GlobalsModRef.cpp revision 234353
1193323Sed//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This simple pass provides alias and mod/ref information for global values
11193323Sed// that do not have their address taken, and keeps track of whether functions
12193323Sed// read or write memory (are "pure").  For this simple (but very common) case,
13193323Sed// we can provide pretty accurate and useful information.
14193323Sed//
15193323Sed//===----------------------------------------------------------------------===//
16193323Sed
17193323Sed#define DEBUG_TYPE "globalsmodref-aa"
18234353Sdim#include "llvm/Analysis/Passes.h"
19193323Sed#include "llvm/Module.h"
20249423Sdim#include "llvm/Pass.h"
21249423Sdim#include "llvm/Instructions.h"
22249423Sdim#include "llvm/Constants.h"
23193323Sed#include "llvm/DerivedTypes.h"
24212904Sdim#include "llvm/IntrinsicInst.h"
25193323Sed#include "llvm/Analysis/AliasAnalysis.h"
26193323Sed#include "llvm/Analysis/CallGraph.h"
27193323Sed#include "llvm/Analysis/MemoryBuiltins.h"
28193323Sed#include "llvm/Analysis/ValueTracking.h"
29193323Sed#include "llvm/Support/CommandLine.h"
30193323Sed#include "llvm/Support/InstIterator.h"
31193323Sed#include "llvm/ADT/Statistic.h"
32193323Sed#include "llvm/ADT/SCCIterator.h"
33193323Sed#include <set>
34193323Sedusing namespace llvm;
35193323Sed
36193323SedSTATISTIC(NumNonAddrTakenGlobalVars,
37193323Sed          "Number of global vars without address taken");
38218893SdimSTATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
39218893SdimSTATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
40218893SdimSTATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
41218893SdimSTATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
42193323Sed
43193323Sednamespace {
44239462Sdim  /// FunctionRecord - One instance of this structure is stored for every
45239462Sdim  /// function in the program.  Later, the entries for these functions are
46239462Sdim  /// removed if the function is found to call an external function (in which
47193323Sed  /// case we know nothing about it.
48193323Sed  struct FunctionRecord {
49193323Sed    /// GlobalInfo - Maintain mod/ref info for all of the globals without
50193323Sed    /// addresses taken that are read or written (transitively) by this
51193323Sed    /// function.
52193323Sed    std::map<const GlobalValue*, unsigned> GlobalInfo;
53198090Srdivacky
54193323Sed    /// MayReadAnyGlobal - May read global variables, but it is not known which.
55193323Sed    bool MayReadAnyGlobal;
56193323Sed
57193323Sed    unsigned getInfoForGlobal(const GlobalValue *GV) const {
58193323Sed      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
59239462Sdim      std::map<const GlobalValue*, unsigned>::const_iterator I =
60195340Sed        GlobalInfo.find(GV);
61193323Sed      if (I != GlobalInfo.end())
62193323Sed        Effect |= I->second;
63193323Sed      return Effect;
64234353Sdim    }
65193323Sed
66193323Sed    /// FunctionEffect - Capture whether or not this function reads or writes to
67210299Sed    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
68210299Sed    unsigned FunctionEffect;
69202878Srdivacky
70202878Srdivacky    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
71193323Sed  };
72193323Sed
73193323Sed  /// GlobalsModRef - The actual analysis pass.
74193323Sed  class GlobalsModRef : public ModulePass, public AliasAnalysis {
75193323Sed    /// NonAddressTakenGlobals - The globals that do not have their addresses
76193323Sed    /// taken.
77193323Sed    std::set<const GlobalValue*> NonAddressTakenGlobals;
78193323Sed
79193323Sed    /// IndirectGlobals - The memory pointed to by this global is known to be
80226633Sdim    /// 'owned' by the global.
81226633Sdim    std::set<const GlobalValue*> IndirectGlobals;
82226633Sdim
83226633Sdim    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
84226633Sdim    /// indirect global, this map indicates which one.
85199481Srdivacky    std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
86199481Srdivacky
87193323Sed    /// FunctionInfo - For each function, keep track of what globals are
88218893Sdim    /// modified or read.
89218893Sdim    std::map<const Function*, FunctionRecord> FunctionInfo;
90193323Sed
91210299Sed  public:
92210299Sed    static char ID;
93194710Sed    GlobalsModRef() : ModulePass(ID) {
94194710Sed      initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
95198090Srdivacky    }
96198090Srdivacky
97218893Sdim    bool runOnModule(Module &M) {
98218893Sdim      InitializeAliasAnalysis(this);                 // set up super class
99218893Sdim      AnalyzeGlobals(M);                          // find non-addr taken globals
100218893Sdim      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
101221345Sdim      return false;
102194710Sed    }
103218893Sdim
104194710Sed    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
105218893Sdim      AliasAnalysis::getAnalysisUsage(AU);
106218893Sdim      AU.addRequired<CallGraph>();
107194710Sed      AU.setPreservesAll();                         // Does not transform code
108194710Sed    }
109218893Sdim
110218893Sdim    //------------------------------------------------
111194710Sed    // Implement the AliasAnalysis API
112194710Sed    //
113194710Sed    AliasResult alias(const Location &LocA, const Location &LocB);
114194710Sed    ModRefResult getModRefInfo(ImmutableCallSite CS,
115194710Sed                               const Location &Loc);
116194710Sed    ModRefResult getModRefInfo(ImmutableCallSite CS1,
117194710Sed                               ImmutableCallSite CS2) {
118194710Sed      return AliasAnalysis::getModRefInfo(CS1, CS2);
119194710Sed    }
120194710Sed
121194710Sed    /// getModRefBehavior - Return the behavior of the specified function if
122194710Sed    /// called from the specified call site.  The call site may be null in which
123194710Sed    /// case the most generic behavior of this function should be returned.
124194710Sed    ModRefBehavior getModRefBehavior(const Function *F) {
125194710Sed      ModRefBehavior Min = UnknownModRefBehavior;
126194710Sed
127194710Sed      if (FunctionRecord *FR = getFunctionInfo(F)) {
128194710Sed        if (FR->FunctionEffect == 0)
129194710Sed          Min = DoesNotAccessMemory;
130194710Sed        else if ((FR->FunctionEffect & Mod) == 0)
131194710Sed          Min = OnlyReadsMemory;
132194710Sed      }
133194710Sed
134194710Sed      return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
135194710Sed    }
136194710Sed
137194710Sed    /// getModRefBehavior - Return the behavior of the specified function if
138194710Sed    /// called from the specified call site.  The call site may be null in which
139194710Sed    /// case the most generic behavior of this function should be returned.
140194710Sed    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
141194710Sed      ModRefBehavior Min = UnknownModRefBehavior;
142194710Sed
143194710Sed      if (const Function* F = CS.getCalledFunction())
144194710Sed        if (FunctionRecord *FR = getFunctionInfo(F)) {
145194710Sed          if (FR->FunctionEffect == 0)
146194710Sed            Min = DoesNotAccessMemory;
147194710Sed          else if ((FR->FunctionEffect & Mod) == 0)
148194710Sed            Min = OnlyReadsMemory;
149194710Sed        }
150210299Sed
151210299Sed      return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
152210299Sed    }
153210299Sed
154234353Sdim    virtual void deleteValue(Value *V);
155234353Sdim    virtual void copyValue(Value *From, Value *To);
156234353Sdim    virtual void addEscapingUse(Use &U);
157198090Srdivacky
158198090Srdivacky    /// getAdjustedAnalysisPointer - This method is used when a pass implements
159198090Srdivacky    /// an analysis interface through multiple inheritance.  If needed, it
160198090Srdivacky    /// should override this to adjust the this pointer as needed for the
161198090Srdivacky    /// specified pass info.
162198090Srdivacky    virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
163198090Srdivacky      if (PI == &AliasAnalysis::ID)
164198090Srdivacky        return (AliasAnalysis*)this;
165198090Srdivacky      return this;
166198090Srdivacky    }
167198090Srdivacky
168204642Srdivacky  private:
169221345Sdim    /// getFunctionInfo - Return the function info for the function, or null if
170221345Sdim    /// we don't have anything useful to say about it.
171204642Srdivacky    FunctionRecord *getFunctionInfo(const Function *F) {
172212904Sdim      std::map<const Function*, FunctionRecord>::iterator I =
173212904Sdim        FunctionInfo.find(F);
174212904Sdim      if (I != FunctionInfo.end())
175212904Sdim        return &I->second;
176243830Sdim      return 0;
177243830Sdim    }
178243830Sdim
179210299Sed    void AnalyzeGlobals(Module &M);
180210299Sed    void AnalyzeCallGraph(CallGraph &CG, Module &M);
181210299Sed    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
182210299Sed                              std::vector<Function*> &Writers,
183210299Sed                              GlobalValue *OkayStoreDest = 0);
184210299Sed    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
185210299Sed  };
186204642Srdivacky}
187204642Srdivacky
188212904Sdimchar GlobalsModRef::ID = 0;
189212904SdimINITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
190212904Sdim                "globalsmodref-aa", "Simple mod/ref analysis for globals",
191218893Sdim                false, true, false)
192221345SdimINITIALIZE_AG_DEPENDENCY(CallGraph)
193218893SdimINITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
194218893Sdim                "globalsmodref-aa", "Simple mod/ref analysis for globals",
195218893Sdim                false, true, false)
196218893Sdim
197218893SdimPass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
198221345Sdim
199221345Sdim/// AnalyzeGlobals - Scan through the users of all of the internal
200221345Sdim/// GlobalValue's in the program.  If none of them have their "address taken"
201218893Sdim/// (really, their address passed to something nontrivial), record this fact,
202218893Sdim/// and record the functions that they are used directly in.
203218893Sdimvoid GlobalsModRef::AnalyzeGlobals(Module &M) {
204218893Sdim  std::vector<Function*> Readers, Writers;
205218893Sdim  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
206218893Sdim    if (I->hasLocalLinkage()) {
207218893Sdim      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
208218893Sdim        // Remember that we are tracking this global.
209218893Sdim        NonAddressTakenGlobals.insert(I);
210218893Sdim        ++NumNonAddrTakenFunctions;
211218893Sdim      }
212218893Sdim      Readers.clear(); Writers.clear();
213218893Sdim    }
214218893Sdim
215218893Sdim  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
216218893Sdim       I != E; ++I)
217218893Sdim    if (I->hasLocalLinkage()) {
218218893Sdim      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
219218893Sdim        // Remember that we are tracking this global, and the mod/ref fns
220218893Sdim        NonAddressTakenGlobals.insert(I);
221218893Sdim
222218893Sdim        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
223218893Sdim          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
224218893Sdim
225226633Sdim        if (!I->isConstant())  // No need to keep track of writers to constants
226226633Sdim          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
227226633Sdim            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
228226633Sdim        ++NumNonAddrTakenGlobalVars;
229226633Sdim
230226633Sdim        // If this global holds a pointer type, see if it is an indirect global.
231226633Sdim        if (I->getType()->getElementType()->isPointerTy() &&
232226633Sdim            AnalyzeIndirectGlobalMemory(I))
233226633Sdim          ++NumIndirectGlobalVars;
234226633Sdim      }
235249423Sdim      Readers.clear(); Writers.clear();
236249423Sdim    }
237249423Sdim}
238249423Sdim
239249423Sdim/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
240193323Sed/// If this is used by anything complex (i.e., the address escapes), return
241193323Sed/// true.  Also, while we are at it, keep track of those functions that read and
242193323Sed/// write to the value.
243194710Sed///
244194710Sed/// If OkayStoreDest is non-null, stores into this global are allowed.
245212904Sdimbool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
246194710Sed                                         std::vector<Function*> &Readers,
247194710Sed                                         std::vector<Function*> &Writers,
248193323Sed                                         GlobalValue *OkayStoreDest) {
249193323Sed  if (!V->getType()->isPointerTy()) return true;
250193323Sed
251193323Sed  for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
252193323Sed    User *U = *UI;
253193323Sed    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
254193323Sed      Readers.push_back(LI->getParent()->getParent());
255249423Sdim    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
256212904Sdim      if (V == SI->getOperand(1)) {
257207618Srdivacky        Writers.push_back(SI->getParent()->getParent());
258193323Sed      } else if (SI->getOperand(1) != OkayStoreDest) {
259193323Sed        return true;  // Storing the pointer
260193323Sed      }
261193323Sed    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
262193323Sed      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
263207618Srdivacky    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
264193323Sed      if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
265193323Sed        return true;
266193323Sed    } else if (isFreeCall(U)) {
267243830Sdim      Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
268243830Sdim    } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
269243830Sdim      // Make sure that this is just the function being called, not that it is
270243830Sdim      // passing into the function.
271243830Sdim      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
272226633Sdim        if (CI->getArgOperand(i) == V) return true;
273226633Sdim    } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
274226633Sdim      // Make sure that this is just the function being called, not that it is
275207618Srdivacky      // passing into the function.
276207618Srdivacky      for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
277207618Srdivacky        if (II->getArgOperand(i) == V) return true;
278193323Sed    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
279226633Sdim      if (CE->getOpcode() == Instruction::GetElementPtr ||
280226633Sdim          CE->getOpcode() == Instruction::BitCast) {
281226633Sdim        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
282224145Sdim          return true;
283218893Sdim      } else {
284218893Sdim        return true;
285218893Sdim      }
286218893Sdim    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
287198090Srdivacky      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
288249423Sdim        return true;  // Allow comparison against null.
289249423Sdim    } else {
290249423Sdim      return true;
291198090Srdivacky    }
292234353Sdim  }
293234353Sdim
294249423Sdim  return false;
295234353Sdim}
296234353Sdim
297234353Sdim/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
298249423Sdim/// which holds a pointer type.  See if the global always points to non-aliased
299249423Sdim/// heap memory: that is, all initializers of the globals are allocations, and
300249423Sdim/// those allocations have no use other than initialization of the global.
301193323Sed/// Further, all loads out of GV must directly use the memory, not store the
302193323Sed/// pointer somewhere.  If this is true, we consider the memory pointed to by
303226633Sdim/// GV to be owned by GV and can disambiguate other pointers from it.
304198090Srdivackybool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
305193323Sed  // Keep track of values related to the allocation of the memory, f.e. the
306199481Srdivacky  // value produced by the malloc call and any casts.
307210299Sed  std::vector<Value*> AllocRelatedValues;
308210299Sed
309210299Sed  // Walk the user list of the global.  If we find anything other than a direct
310199481Srdivacky  // load or store, bail out.
311199481Srdivacky  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
312223017Sdim    User *U = *I;
313223017Sdim    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
314223017Sdim      // The pointer loaded from the global can only be used in simple ways:
315223017Sdim      // we allow addressing of it and loading storing to it.  We do *not* allow
316223017Sdim      // storing the loaded pointer somewhere else or passing to a function.
317223017Sdim      std::vector<Function*> ReadersWriters;
318193323Sed      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
319193323Sed        return false;  // Loaded pointer escapes.
320193323Sed      // TODO: Could try some IP mod/ref of the loaded pointer.
321193323Sed    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
322193323Sed      // Storing the global itself.
323193323Sed      if (SI->getOperand(0) == GV) return false;
324193323Sed
325193323Sed      // If storing the null pointer, ignore it.
326193323Sed      if (isa<ConstantPointerNull>(SI->getOperand(0)))
327193323Sed        continue;
328193323Sed
329193323Sed      // Check the value being stored.
330193323Sed      Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
331193323Sed
332193323Sed      if (isMalloc(Ptr)) {
333193323Sed        // Okay, easy case.
334193323Sed      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
335193323Sed        Function *F = CI->getCalledFunction();
336193323Sed        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
337193323Sed        if (F->getName() != "calloc") return false;   // Not calloc.
338193323Sed      } else {
339198090Srdivacky        return false;  // Too hard to analyze.
340198090Srdivacky      }
341218893Sdim
342218893Sdim      // Analyze all uses of the allocation.  If any of them are used in a
343193323Sed      // non-simple way (e.g. stored to another global) bail out.
344218893Sdim      std::vector<Function*> ReadersWriters;
345218893Sdim      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
346218893Sdim        return false;  // Loaded pointer escapes.
347218893Sdim
348218893Sdim      // Remember that this allocation is related to the indirect global.
349218893Sdim      AllocRelatedValues.push_back(Ptr);
350193323Sed    } else {
351193323Sed      // Something complex, bail out.
352198090Srdivacky      return false;
353193323Sed    }
354193323Sed  }
355193323Sed
356193323Sed  // Okay, this is an indirect global.  Remember all of the allocations for
357193323Sed  // this global in AllocsForIndirectGlobals.
358193323Sed  while (!AllocRelatedValues.empty()) {
359223017Sdim    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
360193323Sed    AllocRelatedValues.pop_back();
361193323Sed  }
362193323Sed  IndirectGlobals.insert(GV);
363208599Srdivacky  return true;
364193323Sed}
365193323Sed
366193323Sed/// AnalyzeCallGraph - At this point, we know the functions where globals are
367208599Srdivacky/// immediately stored to and read from.  Propagate this information up the call
368208599Srdivacky/// graph to all callers and compute the mod/ref info for all memory for each
369249423Sdim/// function.
370208599Srdivackyvoid GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
371212904Sdim  // We do a bottom-up SCC traversal of the call graph.  In other words, we
372212904Sdim  // visit all callees before callers (leaf-first).
373212904Sdim  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
374212904Sdim       ++I) {
375212904Sdim    std::vector<CallGraphNode *> &SCC = *I;
376212904Sdim    assert(!SCC.empty() && "SCC with no functions?");
377239462Sdim
378239462Sdim    if (!SCC[0]->getFunction()) {
379212904Sdim      // Calls externally - can't say anything useful.  Remove any existing
380208599Srdivacky      // function records (may have been created when scanning globals).
381208599Srdivacky      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
382198090Srdivacky        FunctionInfo.erase(SCC[i]->getFunction());
383198090Srdivacky      continue;
384198892Srdivacky    }
385198892Srdivacky
386198892Srdivacky    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
387198892Srdivacky
388198892Srdivacky    bool KnowNothing = false;
389198892Srdivacky    unsigned FunctionEffect = 0;
390218893Sdim
391218893Sdim    // Collect the mod/ref properties due to called functions.  We only compute
392218893Sdim    // one mod-ref set.
393212904Sdim    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
394212904Sdim      Function *F = SCC[i]->getFunction();
395249423Sdim      if (!F) {
396212904Sdim        KnowNothing = true;
397193323Sed        break;
398193323Sed      }
399193323Sed
400193323Sed      if (F->isDeclaration()) {
401193323Sed        // Try to get mod/ref behaviour from function attributes.
402212904Sdim        if (F->doesNotAccessMemory()) {
403212904Sdim          // Can't do better than that!
404218893Sdim        } else if (F->onlyReadsMemory()) {
405218893Sdim          FunctionEffect |= Ref;
406198090Srdivacky          if (!F->isIntrinsic())
407193323Sed            // This function might call back into the module and read a global -
408193323Sed            // consider every global as possibly being read by this function.
409193323Sed            FR.MayReadAnyGlobal = true;
410239462Sdim        } else {
411239462Sdim          FunctionEffect |= ModRef;
412239462Sdim          // Can't say anything useful unless it's an intrinsic - they don't
413194710Sed          // read or write global variables of the kind considered here.
414194710Sed          KnowNothing = !F->isIntrinsic();
415198090Srdivacky        }
416194710Sed        continue;
417194710Sed      }
418194710Sed
419194710Sed      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
420194710Sed           CI != E && !KnowNothing; ++CI)
421207618Srdivacky        if (Function *Callee = CI->second->getFunction()) {
422194710Sed          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
423207618Srdivacky            // Propagate function effect up.
424207618Srdivacky            FunctionEffect |= CalleeFR->FunctionEffect;
425194710Sed
426210299Sed            // Incorporate callee's effects on globals into our info.
427210299Sed            for (std::map<const GlobalValue*, unsigned>::iterator GI =
428198090Srdivacky                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
429198090Srdivacky                 GI != E; ++GI)
430198090Srdivacky              FR.GlobalInfo[GI->first] |= GI->second;
431207618Srdivacky            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
432208599Srdivacky          } else {
433208599Srdivacky            // Can't say anything about it.  However, if it is inside our SCC,
434203954Srdivacky            // then nothing needs to be done.
435207618Srdivacky            CallGraphNode *CalleeNode = CG[Callee];
436207618Srdivacky            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
437207618Srdivacky              KnowNothing = true;
438207618Srdivacky          }
439207618Srdivacky        } else {
440193323Sed          KnowNothing = true;
441207618Srdivacky        }
442193323Sed    }
443239462Sdim
444239462Sdim    // If we can't say anything useful about this SCC, remove all SCC functions
445207618Srdivacky    // from the FunctionInfo map.
446207618Srdivacky    if (KnowNothing) {
447212904Sdim      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
448207618Srdivacky        FunctionInfo.erase(SCC[i]->getFunction());
449207618Srdivacky      continue;
450210299Sed    }
451208599Srdivacky
452207618Srdivacky    // Scan the function bodies for explicit loads or stores.
453207618Srdivacky    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
454207618Srdivacky      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
455212904Sdim             E = inst_end(SCC[i]->getFunction());
456234353Sdim           II != E && FunctionEffect != ModRef; ++II)
457234353Sdim        if (isa<LoadInst>(*II)) {
458221345Sdim          FunctionEffect |= Ref;
459218893Sdim          if (cast<LoadInst>(*II).isVolatile())
460193323Sed            // Volatile loads may have side-effects, so mark them as writing
461218893Sdim            // memory (for example, a flag inside the processor).
462218893Sdim            FunctionEffect |= Mod;
463198090Srdivacky        } else if (isa<StoreInst>(*II)) {
464198090Srdivacky          FunctionEffect |= Mod;
465198090Srdivacky          if (cast<StoreInst>(*II).isVolatile())
466198090Srdivacky            // Treat volatile stores as reading memory somewhere.
467251662Sdim            FunctionEffect |= Ref;
468251662Sdim        } else if (isMalloc(&cast<Instruction>(*II)) ||
469198090Srdivacky                   isFreeCall(&cast<Instruction>(*II))) {
470198090Srdivacky          FunctionEffect |= ModRef;
471198090Srdivacky        } else if (IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(&*II)) {
472198090Srdivacky          // The callgraph doesn't include intrinsic calls.
473198090Srdivacky          Function *Callee = Intrinsic->getCalledFunction();
474198090Srdivacky          ModRefBehavior Behaviour = AliasAnalysis::getModRefBehavior(Callee);
475207618Srdivacky          FunctionEffect |= (Behaviour & ModRef);
476198090Srdivacky        }
477251662Sdim
478251662Sdim    if ((FunctionEffect & Mod) == 0)
479251662Sdim      ++NumReadMemFunctions;
480251662Sdim    if (FunctionEffect == 0)
481251662Sdim      ++NumNoMemFunctions;
482251662Sdim    FR.FunctionEffect = FunctionEffect;
483251662Sdim
484251662Sdim    // Finally, now that we know the full effect on this SCC, clone the
485221345Sdim    // information to each function in the SCC.
486243830Sdim    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
487243830Sdim      FunctionInfo[SCC[i]->getFunction()] = FR;
488251662Sdim  }
489221345Sdim}
490221345Sdim
491251662Sdim
492251662Sdim
493251662Sdim/// alias - If one of the pointers is to a global that we are tracking, and the
494221345Sdim/// other is some random pointer, we know there cannot be an alias, because the
495198090Srdivacky/// address of the global isn't taken.
496239462SdimAliasAnalysis::AliasResult
497207618SrdivackyGlobalsModRef::alias(const Location &LocA,
498198090Srdivacky                     const Location &LocB) {
499221345Sdim  // Get the base object these pointers point to.
500243830Sdim  const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
501221345Sdim  const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
502210299Sed
503210299Sed  // If either of the underlying values is a global, they may be non-addr-taken
504210299Sed  // globals, which we can answer queries about.
505210299Sed  const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
506210299Sed  const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
507210299Sed  if (GV1 || GV2) {
508210299Sed    // If the global's address is taken, pretend we don't know it's a pointer to
509210299Sed    // the global.
510210299Sed    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
511210299Sed    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
512210299Sed
513210299Sed    // If the two pointers are derived from two different non-addr-taken
514249423Sdim    // globals, or if one is and the other isn't, we know these can't alias.
515249423Sdim    if ((GV1 || GV2) && GV1 != GV2)
516249423Sdim      return NoAlias;
517249423Sdim
518249423Sdim    // Otherwise if they are both derived from the same addr-taken global, we
519249423Sdim    // can't know the two accesses don't overlap.
520198090Srdivacky  }
521198090Srdivacky
522198090Srdivacky  // These pointers may be based on the memory owned by an indirect global.  If
523198090Srdivacky  // so, we may be able to handle this.  First check to see if the base pointer
524210299Sed  // is a direct load from an indirect global.
525207618Srdivacky  GV1 = GV2 = 0;
526199481Srdivacky  if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
527234353Sdim    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
528218893Sdim      if (IndirectGlobals.count(GV))
529221345Sdim        GV1 = GV;
530221345Sdim  if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
531199481Srdivacky    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
532210299Sed      if (IndirectGlobals.count(GV))
533210299Sed        GV2 = GV;
534210299Sed
535221345Sdim  // These pointers may also be from an allocation for the indirect global.  If
536200581Srdivacky  // so, also handle them.
537210299Sed  if (AllocsForIndirectGlobals.count(UV1))
538210299Sed    GV1 = AllocsForIndirectGlobals[UV1];
539200581Srdivacky  if (AllocsForIndirectGlobals.count(UV2))
540200581Srdivacky    GV2 = AllocsForIndirectGlobals[UV2];
541200581Srdivacky
542200581Srdivacky  // Now that we know whether the two pointers are related to indirect globals,
543200581Srdivacky  // use this to disambiguate the pointers.  If either pointer is based on an
544200581Srdivacky  // indirect global and if they are not both based on the same indirect global,
545200581Srdivacky  // they cannot alias.
546226633Sdim  if ((GV1 || GV2) && GV1 != GV2)
547226633Sdim    return NoAlias;
548226633Sdim
549226633Sdim  return AliasAnalysis::alias(LocA, LocB);
550226633Sdim}
551249423Sdim
552249423SdimAliasAnalysis::ModRefResult
553249423SdimGlobalsModRef::getModRefInfo(ImmutableCallSite CS,
554221345Sdim                             const Location &Loc) {
555221345Sdim  unsigned Known = ModRef;
556221345Sdim
557221345Sdim  // If we are asking for mod/ref info of a direct call with a pointer to a
558221345Sdim  // global we are tracking, return information if we have it.
559200581Srdivacky  if (const GlobalValue *GV =
560226633Sdim        dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
561226633Sdim    if (GV->hasLocalLinkage())
562226633Sdim      if (const Function *F = CS.getCalledFunction())
563226633Sdim        if (NonAddressTakenGlobals.count(GV))
564226633Sdim          if (const FunctionRecord *FR = getFunctionInfo(F))
565226633Sdim            Known = FR->getInfoForGlobal(GV);
566226633Sdim
567221345Sdim  if (Known == NoModRef)
568239462Sdim    return NoModRef; // No need to query other mod/ref analyses
569239462Sdim  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
570239462Sdim}
571193323Sed
572221345Sdim
573218893Sdim//===----------------------------------------------------------------------===//
574218893Sdim// Methods to update the analysis as a result of the client transformation.
575218893Sdim//
576218893Sdimvoid GlobalsModRef::deleteValue(Value *V) {
577218893Sdim  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
578221345Sdim    if (NonAddressTakenGlobals.erase(GV)) {
579221345Sdim      // This global might be an indirect global.  If so, remove it and remove
580212904Sdim      // any AllocRelatedValues for it.
581239462Sdim      if (IndirectGlobals.erase(GV)) {
582239462Sdim        // Remove any entries in AllocsForIndirectGlobals for this global.
583212904Sdim        for (std::map<const Value*, const GlobalValue*>::iterator
584193323Sed             I = AllocsForIndirectGlobals.begin(),
585193323Sed             E = AllocsForIndirectGlobals.end(); I != E; ) {
586193323Sed          if (I->second == GV) {
587            AllocsForIndirectGlobals.erase(I++);
588          } else {
589            ++I;
590          }
591        }
592      }
593    }
594  }
595
596  // Otherwise, if this is an allocation related to an indirect global, remove
597  // it.
598  AllocsForIndirectGlobals.erase(V);
599
600  AliasAnalysis::deleteValue(V);
601}
602
603void GlobalsModRef::copyValue(Value *From, Value *To) {
604  AliasAnalysis::copyValue(From, To);
605}
606
607void GlobalsModRef::addEscapingUse(Use &U) {
608  // For the purposes of this analysis, it is conservatively correct to treat
609  // a newly escaping value equivalently to a deleted one.  We could perhaps
610  // be more precise by processing the new use and attempting to update our
611  // saved analysis results to accommodate it.
612  deleteValue(U);
613
614  AliasAnalysis::addEscapingUse(U);
615}
616