RegAllocBasic.cpp revision 234353
1//===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RABasic function pass, which provides a minimal
11// implementation of the basic register allocator.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "RegAllocBase.h"
17#include "LiveDebugVariables.h"
18#include "RenderMachineFunction.h"
19#include "Spiller.h"
20#include "VirtRegMap.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Function.h"
23#include "llvm/PassAnalysisSupport.h"
24#include "llvm/CodeGen/CalcSpillWeights.h"
25#include "llvm/CodeGen/LiveIntervalAnalysis.h"
26#include "llvm/CodeGen/LiveRangeEdit.h"
27#include "llvm/CodeGen/LiveStackAnalysis.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineLoopInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/CodeGen/RegAllocRegistry.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetRegisterInfo.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39
40#include <cstdlib>
41#include <queue>
42
43using namespace llvm;
44
45static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
46                                      createBasicRegisterAllocator);
47
48namespace {
49  struct CompSpillWeight {
50    bool operator()(LiveInterval *A, LiveInterval *B) const {
51      return A->weight < B->weight;
52    }
53  };
54}
55
56namespace {
57/// RABasic provides a minimal implementation of the basic register allocation
58/// algorithm. It prioritizes live virtual registers by spill weight and spills
59/// whenever a register is unavailable. This is not practical in production but
60/// provides a useful baseline both for measuring other allocators and comparing
61/// the speed of the basic algorithm against other styles of allocators.
62class RABasic : public MachineFunctionPass, public RegAllocBase
63{
64  // context
65  MachineFunction *MF;
66
67  // analyses
68  LiveStacks *LS;
69  RenderMachineFunction *RMF;
70
71  // state
72  std::auto_ptr<Spiller> SpillerInstance;
73  std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
74                      CompSpillWeight> Queue;
75
76  // Scratch space.  Allocated here to avoid repeated malloc calls in
77  // selectOrSplit().
78  BitVector UsableRegs;
79
80public:
81  RABasic();
82
83  /// Return the pass name.
84  virtual const char* getPassName() const {
85    return "Basic Register Allocator";
86  }
87
88  /// RABasic analysis usage.
89  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
90
91  virtual void releaseMemory();
92
93  virtual Spiller &spiller() { return *SpillerInstance; }
94
95  virtual float getPriority(LiveInterval *LI) { return LI->weight; }
96
97  virtual void enqueue(LiveInterval *LI) {
98    Queue.push(LI);
99  }
100
101  virtual LiveInterval *dequeue() {
102    if (Queue.empty())
103      return 0;
104    LiveInterval *LI = Queue.top();
105    Queue.pop();
106    return LI;
107  }
108
109  virtual unsigned selectOrSplit(LiveInterval &VirtReg,
110                                 SmallVectorImpl<LiveInterval*> &SplitVRegs);
111
112  /// Perform register allocation.
113  virtual bool runOnMachineFunction(MachineFunction &mf);
114
115  // Helper for spilling all live virtual registers currently unified under preg
116  // that interfere with the most recently queried lvr.  Return true if spilling
117  // was successful, and append any new spilled/split intervals to splitLVRs.
118  bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
119                          SmallVectorImpl<LiveInterval*> &SplitVRegs);
120
121  void spillReg(LiveInterval &VirtReg, unsigned PhysReg,
122                SmallVectorImpl<LiveInterval*> &SplitVRegs);
123
124  static char ID;
125};
126
127char RABasic::ID = 0;
128
129} // end anonymous namespace
130
131RABasic::RABasic(): MachineFunctionPass(ID) {
132  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
133  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
134  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
135  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
136  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
137  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
138  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
139  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
140  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
141  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
142  initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
143}
144
145void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
146  AU.setPreservesCFG();
147  AU.addRequired<AliasAnalysis>();
148  AU.addPreserved<AliasAnalysis>();
149  AU.addRequired<LiveIntervals>();
150  AU.addPreserved<SlotIndexes>();
151  AU.addRequired<LiveDebugVariables>();
152  AU.addPreserved<LiveDebugVariables>();
153  AU.addRequired<CalculateSpillWeights>();
154  AU.addRequired<LiveStacks>();
155  AU.addPreserved<LiveStacks>();
156  AU.addRequiredID(MachineDominatorsID);
157  AU.addPreservedID(MachineDominatorsID);
158  AU.addRequired<MachineLoopInfo>();
159  AU.addPreserved<MachineLoopInfo>();
160  AU.addRequired<VirtRegMap>();
161  AU.addPreserved<VirtRegMap>();
162  DEBUG(AU.addRequired<RenderMachineFunction>());
163  MachineFunctionPass::getAnalysisUsage(AU);
164}
165
166void RABasic::releaseMemory() {
167  SpillerInstance.reset(0);
168  RegAllocBase::releaseMemory();
169}
170
171// Helper for spillInterferences() that spills all interfering vregs currently
172// assigned to this physical register.
173void RABasic::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
174                       SmallVectorImpl<LiveInterval*> &SplitVRegs) {
175  LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
176  assert(Q.seenAllInterferences() && "need collectInterferences()");
177  const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
178
179  for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
180         E = PendingSpills.end(); I != E; ++I) {
181    LiveInterval &SpilledVReg = **I;
182    DEBUG(dbgs() << "extracting from " <<
183          TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
184
185    // Deallocate the interfering vreg by removing it from the union.
186    // A LiveInterval instance may not be in a union during modification!
187    unassign(SpilledVReg, PhysReg);
188
189    // Spill the extracted interval.
190    LiveRangeEdit LRE(SpilledVReg, SplitVRegs, *MF, *LIS, VRM);
191    spiller().spill(LRE);
192  }
193  // After extracting segments, the query's results are invalid. But keep the
194  // contents valid until we're done accessing pendingSpills.
195  Q.clear();
196}
197
198// Spill or split all live virtual registers currently unified under PhysReg
199// that interfere with VirtReg. The newly spilled or split live intervals are
200// returned by appending them to SplitVRegs.
201bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
202                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
203  // Record each interference and determine if all are spillable before mutating
204  // either the union or live intervals.
205  unsigned NumInterferences = 0;
206  // Collect interferences assigned to any alias of the physical register.
207  for (const uint16_t *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
208    LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
209    NumInterferences += QAlias.collectInterferingVRegs();
210    if (QAlias.seenUnspillableVReg()) {
211      return false;
212    }
213  }
214  DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
215        " interferences with " << VirtReg << "\n");
216  assert(NumInterferences > 0 && "expect interference");
217
218  // Spill each interfering vreg allocated to PhysReg or an alias.
219  for (const uint16_t *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
220    spillReg(VirtReg, *AliasI, SplitVRegs);
221  return true;
222}
223
224// Driver for the register assignment and splitting heuristics.
225// Manages iteration over the LiveIntervalUnions.
226//
227// This is a minimal implementation of register assignment and splitting that
228// spills whenever we run out of registers.
229//
230// selectOrSplit can only be called once per live virtual register. We then do a
231// single interference test for each register the correct class until we find an
232// available register. So, the number of interference tests in the worst case is
233// |vregs| * |machineregs|. And since the number of interference tests is
234// minimal, there is no value in caching them outside the scope of
235// selectOrSplit().
236unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
237                                SmallVectorImpl<LiveInterval*> &SplitVRegs) {
238  // Check for register mask interference.  When live ranges cross calls, the
239  // set of usable registers is reduced to the callee-saved ones.
240  bool CrossRegMasks = LIS->checkRegMaskInterference(VirtReg, UsableRegs);
241
242  // Populate a list of physical register spill candidates.
243  SmallVector<unsigned, 8> PhysRegSpillCands;
244
245  // Check for an available register in this class.
246  ArrayRef<unsigned> Order =
247    RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg));
248  for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E;
249       ++I) {
250    unsigned PhysReg = *I;
251
252    // If PhysReg is clobbered by a register mask, it isn't useful for
253    // allocation or spilling.
254    if (CrossRegMasks && !UsableRegs.test(PhysReg))
255      continue;
256
257    // Check interference and as a side effect, intialize queries for this
258    // VirtReg and its aliases.
259    unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
260    if (interfReg == 0) {
261      // Found an available register.
262      return PhysReg;
263    }
264    LiveIntervalUnion::Query &IntfQ = query(VirtReg, interfReg);
265    IntfQ.collectInterferingVRegs(1);
266    LiveInterval *interferingVirtReg = IntfQ.interferingVRegs().front();
267
268    // The current VirtReg must either be spillable, or one of its interferences
269    // must have less spill weight.
270    if (interferingVirtReg->weight < VirtReg.weight ) {
271      PhysRegSpillCands.push_back(PhysReg);
272    }
273  }
274  // Try to spill another interfering reg with less spill weight.
275  for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
276         PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
277
278    if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
279
280    assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
281           "Interference after spill.");
282    // Tell the caller to allocate to this newly freed physical register.
283    return *PhysRegI;
284  }
285
286  // No other spill candidates were found, so spill the current VirtReg.
287  DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
288  if (!VirtReg.isSpillable())
289    return ~0u;
290  LiveRangeEdit LRE(VirtReg, SplitVRegs, *MF, *LIS, VRM);
291  spiller().spill(LRE);
292
293  // The live virtual register requesting allocation was spilled, so tell
294  // the caller not to allocate anything during this round.
295  return 0;
296}
297
298bool RABasic::runOnMachineFunction(MachineFunction &mf) {
299  DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
300               << "********** Function: "
301               << ((Value*)mf.getFunction())->getName() << '\n');
302
303  MF = &mf;
304  DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
305
306  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
307  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
308
309  allocatePhysRegs();
310
311  addMBBLiveIns(MF);
312
313  // Diagnostic output before rewriting
314  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
315
316  // optional HTML output
317  DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
318
319  // FIXME: Verification currently must run before VirtRegRewriter. We should
320  // make the rewriter a separate pass and override verifyAnalysis instead. When
321  // that happens, verification naturally falls under VerifyMachineCode.
322#ifndef NDEBUG
323  if (VerifyEnabled) {
324    // Verify accuracy of LiveIntervals. The standard machine code verifier
325    // ensures that each LiveIntervals covers all uses of the virtual reg.
326
327    // FIXME: MachineVerifier is badly broken when using the standard
328    // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
329    // inline spiller, some tests fail to verify because the coalescer does not
330    // always generate verifiable code.
331    MF->verify(this, "In RABasic::verify");
332
333    // Verify that LiveIntervals are partitioned into unions and disjoint within
334    // the unions.
335    verify();
336  }
337#endif // !NDEBUG
338
339  // Run rewriter
340  VRM->rewrite(LIS->getSlotIndexes());
341
342  // Write out new DBG_VALUE instructions.
343  getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
344
345  // All machine operands and other references to virtual registers have been
346  // replaced. Remove the virtual registers and release all the transient data.
347  VRM->clearAllVirt();
348  MRI->clearVirtRegs();
349  releaseMemory();
350
351  return true;
352}
353
354FunctionPass* llvm::createBasicRegisterAllocator()
355{
356  return new RABasic();
357}
358