intrinsic::eh_sjlj_setjmp: {
4712    SDValue Ops[2];
4713    Ops[0] = getRoot();
4714    Ops[1] = getValue(I.getArgOperand(0));
4715    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4716                             DAG.getVTList(MVT::i32, MVT::Other),
4717                             Ops, 2);
4718    setValue(&I, Op.getValue(0));
4719    DAG.setRoot(Op.getValue(1));
4720    return 0;
4721  }
4722  case Intrinsic::eh_sjlj_longjmp: {
4723    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4724                            getRoot(), getValue(I.getArgOperand(0))));
4725    return 0;
4726  }
4727
4728  case Intrinsic::x86_mmx_pslli_w:
4729  case Intrinsic::x86_mmx_pslli_d:
4730  case Intrinsic::x86_mmx_pslli_q:
4731  case Intrinsic::x86_mmx_psrli_w:
4732  case Intrinsic::x86_mmx_psrli_d:
4733  case Intrinsic::x86_mmx_psrli_q:
4734  case Intrinsic::x86_mmx_psrai_w:
4735  case Intrinsic::x86_mmx_psrai_d: {
4736    SDValue ShAmt = getValue(I.getArgOperand(1));
4737    if (isa<ConstantSDNode>(ShAmt)) {
4738      visitTargetIntrinsic(I, Intrinsic);
4739      return 0;
4740    }
4741    unsigned NewIntrinsic = 0;
4742    EVT ShAmtVT = MVT::v2i32;
4743    switch (Intrinsic) {
4744    case Intrinsic::x86_mmx_pslli_w:
4745      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4746      break;
4747    case Intrinsic::x86_mmx_pslli_d:
4748      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4749      break;
4750    case Intrinsic::x86_mmx_pslli_q:
4751      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4752      break;
4753    case Intrinsic::x86_mmx_psrli_w:
4754      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4755      break;
4756    case Intrinsic::x86_mmx_psrli_d:
4757      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4758      break;
4759    case Intrinsic::x86_mmx_psrli_q:
4760      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4761      break;
4762    case Intrinsic::x86_mmx_psrai_w:
4763      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4764      break;
4765    case Intrinsic::x86_mmx_psrai_d:
4766      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4767      break;
4768    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4769    }
4770
4771    // The vector shift intrinsics with scalars uses 32b shift amounts but
4772    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4773    // to be zero.
4774    // We must do this early because v2i32 is not a legal type.
4775    SDValue ShOps[2];
4776    ShOps[0] = ShAmt;
4777    ShOps[1] = DAG.getConstant(0, MVT::i32);
4778    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4779    EVT DestVT = TLI.getValueType(I.getType());
4780    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4781    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4782                       DAG.getConstant(NewIntrinsic, MVT::i32),
4783                       getValue(I.getArgOperand(0)), ShAmt);
4784    setValue(&I, Res);
4785    return 0;
4786  }
4787  case Intrinsic::x86_avx_vinsertf128_pd_256:
4788  case Intrinsic::x86_avx_vinsertf128_ps_256:
4789  case Intrinsic::x86_avx_vinsertf128_si_256:
4790  case Intrinsic::x86_avx2_vinserti128: {
4791    EVT DestVT = TLI.getValueType(I.getType());
4792    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4793    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4794                   ElVT.getVectorNumElements();
4795    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4796                      getValue(I.getArgOperand(0)),
4797                      getValue(I.getArgOperand(1)),
4798                      DAG.getIntPtrConstant(Idx));
4799    setValue(&I, Res);
4800    return 0;
4801  }
4802  case Intrinsic::x86_avx_vextractf128_pd_256:
4803  case Intrinsic::x86_avx_vextractf128_ps_256:
4804  case Intrinsic::x86_avx_vextractf128_si_256:
4805  case Intrinsic::x86_avx2_vextracti128: {
4806    EVT DestVT = TLI.getValueType(I.getType());
4807    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4808                   DestVT.getVectorNumElements();
4809    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4810                      getValue(I.getArgOperand(0)),
4811                      DAG.getIntPtrConstant(Idx));
4812    setValue(&I, Res);
4813    return 0;
4814  }
4815  case Intrinsic::convertff:
4816  case Intrinsic::convertfsi:
4817  case Intrinsic::convertfui:
4818  case Intrinsic::convertsif:
4819  case Intrinsic::convertuif:
4820  case Intrinsic::convertss:
4821  case Intrinsic::convertsu:
4822  case Intrinsic::convertus:
4823  case Intrinsic::convertuu: {
4824    ISD::CvtCode Code = ISD::CVT_INVALID;
4825    switch (Intrinsic) {
4826    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4827    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4828    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4829    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4830    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4831    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4832    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4833    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4834    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4835    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4836    }
4837    EVT DestVT = TLI.getValueType(I.getType());
4838    const Value *Op1 = I.getArgOperand(0);
4839    Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1),
4840                               DAG.getValueType(DestVT),
4841                               DAG.getValueType(getValue(Op1).getValueType()),
4842                               getValue(I.getArgOperand(1)),
4843                               getValue(I.getArgOperand(2)),
4844                               Code);
4845    setValue(&I, Res);
4846    return 0;
4847  }
4848  case Intrinsic::powi:
4849    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4850                            getValue(I.getArgOperand(1)), DAG));
4851    return 0;
4852  case Intrinsic::log:
4853    setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4854    return 0;
4855  case Intrinsic::log2:
4856    setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4857    return 0;
4858  case Intrinsic::log10:
4859    setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4860    return 0;
4861  case Intrinsic::exp:
4862    setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4863    return 0;
4864  case Intrinsic::exp2:
4865    setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4866    return 0;
4867  case Intrinsic::pow:
4868    setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)),
4869                           getValue(I.getArgOperand(1)), DAG, TLI));
4870    return 0;
4871  case Intrinsic::sqrt:
4872  case Intrinsic::fabs:
4873  case Intrinsic::sin:
4874  case Intrinsic::cos:
4875  case Intrinsic::floor:
4876  case Intrinsic::ceil:
4877  case Intrinsic::trunc:
4878  case Intrinsic::rint:
4879  case Intrinsic::nearbyint: {
4880    unsigned Opcode;
4881    switch (Intrinsic) {
4882    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4883    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4884    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4885    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4886    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4887    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4888    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4889    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4890    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4891    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4892    }
4893
4894    setValue(&I, DAG.getNode(Opcode, dl,
4895                             getValue(I.getArgOperand(0)).getValueType(),
4896                             getValue(I.getArgOperand(0))));
4897    return 0;
4898  }
4899  case Intrinsic::fma:
4900    setValue(&I, DAG.getNode(ISD::FMA, dl,
4901                             getValue(I.getArgOperand(0)).getValueType(),
4902                             getValue(I.getArgOperand(0)),
4903                             getValue(I.getArgOperand(1)),
4904                             getValue(I.getArgOperand(2))));
4905    return 0;
4906  case Intrinsic::fmuladd: {
4907    EVT VT = TLI.getValueType(I.getType());
4908    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4909        TLI.isFMAFasterThanMulAndAdd(VT)){
4910      setValue(&I, DAG.getNode(ISD::FMA, dl,
4911                               getValue(I.getArgOperand(0)).getValueType(),
4912                               getValue(I.getArgOperand(0)),
4913                               getValue(I.getArgOperand(1)),
4914                               getValue(I.getArgOperand(2))));
4915    } else {
4916      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4917                                getValue(I.getArgOperand(0)).getValueType(),
4918                                getValue(I.getArgOperand(0)),
4919                                getValue(I.getArgOperand(1)));
4920      SDValue Add = DAG.getNode(ISD::FADD, dl,
4921                                getValue(I.getArgOperand(0)).getValueType(),
4922                                Mul,
4923                                getValue(I.getArgOperand(2)));
4924      setValue(&I, Add);
4925    }
4926    return 0;
4927  }
4928  case Intrinsic::convert_to_fp16:
4929    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4930                             MVT::i16, getValue(I.getArgOperand(0))));
4931    return 0;
4932  case Intrinsic::convert_from_fp16:
4933    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4934                             MVT::f32, getValue(I.getArgOperand(0))));
4935    return 0;
4936  case Intrinsic::pcmarker: {
4937    SDValue Tmp = getValue(I.getArgOperand(0));
4938    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4939    return 0;
4940  }
4941  case Intrinsic::readcyclecounter: {
4942    SDValue Op = getRoot();
4943    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4944                      DAG.getVTList(MVT::i64, MVT::Other),
4945                      &Op, 1);
4946    setValue(&I, Res);
4947    DAG.setRoot(Res.getValue(1));
4948    return 0;
4949  }
4950  case Intrinsic::bswap:
4951    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4952                             getValue(I.getArgOperand(0)).getValueType(),
4953                             getValue(I.getArgOperand(0))));
4954    return 0;
4955  case Intrinsic::cttz: {
4956    SDValue Arg = getValue(I.getArgOperand(0));
4957    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4958    EVT Ty = Arg.getValueType();
4959    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4960                             dl, Ty, Arg));
4961    return 0;
4962  }
4963  case Intrinsic::ctlz: {
4964    SDValue Arg = getValue(I.getArgOperand(0));
4965    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4966    EVT Ty = Arg.getValueType();
4967    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4968                             dl, Ty, Arg));
4969    return 0;
4970  }
4971  case Intrinsic::ctpop: {
4972    SDValue Arg = getValue(I.getArgOperand(0));
4973    EVT Ty = Arg.getValueType();
4974    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4975    return 0;
4976  }
4977  case Intrinsic::stacksave: {
4978    SDValue Op = getRoot();
4979    Res = DAG.getNode(ISD::STACKSAVE, dl,
4980                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4981    setValue(&I, Res);
4982    DAG.setRoot(Res.getValue(1));
4983    return 0;
4984  }
4985  case Intrinsic::stackrestore: {
4986    Res = getValue(I.getArgOperand(0));
4987    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4988    return 0;
4989  }
4990  case Intrinsic::stackprotector: {
4991    // Emit code into the DAG to store the stack guard onto the stack.
4992    MachineFunction &MF = DAG.getMachineFunction();
4993    MachineFrameInfo *MFI = MF.getFrameInfo();
4994    EVT PtrTy = TLI.getPointerTy();
4995
4996    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4997    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4998
4999    int FI = FuncInfo.StaticAllocaMap[Slot];
5000    MFI->setStackProtectorIndex(FI);
5001
5002    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5003
5004    // Store the stack protector onto the stack.
5005    Res = DAG.getStore(getRoot(), dl, Src, FIN,
5006                       MachinePointerInfo::getFixedStack(FI),
5007                       true, false, 0);
5008    setValue(&I, Res);
5009    DAG.setRoot(Res);
5010    return 0;
5011  }
5012  case Intrinsic::objectsize: {
5013    // If we don't know by now, we're never going to know.
5014    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5015
5016    assert(CI && "Non-constant type in __builtin_object_size?");
5017
5018    SDValue Arg = getValue(I.getCalledValue());
5019    EVT Ty = Arg.getValueType();
5020
5021    if (CI->isZero())
5022      Res = DAG.getConstant(-1ULL, Ty);
5023    else
5024      Res = DAG.getConstant(0, Ty);
5025
5026    setValue(&I, Res);
5027    return 0;
5028  }
5029  case Intrinsic::annotation:
5030  case Intrinsic::ptr_annotation:
5031    // Drop the intrinsic, but forward the value
5032    setValue(&I, getValue(I.getOperand(0)));
5033    return 0;
5034  case Intrinsic::var_annotation:
5035    // Discard annotate attributes
5036    return 0;
5037
5038  case Intrinsic::init_trampoline: {
5039    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5040
5041    SDValue Ops[6];
5042    Ops[0] = getRoot();
5043    Ops[1] = getValue(I.getArgOperand(0));
5044    Ops[2] = getValue(I.getArgOperand(1));
5045    Ops[3] = getValue(I.getArgOperand(2));
5046    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5047    Ops[5] = DAG.getSrcValue(F);
5048
5049    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5050
5051    DAG.setRoot(Res);
5052    return 0;
5053  }
5054  case Intrinsic::adjust_trampoline: {
5055    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5056                             TLI.getPointerTy(),
5057                             getValue(I.getArgOperand(0))));
5058    return 0;
5059  }
5060  case Intrinsic::gcroot:
5061    if (GFI) {
5062      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5063      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5064
5065      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5066      GFI->addStackRoot(FI->getIndex(), TypeMap);
5067    }
5068    return 0;
5069  case Intrinsic::gcread:
5070  case Intrinsic::gcwrite:
5071    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5072  case Intrinsic::flt_rounds:
5073    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5074    return 0;
5075
5076  case Intrinsic::expect: {
5077    // Just replace __builtin_expect(exp, c) with EXP.
5078    setValue(&I, getValue(I.getArgOperand(0)));
5079    return 0;
5080  }
5081
5082  case Intrinsic::debugtrap:
5083  case Intrinsic::trap: {
5084    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5085    if (TrapFuncName.empty()) {
5086      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5087        ISD::TRAP : ISD::DEBUGTRAP;
5088      DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
5089      return 0;
5090    }
5091    TargetLowering::ArgListTy Args;
5092    TargetLowering::
5093    CallLoweringInfo CLI(getRoot(), I.getType(),
5094                 false, false, false, false, 0, CallingConv::C,
5095                 /*isTailCall=*/false,
5096                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5097                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5098                 Args, DAG, dl);
5099    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5100    DAG.setRoot(Result.second);
5101    return 0;
5102  }
5103
5104  case Intrinsic::uadd_with_overflow:
5105  case Intrinsic::sadd_with_overflow:
5106  case Intrinsic::usub_with_overflow:
5107  case Intrinsic::ssub_with_overflow:
5108  case Intrinsic::umul_with_overflow:
5109  case Intrinsic::smul_with_overflow: {
5110    ISD::NodeType Op;
5111    switch (Intrinsic) {
5112    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5113    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5114    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5115    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5116    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5117    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5118    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5119    }
5120    SDValue Op1 = getValue(I.getArgOperand(0));
5121    SDValue Op2 = getValue(I.getArgOperand(1));
5122
5123    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5124    setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2));
5125    return 0;
5126  }
5127  case Intrinsic::prefetch: {
5128    SDValue Ops[5];
5129    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5130    Ops[0] = getRoot();
5131    Ops[1] = getValue(I.getArgOperand(0));
5132    Ops[2] = getValue(I.getArgOperand(1));
5133    Ops[3] = getValue(I.getArgOperand(2));
5134    Ops[4] = getValue(I.getArgOperand(3));
5135    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5136                                        DAG.getVTList(MVT::Other),
5137                                        &Ops[0], 5,
5138                                        EVT::getIntegerVT(*Context, 8),
5139                                        MachinePointerInfo(I.getArgOperand(0)),
5140                                        0, /* align */
5141                                        false, /* volatile */
5142                                        rw==0, /* read */
5143                                        rw==1)); /* write */
5144    return 0;
5145  }
5146  case Intrinsic::lifetime_start:
5147  case Intrinsic::lifetime_end: {
5148    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5149    // Stack coloring is not enabled in O0, discard region information.
5150    if (TM.getOptLevel() == CodeGenOpt::None)
5151      return 0;
5152
5153    SmallVector<Value *, 4> Allocas;
5154    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5155
5156    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5157         E = Allocas.end(); Object != E; ++Object) {
5158      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5159
5160      // Could not find an Alloca.
5161      if (!LifetimeObject)
5162        continue;
5163
5164      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5165
5166      SDValue Ops[2];
5167      Ops[0] = getRoot();
5168      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5169      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5170
5171      Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5172      DAG.setRoot(Res);
5173    }
5174    return 0;
5175  }
5176  case Intrinsic::invariant_start:
5177    // Discard region information.
5178    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5179    return 0;
5180  case Intrinsic::invariant_end:
5181    // Discard region information.
5182    return 0;
5183  case Intrinsic::donothing:
5184    // ignore
5185    return 0;
5186  }
5187}
5188
5189void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5190                                      bool isTailCall,
5191                                      MachineBasicBlock *LandingPad) {
5192  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5193  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5194  Type *RetTy = FTy->getReturnType();
5195  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5196  MCSymbol *BeginLabel = 0;
5197
5198  TargetLowering::ArgListTy Args;
5199  TargetLowering::ArgListEntry Entry;
5200  Args.reserve(CS.arg_size());
5201
5202  // Check whether the function can return without sret-demotion.
5203  SmallVector<ISD::OutputArg, 4> Outs;
5204  GetReturnInfo(RetTy, CS.getAttributes(), Outs, TLI);
5205
5206  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5207                                           DAG.getMachineFunction(),
5208                                           FTy->isVarArg(), Outs,
5209                                           FTy->getContext());
5210
5211  SDValue DemoteStackSlot;
5212  int DemoteStackIdx = -100;
5213
5214  if (!CanLowerReturn) {
5215    uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5216                      FTy->getReturnType());
5217    unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5218                      FTy->getReturnType());
5219    MachineFunction &MF = DAG.getMachineFunction();
5220    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5221    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5222
5223    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5224    Entry.Node = DemoteStackSlot;
5225    Entry.Ty = StackSlotPtrType;
5226    Entry.isSExt = false;
5227    Entry.isZExt = false;
5228    Entry.isInReg = false;
5229    Entry.isSRet = true;
5230    Entry.isNest = false;
5231    Entry.isByVal = false;
5232    Entry.isReturned = false;
5233    Entry.Alignment = Align;
5234    Args.push_back(Entry);
5235    RetTy = Type::getVoidTy(FTy->getContext());
5236  }
5237
5238  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5239       i != e; ++i) {
5240    const Value *V = *i;
5241
5242    // Skip empty types
5243    if (V->getType()->isEmptyTy())
5244      continue;
5245
5246    SDValue ArgNode = getValue(V);
5247    Entry.Node = ArgNode; Entry.Ty = V->getType();
5248
5249    unsigned attrInd = i - CS.arg_begin() + 1;
5250    Entry.isSExt     = CS.paramHasAttr(attrInd, Attribute::SExt);
5251    Entry.isZExt     = CS.paramHasAttr(attrInd, Attribute::ZExt);
5252    Entry.isInReg    = CS.paramHasAttr(attrInd, Attribute::InReg);
5253    Entry.isSRet     = CS.paramHasAttr(attrInd, Attribute::StructRet);
5254    Entry.isNest     = CS.paramHasAttr(attrInd, Attribute::Nest);
5255    Entry.isByVal    = CS.paramHasAttr(attrInd, Attribute::ByVal);
5256    Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5257    Entry.Alignment  = CS.getParamAlignment(attrInd);
5258    Args.push_back(Entry);
5259  }
5260
5261  if (LandingPad) {
5262    // Insert a label before the invoke call to mark the try range.  This can be
5263    // used to detect deletion of the invoke via the MachineModuleInfo.
5264    BeginLabel = MMI.getContext().CreateTempSymbol();
5265
5266    // For SjLj, keep track of which landing pads go with which invokes
5267    // so as to maintain the ordering of pads in the LSDA.
5268    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5269    if (CallSiteIndex) {
5270      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5271      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5272
5273      // Now that the call site is handled, stop tracking it.
5274      MMI.setCurrentCallSite(0);
5275    }
5276
5277    // Both PendingLoads and PendingExports must be flushed here;
5278    // this call might not return.
5279    (void)getRoot();
5280    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5281  }
5282
5283  // Check if target-independent constraints permit a tail call here.
5284  // Target-dependent constraints are checked within TLI.LowerCallTo.
5285  if (isTailCall && !isInTailCallPosition(CS, TLI))
5286    isTailCall = false;
5287
5288  TargetLowering::
5289  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5290                       getCurDebugLoc(), CS);
5291  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5292  assert((isTailCall || Result.second.getNode()) &&
5293         "Non-null chain expected with non-tail call!");
5294  assert((Result.second.getNode() || !Result.first.getNode()) &&
5295         "Null value expected with tail call!");
5296  if (Result.first.getNode()) {
5297    setValue(CS.getInstruction(), Result.first);
5298  } else if (!CanLowerReturn && Result.second.getNode()) {
5299    // The instruction result is the result of loading from the
5300    // hidden sret parameter.
5301    SmallVector<EVT, 1> PVTs;
5302    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5303
5304    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5305    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5306    EVT PtrVT = PVTs[0];
5307
5308    SmallVector<EVT, 4> RetTys;
5309    SmallVector<uint64_t, 4> Offsets;
5310    RetTy = FTy->getReturnType();
5311    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5312
5313    unsigned NumValues = RetTys.size();
5314    SmallVector<SDValue, 4> Values(NumValues);
5315    SmallVector<SDValue, 4> Chains(NumValues);
5316
5317    for (unsigned i = 0; i < NumValues; ++i) {
5318      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5319                                DemoteStackSlot,
5320                                DAG.getConstant(Offsets[i], PtrVT));
5321      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5322                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5323                              false, false, false, 1);
5324      Values[i] = L;
5325      Chains[i] = L.getValue(1);
5326    }
5327
5328    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5329                                MVT::Other, &Chains[0], NumValues);
5330    PendingLoads.push_back(Chain);
5331
5332    setValue(CS.getInstruction(),
5333             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5334                         DAG.getVTList(&RetTys[0], RetTys.size()),
5335                         &Values[0], Values.size()));
5336  }
5337
5338  // Assign order to nodes here. If the call does not produce a result, it won't
5339  // be mapped to a SDNode and visit() will not assign it an order number.
5340  if (!Result.second.getNode()) {
5341    // As a special case, a null chain means that a tail call has been emitted and
5342    // the DAG root is already updated.
5343    HasTailCall = true;
5344    ++SDNodeOrder;
5345    AssignOrderingToNode(DAG.getRoot().getNode());
5346  } else {
5347    DAG.setRoot(Result.second);
5348    ++SDNodeOrder;
5349    AssignOrderingToNode(Result.second.getNode());
5350  }
5351
5352  if (LandingPad) {
5353    // Insert a label at the end of the invoke call to mark the try range.  This
5354    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5355    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5356    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5357
5358    // Inform MachineModuleInfo of range.
5359    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5360  }
5361}
5362
5363/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5364/// value is equal or not-equal to zero.
5365static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5366  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5367       UI != E; ++UI) {
5368    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5369      if (IC->isEquality())
5370        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5371          if (C->isNullValue())
5372            continue;
5373    // Unknown instruction.
5374    return false;
5375  }
5376  return true;
5377}
5378
5379static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5380                             Type *LoadTy,
5381                             SelectionDAGBuilder &Builder) {
5382
5383  // Check to see if this load can be trivially constant folded, e.g. if the
5384  // input is from a string literal.
5385  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5386    // Cast pointer to the type we really want to load.
5387    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5388                                         PointerType::getUnqual(LoadTy));
5389
5390    if (const Constant *LoadCst =
5391          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5392                                       Builder.TD))
5393      return Builder.getValue(LoadCst);
5394  }
5395
5396  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5397  // still constant memory, the input chain can be the entry node.
5398  SDValue Root;
5399  bool ConstantMemory = false;
5400
5401  // Do not serialize (non-volatile) loads of constant memory with anything.
5402  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5403    Root = Builder.DAG.getEntryNode();
5404    ConstantMemory = true;
5405  } else {
5406    // Do not serialize non-volatile loads against each other.
5407    Root = Builder.DAG.getRoot();
5408  }
5409
5410  SDValue Ptr = Builder.getValue(PtrVal);
5411  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5412                                        Ptr, MachinePointerInfo(PtrVal),
5413                                        false /*volatile*/,
5414                                        false /*nontemporal*/,
5415                                        false /*isinvariant*/, 1 /* align=1 */);
5416
5417  if (!ConstantMemory)
5418    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5419  return LoadVal;
5420}
5421
5422
5423/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5424/// If so, return true and lower it, otherwise return false and it will be
5425/// lowered like a normal call.
5426bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5427  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5428  if (I.getNumArgOperands() != 3)
5429    return false;
5430
5431  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5432  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5433      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5434      !I.getType()->isIntegerTy())
5435    return false;
5436
5437  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5438
5439  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5440  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5441  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5442    bool ActuallyDoIt = true;
5443    MVT LoadVT;
5444    Type *LoadTy;
5445    switch (Size->getZExtValue()) {
5446    default:
5447      LoadVT = MVT::Other;
5448      LoadTy = 0;
5449      ActuallyDoIt = false;
5450      break;
5451    case 2:
5452      LoadVT = MVT::i16;
5453      LoadTy = Type::getInt16Ty(Size->getContext());
5454      break;
5455    case 4:
5456      LoadVT = MVT::i32;
5457      LoadTy = Type::getInt32Ty(Size->getContext());
5458      break;
5459    case 8:
5460      LoadVT = MVT::i64;
5461      LoadTy = Type::getInt64Ty(Size->getContext());
5462      break;
5463        /*
5464    case 16:
5465      LoadVT = MVT::v4i32;
5466      LoadTy = Type::getInt32Ty(Size->getContext());
5467      LoadTy = VectorType::get(LoadTy, 4);
5468      break;
5469         */
5470    }
5471
5472    // This turns into unaligned loads.  We only do this if the target natively
5473    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5474    // we'll only produce a small number of byte loads.
5475
5476    // Require that we can find a legal MVT, and only do this if the target
5477    // supports unaligned loads of that type.  Expanding into byte loads would
5478    // bloat the code.
5479    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5480      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5481      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5482      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5483        ActuallyDoIt = false;
5484    }
5485
5486    if (ActuallyDoIt) {
5487      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5488      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5489
5490      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5491                                 ISD::SETNE);
5492      EVT CallVT = TLI.getValueType(I.getType(), true);
5493      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5494      return true;
5495    }
5496  }
5497
5498
5499  return false;
5500}
5501
5502/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5503/// operation (as expected), translate it to an SDNode with the specified opcode
5504/// and return true.
5505bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5506                                              unsigned Opcode) {
5507  // Sanity check that it really is a unary floating-point call.
5508  if (I.getNumArgOperands() != 1 ||
5509      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5510      I.getType() != I.getArgOperand(0)->getType() ||
5511      !I.onlyReadsMemory())
5512    return false;
5513
5514  SDValue Tmp = getValue(I.getArgOperand(0));
5515  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5516  return true;
5517}
5518
5519void SelectionDAGBuilder::visitCall(const CallInst &I) {
5520  // Handle inline assembly differently.
5521  if (isa<InlineAsm>(I.getCalledValue())) {
5522    visitInlineAsm(&I);
5523    return;
5524  }
5525
5526  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5527  ComputeUsesVAFloatArgument(I, &MMI);
5528
5529  const char *RenameFn = 0;
5530  if (Function *F = I.getCalledFunction()) {
5531    if (F->isDeclaration()) {
5532      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5533        if (unsigned IID = II->getIntrinsicID(F)) {
5534          RenameFn = visitIntrinsicCall(I, IID);
5535          if (!RenameFn)
5536            return;
5537        }
5538      }
5539      if (unsigned IID = F->getIntrinsicID()) {
5540        RenameFn = visitIntrinsicCall(I, IID);
5541        if (!RenameFn)
5542          return;
5543      }
5544    }
5545
5546    // Check for well-known libc/libm calls.  If the function is internal, it
5547    // can't be a library call.
5548    LibFunc::Func Func;
5549    if (!F->hasLocalLinkage() && F->hasName() &&
5550        LibInfo->getLibFunc(F->getName(), Func) &&
5551        LibInfo->hasOptimizedCodeGen(Func)) {
5552      switch (Func) {
5553      default: break;
5554      case LibFunc::copysign:
5555      case LibFunc::copysignf:
5556      case LibFunc::copysignl:
5557        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5558            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5559            I.getType() == I.getArgOperand(0)->getType() &&
5560            I.getType() == I.getArgOperand(1)->getType() &&
5561            I.onlyReadsMemory()) {
5562          SDValue LHS = getValue(I.getArgOperand(0));
5563          SDValue RHS = getValue(I.getArgOperand(1));
5564          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5565                                   LHS.getValueType(), LHS, RHS));
5566          return;
5567        }
5568        break;
5569      case LibFunc::fabs:
5570      case LibFunc::fabsf:
5571      case LibFunc::fabsl:
5572        if (visitUnaryFloatCall(I, ISD::FABS))
5573          return;
5574        break;
5575      case LibFunc::sin:
5576      case LibFunc::sinf:
5577      case LibFunc::sinl:
5578        if (visitUnaryFloatCall(I, ISD::FSIN))
5579          return;
5580        break;
5581      case LibFunc::cos:
5582      case LibFunc::cosf:
5583      case LibFunc::cosl:
5584        if (visitUnaryFloatCall(I, ISD::FCOS))
5585          return;
5586        break;
5587      case LibFunc::sqrt:
5588      case LibFunc::sqrtf:
5589      case LibFunc::sqrtl:
5590        if (visitUnaryFloatCall(I, ISD::FSQRT))
5591          return;
5592        break;
5593      case LibFunc::floor:
5594      case LibFunc::floorf:
5595      case LibFunc::floorl:
5596        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5597          return;
5598        break;
5599      case LibFunc::nearbyint:
5600      case LibFunc::nearbyintf:
5601      case LibFunc::nearbyintl:
5602        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5603          return;
5604        break;
5605      case LibFunc::ceil:
5606      case LibFunc::ceilf:
5607      case LibFunc::ceill:
5608        if (visitUnaryFloatCall(I, ISD::FCEIL))
5609          return;
5610        break;
5611      case LibFunc::rint:
5612      case LibFunc::rintf:
5613      case LibFunc::rintl:
5614        if (visitUnaryFloatCall(I, ISD::FRINT))
5615          return;
5616        break;
5617      case LibFunc::trunc:
5618      case LibFunc::truncf:
5619      case LibFunc::truncl:
5620        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5621          return;
5622        break;
5623      case LibFunc::log2:
5624      case LibFunc::log2f:
5625      case LibFunc::log2l:
5626        if (visitUnaryFloatCall(I, ISD::FLOG2))
5627          return;
5628        break;
5629      case LibFunc::exp2:
5630      case LibFunc::exp2f:
5631      case LibFunc::exp2l:
5632        if (visitUnaryFloatCall(I, ISD::FEXP2))
5633          return;
5634        break;
5635      case LibFunc::memcmp:
5636        if (visitMemCmpCall(I))
5637          return;
5638        break;
5639      }
5640    }
5641  }
5642
5643  SDValue Callee;
5644  if (!RenameFn)
5645    Callee = getValue(I.getCalledValue());
5646  else
5647    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5648
5649  // Check if we can potentially perform a tail call. More detailed checking is
5650  // be done within LowerCallTo, after more information about the call is known.
5651  LowerCallTo(&I, Callee, I.isTailCall());
5652}
5653
5654namespace {
5655
5656/// AsmOperandInfo - This contains information for each constraint that we are
5657/// lowering.
5658class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5659public:
5660  /// CallOperand - If this is the result output operand or a clobber
5661  /// this is null, otherwise it is the incoming operand to the CallInst.
5662  /// This gets modified as the asm is processed.
5663  SDValue CallOperand;
5664
5665  /// AssignedRegs - If this is a register or register class operand, this
5666  /// contains the set of register corresponding to the operand.
5667  RegsForValue AssignedRegs;
5668
5669  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5670    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5671  }
5672
5673  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5674  /// corresponds to.  If there is no Value* for this operand, it returns
5675  /// MVT::Other.
5676  EVT getCallOperandValEVT(LLVMContext &Context,
5677                           const TargetLowering &TLI,
5678                           const DataLayout *TD) const {
5679    if (CallOperandVal == 0) return MVT::Other;
5680
5681    if (isa<BasicBlock>(CallOperandVal))
5682      return TLI.getPointerTy();
5683
5684    llvm::Type *OpTy = CallOperandVal->getType();
5685
5686    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5687    // If this is an indirect operand, the operand is a pointer to the
5688    // accessed type.
5689    if (isIndirect) {
5690      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5691      if (!PtrTy)
5692        report_fatal_error("Indirect operand for inline asm not a pointer!");
5693      OpTy = PtrTy->getElementType();
5694    }
5695
5696    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5697    if (StructType *STy = dyn_cast<StructType>(OpTy))
5698      if (STy->getNumElements() == 1)
5699        OpTy = STy->getElementType(0);
5700
5701    // If OpTy is not a single value, it may be a struct/union that we
5702    // can tile with integers.
5703    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5704      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5705      switch (BitSize) {
5706      default: break;
5707      case 1:
5708      case 8:
5709      case 16:
5710      case 32:
5711      case 64:
5712      case 128:
5713        OpTy = IntegerType::get(Context, BitSize);
5714        break;
5715      }
5716    }
5717
5718    return TLI.getValueType(OpTy, true);
5719  }
5720};
5721
5722typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5723
5724} // end anonymous namespace
5725
5726/// GetRegistersForValue - Assign registers (virtual or physical) for the
5727/// specified operand.  We prefer to assign virtual registers, to allow the
5728/// register allocator to handle the assignment process.  However, if the asm
5729/// uses features that we can't model on machineinstrs, we have SDISel do the
5730/// allocation.  This produces generally horrible, but correct, code.
5731///
5732///   OpInfo describes the operand.
5733///
5734static void GetRegistersForValue(SelectionDAG &DAG,
5735                                 const TargetLowering &TLI,
5736                                 DebugLoc DL,
5737                                 SDISelAsmOperandInfo &OpInfo) {
5738  LLVMContext &Context = *DAG.getContext();
5739
5740  MachineFunction &MF = DAG.getMachineFunction();
5741  SmallVector<unsigned, 4> Regs;
5742
5743  // If this is a constraint for a single physreg, or a constraint for a
5744  // register class, find it.
5745  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5746    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5747                                     OpInfo.ConstraintVT);
5748
5749  unsigned NumRegs = 1;
5750  if (OpInfo.ConstraintVT != MVT::Other) {
5751    // If this is a FP input in an integer register (or visa versa) insert a bit
5752    // cast of the input value.  More generally, handle any case where the input
5753    // value disagrees with the register class we plan to stick this in.
5754    if (OpInfo.Type == InlineAsm::isInput &&
5755        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5756      // Try to convert to the first EVT that the reg class contains.  If the
5757      // types are identical size, use a bitcast to convert (e.g. two differing
5758      // vector types).
5759      MVT RegVT = *PhysReg.second->vt_begin();
5760      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5761        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5762                                         RegVT, OpInfo.CallOperand);
5763        OpInfo.ConstraintVT = RegVT;
5764      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5765        // If the input is a FP value and we want it in FP registers, do a
5766        // bitcast to the corresponding integer type.  This turns an f64 value
5767        // into i64, which can be passed with two i32 values on a 32-bit
5768        // machine.
5769        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5770        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5771                                         RegVT, OpInfo.CallOperand);
5772        OpInfo.ConstraintVT = RegVT;
5773      }
5774    }
5775
5776    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5777  }
5778
5779  MVT RegVT;
5780  EVT ValueVT = OpInfo.ConstraintVT;
5781
5782  // If this is a constraint for a specific physical register, like {r17},
5783  // assign it now.
5784  if (unsigned AssignedReg = PhysReg.first) {
5785    const TargetRegisterClass *RC = PhysReg.second;
5786    if (OpInfo.ConstraintVT == MVT::Other)
5787      ValueVT = *RC->vt_begin();
5788
5789    // Get the actual register value type.  This is important, because the user
5790    // may have asked for (e.g.) the AX register in i32 type.  We need to
5791    // remember that AX is actually i16 to get the right extension.
5792    RegVT = *RC->vt_begin();
5793
5794    // This is a explicit reference to a physical register.
5795    Regs.push_back(AssignedReg);
5796
5797    // If this is an expanded reference, add the rest of the regs to Regs.
5798    if (NumRegs != 1) {
5799      TargetRegisterClass::iterator I = RC->begin();
5800      for (; *I != AssignedReg; ++I)
5801        assert(I != RC->end() && "Didn't find reg!");
5802
5803      // Already added the first reg.
5804      --NumRegs; ++I;
5805      for (; NumRegs; --NumRegs, ++I) {
5806        assert(I != RC->end() && "Ran out of registers to allocate!");
5807        Regs.push_back(*I);
5808      }
5809    }
5810
5811    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5812    return;
5813  }
5814
5815  // Otherwise, if this was a reference to an LLVM register class, create vregs
5816  // for this reference.
5817  if (const TargetRegisterClass *RC = PhysReg.second) {
5818    RegVT = *RC->vt_begin();
5819    if (OpInfo.ConstraintVT == MVT::Other)
5820      ValueVT = RegVT;
5821
5822    // Create the appropriate number of virtual registers.
5823    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5824    for (; NumRegs; --NumRegs)
5825      Regs.push_back(RegInfo.createVirtualRegister(RC));
5826
5827    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5828    return;
5829  }
5830
5831  // Otherwise, we couldn't allocate enough registers for this.
5832}
5833
5834/// visitInlineAsm - Handle a call to an InlineAsm object.
5835///
5836void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5837  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5838
5839  /// ConstraintOperands - Information about all of the constraints.
5840  SDISelAsmOperandInfoVector ConstraintOperands;
5841
5842  TargetLowering::AsmOperandInfoVector
5843    TargetConstraints = TLI.ParseConstraints(CS);
5844
5845  bool hasMemory = false;
5846
5847  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5848  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5849  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5850    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5851    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5852
5853    MVT OpVT = MVT::Other;
5854
5855    // Compute the value type for each operand.
5856    switch (OpInfo.Type) {
5857    case InlineAsm::isOutput:
5858      // Indirect outputs just consume an argument.
5859      if (OpInfo.isIndirect) {
5860        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5861        break;
5862      }
5863
5864      // The return value of the call is this value.  As such, there is no
5865      // corresponding argument.
5866      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5867      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5868        OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
5869      } else {
5870        assert(ResNo == 0 && "Asm only has one result!");
5871        OpVT = TLI.getSimpleValueType(CS.getType());
5872      }
5873      ++ResNo;
5874      break;
5875    case InlineAsm::isInput:
5876      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5877      break;
5878    case InlineAsm::isClobber:
5879      // Nothing to do.
5880      break;
5881    }
5882
5883    // If this is an input or an indirect output, process the call argument.
5884    // BasicBlocks are labels, currently appearing only in asm's.
5885    if (OpInfo.CallOperandVal) {
5886      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5887        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5888      } else {
5889        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5890      }
5891
5892      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD).
5893        getSimpleVT();
5894    }
5895
5896    OpInfo.ConstraintVT = OpVT;
5897
5898    // Indirect operand accesses access memory.
5899    if (OpInfo.isIndirect)
5900      hasMemory = true;
5901    else {
5902      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5903        TargetLowering::ConstraintType
5904          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5905        if (CType == TargetLowering::C_Memory) {
5906          hasMemory = true;
5907          break;
5908        }
5909      }
5910    }
5911  }
5912
5913  SDValue Chain, Flag;
5914
5915  // We won't need to flush pending loads if this asm doesn't touch
5916  // memory and is nonvolatile.
5917  if (hasMemory || IA->hasSideEffects())
5918    Chain = getRoot();
5919  else
5920    Chain = DAG.getRoot();
5921
5922  // Second pass over the constraints: compute which constraint option to use
5923  // and assign registers to constraints that want a specific physreg.
5924  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5925    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5926
5927    // If this is an output operand with a matching input operand, look up the
5928    // matching input. If their types mismatch, e.g. one is an integer, the
5929    // other is floating point, or their sizes are different, flag it as an
5930    // error.
5931    if (OpInfo.hasMatchingInput()) {
5932      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5933
5934      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5935        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5936          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5937                                           OpInfo.ConstraintVT);
5938        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5939          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5940                                           Input.ConstraintVT);
5941        if ((OpInfo.ConstraintVT.isInteger() !=
5942             Input.ConstraintVT.isInteger()) ||
5943            (MatchRC.second != InputRC.second)) {
5944          report_fatal_error("Unsupported asm: input constraint"
5945                             " with a matching output constraint of"
5946                             " incompatible type!");
5947        }
5948        Input.ConstraintVT = OpInfo.ConstraintVT;
5949      }
5950    }
5951
5952    // Compute the constraint code and ConstraintType to use.
5953    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5954
5955    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5956        OpInfo.Type == InlineAsm::isClobber)
5957      continue;
5958
5959    // If this is a memory input, and if the operand is not indirect, do what we
5960    // need to to provide an address for the memory input.
5961    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5962        !OpInfo.isIndirect) {
5963      assert((OpInfo.isMultipleAlternative ||
5964              (OpInfo.Type == InlineAsm::isInput)) &&
5965             "Can only indirectify direct input operands!");
5966
5967      // Memory operands really want the address of the value.  If we don't have
5968      // an indirect input, put it in the constpool if we can, otherwise spill
5969      // it to a stack slot.
5970      // TODO: This isn't quite right. We need to handle these according to
5971      // the addressing mode that the constraint wants. Also, this may take
5972      // an additional register for the computation and we don't want that
5973      // either.
5974
5975      // If the operand is a float, integer, or vector constant, spill to a
5976      // constant pool entry to get its address.
5977      const Value *OpVal = OpInfo.CallOperandVal;
5978      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5979          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5980        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5981                                                 TLI.getPointerTy());
5982      } else {
5983        // Otherwise, create a stack slot and emit a store to it before the
5984        // asm.
5985        Type *Ty = OpVal->getType();
5986        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5987        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5988        MachineFunction &MF = DAG.getMachineFunction();
5989        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5990        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5991        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5992                             OpInfo.CallOperand, StackSlot,
5993                             MachinePointerInfo::getFixedStack(SSFI),
5994                             false, false, 0);
5995        OpInfo.CallOperand = StackSlot;
5996      }
5997
5998      // There is no longer a Value* corresponding to this operand.
5999      OpInfo.CallOperandVal = 0;
6000
6001      // It is now an indirect operand.
6002      OpInfo.isIndirect = true;
6003    }
6004
6005    // If this constraint is for a specific register, allocate it before
6006    // anything else.
6007    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6008      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6009  }
6010
6011  // Second pass - Loop over all of the operands, assigning virtual or physregs
6012  // to register class operands.
6013  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6014    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6015
6016    // C_Register operands have already been allocated, Other/Memory don't need
6017    // to be.
6018    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6019      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6020  }
6021
6022  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6023  std::vector<SDValue> AsmNodeOperands;
6024  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6025  AsmNodeOperands.push_back(
6026          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6027                                      TLI.getPointerTy()));
6028
6029  // If we have a !srcloc metadata node associated with it, we want to attach
6030  // this to the ultimately generated inline asm machineinstr.  To do this, we
6031  // pass in the third operand as this (potentially null) inline asm MDNode.
6032  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6033  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6034
6035  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6036  // bits as operand 3.
6037  unsigned ExtraInfo = 0;
6038  if (IA->hasSideEffects())
6039    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6040  if (IA->isAlignStack())
6041    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6042  // Set the asm dialect.
6043  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6044
6045  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6046  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6047    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6048
6049    // Compute the constraint code and ConstraintType to use.
6050    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6051
6052    // Ideally, we would only check against memory constraints.  However, the
6053    // meaning of an other constraint can be target-specific and we can't easily
6054    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6055    // for other constriants as well.
6056    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6057        OpInfo.ConstraintType == TargetLowering::C_Other) {
6058      if (OpInfo.Type == InlineAsm::isInput)
6059        ExtraInfo |= InlineAsm::Extra_MayLoad;
6060      else if (OpInfo.Type == InlineAsm::isOutput)
6061        ExtraInfo |= InlineAsm::Extra_MayStore;
6062      else if (OpInfo.Type == InlineAsm::isClobber)
6063        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6064    }
6065  }
6066
6067  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6068                                                  TLI.getPointerTy()));
6069
6070  // Loop over all of the inputs, copying the operand values into the
6071  // appropriate registers and processing the output regs.
6072  RegsForValue RetValRegs;
6073
6074  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6075  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6076
6077  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6078    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6079
6080    switch (OpInfo.Type) {
6081    case InlineAsm::isOutput: {
6082      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6083          OpInfo.ConstraintType != TargetLowering::C_Register) {
6084        // Memory output, or 'other' output (e.g. 'X' constraint).
6085        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6086
6087        // Add information to the INLINEASM node to know about this output.
6088        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6089        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6090                                                        TLI.getPointerTy()));
6091        AsmNodeOperands.push_back(OpInfo.CallOperand);
6092        break;
6093      }
6094
6095      // Otherwise, this is a register or register class output.
6096
6097      // Copy the output from the appropriate register.  Find a register that
6098      // we can use.
6099      if (OpInfo.AssignedRegs.Regs.empty()) {
6100        LLVMContext &Ctx = *DAG.getContext();
6101        Ctx.emitError(CS.getInstruction(),
6102                      "couldn't allocate output register for constraint '" +
6103                           Twine(OpInfo.ConstraintCode) + "'");
6104        break;
6105      }
6106
6107      // If this is an indirect operand, store through the pointer after the
6108      // asm.
6109      if (OpInfo.isIndirect) {
6110        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6111                                                      OpInfo.CallOperandVal));
6112      } else {
6113        // This is the result value of the call.
6114        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6115        // Concatenate this output onto the outputs list.
6116        RetValRegs.append(OpInfo.AssignedRegs);
6117      }
6118
6119      // Add information to the INLINEASM node to know that this register is
6120      // set.
6121      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6122                                           InlineAsm::Kind_RegDefEarlyClobber :
6123                                               InlineAsm::Kind_RegDef,
6124                                               false,
6125                                               0,
6126                                               DAG,
6127                                               AsmNodeOperands);
6128      break;
6129    }
6130    case InlineAsm::isInput: {
6131      SDValue InOperandVal = OpInfo.CallOperand;
6132
6133      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6134        // If this is required to match an output register we have already set,
6135        // just use its register.
6136        unsigned OperandNo = OpInfo.getMatchedOperand();
6137
6138        // Scan until we find the definition we already emitted of this operand.
6139        // When we find it, create a RegsForValue operand.
6140        unsigned CurOp = InlineAsm::Op_FirstOperand;
6141        for (; OperandNo; --OperandNo) {
6142          // Advance to the next operand.
6143          unsigned OpFlag =
6144            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6145          assert((InlineAsm::isRegDefKind(OpFlag) ||
6146                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6147                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6148          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6149        }
6150
6151        unsigned OpFlag =
6152          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6153        if (InlineAsm::isRegDefKind(OpFlag) ||
6154            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6155          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6156          if (OpInfo.isIndirect) {
6157            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6158            LLVMContext &Ctx = *DAG.getContext();
6159            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6160                          " don't know how to handle tied "
6161                          "indirect register inputs");
6162            report_fatal_error("Cannot handle indirect register inputs!");
6163          }
6164
6165          RegsForValue MatchedRegs;
6166          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6167          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6168          MatchedRegs.RegVTs.push_back(RegVT);
6169          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6170          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6171               i != e; ++i) {
6172            if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6173              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6174            else {
6175              LLVMContext &Ctx = *DAG.getContext();
6176              Ctx.emitError(CS.getInstruction(), "inline asm error: This value"
6177                            " type register class is not natively supported!");
6178              report_fatal_error("inline asm error: This value type register "
6179                                 "class is not natively supported!");
6180            }
6181          }
6182          // Use the produced MatchedRegs object to
6183          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6184                                    Chain, &Flag, CS.getInstruction());
6185          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6186                                           true, OpInfo.getMatchedOperand(),
6187                                           DAG, AsmNodeOperands);
6188          break;
6189        }
6190
6191        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6192        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6193               "Unexpected number of operands");
6194        // Add information to the INLINEASM node to know about this input.
6195        // See InlineAsm.h isUseOperandTiedToDef.
6196        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6197                                                    OpInfo.getMatchedOperand());
6198        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6199                                                        TLI.getPointerTy()));
6200        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6201        break;
6202      }
6203
6204      // Treat indirect 'X' constraint as memory.
6205      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6206          OpInfo.isIndirect)
6207        OpInfo.ConstraintType = TargetLowering::C_Memory;
6208
6209      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6210        std::vector<SDValue> Ops;
6211        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6212                                         Ops, DAG);
6213        if (Ops.empty()) {
6214          LLVMContext &Ctx = *DAG.getContext();
6215          Ctx.emitError(CS.getInstruction(),
6216                        "invalid operand for inline asm constraint '" +
6217                        Twine(OpInfo.ConstraintCode) + "'");
6218          break;
6219        }
6220
6221        // Add information to the INLINEASM node to know about this input.
6222        unsigned ResOpType =
6223          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6224        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6225                                                        TLI.getPointerTy()));
6226        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6227        break;
6228      }
6229
6230      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6231        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6232        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6233               "Memory operands expect pointer values");
6234
6235        // Add information to the INLINEASM node to know about this input.
6236        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6237        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6238                                                        TLI.getPointerTy()));
6239        AsmNodeOperands.push_back(InOperandVal);
6240        break;
6241      }
6242
6243      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6244              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6245             "Unknown constraint type!");
6246
6247      // TODO: Support this.
6248      if (OpInfo.isIndirect) {
6249        LLVMContext &Ctx = *DAG.getContext();
6250        Ctx.emitError(CS.getInstruction(),
6251                      "Don't know how to handle indirect register inputs yet "
6252                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6253        break;
6254      }
6255
6256      // Copy the input into the appropriate registers.
6257      if (OpInfo.AssignedRegs.Regs.empty()) {
6258        LLVMContext &Ctx = *DAG.getContext();
6259        Ctx.emitError(CS.getInstruction(),
6260                      "couldn't allocate input reg for constraint '" +
6261                           Twine(OpInfo.ConstraintCode) + "'");
6262        break;
6263      }
6264
6265      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6266                                        Chain, &Flag, CS.getInstruction());
6267
6268      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6269                                               DAG, AsmNodeOperands);
6270      break;
6271    }
6272    case InlineAsm::isClobber: {
6273      // Add the clobbered value to the operand list, so that the register
6274      // allocator is aware that the physreg got clobbered.
6275      if (!OpInfo.AssignedRegs.Regs.empty())
6276        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6277                                                 false, 0, DAG,
6278                                                 AsmNodeOperands);
6279      break;
6280    }
6281    }
6282  }
6283
6284  // Finish up input operands.  Set the input chain and add the flag last.
6285  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6286  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6287
6288  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6289                      DAG.getVTList(MVT::Other, MVT::Glue),
6290                      &AsmNodeOperands[0], AsmNodeOperands.size());
6291  Flag = Chain.getValue(1);
6292
6293  // If this asm returns a register value, copy the result from that register
6294  // and set it as the value of the call.
6295  if (!RetValRegs.Regs.empty()) {
6296    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6297                                             Chain, &Flag, CS.getInstruction());
6298
6299    // FIXME: Why don't we do this for inline asms with MRVs?
6300    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6301      EVT ResultType = TLI.getValueType(CS.getType());
6302
6303      // If any of the results of the inline asm is a vector, it may have the
6304      // wrong width/num elts.  This can happen for register classes that can
6305      // contain multiple different value types.  The preg or vreg allocated may
6306      // not have the same VT as was expected.  Convert it to the right type
6307      // with bit_convert.
6308      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6309        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6310                          ResultType, Val);
6311
6312      } else if (ResultType != Val.getValueType() &&
6313                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6314        // If a result value was tied to an input value, the computed result may
6315        // have a wider width than the expected result.  Extract the relevant
6316        // portion.
6317        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6318      }
6319
6320      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6321    }
6322
6323    setValue(CS.getInstruction(), Val);
6324    // Don't need to use this as a chain in this case.
6325    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6326      return;
6327  }
6328
6329  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6330
6331  // Process indirect outputs, first output all of the flagged copies out of
6332  // physregs.
6333  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6334    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6335    const Value *Ptr = IndirectStoresToEmit[i].second;
6336    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6337                                             Chain, &Flag, IA);
6338    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6339  }
6340
6341  // Emit the non-flagged stores from the physregs.
6342  SmallVector<SDValue, 8> OutChains;
6343  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6344    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6345                               StoresToEmit[i].first,
6346                               getValue(StoresToEmit[i].second),
6347                               MachinePointerInfo(StoresToEmit[i].second),
6348                               false, false, 0);
6349    OutChains.push_back(Val);
6350  }
6351
6352  if (!OutChains.empty())
6353    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6354                        &OutChains[0], OutChains.size());
6355
6356  DAG.setRoot(Chain);
6357}
6358
6359void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6360  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6361                          MVT::Other, getRoot(),
6362                          getValue(I.getArgOperand(0)),
6363                          DAG.getSrcValue(I.getArgOperand(0))));
6364}
6365
6366void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6367  const DataLayout &TD = *TLI.getDataLayout();
6368  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6369                           getRoot(), getValue(I.getOperand(0)),
6370                           DAG.getSrcValue(I.getOperand(0)),
6371                           TD.getABITypeAlignment(I.getType()));
6372  setValue(&I, V);
6373  DAG.setRoot(V.getValue(1));
6374}
6375
6376void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6377  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6378                          MVT::Other, getRoot(),
6379                          getValue(I.getArgOperand(0)),
6380                          DAG.getSrcValue(I.getArgOperand(0))));
6381}
6382
6383void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6384  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6385                          MVT::Other, getRoot(),
6386                          getValue(I.getArgOperand(0)),
6387                          getValue(I.getArgOperand(1)),
6388                          DAG.getSrcValue(I.getArgOperand(0)),
6389                          DAG.getSrcValue(I.getArgOperand(1))));
6390}
6391
6392/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6393/// implementation, which just calls LowerCall.
6394/// FIXME: When all targets are
6395/// migrated to using LowerCall, this hook should be integrated into SDISel.
6396std::pair<SDValue, SDValue>
6397TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6398  // Handle the incoming return values from the call.
6399  CLI.Ins.clear();
6400  SmallVector<EVT, 4> RetTys;
6401  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6402  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6403    EVT VT = RetTys[I];
6404    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6405    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6406    for (unsigned i = 0; i != NumRegs; ++i) {
6407      ISD::InputArg MyFlags;
6408      MyFlags.VT = RegisterVT;
6409      MyFlags.Used = CLI.IsReturnValueUsed;
6410      if (CLI.RetSExt)
6411        MyFlags.Flags.setSExt();
6412      if (CLI.RetZExt)
6413        MyFlags.Flags.setZExt();
6414      if (CLI.IsInReg)
6415        MyFlags.Flags.setInReg();
6416      CLI.Ins.push_back(MyFlags);
6417    }
6418  }
6419
6420  // Handle all of the outgoing arguments.
6421  CLI.Outs.clear();
6422  CLI.OutVals.clear();
6423  ArgListTy &Args = CLI.Args;
6424  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6425    SmallVector<EVT, 4> ValueVTs;
6426    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6427    for (unsigned Value = 0, NumValues = ValueVTs.size();
6428         Value != NumValues; ++Value) {
6429      EVT VT = ValueVTs[Value];
6430      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6431      SDValue Op = SDValue(Args[i].Node.getNode(),
6432                           Args[i].Node.getResNo() + Value);
6433      ISD::ArgFlagsTy Flags;
6434      unsigned OriginalAlignment =
6435        getDataLayout()->getABITypeAlignment(ArgTy);
6436
6437      if (Args[i].isZExt)
6438        Flags.setZExt();
6439      if (Args[i].isSExt)
6440        Flags.setSExt();
6441      if (Args[i].isInReg)
6442        Flags.setInReg();
6443      if (Args[i].isSRet)
6444        Flags.setSRet();
6445      if (Args[i].isByVal) {
6446        Flags.setByVal();
6447        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6448        Type *ElementTy = Ty->getElementType();
6449        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6450        // For ByVal, alignment should come from FE.  BE will guess if this
6451        // info is not there but there are cases it cannot get right.
6452        unsigned FrameAlign;
6453        if (Args[i].Alignment)
6454          FrameAlign = Args[i].Alignment;
6455        else
6456          FrameAlign = getByValTypeAlignment(ElementTy);
6457        Flags.setByValAlign(FrameAlign);
6458      }
6459      if (Args[i].isNest)
6460        Flags.setNest();
6461      Flags.setOrigAlign(OriginalAlignment);
6462
6463      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6464      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6465      SmallVector<SDValue, 4> Parts(NumParts);
6466      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6467
6468      if (Args[i].isSExt)
6469        ExtendKind = ISD::SIGN_EXTEND;
6470      else if (Args[i].isZExt)
6471        ExtendKind = ISD::ZERO_EXTEND;
6472
6473      // Conservatively only handle 'returned' on non-vectors for now
6474      if (Args[i].isReturned && !Op.getValueType().isVector()) {
6475        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6476               "unexpected use of 'returned'");
6477        // Before passing 'returned' to the target lowering code, ensure that
6478        // either the register MVT and the actual EVT are the same size or that
6479        // the return value and argument are extended in the same way; in these
6480        // cases it's safe to pass the argument register value unchanged as the
6481        // return register value (although it's at the target's option whether
6482        // to do so)
6483        // TODO: allow code generation to take advantage of partially preserved
6484        // registers rather than clobbering the entire register when the
6485        // parameter extension method is not compatible with the return
6486        // extension method
6487        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6488            (ExtendKind != ISD::ANY_EXTEND &&
6489             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6490        Flags.setReturned();
6491      }
6492
6493      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6494                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6495
6496      for (unsigned j = 0; j != NumParts; ++j) {
6497        // if it isn't first piece, alignment must be 1
6498        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6499                               i < CLI.NumFixedArgs,
6500                               i, j*Parts[j].getValueType().getStoreSize());
6501        if (NumParts > 1 && j == 0)
6502          MyFlags.Flags.setSplit();
6503        else if (j != 0)
6504          MyFlags.Flags.setOrigAlign(1);
6505
6506        CLI.Outs.push_back(MyFlags);
6507        CLI.OutVals.push_back(Parts[j]);
6508      }
6509    }
6510  }
6511
6512  SmallVector<SDValue, 4> InVals;
6513  CLI.Chain = LowerCall(CLI, InVals);
6514
6515  // Verify that the target's LowerCall behaved as expected.
6516  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6517         "LowerCall didn't return a valid chain!");
6518  assert((!CLI.IsTailCall || InVals.empty()) &&
6519         "LowerCall emitted a return value for a tail call!");
6520  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6521         "LowerCall didn't emit the correct number of values!");
6522
6523  // For a tail call, the return value is merely live-out and there aren't
6524  // any nodes in the DAG representing it. Return a special value to
6525  // indicate that a tail call has been emitted and no more Instructions
6526  // should be processed in the current block.
6527  if (CLI.IsTailCall) {
6528    CLI.DAG.setRoot(CLI.Chain);
6529    return std::make_pair(SDValue(), SDValue());
6530  }
6531
6532  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6533          assert(InVals[i].getNode() &&
6534                 "LowerCall emitted a null value!");
6535          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6536                 "LowerCall emitted a value with the wrong type!");
6537        });
6538
6539  // Collect the legal value parts into potentially illegal values
6540  // that correspond to the original function's return values.
6541  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6542  if (CLI.RetSExt)
6543    AssertOp = ISD::AssertSext;
6544  else if (CLI.RetZExt)
6545    AssertOp = ISD::AssertZext;
6546  SmallVector<SDValue, 4> ReturnValues;
6547  unsigned CurReg = 0;
6548  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6549    EVT VT = RetTys[I];
6550    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6551    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6552
6553    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6554                                            NumRegs, RegisterVT, VT, NULL,
6555                                            AssertOp));
6556    CurReg += NumRegs;
6557  }
6558
6559  // For a function returning void, there is no return value. We can't create
6560  // such a node, so we just return a null return value in that case. In
6561  // that case, nothing will actually look at the value.
6562  if (ReturnValues.empty())
6563    return std::make_pair(SDValue(), CLI.Chain);
6564
6565  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6566                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6567                            &ReturnValues[0], ReturnValues.size());
6568  return std::make_pair(Res, CLI.Chain);
6569}
6570
6571void TargetLowering::LowerOperationWrapper(SDNode *N,
6572                                           SmallVectorImpl<SDValue> &Results,
6573                                           SelectionDAG &DAG) const {
6574  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6575  if (Res.getNode())
6576    Results.push_back(Res);
6577}
6578
6579SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6580  llvm_unreachable("LowerOperation not implemented for this target!");
6581}
6582
6583void
6584SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6585  SDValue Op = getNonRegisterValue(V);
6586  assert((Op.getOpcode() != ISD::CopyFromReg ||
6587          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6588         "Copy from a reg to the same reg!");
6589  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6590
6591  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6592  SDValue Chain = DAG.getEntryNode();
6593  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
6594  PendingExports.push_back(Chain);
6595}
6596
6597#include "llvm/CodeGen/SelectionDAGISel.h"
6598
6599/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6600/// entry block, return true.  This includes arguments used by switches, since
6601/// the switch may expand into multiple basic blocks.
6602static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6603  // With FastISel active, we may be splitting blocks, so force creation
6604  // of virtual registers for all non-dead arguments.
6605  if (FastISel)
6606    return A->use_empty();
6607
6608  const BasicBlock *Entry = A->getParent()->begin();
6609  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6610       UI != E; ++UI) {
6611    const User *U = *UI;
6612    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6613      return false;  // Use not in entry block.
6614  }
6615  return true;
6616}
6617
6618void SelectionDAGISel::LowerArguments(const Function &F) {
6619  SelectionDAG &DAG = SDB->DAG;
6620  DebugLoc dl = SDB->getCurDebugLoc();
6621  const DataLayout *TD = TLI.getDataLayout();
6622  SmallVector<ISD::InputArg, 16> Ins;
6623
6624  if (!FuncInfo->CanLowerReturn) {
6625    // Put in an sret pointer parameter before all the other parameters.
6626    SmallVector<EVT, 1> ValueVTs;
6627    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6628
6629    // NOTE: Assuming that a pointer will never break down to more than one VT
6630    // or one register.
6631    ISD::ArgFlagsTy Flags;
6632    Flags.setSRet();
6633    MVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6634    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6635    Ins.push_back(RetArg);
6636  }
6637
6638  // Set up the incoming argument description vector.
6639  unsigned Idx = 1;
6640  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6641       I != E; ++I, ++Idx) {
6642    SmallVector<EVT, 4> ValueVTs;
6643    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6644    bool isArgValueUsed = !I->use_empty();
6645    for (unsigned Value = 0, NumValues = ValueVTs.size();
6646         Value != NumValues; ++Value) {
6647      EVT VT = ValueVTs[Value];
6648      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6649      ISD::ArgFlagsTy Flags;
6650      unsigned OriginalAlignment =
6651        TD->getABITypeAlignment(ArgTy);
6652
6653      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6654        Flags.setZExt();
6655      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6656        Flags.setSExt();
6657      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6658        Flags.setInReg();
6659      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6660        Flags.setSRet();
6661      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6662        Flags.setByVal();
6663        PointerType *Ty = cast<PointerType>(I->getType());
6664        Type *ElementTy = Ty->getElementType();
6665        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6666        // For ByVal, alignment should be passed from FE.  BE will guess if
6667        // this info is not there but there are cases it cannot get right.
6668        unsigned FrameAlign;
6669        if (F.getParamAlignment(Idx))
6670          FrameAlign = F.getParamAlignment(Idx);
6671        else
6672          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6673        Flags.setByValAlign(FrameAlign);
6674      }
6675      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6676        Flags.setNest();
6677      Flags.setOrigAlign(OriginalAlignment);
6678
6679      MVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6680      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6681      for (unsigned i = 0; i != NumRegs; ++i) {
6682        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6683                              Idx-1, i*RegisterVT.getStoreSize());
6684        if (NumRegs > 1 && i == 0)
6685          MyFlags.Flags.setSplit();
6686        // if it isn't first piece, alignment must be 1
6687        else if (i > 0)
6688          MyFlags.Flags.setOrigAlign(1);
6689        Ins.push_back(MyFlags);
6690      }
6691    }
6692  }
6693
6694  // Call the target to set up the argument values.
6695  SmallVector<SDValue, 8> InVals;
6696  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6697                                             F.isVarArg(), Ins,
6698                                             dl, DAG, InVals);
6699
6700  // Verify that the target's LowerFormalArguments behaved as expected.
6701  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6702         "LowerFormalArguments didn't return a valid chain!");
6703  assert(InVals.size() == Ins.size() &&
6704         "LowerFormalArguments didn't emit the correct number of values!");
6705  DEBUG({
6706      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6707        assert(InVals[i].getNode() &&
6708               "LowerFormalArguments emitted a null value!");
6709        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6710               "LowerFormalArguments emitted a value with the wrong type!");
6711      }
6712    });
6713
6714  // Update the DAG with the new chain value resulting from argument lowering.
6715  DAG.setRoot(NewRoot);
6716
6717  // Set up the argument values.
6718  unsigned i = 0;
6719  Idx = 1;
6720  if (!FuncInfo->CanLowerReturn) {
6721    // Create a virtual register for the sret pointer, and put in a copy
6722    // from the sret argument into it.
6723    SmallVector<EVT, 1> ValueVTs;
6724    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6725    MVT VT = ValueVTs[0].getSimpleVT();
6726    MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6727    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6728    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6729                                        RegVT, VT, NULL, AssertOp);
6730
6731    MachineFunction& MF = SDB->DAG.getMachineFunction();
6732    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6733    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6734    FuncInfo->DemoteRegister = SRetReg;
6735    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6736                                    SRetReg, ArgValue);
6737    DAG.setRoot(NewRoot);
6738
6739    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6740    // Idx indexes LLVM arguments.  Don't touch it.
6741    ++i;
6742  }
6743
6744  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6745      ++I, ++Idx) {
6746    SmallVector<SDValue, 4> ArgValues;
6747    SmallVector<EVT, 4> ValueVTs;
6748    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6749    unsigned NumValues = ValueVTs.size();
6750
6751    // If this argument is unused then remember its value. It is used to generate
6752    // debugging information.
6753    if (I->use_empty() && NumValues)
6754      SDB->setUnusedArgValue(I, InVals[i]);
6755
6756    for (unsigned Val = 0; Val != NumValues; ++Val) {
6757      EVT VT = ValueVTs[Val];
6758      MVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6759      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6760
6761      if (!I->use_empty()) {
6762        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6763        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6764          AssertOp = ISD::AssertSext;
6765        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6766          AssertOp = ISD::AssertZext;
6767
6768        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6769                                             NumParts, PartVT, VT,
6770                                             NULL, AssertOp));
6771      }
6772
6773      i += NumParts;
6774    }
6775
6776    // We don't need to do anything else for unused arguments.
6777    if (ArgValues.empty())
6778      continue;
6779
6780    // Note down frame index.
6781    if (FrameIndexSDNode *FI =
6782        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6783      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6784
6785    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6786                                     SDB->getCurDebugLoc());
6787
6788    SDB->setValue(I, Res);
6789    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6790      if (LoadSDNode *LNode =
6791          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6792        if (FrameIndexSDNode *FI =
6793            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6794        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6795    }
6796
6797    // If this argument is live outside of the entry block, insert a copy from
6798    // wherever we got it to the vreg that other BB's will reference it as.
6799    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6800      // If we can, though, try to skip creating an unnecessary vreg.
6801      // FIXME: This isn't very clean... it would be nice to make this more
6802      // general.  It's also subtly incompatible with the hacks FastISel
6803      // uses with vregs.
6804      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6805      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6806        FuncInfo->ValueMap[I] = Reg;
6807        continue;
6808      }
6809    }
6810    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6811      FuncInfo->InitializeRegForValue(I);
6812      SDB->CopyToExportRegsIfNeeded(I);
6813    }
6814  }
6815
6816  assert(i == InVals.size() && "Argument register count mismatch!");
6817
6818  // Finally, if the target has anything special to do, allow it to do so.
6819  // FIXME: this should insert code into the DAG!
6820  EmitFunctionEntryCode();
6821}
6822
6823/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6824/// ensure constants are generated when needed.  Remember the virtual registers
6825/// that need to be added to the Machine PHI nodes as input.  We cannot just
6826/// directly add them, because expansion might result in multiple MBB's for one
6827/// BB.  As such, the start of the BB might correspond to a different MBB than
6828/// the end.
6829///
6830void
6831SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6832  const TerminatorInst *TI = LLVMBB->getTerminator();
6833
6834  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6835
6836  // Check successor nodes' PHI nodes that expect a constant to be available
6837  // from this block.
6838  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6839    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6840    if (!isa<PHINode>(SuccBB->begin())) continue;
6841    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6842
6843    // If this terminator has multiple identical successors (common for
6844    // switches), only handle each succ once.
6845    if (!SuccsHandled.insert(SuccMBB)) continue;
6846
6847    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6848
6849    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6850    // nodes and Machine PHI nodes, but the incoming operands have not been
6851    // emitted yet.
6852    for (BasicBlock::const_iterator I = SuccBB->begin();
6853         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6854      // Ignore dead phi's.
6855      if (PN->use_empty()) continue;
6856
6857      // Skip empty types
6858      if (PN->getType()->isEmptyTy())
6859        continue;
6860
6861      unsigned Reg;
6862      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6863
6864      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6865        unsigned &RegOut = ConstantsOut[C];
6866        if (RegOut == 0) {
6867          RegOut = FuncInfo.CreateRegs(C->getType());
6868          CopyValueToVirtualRegister(C, RegOut);
6869        }
6870        Reg = RegOut;
6871      } else {
6872        DenseMap<const Value *, unsigned>::iterator I =
6873          FuncInfo.ValueMap.find(PHIOp);
6874        if (I != FuncInfo.ValueMap.end())
6875          Reg = I->second;
6876        else {
6877          assert(isa<AllocaInst>(PHIOp) &&
6878                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6879                 "Didn't codegen value into a register!??");
6880          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6881          CopyValueToVirtualRegister(PHIOp, Reg);
6882        }
6883      }
6884
6885      // Remember that this register needs to added to the machine PHI node as
6886      // the input for this MBB.
6887      SmallVector<EVT, 4> ValueVTs;
6888      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6889      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6890        EVT VT = ValueVTs[vti];
6891        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6892        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6893          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6894        Reg += NumRegisters;
6895      }
6896    }
6897  }
6898  ConstantsOut.clear();
6899}
6900