GlobalsModRef.cpp revision 198892
1//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This simple pass provides alias and mod/ref information for global values
11// that do not have their address taken, and keeps track of whether functions
12// read or write memory (are "pure").  For this simple (but very common) case,
13// we can provide pretty accurate and useful information.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "globalsmodref-aa"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Module.h"
20#include "llvm/Pass.h"
21#include "llvm/Instructions.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/CallGraph.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/InstIterator.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/SCCIterator.h"
31#include <set>
32using namespace llvm;
33
34STATISTIC(NumNonAddrTakenGlobalVars,
35          "Number of global vars without address taken");
36STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
37STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
38STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
39STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
40
41namespace {
42  /// FunctionRecord - One instance of this structure is stored for every
43  /// function in the program.  Later, the entries for these functions are
44  /// removed if the function is found to call an external function (in which
45  /// case we know nothing about it.
46  struct FunctionRecord {
47    /// GlobalInfo - Maintain mod/ref info for all of the globals without
48    /// addresses taken that are read or written (transitively) by this
49    /// function.
50    std::map<GlobalValue*, unsigned> GlobalInfo;
51
52    /// MayReadAnyGlobal - May read global variables, but it is not known which.
53    bool MayReadAnyGlobal;
54
55    unsigned getInfoForGlobal(GlobalValue *GV) const {
56      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
57      std::map<GlobalValue*, unsigned>::const_iterator I = GlobalInfo.find(GV);
58      if (I != GlobalInfo.end())
59        Effect |= I->second;
60      return Effect;
61    }
62
63    /// FunctionEffect - Capture whether or not this function reads or writes to
64    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
65    unsigned FunctionEffect;
66
67    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
68  };
69
70  /// GlobalsModRef - The actual analysis pass.
71  class GlobalsModRef : public ModulePass, public AliasAnalysis {
72    /// NonAddressTakenGlobals - The globals that do not have their addresses
73    /// taken.
74    std::set<GlobalValue*> NonAddressTakenGlobals;
75
76    /// IndirectGlobals - The memory pointed to by this global is known to be
77    /// 'owned' by the global.
78    std::set<GlobalValue*> IndirectGlobals;
79
80    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
81    /// indirect global, this map indicates which one.
82    std::map<Value*, GlobalValue*> AllocsForIndirectGlobals;
83
84    /// FunctionInfo - For each function, keep track of what globals are
85    /// modified or read.
86    std::map<Function*, FunctionRecord> FunctionInfo;
87
88  public:
89    static char ID;
90    GlobalsModRef() : ModulePass(&ID) {}
91
92    bool runOnModule(Module &M) {
93      InitializeAliasAnalysis(this);                 // set up super class
94      AnalyzeGlobals(M);                          // find non-addr taken globals
95      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
96      return false;
97    }
98
99    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
100      AliasAnalysis::getAnalysisUsage(AU);
101      AU.addRequired<CallGraph>();
102      AU.setPreservesAll();                         // Does not transform code
103    }
104
105    //------------------------------------------------
106    // Implement the AliasAnalysis API
107    //
108    AliasResult alias(const Value *V1, unsigned V1Size,
109                      const Value *V2, unsigned V2Size);
110    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
111    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
112      return AliasAnalysis::getModRefInfo(CS1,CS2);
113    }
114    bool hasNoModRefInfoForCalls() const { return false; }
115
116    /// getModRefBehavior - Return the behavior of the specified function if
117    /// called from the specified call site.  The call site may be null in which
118    /// case the most generic behavior of this function should be returned.
119    ModRefBehavior getModRefBehavior(Function *F,
120                                         std::vector<PointerAccessInfo> *Info) {
121      if (FunctionRecord *FR = getFunctionInfo(F)) {
122        if (FR->FunctionEffect == 0)
123          return DoesNotAccessMemory;
124        else if ((FR->FunctionEffect & Mod) == 0)
125          return OnlyReadsMemory;
126      }
127      return AliasAnalysis::getModRefBehavior(F, Info);
128    }
129
130    /// getModRefBehavior - Return the behavior of the specified function if
131    /// called from the specified call site.  The call site may be null in which
132    /// case the most generic behavior of this function should be returned.
133    ModRefBehavior getModRefBehavior(CallSite CS,
134                                         std::vector<PointerAccessInfo> *Info) {
135      Function* F = CS.getCalledFunction();
136      if (!F) return AliasAnalysis::getModRefBehavior(CS, Info);
137      if (FunctionRecord *FR = getFunctionInfo(F)) {
138        if (FR->FunctionEffect == 0)
139          return DoesNotAccessMemory;
140        else if ((FR->FunctionEffect & Mod) == 0)
141          return OnlyReadsMemory;
142      }
143      return AliasAnalysis::getModRefBehavior(CS, Info);
144    }
145
146    virtual void deleteValue(Value *V);
147    virtual void copyValue(Value *From, Value *To);
148
149  private:
150    /// getFunctionInfo - Return the function info for the function, or null if
151    /// we don't have anything useful to say about it.
152    FunctionRecord *getFunctionInfo(Function *F) {
153      std::map<Function*, FunctionRecord>::iterator I = FunctionInfo.find(F);
154      if (I != FunctionInfo.end())
155        return &I->second;
156      return 0;
157    }
158
159    void AnalyzeGlobals(Module &M);
160    void AnalyzeCallGraph(CallGraph &CG, Module &M);
161    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
162                              std::vector<Function*> &Writers,
163                              GlobalValue *OkayStoreDest = 0);
164    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
165  };
166}
167
168char GlobalsModRef::ID = 0;
169static RegisterPass<GlobalsModRef>
170X("globalsmodref-aa", "Simple mod/ref analysis for globals", false, true);
171static RegisterAnalysisGroup<AliasAnalysis> Y(X);
172
173Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
174
175/// AnalyzeGlobals - Scan through the users of all of the internal
176/// GlobalValue's in the program.  If none of them have their "address taken"
177/// (really, their address passed to something nontrivial), record this fact,
178/// and record the functions that they are used directly in.
179void GlobalsModRef::AnalyzeGlobals(Module &M) {
180  std::vector<Function*> Readers, Writers;
181  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
182    if (I->hasLocalLinkage()) {
183      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
184        // Remember that we are tracking this global.
185        NonAddressTakenGlobals.insert(I);
186        ++NumNonAddrTakenFunctions;
187      }
188      Readers.clear(); Writers.clear();
189    }
190
191  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
192       I != E; ++I)
193    if (I->hasLocalLinkage()) {
194      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
195        // Remember that we are tracking this global, and the mod/ref fns
196        NonAddressTakenGlobals.insert(I);
197
198        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
199          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
200
201        if (!I->isConstant())  // No need to keep track of writers to constants
202          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
203            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
204        ++NumNonAddrTakenGlobalVars;
205
206        // If this global holds a pointer type, see if it is an indirect global.
207        if (isa<PointerType>(I->getType()->getElementType()) &&
208            AnalyzeIndirectGlobalMemory(I))
209          ++NumIndirectGlobalVars;
210      }
211      Readers.clear(); Writers.clear();
212    }
213}
214
215/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
216/// If this is used by anything complex (i.e., the address escapes), return
217/// true.  Also, while we are at it, keep track of those functions that read and
218/// write to the value.
219///
220/// If OkayStoreDest is non-null, stores into this global are allowed.
221bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
222                                         std::vector<Function*> &Readers,
223                                         std::vector<Function*> &Writers,
224                                         GlobalValue *OkayStoreDest) {
225  if (!isa<PointerType>(V->getType())) return true;
226
227  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
228    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
229      Readers.push_back(LI->getParent()->getParent());
230    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
231      if (V == SI->getOperand(1)) {
232        Writers.push_back(SI->getParent()->getParent());
233      } else if (SI->getOperand(1) != OkayStoreDest) {
234        return true;  // Storing the pointer
235      }
236    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
237      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
238    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
239      if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
240        return true;
241    } else if (isFreeCall(*UI)) {
242      Writers.push_back(cast<Instruction>(*UI)->getParent()->getParent());
243    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
244      // Make sure that this is just the function being called, not that it is
245      // passing into the function.
246      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
247        if (CI->getOperand(i) == V) return true;
248    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
249      // Make sure that this is just the function being called, not that it is
250      // passing into the function.
251      for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
252        if (II->getOperand(i) == V) return true;
253    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
254      if (CE->getOpcode() == Instruction::GetElementPtr ||
255          CE->getOpcode() == Instruction::BitCast) {
256        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
257          return true;
258      } else {
259        return true;
260      }
261    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
262      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
263        return true;  // Allow comparison against null.
264    } else {
265      return true;
266    }
267  return false;
268}
269
270/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
271/// which holds a pointer type.  See if the global always points to non-aliased
272/// heap memory: that is, all initializers of the globals are allocations, and
273/// those allocations have no use other than initialization of the global.
274/// Further, all loads out of GV must directly use the memory, not store the
275/// pointer somewhere.  If this is true, we consider the memory pointed to by
276/// GV to be owned by GV and can disambiguate other pointers from it.
277bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
278  // Keep track of values related to the allocation of the memory, f.e. the
279  // value produced by the malloc call and any casts.
280  std::vector<Value*> AllocRelatedValues;
281
282  // Walk the user list of the global.  If we find anything other than a direct
283  // load or store, bail out.
284  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
285    if (LoadInst *LI = dyn_cast<LoadInst>(*I)) {
286      // The pointer loaded from the global can only be used in simple ways:
287      // we allow addressing of it and loading storing to it.  We do *not* allow
288      // storing the loaded pointer somewhere else or passing to a function.
289      std::vector<Function*> ReadersWriters;
290      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
291        return false;  // Loaded pointer escapes.
292      // TODO: Could try some IP mod/ref of the loaded pointer.
293    } else if (StoreInst *SI = dyn_cast<StoreInst>(*I)) {
294      // Storing the global itself.
295      if (SI->getOperand(0) == GV) return false;
296
297      // If storing the null pointer, ignore it.
298      if (isa<ConstantPointerNull>(SI->getOperand(0)))
299        continue;
300
301      // Check the value being stored.
302      Value *Ptr = SI->getOperand(0)->getUnderlyingObject();
303
304      if (isMalloc(Ptr)) {
305        // Okay, easy case.
306      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
307        Function *F = CI->getCalledFunction();
308        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
309        if (F->getName() != "calloc") return false;   // Not calloc.
310      } else {
311        return false;  // Too hard to analyze.
312      }
313
314      // Analyze all uses of the allocation.  If any of them are used in a
315      // non-simple way (e.g. stored to another global) bail out.
316      std::vector<Function*> ReadersWriters;
317      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
318        return false;  // Loaded pointer escapes.
319
320      // Remember that this allocation is related to the indirect global.
321      AllocRelatedValues.push_back(Ptr);
322    } else {
323      // Something complex, bail out.
324      return false;
325    }
326  }
327
328  // Okay, this is an indirect global.  Remember all of the allocations for
329  // this global in AllocsForIndirectGlobals.
330  while (!AllocRelatedValues.empty()) {
331    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
332    AllocRelatedValues.pop_back();
333  }
334  IndirectGlobals.insert(GV);
335  return true;
336}
337
338/// AnalyzeCallGraph - At this point, we know the functions where globals are
339/// immediately stored to and read from.  Propagate this information up the call
340/// graph to all callers and compute the mod/ref info for all memory for each
341/// function.
342void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
343  // We do a bottom-up SCC traversal of the call graph.  In other words, we
344  // visit all callees before callers (leaf-first).
345  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
346       ++I) {
347    std::vector<CallGraphNode *> &SCC = *I;
348    assert(!SCC.empty() && "SCC with no functions?");
349
350    if (!SCC[0]->getFunction()) {
351      // Calls externally - can't say anything useful.  Remove any existing
352      // function records (may have been created when scanning globals).
353      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
354        FunctionInfo.erase(SCC[i]->getFunction());
355      continue;
356    }
357
358    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
359
360    bool KnowNothing = false;
361    unsigned FunctionEffect = 0;
362
363    // Collect the mod/ref properties due to called functions.  We only compute
364    // one mod-ref set.
365    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
366      Function *F = SCC[i]->getFunction();
367      if (!F) {
368        KnowNothing = true;
369        break;
370      }
371
372      if (F->isDeclaration()) {
373        // Try to get mod/ref behaviour from function attributes.
374        if (F->doesNotAccessMemory()) {
375          // Can't do better than that!
376        } else if (F->onlyReadsMemory()) {
377          FunctionEffect |= Ref;
378          if (!F->isIntrinsic())
379            // This function might call back into the module and read a global -
380            // consider every global as possibly being read by this function.
381            FR.MayReadAnyGlobal = true;
382        } else {
383          FunctionEffect |= ModRef;
384          // Can't say anything useful unless it's an intrinsic - they don't
385          // read or write global variables of the kind considered here.
386          KnowNothing = !F->isIntrinsic();
387        }
388        continue;
389      }
390
391      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
392           CI != E && !KnowNothing; ++CI)
393        if (Function *Callee = CI->second->getFunction()) {
394          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
395            // Propagate function effect up.
396            FunctionEffect |= CalleeFR->FunctionEffect;
397
398            // Incorporate callee's effects on globals into our info.
399            for (std::map<GlobalValue*, unsigned>::iterator GI =
400                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
401                 GI != E; ++GI)
402              FR.GlobalInfo[GI->first] |= GI->second;
403            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
404          } else {
405            // Can't say anything about it.  However, if it is inside our SCC,
406            // then nothing needs to be done.
407            CallGraphNode *CalleeNode = CG[Callee];
408            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
409              KnowNothing = true;
410          }
411        } else {
412          KnowNothing = true;
413        }
414    }
415
416    // If we can't say anything useful about this SCC, remove all SCC functions
417    // from the FunctionInfo map.
418    if (KnowNothing) {
419      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
420        FunctionInfo.erase(SCC[i]->getFunction());
421      continue;
422    }
423
424    // Scan the function bodies for explicit loads or stores.
425    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
426      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
427             E = inst_end(SCC[i]->getFunction());
428           II != E && FunctionEffect != ModRef; ++II)
429        if (isa<LoadInst>(*II)) {
430          FunctionEffect |= Ref;
431          if (cast<LoadInst>(*II).isVolatile())
432            // Volatile loads may have side-effects, so mark them as writing
433            // memory (for example, a flag inside the processor).
434            FunctionEffect |= Mod;
435        } else if (isa<StoreInst>(*II)) {
436          FunctionEffect |= Mod;
437          if (cast<StoreInst>(*II).isVolatile())
438            // Treat volatile stores as reading memory somewhere.
439            FunctionEffect |= Ref;
440        } else if (isMalloc(&cast<Instruction>(*II)) ||
441                   isFreeCall(&cast<Instruction>(*II))) {
442          FunctionEffect |= ModRef;
443        }
444
445    if ((FunctionEffect & Mod) == 0)
446      ++NumReadMemFunctions;
447    if (FunctionEffect == 0)
448      ++NumNoMemFunctions;
449    FR.FunctionEffect = FunctionEffect;
450
451    // Finally, now that we know the full effect on this SCC, clone the
452    // information to each function in the SCC.
453    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
454      FunctionInfo[SCC[i]->getFunction()] = FR;
455  }
456}
457
458
459
460/// alias - If one of the pointers is to a global that we are tracking, and the
461/// other is some random pointer, we know there cannot be an alias, because the
462/// address of the global isn't taken.
463AliasAnalysis::AliasResult
464GlobalsModRef::alias(const Value *V1, unsigned V1Size,
465                     const Value *V2, unsigned V2Size) {
466  // Get the base object these pointers point to.
467  Value *UV1 = const_cast<Value*>(V1->getUnderlyingObject());
468  Value *UV2 = const_cast<Value*>(V2->getUnderlyingObject());
469
470  // If either of the underlying values is a global, they may be non-addr-taken
471  // globals, which we can answer queries about.
472  GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
473  GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
474  if (GV1 || GV2) {
475    // If the global's address is taken, pretend we don't know it's a pointer to
476    // the global.
477    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
478    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
479
480    // If the the two pointers are derived from two different non-addr-taken
481    // globals, or if one is and the other isn't, we know these can't alias.
482    if ((GV1 || GV2) && GV1 != GV2)
483      return NoAlias;
484
485    // Otherwise if they are both derived from the same addr-taken global, we
486    // can't know the two accesses don't overlap.
487  }
488
489  // These pointers may be based on the memory owned by an indirect global.  If
490  // so, we may be able to handle this.  First check to see if the base pointer
491  // is a direct load from an indirect global.
492  GV1 = GV2 = 0;
493  if (LoadInst *LI = dyn_cast<LoadInst>(UV1))
494    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
495      if (IndirectGlobals.count(GV))
496        GV1 = GV;
497  if (LoadInst *LI = dyn_cast<LoadInst>(UV2))
498    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
499      if (IndirectGlobals.count(GV))
500        GV2 = GV;
501
502  // These pointers may also be from an allocation for the indirect global.  If
503  // so, also handle them.
504  if (AllocsForIndirectGlobals.count(UV1))
505    GV1 = AllocsForIndirectGlobals[UV1];
506  if (AllocsForIndirectGlobals.count(UV2))
507    GV2 = AllocsForIndirectGlobals[UV2];
508
509  // Now that we know whether the two pointers are related to indirect globals,
510  // use this to disambiguate the pointers.  If either pointer is based on an
511  // indirect global and if they are not both based on the same indirect global,
512  // they cannot alias.
513  if ((GV1 || GV2) && GV1 != GV2)
514    return NoAlias;
515
516  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
517}
518
519AliasAnalysis::ModRefResult
520GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
521  unsigned Known = ModRef;
522
523  // If we are asking for mod/ref info of a direct call with a pointer to a
524  // global we are tracking, return information if we have it.
525  if (GlobalValue *GV = dyn_cast<GlobalValue>(P->getUnderlyingObject()))
526    if (GV->hasLocalLinkage())
527      if (Function *F = CS.getCalledFunction())
528        if (NonAddressTakenGlobals.count(GV))
529          if (FunctionRecord *FR = getFunctionInfo(F))
530            Known = FR->getInfoForGlobal(GV);
531
532  if (Known == NoModRef)
533    return NoModRef; // No need to query other mod/ref analyses
534  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size));
535}
536
537
538//===----------------------------------------------------------------------===//
539// Methods to update the analysis as a result of the client transformation.
540//
541void GlobalsModRef::deleteValue(Value *V) {
542  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
543    if (NonAddressTakenGlobals.erase(GV)) {
544      // This global might be an indirect global.  If so, remove it and remove
545      // any AllocRelatedValues for it.
546      if (IndirectGlobals.erase(GV)) {
547        // Remove any entries in AllocsForIndirectGlobals for this global.
548        for (std::map<Value*, GlobalValue*>::iterator
549             I = AllocsForIndirectGlobals.begin(),
550             E = AllocsForIndirectGlobals.end(); I != E; ) {
551          if (I->second == GV) {
552            AllocsForIndirectGlobals.erase(I++);
553          } else {
554            ++I;
555          }
556        }
557      }
558    }
559  }
560
561  // Otherwise, if this is an allocation related to an indirect global, remove
562  // it.
563  AllocsForIndirectGlobals.erase(V);
564
565  AliasAnalysis::deleteValue(V);
566}
567
568void GlobalsModRef::copyValue(Value *From, Value *To) {
569  AliasAnalysis::copyValue(From, To);
570}
571