ValueEnumerator.cpp revision 203954
1//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ValueEnumerator class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ValueEnumerator.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Module.h"
18#include "llvm/TypeSymbolTable.h"
19#include "llvm/ValueSymbolTable.h"
20#include "llvm/Instructions.h"
21#include <algorithm>
22using namespace llvm;
23
24static bool isSingleValueType(const std::pair<const llvm::Type*,
25                              unsigned int> &P) {
26  return P.first->isSingleValueType();
27}
28
29static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
30  return isa<IntegerType>(V.first->getType());
31}
32
33static bool CompareByFrequency(const std::pair<const llvm::Type*,
34                               unsigned int> &P1,
35                               const std::pair<const llvm::Type*,
36                               unsigned int> &P2) {
37  return P1.second > P2.second;
38}
39
40/// ValueEnumerator - Enumerate module-level information.
41ValueEnumerator::ValueEnumerator(const Module *M) {
42  InstructionCount = 0;
43
44  // Enumerate the global variables.
45  for (Module::const_global_iterator I = M->global_begin(),
46         E = M->global_end(); I != E; ++I)
47    EnumerateValue(I);
48
49  // Enumerate the functions.
50  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
51    EnumerateValue(I);
52    EnumerateAttributes(cast<Function>(I)->getAttributes());
53  }
54
55  // Enumerate the aliases.
56  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
57       I != E; ++I)
58    EnumerateValue(I);
59
60  // Remember what is the cutoff between globalvalue's and other constants.
61  unsigned FirstConstant = Values.size();
62
63  // Enumerate the global variable initializers.
64  for (Module::const_global_iterator I = M->global_begin(),
65         E = M->global_end(); I != E; ++I)
66    if (I->hasInitializer())
67      EnumerateValue(I->getInitializer());
68
69  // Enumerate the aliasees.
70  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
71       I != E; ++I)
72    EnumerateValue(I->getAliasee());
73
74  // Enumerate types used by the type symbol table.
75  EnumerateTypeSymbolTable(M->getTypeSymbolTable());
76
77  // Insert constants and metadata  that are named at module level into the slot
78  // pool so that the module symbol table can refer to them...
79  EnumerateValueSymbolTable(M->getValueSymbolTable());
80  EnumerateMDSymbolTable(M->getMDSymbolTable());
81
82  SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
83
84  // Enumerate types used by function bodies and argument lists.
85  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
86
87    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
88         I != E; ++I)
89      EnumerateType(I->getType());
90
91    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
92      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
93        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
94             OI != E; ++OI) {
95          if (MDNode *MD = dyn_cast<MDNode>(*OI))
96            if (MD->isFunctionLocal() && MD->getFunction())
97              // These will get enumerated during function-incorporation.
98              continue;
99          EnumerateOperandType(*OI);
100        }
101        EnumerateType(I->getType());
102        if (const CallInst *CI = dyn_cast<CallInst>(I))
103          EnumerateAttributes(CI->getAttributes());
104        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
105          EnumerateAttributes(II->getAttributes());
106
107        // Enumerate metadata attached with this instruction.
108        MDs.clear();
109        I->getAllMetadata(MDs);
110        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
111          EnumerateMetadata(MDs[i].second);
112      }
113  }
114
115  // Optimize constant ordering.
116  OptimizeConstants(FirstConstant, Values.size());
117
118  // Sort the type table by frequency so that most commonly used types are early
119  // in the table (have low bit-width).
120  std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
121
122  // Partition the Type ID's so that the single-value types occur before the
123  // aggregate types.  This allows the aggregate types to be dropped from the
124  // type table after parsing the global variable initializers.
125  std::partition(Types.begin(), Types.end(), isSingleValueType);
126
127  // Now that we rearranged the type table, rebuild TypeMap.
128  for (unsigned i = 0, e = Types.size(); i != e; ++i)
129    TypeMap[Types[i].first] = i+1;
130}
131
132unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
133  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
134  assert (I != InstructionMap.end() && "Instruction is not mapped!");
135    return I->second;
136}
137
138void ValueEnumerator::setInstructionID(const Instruction *I) {
139  InstructionMap[I] = InstructionCount++;
140}
141
142unsigned ValueEnumerator::getValueID(const Value *V) const {
143  if (isa<MDNode>(V) || isa<MDString>(V)) {
144    ValueMapType::const_iterator I = MDValueMap.find(V);
145    assert(I != MDValueMap.end() && "Value not in slotcalculator!");
146    return I->second-1;
147  }
148
149  ValueMapType::const_iterator I = ValueMap.find(V);
150  assert(I != ValueMap.end() && "Value not in slotcalculator!");
151  return I->second-1;
152}
153
154// Optimize constant ordering.
155namespace {
156  struct CstSortPredicate {
157    ValueEnumerator &VE;
158    explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
159    bool operator()(const std::pair<const Value*, unsigned> &LHS,
160                    const std::pair<const Value*, unsigned> &RHS) {
161      // Sort by plane.
162      if (LHS.first->getType() != RHS.first->getType())
163        return VE.getTypeID(LHS.first->getType()) <
164               VE.getTypeID(RHS.first->getType());
165      // Then by frequency.
166      return LHS.second > RHS.second;
167    }
168  };
169}
170
171/// OptimizeConstants - Reorder constant pool for denser encoding.
172void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
173  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
174
175  CstSortPredicate P(*this);
176  std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
177
178  // Ensure that integer constants are at the start of the constant pool.  This
179  // is important so that GEP structure indices come before gep constant exprs.
180  std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
181                 isIntegerValue);
182
183  // Rebuild the modified portion of ValueMap.
184  for (; CstStart != CstEnd; ++CstStart)
185    ValueMap[Values[CstStart].first] = CstStart+1;
186}
187
188
189/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
190/// table.
191void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
192  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
193       TI != TE; ++TI)
194    EnumerateType(TI->second);
195}
196
197/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
198/// table into the values table.
199void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
200  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
201       VI != VE; ++VI)
202    EnumerateValue(VI->getValue());
203}
204
205/// EnumerateMDSymbolTable - Insert all of the values in the specified metadata
206/// table.
207void ValueEnumerator::EnumerateMDSymbolTable(const MDSymbolTable &MST) {
208  for (MDSymbolTable::const_iterator MI = MST.begin(), ME = MST.end();
209       MI != ME; ++MI)
210    EnumerateValue(MI->getValue());
211}
212
213void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
214  // Check to see if it's already in!
215  unsigned &MDValueID = MDValueMap[MD];
216  if (MDValueID) {
217    // Increment use count.
218    MDValues[MDValueID-1].second++;
219    return;
220  }
221
222  // Enumerate the type of this value.
223  EnumerateType(MD->getType());
224
225  for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
226    if (MDNode *E = MD->getOperand(i))
227      EnumerateValue(E);
228  MDValues.push_back(std::make_pair(MD, 1U));
229  MDValueMap[MD] = Values.size();
230}
231
232void ValueEnumerator::EnumerateMetadata(const Value *MD) {
233  assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
234  // Check to see if it's already in!
235  unsigned &MDValueID = MDValueMap[MD];
236  if (MDValueID) {
237    // Increment use count.
238    MDValues[MDValueID-1].second++;
239    return;
240  }
241
242  // Enumerate the type of this value.
243  EnumerateType(MD->getType());
244
245  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
246    MDValues.push_back(std::make_pair(MD, 1U));
247    MDValueMap[MD] = MDValues.size();
248    MDValueID = MDValues.size();
249    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
250      if (Value *V = N->getOperand(i))
251        EnumerateValue(V);
252      else
253        EnumerateType(Type::getVoidTy(MD->getContext()));
254    }
255    return;
256  }
257
258  // Add the value.
259  assert(isa<MDString>(MD) && "Unknown metadata kind");
260  MDValues.push_back(std::make_pair(MD, 1U));
261  MDValueID = MDValues.size();
262}
263
264void ValueEnumerator::EnumerateValue(const Value *V) {
265  assert(!V->getType()->isVoidTy() && "Can't insert void values!");
266  if (isa<MDNode>(V) || isa<MDString>(V))
267    return EnumerateMetadata(V);
268  else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
269    return EnumerateNamedMDNode(NMD);
270
271  // Check to see if it's already in!
272  unsigned &ValueID = ValueMap[V];
273  if (ValueID) {
274    // Increment use count.
275    Values[ValueID-1].second++;
276    return;
277  }
278
279  // Enumerate the type of this value.
280  EnumerateType(V->getType());
281
282  if (const Constant *C = dyn_cast<Constant>(V)) {
283    if (isa<GlobalValue>(C)) {
284      // Initializers for globals are handled explicitly elsewhere.
285    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
286      // Do not enumerate the initializers for an array of simple characters.
287      // The initializers just polute the value table, and we emit the strings
288      // specially.
289    } else if (C->getNumOperands()) {
290      // If a constant has operands, enumerate them.  This makes sure that if a
291      // constant has uses (for example an array of const ints), that they are
292      // inserted also.
293
294      // We prefer to enumerate them with values before we enumerate the user
295      // itself.  This makes it more likely that we can avoid forward references
296      // in the reader.  We know that there can be no cycles in the constants
297      // graph that don't go through a global variable.
298      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
299           I != E; ++I)
300        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
301          EnumerateValue(*I);
302
303      // Finally, add the value.  Doing this could make the ValueID reference be
304      // dangling, don't reuse it.
305      Values.push_back(std::make_pair(V, 1U));
306      ValueMap[V] = Values.size();
307      return;
308    }
309  }
310
311  // Add the value.
312  Values.push_back(std::make_pair(V, 1U));
313  ValueID = Values.size();
314}
315
316
317void ValueEnumerator::EnumerateType(const Type *Ty) {
318  unsigned &TypeID = TypeMap[Ty];
319
320  if (TypeID) {
321    // If we've already seen this type, just increase its occurrence count.
322    Types[TypeID-1].second++;
323    return;
324  }
325
326  // First time we saw this type, add it.
327  Types.push_back(std::make_pair(Ty, 1U));
328  TypeID = Types.size();
329
330  // Enumerate subtypes.
331  for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
332       I != E; ++I)
333    EnumerateType(*I);
334}
335
336// Enumerate the types for the specified value.  If the value is a constant,
337// walk through it, enumerating the types of the constant.
338void ValueEnumerator::EnumerateOperandType(const Value *V) {
339  EnumerateType(V->getType());
340
341  if (const Constant *C = dyn_cast<Constant>(V)) {
342    // If this constant is already enumerated, ignore it, we know its type must
343    // be enumerated.
344    if (ValueMap.count(V)) return;
345
346    // This constant may have operands, make sure to enumerate the types in
347    // them.
348    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
349      const User *Op = C->getOperand(i);
350
351      // Don't enumerate basic blocks here, this happens as operands to
352      // blockaddress.
353      if (isa<BasicBlock>(Op)) continue;
354
355      EnumerateOperandType(cast<Constant>(Op));
356    }
357
358    if (const MDNode *N = dyn_cast<MDNode>(V)) {
359      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
360        if (Value *Elem = N->getOperand(i))
361          EnumerateOperandType(Elem);
362    }
363  } else if (isa<MDString>(V) || isa<MDNode>(V))
364    EnumerateValue(V);
365}
366
367void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
368  if (PAL.isEmpty()) return;  // null is always 0.
369  // Do a lookup.
370  unsigned &Entry = AttributeMap[PAL.getRawPointer()];
371  if (Entry == 0) {
372    // Never saw this before, add it.
373    Attributes.push_back(PAL);
374    Entry = Attributes.size();
375  }
376}
377
378
379void ValueEnumerator::incorporateFunction(const Function &F) {
380  NumModuleValues = Values.size();
381
382  // Adding function arguments to the value table.
383  for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
384      I != E; ++I)
385    EnumerateValue(I);
386
387  FirstFuncConstantID = Values.size();
388
389  // Add all function-level constants to the value table.
390  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
391    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
392      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
393           OI != E; ++OI) {
394        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
395            isa<InlineAsm>(*OI))
396          EnumerateValue(*OI);
397      }
398    BasicBlocks.push_back(BB);
399    ValueMap[BB] = BasicBlocks.size();
400  }
401
402  // Optimize the constant layout.
403  OptimizeConstants(FirstFuncConstantID, Values.size());
404
405  // Add the function's parameter attributes so they are available for use in
406  // the function's instruction.
407  EnumerateAttributes(F.getAttributes());
408
409  FirstInstID = Values.size();
410
411  SmallVector<MDNode *, 8> FunctionLocalMDs;
412  // Add all of the instructions.
413  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
414    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
415      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
416           OI != E; ++OI) {
417        if (MDNode *MD = dyn_cast<MDNode>(*OI))
418          if (MD->isFunctionLocal() && MD->getFunction())
419            // Enumerate metadata after the instructions they might refer to.
420            FunctionLocalMDs.push_back(MD);
421      }
422      if (!I->getType()->isVoidTy())
423        EnumerateValue(I);
424    }
425  }
426
427  // Add all of the function-local metadata.
428  for (unsigned i = 0, e = FunctionLocalMDs.size(); i != e; ++i)
429    EnumerateOperandType(FunctionLocalMDs[i]);
430}
431
432void ValueEnumerator::purgeFunction() {
433  /// Remove purged values from the ValueMap.
434  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
435    ValueMap.erase(Values[i].first);
436  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
437    ValueMap.erase(BasicBlocks[i]);
438
439  Values.resize(NumModuleValues);
440  BasicBlocks.clear();
441}
442
443static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
444                                 DenseMap<const BasicBlock*, unsigned> &IDMap) {
445  unsigned Counter = 0;
446  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
447    IDMap[BB] = ++Counter;
448}
449
450/// getGlobalBasicBlockID - This returns the function-specific ID for the
451/// specified basic block.  This is relatively expensive information, so it
452/// should only be used by rare constructs such as address-of-label.
453unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
454  unsigned &Idx = GlobalBasicBlockIDs[BB];
455  if (Idx != 0)
456    return Idx-1;
457
458  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
459  return getGlobalBasicBlockID(BB);
460}
461
462