PHIElimination.cpp revision 199989
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIElimination.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Function.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/Debug.h"
32#include <algorithm>
33#include <map>
34using namespace llvm;
35
36STATISTIC(NumAtomic, "Number of atomic phis lowered");
37STATISTIC(NumSplits, "Number of critical edges split on demand");
38
39char PHIElimination::ID = 0;
40static RegisterPass<PHIElimination>
41X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
42
43const PassInfo *const llvm::PHIEliminationID = &X;
44
45void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
46  AU.addPreserved<LiveVariables>();
47  AU.addPreserved<MachineDominatorTree>();
48  // rdar://7401784 This would be nice:
49  // AU.addPreservedID(MachineLoopInfoID);
50  MachineFunctionPass::getAnalysisUsage(AU);
51}
52
53bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
54  MRI = &Fn.getRegInfo();
55
56  PHIDefs.clear();
57  PHIKills.clear();
58  bool Changed = false;
59
60  // Split critical edges to help the coalescer
61  if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>())
62    for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
63      Changed |= SplitPHIEdges(Fn, *I, *LV);
64
65  // Populate VRegPHIUseCount
66  analyzePHINodes(Fn);
67
68  // Eliminate PHI instructions by inserting copies into predecessor blocks.
69  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
70    Changed |= EliminatePHINodes(Fn, *I);
71
72  // Remove dead IMPLICIT_DEF instructions.
73  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
74         E = ImpDefs.end(); I != E; ++I) {
75    MachineInstr *DefMI = *I;
76    unsigned DefReg = DefMI->getOperand(0).getReg();
77    if (MRI->use_empty(DefReg))
78      DefMI->eraseFromParent();
79  }
80
81  ImpDefs.clear();
82  VRegPHIUseCount.clear();
83  return Changed;
84}
85
86/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
87/// predecessor basic blocks.
88///
89bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
90                                             MachineBasicBlock &MBB) {
91  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
92    return false;   // Quick exit for basic blocks without PHIs.
93
94  // Get an iterator to the first instruction after the last PHI node (this may
95  // also be the end of the basic block).
96  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
97
98  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
99    LowerAtomicPHINode(MBB, AfterPHIsIt);
100
101  return true;
102}
103
104/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
105/// are implicit_def's.
106static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
107                                         const MachineRegisterInfo *MRI) {
108  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
109    unsigned SrcReg = MPhi->getOperand(i).getReg();
110    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
111    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
112      return false;
113  }
114  return true;
115}
116
117// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
118// when following the CFG edge to SuccMBB. This needs to be after any def of
119// SrcReg, but before any subsequent point where control flow might jump out of
120// the basic block.
121MachineBasicBlock::iterator
122llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
123                                          MachineBasicBlock &SuccMBB,
124                                          unsigned SrcReg) {
125  // Handle the trivial case trivially.
126  if (MBB.empty())
127    return MBB.begin();
128
129  // Usually, we just want to insert the copy before the first terminator
130  // instruction. However, for the edge going to a landing pad, we must insert
131  // the copy before the call/invoke instruction.
132  if (!SuccMBB.isLandingPad())
133    return MBB.getFirstTerminator();
134
135  // Discover any defs/uses in this basic block.
136  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
137  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
138         RE = MRI->reg_end(); RI != RE; ++RI) {
139    MachineInstr *DefUseMI = &*RI;
140    if (DefUseMI->getParent() == &MBB)
141      DefUsesInMBB.insert(DefUseMI);
142  }
143
144  MachineBasicBlock::iterator InsertPoint;
145  if (DefUsesInMBB.empty()) {
146    // No defs.  Insert the copy at the start of the basic block.
147    InsertPoint = MBB.begin();
148  } else if (DefUsesInMBB.size() == 1) {
149    // Insert the copy immediately after the def/use.
150    InsertPoint = *DefUsesInMBB.begin();
151    ++InsertPoint;
152  } else {
153    // Insert the copy immediately after the last def/use.
154    InsertPoint = MBB.end();
155    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
156    ++InsertPoint;
157  }
158
159  // Make sure the copy goes after any phi nodes however.
160  return SkipPHIsAndLabels(MBB, InsertPoint);
161}
162
163/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
164/// under the assuption that it needs to be lowered in a way that supports
165/// atomic execution of PHIs.  This lowering method is always correct all of the
166/// time.
167///
168void llvm::PHIElimination::LowerAtomicPHINode(
169                                      MachineBasicBlock &MBB,
170                                      MachineBasicBlock::iterator AfterPHIsIt) {
171  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
172  MachineInstr *MPhi = MBB.remove(MBB.begin());
173
174  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
175  unsigned DestReg = MPhi->getOperand(0).getReg();
176  bool isDead = MPhi->getOperand(0).isDead();
177
178  // Create a new register for the incoming PHI arguments.
179  MachineFunction &MF = *MBB.getParent();
180  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
181  unsigned IncomingReg = 0;
182
183  // Insert a register to register copy at the top of the current block (but
184  // after any remaining phi nodes) which copies the new incoming register
185  // into the phi node destination.
186  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
187  if (isSourceDefinedByImplicitDef(MPhi, MRI))
188    // If all sources of a PHI node are implicit_def, just emit an
189    // implicit_def instead of a copy.
190    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
191            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
192  else {
193    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
194    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
195  }
196
197  // Record PHI def.
198  assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
199  PHIDefs[DestReg] = &MBB;
200
201  // Update live variable information if there is any.
202  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
203  if (LV) {
204    MachineInstr *PHICopy = prior(AfterPHIsIt);
205
206    if (IncomingReg) {
207      // Increment use count of the newly created virtual register.
208      LV->getVarInfo(IncomingReg).NumUses++;
209
210      // Add information to LiveVariables to know that the incoming value is
211      // killed.  Note that because the value is defined in several places (once
212      // each for each incoming block), the "def" block and instruction fields
213      // for the VarInfo is not filled in.
214      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
215    }
216
217    // Since we are going to be deleting the PHI node, if it is the last use of
218    // any registers, or if the value itself is dead, we need to move this
219    // information over to the new copy we just inserted.
220    LV->removeVirtualRegistersKilled(MPhi);
221
222    // If the result is dead, update LV.
223    if (isDead) {
224      LV->addVirtualRegisterDead(DestReg, PHICopy);
225      LV->removeVirtualRegisterDead(DestReg, MPhi);
226    }
227  }
228
229  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
230  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
231    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
232                                 MPhi->getOperand(i).getReg())];
233
234  // Now loop over all of the incoming arguments, changing them to copy into the
235  // IncomingReg register in the corresponding predecessor basic block.
236  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
237  for (int i = NumSrcs - 1; i >= 0; --i) {
238    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
239    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
240           "Machine PHI Operands must all be virtual registers!");
241
242    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
243    // path the PHI.
244    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
245
246    // Record the kill.
247    PHIKills[SrcReg].insert(&opBlock);
248
249    // If source is defined by an implicit def, there is no need to insert a
250    // copy.
251    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
252    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
253      ImpDefs.insert(DefMI);
254      continue;
255    }
256
257    // Check to make sure we haven't already emitted the copy for this block.
258    // This can happen because PHI nodes may have multiple entries for the same
259    // basic block.
260    if (!MBBsInsertedInto.insert(&opBlock))
261      continue;  // If the copy has already been emitted, we're done.
262
263    // Find a safe location to insert the copy, this may be the first terminator
264    // in the block (or end()).
265    MachineBasicBlock::iterator InsertPos =
266      FindCopyInsertPoint(opBlock, MBB, SrcReg);
267
268    // Insert the copy.
269    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
270
271    // Now update live variable information if we have it.  Otherwise we're done
272    if (!LV) continue;
273
274    // We want to be able to insert a kill of the register if this PHI (aka, the
275    // copy we just inserted) is the last use of the source value.  Live
276    // variable analysis conservatively handles this by saying that the value is
277    // live until the end of the block the PHI entry lives in.  If the value
278    // really is dead at the PHI copy, there will be no successor blocks which
279    // have the value live-in.
280
281    // Also check to see if this register is in use by another PHI node which
282    // has not yet been eliminated.  If so, it will be killed at an appropriate
283    // point later.
284
285    // Is it used by any PHI instructions in this block?
286    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
287
288    // Okay, if we now know that the value is not live out of the block, we can
289    // add a kill marker in this block saying that it kills the incoming value!
290    if (!ValueIsUsed && !isLiveOut(SrcReg, opBlock, *LV)) {
291      // In our final twist, we have to decide which instruction kills the
292      // register.  In most cases this is the copy, however, the first
293      // terminator instruction at the end of the block may also use the value.
294      // In this case, we should mark *it* as being the killing block, not the
295      // copy.
296      MachineBasicBlock::iterator KillInst = prior(InsertPos);
297      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
298      if (Term != opBlock.end()) {
299        if (Term->readsRegister(SrcReg))
300          KillInst = Term;
301
302        // Check that no other terminators use values.
303#ifndef NDEBUG
304        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
305             ++TI) {
306          assert(!TI->readsRegister(SrcReg) &&
307                 "Terminator instructions cannot use virtual registers unless"
308                 "they are the first terminator in a block!");
309        }
310#endif
311      }
312
313      // Finally, mark it killed.
314      LV->addVirtualRegisterKilled(SrcReg, KillInst);
315
316      // This vreg no longer lives all of the way through opBlock.
317      unsigned opBlockNum = opBlock.getNumber();
318      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
319    }
320  }
321
322  // Really delete the PHI instruction now!
323  MF.DeleteMachineInstr(MPhi);
324  ++NumAtomic;
325}
326
327/// analyzePHINodes - Gather information about the PHI nodes in here. In
328/// particular, we want to map the number of uses of a virtual register which is
329/// used in a PHI node. We map that to the BB the vreg is coming from. This is
330/// used later to determine when the vreg is killed in the BB.
331///
332void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
333  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
334       I != E; ++I)
335    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
336         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
337      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
338        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
339                                     BBI->getOperand(i).getReg())];
340}
341
342bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
343                                         MachineBasicBlock &MBB,
344                                         LiveVariables &LV) {
345  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
346    return false;   // Quick exit for basic blocks without PHIs.
347
348  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
349       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
350    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
351      unsigned Reg = BBI->getOperand(i).getReg();
352      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
353      // We break edges when registers are live out from the predecessor block
354      // (not considering PHI nodes). If the register is live in to this block
355      // anyway, we would gain nothing from splitting.
356      if (!LV.isLiveIn(Reg, MBB) && isLiveOut(Reg, *PreMBB, LV))
357        SplitCriticalEdge(PreMBB, &MBB);
358    }
359  }
360  return true;
361}
362
363bool llvm::PHIElimination::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB,
364                                     LiveVariables &LV) {
365  LiveVariables::VarInfo &VI = LV.getVarInfo(Reg);
366
367  // Loop over all of the successors of the basic block, checking to see if
368  // the value is either live in the block, or if it is killed in the block.
369  std::vector<MachineBasicBlock*> OpSuccBlocks;
370  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
371         E = MBB.succ_end(); SI != E; ++SI) {
372    MachineBasicBlock *SuccMBB = *SI;
373
374    // Is it alive in this successor?
375    unsigned SuccIdx = SuccMBB->getNumber();
376    if (VI.AliveBlocks.test(SuccIdx))
377      return true;
378    OpSuccBlocks.push_back(SuccMBB);
379  }
380
381  // Check to see if this value is live because there is a use in a successor
382  // that kills it.
383  switch (OpSuccBlocks.size()) {
384  case 1: {
385    MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
386    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
387      if (VI.Kills[i]->getParent() == SuccMBB)
388        return true;
389    break;
390  }
391  case 2: {
392    MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
393    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
394      if (VI.Kills[i]->getParent() == SuccMBB1 ||
395          VI.Kills[i]->getParent() == SuccMBB2)
396        return true;
397    break;
398  }
399  default:
400    std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
401    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
402      if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
403                             VI.Kills[i]->getParent()))
404        return true;
405  }
406  return false;
407}
408
409MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
410                                                     MachineBasicBlock *B) {
411  assert(A && B && "Missing MBB end point");
412
413  MachineFunction *MF = A->getParent();
414
415  // We may need to update A's terminator, but we can't do that if AnalyzeBranch
416  // fails. If A uses a jump table, we won't touch it.
417  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
418  MachineBasicBlock *TBB = 0, *FBB = 0;
419  SmallVector<MachineOperand, 4> Cond;
420  if (TII->AnalyzeBranch(*A, TBB, FBB, Cond))
421    return NULL;
422
423  ++NumSplits;
424
425  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
426  MF->insert(next(MachineFunction::iterator(A)), NMBB);
427  DEBUG(errs() << "PHIElimination splitting critical edge:"
428        " BB#" << A->getNumber()
429        << " -- BB#" << NMBB->getNumber()
430        << " -- BB#" << B->getNumber() << '\n');
431
432  A->ReplaceUsesOfBlockWith(B, NMBB);
433  A->updateTerminator();
434
435  // Insert unconditional "jump B" instruction in NMBB if necessary.
436  NMBB->addSuccessor(B);
437  if (!NMBB->isLayoutSuccessor(B)) {
438    Cond.clear();
439    MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond);
440  }
441
442  // Fix PHI nodes in B so they refer to NMBB instead of A
443  for (MachineBasicBlock::iterator i = B->begin(), e = B->end();
444       i != e && i->getOpcode() == TargetInstrInfo::PHI; ++i)
445    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
446      if (i->getOperand(ni+1).getMBB() == A)
447        i->getOperand(ni+1).setMBB(NMBB);
448
449  if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>())
450    LV->addNewBlock(NMBB, A, B);
451
452  if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>())
453    MDT->addNewBlock(NMBB, A);
454
455  return NMBB;
456}
457