PHIElimination.cpp revision 249423
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/Passes.h"
18#include "PHIEliminationUtils.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/IR/Function.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetMachine.h"
35#include <algorithm>
36using namespace llvm;
37
38static cl::opt<bool>
39DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
40                     cl::Hidden, cl::desc("Disable critical edge splitting "
41                                          "during PHI elimination"));
42
43static cl::opt<bool>
44SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
45                      cl::Hidden, cl::desc("Split all critical edges during "
46                                           "PHI elimination"));
47
48namespace {
49  class PHIElimination : public MachineFunctionPass {
50    MachineRegisterInfo *MRI; // Machine register information
51    LiveVariables *LV;
52    LiveIntervals *LIS;
53
54  public:
55    static char ID; // Pass identification, replacement for typeid
56    PHIElimination() : MachineFunctionPass(ID) {
57      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
58    }
59
60    virtual bool runOnMachineFunction(MachineFunction &Fn);
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
62
63  private:
64    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
65    /// in predecessor basic blocks.
66    ///
67    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
68    void LowerPHINode(MachineBasicBlock &MBB,
69                      MachineBasicBlock::iterator AfterPHIsIt);
70
71    /// analyzePHINodes - Gather information about the PHI nodes in
72    /// here. In particular, we want to map the number of uses of a virtual
73    /// register which is used in a PHI node. We map that to the BB the
74    /// vreg is coming from. This is used later to determine when the vreg
75    /// is killed in the BB.
76    ///
77    void analyzePHINodes(const MachineFunction& Fn);
78
79    /// Split critical edges where necessary for good coalescer performance.
80    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
81                       MachineLoopInfo *MLI);
82
83    // These functions are temporary abstractions around LiveVariables and
84    // LiveIntervals, so they can go away when LiveVariables does.
85    bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
86    bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
87
88    typedef std::pair<unsigned, unsigned> BBVRegPair;
89    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
90
91    VRegPHIUse VRegPHIUseCount;
92
93    // Defs of PHI sources which are implicit_def.
94    SmallPtrSet<MachineInstr*, 4> ImpDefs;
95
96    // Map reusable lowered PHI node -> incoming join register.
97    typedef DenseMap<MachineInstr*, unsigned,
98                     MachineInstrExpressionTrait> LoweredPHIMap;
99    LoweredPHIMap LoweredPHIs;
100  };
101}
102
103STATISTIC(NumLowered, "Number of phis lowered");
104STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
105STATISTIC(NumReused, "Number of reused lowered phis");
106
107char PHIElimination::ID = 0;
108char& llvm::PHIEliminationID = PHIElimination::ID;
109
110INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
111                      "Eliminate PHI nodes for register allocation",
112                      false, false)
113INITIALIZE_PASS_DEPENDENCY(LiveVariables)
114INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
115                    "Eliminate PHI nodes for register allocation", false, false)
116
117void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
118  AU.addPreserved<LiveVariables>();
119  AU.addPreserved<SlotIndexes>();
120  AU.addPreserved<LiveIntervals>();
121  AU.addPreserved<MachineDominatorTree>();
122  AU.addPreserved<MachineLoopInfo>();
123  MachineFunctionPass::getAnalysisUsage(AU);
124}
125
126bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
127  MRI = &MF.getRegInfo();
128  LV = getAnalysisIfAvailable<LiveVariables>();
129  LIS = getAnalysisIfAvailable<LiveIntervals>();
130
131  bool Changed = false;
132
133  // This pass takes the function out of SSA form.
134  MRI->leaveSSA();
135
136  // Split critical edges to help the coalescer. This does not yet support
137  // updating LiveIntervals, so we disable it.
138  if (!DisableEdgeSplitting && (LV || LIS)) {
139    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
140    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
141      Changed |= SplitPHIEdges(MF, *I, MLI);
142  }
143
144  // Populate VRegPHIUseCount
145  analyzePHINodes(MF);
146
147  // Eliminate PHI instructions by inserting copies into predecessor blocks.
148  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
149    Changed |= EliminatePHINodes(MF, *I);
150
151  // Remove dead IMPLICIT_DEF instructions.
152  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
153         E = ImpDefs.end(); I != E; ++I) {
154    MachineInstr *DefMI = *I;
155    unsigned DefReg = DefMI->getOperand(0).getReg();
156    if (MRI->use_nodbg_empty(DefReg)) {
157      if (LIS)
158        LIS->RemoveMachineInstrFromMaps(DefMI);
159      DefMI->eraseFromParent();
160    }
161  }
162
163  // Clean up the lowered PHI instructions.
164  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
165       I != E; ++I) {
166    if (LIS)
167      LIS->RemoveMachineInstrFromMaps(I->first);
168    MF.DeleteMachineInstr(I->first);
169  }
170
171  LoweredPHIs.clear();
172  ImpDefs.clear();
173  VRegPHIUseCount.clear();
174
175  return Changed;
176}
177
178/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
179/// predecessor basic blocks.
180///
181bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
182                                             MachineBasicBlock &MBB) {
183  if (MBB.empty() || !MBB.front().isPHI())
184    return false;   // Quick exit for basic blocks without PHIs.
185
186  // Get an iterator to the first instruction after the last PHI node (this may
187  // also be the end of the basic block).
188  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
189
190  while (MBB.front().isPHI())
191    LowerPHINode(MBB, AfterPHIsIt);
192
193  return true;
194}
195
196/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
197/// This includes registers with no defs.
198static bool isImplicitlyDefined(unsigned VirtReg,
199                                const MachineRegisterInfo *MRI) {
200  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
201       DE = MRI->def_end(); DI != DE; ++DI)
202    if (!DI->isImplicitDef())
203      return false;
204  return true;
205}
206
207/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
208/// are implicit_def's.
209static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
210                                         const MachineRegisterInfo *MRI) {
211  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
212    if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
213      return false;
214  return true;
215}
216
217
218/// LowerPHINode - Lower the PHI node at the top of the specified block,
219///
220void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
221                                  MachineBasicBlock::iterator AfterPHIsIt) {
222  ++NumLowered;
223  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
224  MachineInstr *MPhi = MBB.remove(MBB.begin());
225
226  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
227  unsigned DestReg = MPhi->getOperand(0).getReg();
228  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
229  bool isDead = MPhi->getOperand(0).isDead();
230
231  // Create a new register for the incoming PHI arguments.
232  MachineFunction &MF = *MBB.getParent();
233  unsigned IncomingReg = 0;
234  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
235
236  // Insert a register to register copy at the top of the current block (but
237  // after any remaining phi nodes) which copies the new incoming register
238  // into the phi node destination.
239  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
240  if (isSourceDefinedByImplicitDef(MPhi, MRI))
241    // If all sources of a PHI node are implicit_def, just emit an
242    // implicit_def instead of a copy.
243    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
244            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
245  else {
246    // Can we reuse an earlier PHI node? This only happens for critical edges,
247    // typically those created by tail duplication.
248    unsigned &entry = LoweredPHIs[MPhi];
249    if (entry) {
250      // An identical PHI node was already lowered. Reuse the incoming register.
251      IncomingReg = entry;
252      reusedIncoming = true;
253      ++NumReused;
254      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
255    } else {
256      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
257      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
258    }
259    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
260            TII->get(TargetOpcode::COPY), DestReg)
261      .addReg(IncomingReg);
262  }
263
264  // Update live variable information if there is any.
265  if (LV) {
266    MachineInstr *PHICopy = prior(AfterPHIsIt);
267
268    if (IncomingReg) {
269      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
270
271      // Increment use count of the newly created virtual register.
272      LV->setPHIJoin(IncomingReg);
273
274      // When we are reusing the incoming register, it may already have been
275      // killed in this block. The old kill will also have been inserted at
276      // AfterPHIsIt, so it appears before the current PHICopy.
277      if (reusedIncoming)
278        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
279          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
280          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
281          DEBUG(MBB.dump());
282        }
283
284      // Add information to LiveVariables to know that the incoming value is
285      // killed.  Note that because the value is defined in several places (once
286      // each for each incoming block), the "def" block and instruction fields
287      // for the VarInfo is not filled in.
288      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
289    }
290
291    // Since we are going to be deleting the PHI node, if it is the last use of
292    // any registers, or if the value itself is dead, we need to move this
293    // information over to the new copy we just inserted.
294    LV->removeVirtualRegistersKilled(MPhi);
295
296    // If the result is dead, update LV.
297    if (isDead) {
298      LV->addVirtualRegisterDead(DestReg, PHICopy);
299      LV->removeVirtualRegisterDead(DestReg, MPhi);
300    }
301  }
302
303  // Update LiveIntervals for the new copy or implicit def.
304  if (LIS) {
305    MachineInstr *NewInstr = prior(AfterPHIsIt);
306    SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
307
308    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
309    if (IncomingReg) {
310      // Add the region from the beginning of MBB to the copy instruction to
311      // IncomingReg's live interval.
312      LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
313      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
314      if (!IncomingVNI)
315        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
316                                              LIS->getVNInfoAllocator());
317      IncomingLI.addRange(LiveRange(MBBStartIndex,
318                                    DestCopyIndex.getRegSlot(),
319                                    IncomingVNI));
320    }
321
322    LiveInterval &DestLI = LIS->getInterval(DestReg);
323    assert(DestLI.begin() != DestLI.end() &&
324           "PHIs should have nonempty LiveIntervals.");
325    if (DestLI.endIndex().isDead()) {
326      // A dead PHI's live range begins and ends at the start of the MBB, but
327      // the lowered copy, which will still be dead, needs to begin and end at
328      // the copy instruction.
329      VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
330      assert(OrigDestVNI && "PHI destination should be live at block entry.");
331      DestLI.removeRange(MBBStartIndex, MBBStartIndex.getDeadSlot());
332      DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
333                           LIS->getVNInfoAllocator());
334      DestLI.removeValNo(OrigDestVNI);
335    } else {
336      // Otherwise, remove the region from the beginning of MBB to the copy
337      // instruction from DestReg's live interval.
338      DestLI.removeRange(MBBStartIndex, DestCopyIndex.getRegSlot());
339      VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
340      assert(DestVNI && "PHI destination should be live at its definition.");
341      DestVNI->def = DestCopyIndex.getRegSlot();
342    }
343  }
344
345  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
346  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
347    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
348                                 MPhi->getOperand(i).getReg())];
349
350  // Now loop over all of the incoming arguments, changing them to copy into the
351  // IncomingReg register in the corresponding predecessor basic block.
352  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
353  for (int i = NumSrcs - 1; i >= 0; --i) {
354    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
355    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
356    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
357      isImplicitlyDefined(SrcReg, MRI);
358    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
359           "Machine PHI Operands must all be virtual registers!");
360
361    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
362    // path the PHI.
363    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
364
365    // Check to make sure we haven't already emitted the copy for this block.
366    // This can happen because PHI nodes may have multiple entries for the same
367    // basic block.
368    if (!MBBsInsertedInto.insert(&opBlock))
369      continue;  // If the copy has already been emitted, we're done.
370
371    // Find a safe location to insert the copy, this may be the first terminator
372    // in the block (or end()).
373    MachineBasicBlock::iterator InsertPos =
374      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
375
376    // Insert the copy.
377    MachineInstr *NewSrcInstr = 0;
378    if (!reusedIncoming && IncomingReg) {
379      if (SrcUndef) {
380        // The source register is undefined, so there is no need for a real
381        // COPY, but we still need to ensure joint dominance by defs.
382        // Insert an IMPLICIT_DEF instruction.
383        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
384                              TII->get(TargetOpcode::IMPLICIT_DEF),
385                              IncomingReg);
386
387        // Clean up the old implicit-def, if there even was one.
388        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
389          if (DefMI->isImplicitDef())
390            ImpDefs.insert(DefMI);
391      } else {
392        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
393                            TII->get(TargetOpcode::COPY), IncomingReg)
394                        .addReg(SrcReg, 0, SrcSubReg);
395      }
396    }
397
398    // We only need to update the LiveVariables kill of SrcReg if this was the
399    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
400    // out of the predecessor. We can also ignore undef sources.
401    if (LV && !SrcUndef &&
402        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
403        !LV->isLiveOut(SrcReg, opBlock)) {
404      // We want to be able to insert a kill of the register if this PHI (aka,
405      // the copy we just inserted) is the last use of the source value. Live
406      // variable analysis conservatively handles this by saying that the value
407      // is live until the end of the block the PHI entry lives in. If the value
408      // really is dead at the PHI copy, there will be no successor blocks which
409      // have the value live-in.
410
411      // Okay, if we now know that the value is not live out of the block, we
412      // can add a kill marker in this block saying that it kills the incoming
413      // value!
414
415      // In our final twist, we have to decide which instruction kills the
416      // register.  In most cases this is the copy, however, terminator
417      // instructions at the end of the block may also use the value. In this
418      // case, we should mark the last such terminator as being the killing
419      // block, not the copy.
420      MachineBasicBlock::iterator KillInst = opBlock.end();
421      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
422      for (MachineBasicBlock::iterator Term = FirstTerm;
423          Term != opBlock.end(); ++Term) {
424        if (Term->readsRegister(SrcReg))
425          KillInst = Term;
426      }
427
428      if (KillInst == opBlock.end()) {
429        // No terminator uses the register.
430
431        if (reusedIncoming || !IncomingReg) {
432          // We may have to rewind a bit if we didn't insert a copy this time.
433          KillInst = FirstTerm;
434          while (KillInst != opBlock.begin()) {
435            --KillInst;
436            if (KillInst->isDebugValue())
437              continue;
438            if (KillInst->readsRegister(SrcReg))
439              break;
440          }
441        } else {
442          // We just inserted this copy.
443          KillInst = prior(InsertPos);
444        }
445      }
446      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
447
448      // Finally, mark it killed.
449      LV->addVirtualRegisterKilled(SrcReg, KillInst);
450
451      // This vreg no longer lives all of the way through opBlock.
452      unsigned opBlockNum = opBlock.getNumber();
453      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
454    }
455
456    if (LIS) {
457      if (NewSrcInstr) {
458        LIS->InsertMachineInstrInMaps(NewSrcInstr);
459        LIS->addLiveRangeToEndOfBlock(IncomingReg, NewSrcInstr);
460      }
461
462      if (!SrcUndef &&
463          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
464        LiveInterval &SrcLI = LIS->getInterval(SrcReg);
465
466        bool isLiveOut = false;
467        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
468             SE = opBlock.succ_end(); SI != SE; ++SI) {
469          SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
470          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
471
472          // Definitions by other PHIs are not truly live-in for our purposes.
473          if (VNI && VNI->def != startIdx) {
474            isLiveOut = true;
475            break;
476          }
477        }
478
479        if (!isLiveOut) {
480          MachineBasicBlock::iterator KillInst = opBlock.end();
481          MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
482          for (MachineBasicBlock::iterator Term = FirstTerm;
483              Term != opBlock.end(); ++Term) {
484            if (Term->readsRegister(SrcReg))
485              KillInst = Term;
486          }
487
488          if (KillInst == opBlock.end()) {
489            // No terminator uses the register.
490
491            if (reusedIncoming || !IncomingReg) {
492              // We may have to rewind a bit if we didn't just insert a copy.
493              KillInst = FirstTerm;
494              while (KillInst != opBlock.begin()) {
495                --KillInst;
496                if (KillInst->isDebugValue())
497                  continue;
498                if (KillInst->readsRegister(SrcReg))
499                  break;
500              }
501            } else {
502              // We just inserted this copy.
503              KillInst = prior(InsertPos);
504            }
505          }
506          assert(KillInst->readsRegister(SrcReg) &&
507                 "Cannot find kill instruction");
508
509          SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
510          SrcLI.removeRange(LastUseIndex.getRegSlot(),
511                            LIS->getMBBEndIdx(&opBlock));
512        }
513      }
514    }
515  }
516
517  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
518  if (reusedIncoming || !IncomingReg) {
519    if (LIS)
520      LIS->RemoveMachineInstrFromMaps(MPhi);
521    MF.DeleteMachineInstr(MPhi);
522  }
523}
524
525/// analyzePHINodes - Gather information about the PHI nodes in here. In
526/// particular, we want to map the number of uses of a virtual register which is
527/// used in a PHI node. We map that to the BB the vreg is coming from. This is
528/// used later to determine when the vreg is killed in the BB.
529///
530void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
531  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
532       I != E; ++I)
533    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
534         BBI != BBE && BBI->isPHI(); ++BBI)
535      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
536        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
537                                     BBI->getOperand(i).getReg())];
538}
539
540bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
541                                   MachineBasicBlock &MBB,
542                                   MachineLoopInfo *MLI) {
543  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
544    return false;   // Quick exit for basic blocks without PHIs.
545
546  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
547  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
548
549  bool Changed = false;
550  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
551       BBI != BBE && BBI->isPHI(); ++BBI) {
552    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
553      unsigned Reg = BBI->getOperand(i).getReg();
554      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
555      // Is there a critical edge from PreMBB to MBB?
556      if (PreMBB->succ_size() == 1)
557        continue;
558
559      // Avoid splitting backedges of loops. It would introduce small
560      // out-of-line blocks into the loop which is very bad for code placement.
561      if (PreMBB == &MBB && !SplitAllCriticalEdges)
562        continue;
563      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
564      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
565        continue;
566
567      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
568      // when the source register is live-out for some other reason than a phi
569      // use. That means the copy we will insert in PreMBB won't be a kill, and
570      // there is a risk it may not be coalesced away.
571      //
572      // If the copy would be a kill, there is no need to split the edge.
573      if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
574        continue;
575
576      DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
577                   << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
578                   << ": " << *BBI);
579
580      // If Reg is not live-in to MBB, it means it must be live-in to some
581      // other PreMBB successor, and we can avoid the interference by splitting
582      // the edge.
583      //
584      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
585      // is likely to be left after coalescing. If we are looking at a loop
586      // exiting edge, split it so we won't insert code in the loop, otherwise
587      // don't bother.
588      bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
589
590      // Check for a loop exiting edge.
591      if (!ShouldSplit && CurLoop != PreLoop) {
592        DEBUG({
593          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
594          if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
595          if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
596        });
597        // This edge could be entering a loop, exiting a loop, or it could be
598        // both: Jumping directly form one loop to the header of a sibling
599        // loop.
600        // Split unless this edge is entering CurLoop from an outer loop.
601        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
602      }
603      if (!ShouldSplit)
604        continue;
605      if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
606        DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
607        continue;
608      }
609      Changed = true;
610      ++NumCriticalEdgesSplit;
611    }
612  }
613  return Changed;
614}
615
616bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
617  assert((LV || LIS) &&
618         "isLiveIn() requires either LiveVariables or LiveIntervals");
619  if (LIS)
620    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
621  else
622    return LV->isLiveIn(Reg, *MBB);
623}
624
625bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
626  assert((LV || LIS) &&
627         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
628  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
629  // so that a register used only in a PHI is not live out of the block. In
630  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
631  // in the predecessor basic block, so that a register used only in a PHI is live
632  // out of the block.
633  if (LIS) {
634    const LiveInterval &LI = LIS->getInterval(Reg);
635    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
636         SE = MBB->succ_end(); SI != SE; ++SI) {
637      if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
638        return true;
639    }
640    return false;
641  } else {
642    return LV->isLiveOut(Reg, *MBB);
643  }
644}
645