GlobalsModRef.cpp revision 202878
1//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This simple pass provides alias and mod/ref information for global values
11// that do not have their address taken, and keeps track of whether functions
12// read or write memory (are "pure").  For this simple (but very common) case,
13// we can provide pretty accurate and useful information.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "globalsmodref-aa"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Module.h"
20#include "llvm/Pass.h"
21#include "llvm/Instructions.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/CallGraph.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/InstIterator.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/SCCIterator.h"
31#include <set>
32using namespace llvm;
33
34STATISTIC(NumNonAddrTakenGlobalVars,
35          "Number of global vars without address taken");
36STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
37STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
38STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
39STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
40
41namespace {
42  /// FunctionRecord - One instance of this structure is stored for every
43  /// function in the program.  Later, the entries for these functions are
44  /// removed if the function is found to call an external function (in which
45  /// case we know nothing about it.
46  struct FunctionRecord {
47    /// GlobalInfo - Maintain mod/ref info for all of the globals without
48    /// addresses taken that are read or written (transitively) by this
49    /// function.
50    std::map<GlobalValue*, unsigned> GlobalInfo;
51
52    /// MayReadAnyGlobal - May read global variables, but it is not known which.
53    bool MayReadAnyGlobal;
54
55    unsigned getInfoForGlobal(GlobalValue *GV) const {
56      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
57      std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV);
58      if (I != GlobalInfo.end())
59        Effect |= I->second;
60      return Effect;
61    }
62
63    /// FunctionEffect - Capture whether or not this function reads or writes to
64    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
65    unsigned FunctionEffect;
66
67    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
68  };
69
70  /// GlobalsModRef - The actual analysis pass.
71  class GlobalsModRef : public ModulePass, public AliasAnalysis {
72    /// NonAddressTakenGlobals - The globals that do not have their addresses
73    /// taken.
74    std::set<GlobalValue*> NonAddressTakenGlobals;
75
76    /// IndirectGlobals - The memory pointed to by this global is known to be
77    /// 'owned' by the global.
78    std::set<GlobalValue*> IndirectGlobals;
79
80    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
81    /// indirect global, this map indicates which one.
82    std::map<Value*, GlobalValue*> AllocsForIndirectGlobals;
83
84    /// FunctionInfo - For each function, keep track of what globals are
85    /// modified or read.
86    std::map<Function*, FunctionRecord> FunctionInfo;
87
88  public:
89    static char ID;
90    GlobalsModRef() : ModulePass(&ID) {}
91
92    bool runOnModule(Module &M) {
93      InitializeAliasAnalysis(this);                 // set up super class
94      AnalyzeGlobals(M);                          // find non-addr taken globals
95      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
96      return false;
97    }
98
99    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
100      AliasAnalysis::getAnalysisUsage(AU);
101      AU.addRequired<CallGraph>();
102      AU.setPreservesAll();                         // Does not transform code
103    }
104
105    //------------------------------------------------
106    // Implement the AliasAnalysis API
107    //
108    AliasResult alias(const Value *V1, unsigned V1Size,
109                      const Value *V2, unsigned V2Size);
110    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
111    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
112      return AliasAnalysis::getModRefInfo(CS1,CS2);
113    }
114
115    /// getModRefBehavior - Return the behavior of the specified function if
116    /// called from the specified call site.  The call site may be null in which
117    /// case the most generic behavior of this function should be returned.
118    ModRefBehavior getModRefBehavior(Function *F,
119                                         std::vector<PointerAccessInfo> *Info) {
120      if (FunctionRecord *FR = getFunctionInfo(F)) {
121        if (FR->FunctionEffect == 0)
122          return DoesNotAccessMemory;
123        else if ((FR->FunctionEffect & Mod) == 0)
124          return OnlyReadsMemory;
125      }
126      return AliasAnalysis::getModRefBehavior(F, Info);
127    }
128
129    /// getModRefBehavior - Return the behavior of the specified function if
130    /// called from the specified call site.  The call site may be null in which
131    /// case the most generic behavior of this function should be returned.
132    ModRefBehavior getModRefBehavior(CallSite CS,
133                                         std::vector<PointerAccessInfo> *Info) {
134      Function* F = CS.getCalledFunction();
135      if (!F) return AliasAnalysis::getModRefBehavior(CS, Info);
136      if (FunctionRecord *FR = getFunctionInfo(F)) {
137        if (FR->FunctionEffect == 0)
138          return DoesNotAccessMemory;
139        else if ((FR->FunctionEffect & Mod) == 0)
140          return OnlyReadsMemory;
141      }
142      return AliasAnalysis::getModRefBehavior(CS, Info);
143    }
144
145    virtual void deleteValue(Value *V);
146    virtual void copyValue(Value *From, Value *To);
147
148    /// getAdjustedAnalysisPointer - This method is used when a pass implements
149    /// an analysis interface through multiple inheritance.  If needed, it
150    /// should override this to adjust the this pointer as needed for the
151    /// specified pass info.
152    virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
153      if (PI->isPassID(&AliasAnalysis::ID))
154        return (AliasAnalysis*)this;
155      return this;
156    }
157
158  private:
159    /// getFunctionInfo - Return the function info for the function, or null if
160    /// we don't have anything useful to say about it.
161    FunctionRecord *getFunctionInfo(Function *F) {
162      std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F);
163      if (I != FunctionInfo.end())
164        return &I->second;
165      return 0;
166    }
167
168    void AnalyzeGlobals(Module &M);
169    void AnalyzeCallGraph(CallGraph &CG, Module &M);
170    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
171                              std::vector<Function*> &Writers,
172                              GlobalValue *OkayStoreDest = 0);
173    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
174  };
175}
176
177char GlobalsModRef::ID = 0;
178static RegisterPass<GlobalsModRef>
179X("globalsmodref-aa", "Simple mod/ref analysis for globals", false, true);
180static RegisterAnalysisGroup<AliasAnalysis> Y(X);
181
182Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
183
184/// AnalyzeGlobals - Scan through the users of all of the internal
185/// GlobalValue's in the program.  If none of them have their "address taken"
186/// (really, their address passed to something nontrivial), record this fact,
187/// and record the functions that they are used directly in.
188void GlobalsModRef::AnalyzeGlobals(Module &M) {
189  std::vector<Function*> Readers, Writers;
190  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
191    if (I->hasLocalLinkage()) {
192      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
193        // Remember that we are tracking this global.
194        NonAddressTakenGlobals.insert(I);
195        ++NumNonAddrTakenFunctions;
196      }
197      Readers.clear(); Writers.clear();
198    }
199
200  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
201       I != E; ++I)
202    if (I->hasLocalLinkage()) {
203      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
204        // Remember that we are tracking this global, and the mod/ref fns
205        NonAddressTakenGlobals.insert(I);
206
207        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
208          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
209
210        if (!I->isConstant())  // No need to keep track of writers to constants
211          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
212            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
213        ++NumNonAddrTakenGlobalVars;
214
215        // If this global holds a pointer type, see if it is an indirect global.
216        if (isa<PointerType>(I->getType()->getElementType()) &&
217            AnalyzeIndirectGlobalMemory(I))
218          ++NumIndirectGlobalVars;
219      }
220      Readers.clear(); Writers.clear();
221    }
222}
223
224/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
225/// If this is used by anything complex (i.e., the address escapes), return
226/// true.  Also, while we are at it, keep track of those functions that read and
227/// write to the value.
228///
229/// If OkayStoreDest is non-null, stores into this global are allowed.
230bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
231                                         std::vector<Function*> &Readers,
232                                         std::vector<Function*> &Writers,
233                                         GlobalValue *OkayStoreDest) {
234  if (!isa<PointerType>(V->getType())) return true;
235
236  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
237    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
238      Readers.push_back(LI->getParent()->getParent());
239    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
240      if (V == SI->getOperand(1)) {
241        Writers.push_back(SI->getParent()->getParent());
242      } else if (SI->getOperand(1) != OkayStoreDest) {
243        return true;  // Storing the pointer
244      }
245    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
246      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
247    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
248      if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
249        return true;
250    } else if (isFreeCall(*UI)) {
251      Writers.push_back(cast<Instruction>(*UI)->getParent()->getParent());
252    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
253      // Make sure that this is just the function being called, not that it is
254      // passing into the function.
255      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
256        if (CI->getOperand(i) == V) return true;
257    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
258      // Make sure that this is just the function being called, not that it is
259      // passing into the function.
260      for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
261        if (II->getOperand(i) == V) return true;
262    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
263      if (CE->getOpcode() == Instruction::GetElementPtr ||
264          CE->getOpcode() == Instruction::BitCast) {
265        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
266          return true;
267      } else {
268        return true;
269      }
270    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
271      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
272        return true;  // Allow comparison against null.
273    } else {
274      return true;
275    }
276  return false;
277}
278
279/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
280/// which holds a pointer type.  See if the global always points to non-aliased
281/// heap memory: that is, all initializers of the globals are allocations, and
282/// those allocations have no use other than initialization of the global.
283/// Further, all loads out of GV must directly use the memory, not store the
284/// pointer somewhere.  If this is true, we consider the memory pointed to by
285/// GV to be owned by GV and can disambiguate other pointers from it.
286bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
287  // Keep track of values related to the allocation of the memory, f.e. the
288  // value produced by the malloc call and any casts.
289  std::vector<Value*> AllocRelatedValues;
290
291  // Walk the user list of the global.  If we find anything other than a direct
292  // load or store, bail out.
293  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
294    if (LoadInst *LI = dyn_cast<LoadInst>(*I)) {
295      // The pointer loaded from the global can only be used in simple ways:
296      // we allow addressing of it and loading storing to it.  We do *not* allow
297      // storing the loaded pointer somewhere else or passing to a function.
298      std::vector<Function*> ReadersWriters;
299      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
300        return false;  // Loaded pointer escapes.
301      // TODO: Could try some IP mod/ref of the loaded pointer.
302    } else if (StoreInst *SI = dyn_cast<StoreInst>(*I)) {
303      // Storing the global itself.
304      if (SI->getOperand(0) == GV) return false;
305
306      // If storing the null pointer, ignore it.
307      if (isa<ConstantPointerNull>(SI->getOperand(0)))
308        continue;
309
310      // Check the value being stored.
311      Value *Ptr = SI->getOperand(0)->getUnderlyingObject();
312
313      if (isMalloc(Ptr)) {
314        // Okay, easy case.
315      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
316        Function *F = CI->getCalledFunction();
317        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
318        if (F->getName() != "calloc") return false;   // Not calloc.
319      } else {
320        return false;  // Too hard to analyze.
321      }
322
323      // Analyze all uses of the allocation.  If any of them are used in a
324      // non-simple way (e.g. stored to another global) bail out.
325      std::vector<Function*> ReadersWriters;
326      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
327        return false;  // Loaded pointer escapes.
328
329      // Remember that this allocation is related to the indirect global.
330      AllocRelatedValues.push_back(Ptr);
331    } else {
332      // Something complex, bail out.
333      return false;
334    }
335  }
336
337  // Okay, this is an indirect global.  Remember all of the allocations for
338  // this global in AllocsForIndirectGlobals.
339  while (!AllocRelatedValues.empty()) {
340    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
341    AllocRelatedValues.pop_back();
342  }
343  IndirectGlobals.insert(GV);
344  return true;
345}
346
347/// AnalyzeCallGraph - At this point, we know the functions where globals are
348/// immediately stored to and read from.  Propagate this information up the call
349/// graph to all callers and compute the mod/ref info for all memory for each
350/// function.
351void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
352  // We do a bottom-up SCC traversal of the call graph.  In other words, we
353  // visit all callees before callers (leaf-first).
354  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
355       ++I) {
356    std::vector<CallGraphNode *> &SCC = *I;
357    assert(!SCC.empty() && "SCC with no functions?");
358
359    if (!SCC[0]->getFunction()) {
360      // Calls externally - can't say anything useful.  Remove any existing
361      // function records (may have been created when scanning globals).
362      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
363        FunctionInfo.erase(SCC[i]->getFunction());
364      continue;
365    }
366
367    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
368
369    bool KnowNothing = false;
370    unsigned FunctionEffect = 0;
371
372    // Collect the mod/ref properties due to called functions.  We only compute
373    // one mod-ref set.
374    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
375      Function *F = SCC[i]->getFunction();
376      if (!F) {
377        KnowNothing = true;
378        break;
379      }
380
381      if (F->isDeclaration()) {
382        // Try to get mod/ref behaviour from function attributes.
383        if (F->doesNotAccessMemory()) {
384          // Can't do better than that!
385        } else if (F->onlyReadsMemory()) {
386          FunctionEffect |= Ref;
387          if (!F->isIntrinsic())
388            // This function might call back into the module and read a global -
389            // consider every global as possibly being read by this function.
390            FR.MayReadAnyGlobal = true;
391        } else {
392          FunctionEffect |= ModRef;
393          // Can't say anything useful unless it's an intrinsic - they don't
394          // read or write global variables of the kind considered here.
395          KnowNothing = !F->isIntrinsic();
396        }
397        continue;
398      }
399
400      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
401           CI != E && !KnowNothing; ++CI)
402        if (Function *Callee = CI->second->getFunction()) {
403          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
404            // Propagate function effect up.
405            FunctionEffect |= CalleeFR->FunctionEffect;
406
407            // Incorporate callee's effects on globals into our info.
408            for (std::map<GlobalValue*, unsigned>::iterator GI =
409                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
410                 GI != E; ++GI)
411              FR.GlobalInfo[GI->first] |= GI->second;
412            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
413          } else {
414            // Can't say anything about it.  However, if it is inside our SCC,
415            // then nothing needs to be done.
416            CallGraphNode *CalleeNode = CG[Callee];
417            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
418              KnowNothing = true;
419          }
420        } else {
421          KnowNothing = true;
422        }
423    }
424
425    // If we can't say anything useful about this SCC, remove all SCC functions
426    // from the FunctionInfo map.
427    if (KnowNothing) {
428      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
429        FunctionInfo.erase(SCC[i]->getFunction());
430      continue;
431    }
432
433    // Scan the function bodies for explicit loads or stores.
434    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
435      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
436             E = inst_end(SCC[i]->getFunction());
437           II != E && FunctionEffect != ModRef; ++II)
438        if (isa<LoadInst>(*II)) {
439          FunctionEffect |= Ref;
440          if (cast<LoadInst>(*II).isVolatile())
441            // Volatile loads may have side-effects, so mark them as writing
442            // memory (for example, a flag inside the processor).
443            FunctionEffect |= Mod;
444        } else if (isa<StoreInst>(*II)) {
445          FunctionEffect |= Mod;
446          if (cast<StoreInst>(*II).isVolatile())
447            // Treat volatile stores as reading memory somewhere.
448            FunctionEffect |= Ref;
449        } else if (isMalloc(&cast<Instruction>(*II)) ||
450                   isFreeCall(&cast<Instruction>(*II))) {
451          FunctionEffect |= ModRef;
452        }
453
454    if ((FunctionEffect & Mod) == 0)
455      ++NumReadMemFunctions;
456    if (FunctionEffect == 0)
457      ++NumNoMemFunctions;
458    FR.FunctionEffect = FunctionEffect;
459
460    // Finally, now that we know the full effect on this SCC, clone the
461    // information to each function in the SCC.
462    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
463      FunctionInfo[SCC[i]->getFunction()] = FR;
464  }
465}
466
467
468
469/// alias - If one of the pointers is to a global that we are tracking, and the
470/// other is some random pointer, we know there cannot be an alias, because the
471/// address of the global isn't taken.
472AliasAnalysis::AliasResult
473GlobalsModRef::alias(const Value *V1, unsigned V1Size,
474                     const Value *V2, unsigned V2Size) {
475  // Get the base object these pointers point to.
476  Value *UV1 = const_cast<Value*>(V1->getUnderlyingObject());
477  Value *UV2 = const_cast<Value*>(V2->getUnderlyingObject());
478
479  // If either of the underlying values is a global, they may be non-addr-taken
480  // globals, which we can answer queries about.
481  GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
482  GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
483  if (GV1 || GV2) {
484    // If the global's address is taken, pretend we don't know it's a pointer to
485    // the global.
486    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
487    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
488
489    // If the the two pointers are derived from two different non-addr-taken
490    // globals, or if one is and the other isn't, we know these can't alias.
491    if ((GV1 || GV2) && GV1 != GV2)
492      return NoAlias;
493
494    // Otherwise if they are both derived from the same addr-taken global, we
495    // can't know the two accesses don't overlap.
496  }
497
498  // These pointers may be based on the memory owned by an indirect global.  If
499  // so, we may be able to handle this.  First check to see if the base pointer
500  // is a direct load from an indirect global.
501  GV1 = GV2 = 0;
502  if (LoadInst *LI = dyn_cast<LoadInst>(UV1))
503    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
504      if (IndirectGlobals.count(GV))
505        GV1 = GV;
506  if (LoadInst *LI = dyn_cast<LoadInst>(UV2))
507    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
508      if (IndirectGlobals.count(GV))
509        GV2 = GV;
510
511  // These pointers may also be from an allocation for the indirect global.  If
512  // so, also handle them.
513  if (AllocsForIndirectGlobals.count(UV1))
514    GV1 = AllocsForIndirectGlobals[UV1];
515  if (AllocsForIndirectGlobals.count(UV2))
516    GV2 = AllocsForIndirectGlobals[UV2];
517
518  // Now that we know whether the two pointers are related to indirect globals,
519  // use this to disambiguate the pointers.  If either pointer is based on an
520  // indirect global and if they are not both based on the same indirect global,
521  // they cannot alias.
522  if ((GV1 || GV2) && GV1 != GV2)
523    return NoAlias;
524
525  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
526}
527
528AliasAnalysis::ModRefResult
529GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
530  unsigned Known = ModRef;
531
532  // If we are asking for mod/ref info of a direct call with a pointer to a
533  // global we are tracking, return information if we have it.
534  if (GlobalValue *GV = dyn_cast<GlobalValue>(P->getUnderlyingObject()))
535    if (GV->hasLocalLinkage())
536      if (Function *F = CS.getCalledFunction())
537        if (NonAddressTakenGlobals.count(GV))
538          if (FunctionRecord *FR = getFunctionInfo(F))
539            Known = FR->getInfoForGlobal(GV);
540
541  if (Known == NoModRef)
542    return NoModRef; // No need to query other mod/ref analyses
543  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size));
544}
545
546
547//===----------------------------------------------------------------------===//
548// Methods to update the analysis as a result of the client transformation.
549//
550void GlobalsModRef::deleteValue(Value *V) {
551  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
552    if (NonAddressTakenGlobals.erase(GV)) {
553      // This global might be an indirect global.  If so, remove it and remove
554      // any AllocRelatedValues for it.
555      if (IndirectGlobals.erase(GV)) {
556        // Remove any entries in AllocsForIndirectGlobals for this global.
557        for (std::map<Value*, GlobalValue*>::iterator
558             I = AllocsForIndirectGlobals.begin(),
559             E = AllocsForIndirectGlobals.end(); I != E; ) {
560          if (I->second == GV) {
561            AllocsForIndirectGlobals.erase(I++);
562          } else {
563            ++I;
564          }
565        }
566      }
567    }
568  }
569
570  // Otherwise, if this is an allocation related to an indirect global, remove
571  // it.
572  AllocsForIndirectGlobals.erase(V);
573
574  AliasAnalysis::deleteValue(V);
575}
576
577void GlobalsModRef::copyValue(Value *From, Value *To) {
578  AliasAnalysis::copyValue(From, To);
579}
580