stl_algo.h revision 146897
1// Algorithm implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation.  Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose.  It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation.  Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose.  It is provided "as is" without express or implied warranty.
54 */
55
56/** @file stl_algo.h
57 *  This is an internal header file, included by other library headers.
58 *  You should not attempt to use it directly.
59 */
60
61#ifndef _ALGO_H
62#define _ALGO_H 1
63
64#include <bits/stl_heap.h>
65#include <bits/stl_tempbuf.h>     // for _Temporary_buffer
66#include <debug/debug.h>
67
68// See concept_check.h for the __glibcxx_*_requires macros.
69
70namespace std
71{
72  /**
73   *  @brief Find the median of three values.
74   *  @param  a  A value.
75   *  @param  b  A value.
76   *  @param  c  A value.
77   *  @return One of @p a, @p b or @p c.
78   *
79   *  If @c {l,m,n} is some convolution of @p {a,b,c} such that @c l<=m<=n
80   *  then the value returned will be @c m.
81   *  This is an SGI extension.
82   *  @ingroup SGIextensions
83  */
84  template<typename _Tp>
85    inline const _Tp&
86    __median(const _Tp& __a, const _Tp& __b, const _Tp& __c)
87    {
88      // concept requirements
89      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
90      if (__a < __b)
91	if (__b < __c)
92	  return __b;
93	else if (__a < __c)
94	  return __c;
95	else
96	  return __a;
97      else if (__a < __c)
98	return __a;
99      else if (__b < __c)
100	return __c;
101      else
102	return __b;
103    }
104
105  /**
106   *  @brief Find the median of three values using a predicate for comparison.
107   *  @param  a     A value.
108   *  @param  b     A value.
109   *  @param  c     A value.
110   *  @param  comp  A binary predicate.
111   *  @return One of @p a, @p b or @p c.
112   *
113   *  If @c {l,m,n} is some convolution of @p {a,b,c} such that @p comp(l,m)
114   *  and @p comp(m,n) are both true then the value returned will be @c m.
115   *  This is an SGI extension.
116   *  @ingroup SGIextensions
117  */
118  template<typename _Tp, typename _Compare>
119    inline const _Tp&
120    __median(const _Tp& __a, const _Tp& __b, const _Tp& __c, _Compare __comp)
121    {
122      // concept requirements
123      __glibcxx_function_requires(_BinaryFunctionConcept<_Compare,bool,_Tp,_Tp>)
124      if (__comp(__a, __b))
125	if (__comp(__b, __c))
126	  return __b;
127	else if (__comp(__a, __c))
128	  return __c;
129	else
130	  return __a;
131      else if (__comp(__a, __c))
132	return __a;
133      else if (__comp(__b, __c))
134	return __c;
135      else
136	return __b;
137    }
138
139  /**
140   *  @brief Apply a function to every element of a sequence.
141   *  @param  first  An input iterator.
142   *  @param  last   An input iterator.
143   *  @param  f      A unary function object.
144   *  @return   @p f.
145   *
146   *  Applies the function object @p f to each element in the range
147   *  @p [first,last).  @p f must not modify the order of the sequence.
148   *  If @p f has a return value it is ignored.
149  */
150  template<typename _InputIterator, typename _Function>
151    _Function
152    for_each(_InputIterator __first, _InputIterator __last, _Function __f)
153    {
154      // concept requirements
155      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
156      __glibcxx_requires_valid_range(__first, __last);
157      for ( ; __first != __last; ++__first)
158	__f(*__first);
159      return __f;
160    }
161
162  /**
163   *  @if maint
164   *  This is an overload used by find() for the Input Iterator case.
165   *  @endif
166  */
167  template<typename _InputIterator, typename _Tp>
168    inline _InputIterator
169    find(_InputIterator __first, _InputIterator __last,
170	 const _Tp& __val, input_iterator_tag)
171    {
172      while (__first != __last && !(*__first == __val))
173	++__first;
174      return __first;
175    }
176
177  /**
178   *  @if maint
179   *  This is an overload used by find_if() for the Input Iterator case.
180   *  @endif
181  */
182  template<typename _InputIterator, typename _Predicate>
183    inline _InputIterator
184    find_if(_InputIterator __first, _InputIterator __last,
185	    _Predicate __pred, input_iterator_tag)
186    {
187      while (__first != __last && !__pred(*__first))
188	++__first;
189      return __first;
190    }
191
192  /**
193   *  @if maint
194   *  This is an overload used by find() for the RAI case.
195   *  @endif
196  */
197  template<typename _RandomAccessIterator, typename _Tp>
198    _RandomAccessIterator
199    find(_RandomAccessIterator __first, _RandomAccessIterator __last,
200	 const _Tp& __val, random_access_iterator_tag)
201    {
202      typename iterator_traits<_RandomAccessIterator>::difference_type
203	__trip_count = (__last - __first) >> 2;
204
205      for ( ; __trip_count > 0 ; --__trip_count)
206	{
207	  if (*__first == __val)
208	    return __first;
209	  ++__first;
210
211	  if (*__first == __val)
212	    return __first;
213	  ++__first;
214
215	  if (*__first == __val)
216	    return __first;
217	  ++__first;
218
219	  if (*__first == __val)
220	    return __first;
221	  ++__first;
222	}
223
224      switch (__last - __first)
225	{
226	case 3:
227	  if (*__first == __val)
228	    return __first;
229	  ++__first;
230	case 2:
231	  if (*__first == __val)
232	    return __first;
233	  ++__first;
234	case 1:
235	  if (*__first == __val)
236	    return __first;
237	  ++__first;
238	case 0:
239	default:
240	  return __last;
241	}
242    }
243
244  /**
245   *  @if maint
246   *  This is an overload used by find_if() for the RAI case.
247   *  @endif
248  */
249  template<typename _RandomAccessIterator, typename _Predicate>
250    _RandomAccessIterator
251    find_if(_RandomAccessIterator __first, _RandomAccessIterator __last,
252	    _Predicate __pred, random_access_iterator_tag)
253    {
254      typename iterator_traits<_RandomAccessIterator>::difference_type
255	__trip_count = (__last - __first) >> 2;
256
257      for ( ; __trip_count > 0 ; --__trip_count)
258	{
259	  if (__pred(*__first))
260	    return __first;
261	  ++__first;
262
263	  if (__pred(*__first))
264	    return __first;
265	  ++__first;
266
267	  if (__pred(*__first))
268	    return __first;
269	  ++__first;
270
271	  if (__pred(*__first))
272	    return __first;
273	  ++__first;
274	}
275
276      switch (__last - __first)
277	{
278	case 3:
279	  if (__pred(*__first))
280	    return __first;
281	  ++__first;
282	case 2:
283	  if (__pred(*__first))
284	    return __first;
285	  ++__first;
286	case 1:
287	  if (__pred(*__first))
288	    return __first;
289	  ++__first;
290	case 0:
291	default:
292	  return __last;
293	}
294    }
295
296  /**
297   *  @brief Find the first occurrence of a value in a sequence.
298   *  @param  first  An input iterator.
299   *  @param  last   An input iterator.
300   *  @param  val    The value to find.
301   *  @return   The first iterator @c i in the range @p [first,last)
302   *  such that @c *i == @p val, or @p last if no such iterator exists.
303  */
304  template<typename _InputIterator, typename _Tp>
305    inline _InputIterator
306    find(_InputIterator __first, _InputIterator __last,
307	 const _Tp& __val)
308    {
309      // concept requirements
310      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
311      __glibcxx_function_requires(_EqualOpConcept<
312		typename iterator_traits<_InputIterator>::value_type, _Tp>)
313      __glibcxx_requires_valid_range(__first, __last);
314      return std::find(__first, __last, __val,
315		       std::__iterator_category(__first));
316    }
317
318  /**
319   *  @brief Find the first element in a sequence for which a predicate is true.
320   *  @param  first  An input iterator.
321   *  @param  last   An input iterator.
322   *  @param  pred   A predicate.
323   *  @return   The first iterator @c i in the range @p [first,last)
324   *  such that @p pred(*i) is true, or @p last if no such iterator exists.
325  */
326  template<typename _InputIterator, typename _Predicate>
327    inline _InputIterator
328    find_if(_InputIterator __first, _InputIterator __last,
329	    _Predicate __pred)
330    {
331      // concept requirements
332      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
333      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
334	      typename iterator_traits<_InputIterator>::value_type>)
335      __glibcxx_requires_valid_range(__first, __last);
336      return std::find_if(__first, __last, __pred,
337			  std::__iterator_category(__first));
338    }
339
340  /**
341   *  @brief Find two adjacent values in a sequence that are equal.
342   *  @param  first  A forward iterator.
343   *  @param  last   A forward iterator.
344   *  @return   The first iterator @c i such that @c i and @c i+1 are both
345   *  valid iterators in @p [first,last) and such that @c *i == @c *(i+1),
346   *  or @p last if no such iterator exists.
347  */
348  template<typename _ForwardIterator>
349    _ForwardIterator
350    adjacent_find(_ForwardIterator __first, _ForwardIterator __last)
351    {
352      // concept requirements
353      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
354      __glibcxx_function_requires(_EqualityComparableConcept<
355	    typename iterator_traits<_ForwardIterator>::value_type>)
356      __glibcxx_requires_valid_range(__first, __last);
357      if (__first == __last)
358	return __last;
359      _ForwardIterator __next = __first;
360      while(++__next != __last)
361	{
362	  if (*__first == *__next)
363	    return __first;
364	  __first = __next;
365	}
366      return __last;
367    }
368
369  /**
370   *  @brief Find two adjacent values in a sequence using a predicate.
371   *  @param  first         A forward iterator.
372   *  @param  last          A forward iterator.
373   *  @param  binary_pred   A binary predicate.
374   *  @return   The first iterator @c i such that @c i and @c i+1 are both
375   *  valid iterators in @p [first,last) and such that
376   *  @p binary_pred(*i,*(i+1)) is true, or @p last if no such iterator
377   *  exists.
378  */
379  template<typename _ForwardIterator, typename _BinaryPredicate>
380    _ForwardIterator
381    adjacent_find(_ForwardIterator __first, _ForwardIterator __last,
382		  _BinaryPredicate __binary_pred)
383    {
384      // concept requirements
385      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
386      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
387	    typename iterator_traits<_ForwardIterator>::value_type,
388	    typename iterator_traits<_ForwardIterator>::value_type>)
389      __glibcxx_requires_valid_range(__first, __last);
390      if (__first == __last)
391	return __last;
392      _ForwardIterator __next = __first;
393      while(++__next != __last)
394	{
395	  if (__binary_pred(*__first, *__next))
396	    return __first;
397	  __first = __next;
398	}
399      return __last;
400    }
401
402  /**
403   *  @brief Count the number of copies of a value in a sequence.
404   *  @param  first  An input iterator.
405   *  @param  last   An input iterator.
406   *  @param  value  The value to be counted.
407   *  @return   The number of iterators @c i in the range @p [first,last)
408   *  for which @c *i == @p value
409  */
410  template<typename _InputIterator, typename _Tp>
411    typename iterator_traits<_InputIterator>::difference_type
412    count(_InputIterator __first, _InputIterator __last, const _Tp& __value)
413    {
414      // concept requirements
415      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
416      __glibcxx_function_requires(_EqualityComparableConcept<
417	    typename iterator_traits<_InputIterator>::value_type >)
418      __glibcxx_function_requires(_EqualityComparableConcept<_Tp>)
419      __glibcxx_requires_valid_range(__first, __last);
420      typename iterator_traits<_InputIterator>::difference_type __n = 0;
421      for ( ; __first != __last; ++__first)
422	if (*__first == __value)
423	  ++__n;
424      return __n;
425    }
426
427  /**
428   *  @brief Count the elements of a sequence for which a predicate is true.
429   *  @param  first  An input iterator.
430   *  @param  last   An input iterator.
431   *  @param  pred   A predicate.
432   *  @return   The number of iterators @c i in the range @p [first,last)
433   *  for which @p pred(*i) is true.
434  */
435  template<typename _InputIterator, typename _Predicate>
436    typename iterator_traits<_InputIterator>::difference_type
437    count_if(_InputIterator __first, _InputIterator __last, _Predicate __pred)
438    {
439      // concept requirements
440      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
441      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
442	    typename iterator_traits<_InputIterator>::value_type>)
443      __glibcxx_requires_valid_range(__first, __last);
444      typename iterator_traits<_InputIterator>::difference_type __n = 0;
445      for ( ; __first != __last; ++__first)
446	if (__pred(*__first))
447	  ++__n;
448      return __n;
449    }
450
451  /**
452   *  @brief Search a sequence for a matching sub-sequence.
453   *  @param  first1  A forward iterator.
454   *  @param  last1   A forward iterator.
455   *  @param  first2  A forward iterator.
456   *  @param  last2   A forward iterator.
457   *  @return   The first iterator @c i in the range
458   *  @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N)
459   *  for each @c N in the range @p [0,last2-first2), or @p last1 if no
460   *  such iterator exists.
461   *
462   *  Searches the range @p [first1,last1) for a sub-sequence that compares
463   *  equal value-by-value with the sequence given by @p [first2,last2) and
464   *  returns an iterator to the first element of the sub-sequence, or
465   *  @p last1 if the sub-sequence is not found.
466   *
467   *  Because the sub-sequence must lie completely within the range
468   *  @p [first1,last1) it must start at a position less than
469   *  @p last1-(last2-first2) where @p last2-first2 is the length of the
470   *  sub-sequence.
471   *  This means that the returned iterator @c i will be in the range
472   *  @p [first1,last1-(last2-first2))
473  */
474  template<typename _ForwardIterator1, typename _ForwardIterator2>
475    _ForwardIterator1
476    search(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
477	   _ForwardIterator2 __first2, _ForwardIterator2 __last2)
478    {
479      // concept requirements
480      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
481      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
482      __glibcxx_function_requires(_EqualOpConcept<
483	    typename iterator_traits<_ForwardIterator1>::value_type,
484	    typename iterator_traits<_ForwardIterator2>::value_type>)
485      __glibcxx_requires_valid_range(__first1, __last1);
486      __glibcxx_requires_valid_range(__first2, __last2);
487      // Test for empty ranges
488      if (__first1 == __last1 || __first2 == __last2)
489	return __first1;
490
491      // Test for a pattern of length 1.
492      _ForwardIterator2 __tmp(__first2);
493      ++__tmp;
494      if (__tmp == __last2)
495	return std::find(__first1, __last1, *__first2);
496
497      // General case.
498      _ForwardIterator2 __p1, __p;
499      __p1 = __first2; ++__p1;
500      _ForwardIterator1 __current = __first1;
501
502      while (__first1 != __last1)
503	{
504	  __first1 = std::find(__first1, __last1, *__first2);
505	  if (__first1 == __last1)
506	    return __last1;
507
508	  __p = __p1;
509	  __current = __first1;
510	  if (++__current == __last1)
511	    return __last1;
512
513	  while (*__current == *__p)
514	    {
515	      if (++__p == __last2)
516		return __first1;
517	      if (++__current == __last1)
518		return __last1;
519	    }
520	  ++__first1;
521	}
522      return __first1;
523    }
524
525  /**
526   *  @brief Search a sequence for a matching sub-sequence using a predicate.
527   *  @param  first1     A forward iterator.
528   *  @param  last1      A forward iterator.
529   *  @param  first2     A forward iterator.
530   *  @param  last2      A forward iterator.
531   *  @param  predicate  A binary predicate.
532   *  @return   The first iterator @c i in the range
533   *  @p [first1,last1-(last2-first2)) such that
534   *  @p predicate(*(i+N),*(first2+N)) is true for each @c N in the range
535   *  @p [0,last2-first2), or @p last1 if no such iterator exists.
536   *
537   *  Searches the range @p [first1,last1) for a sub-sequence that compares
538   *  equal value-by-value with the sequence given by @p [first2,last2),
539   *  using @p predicate to determine equality, and returns an iterator
540   *  to the first element of the sub-sequence, or @p last1 if no such
541   *  iterator exists.
542   *
543   *  @see search(_ForwardIter1, _ForwardIter1, _ForwardIter2, _ForwardIter2)
544  */
545  template<typename _ForwardIterator1, typename _ForwardIterator2,
546	   typename _BinaryPredicate>
547    _ForwardIterator1
548    search(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
549	   _ForwardIterator2 __first2, _ForwardIterator2 __last2,
550	   _BinaryPredicate  __predicate)
551    {
552      // concept requirements
553      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
554      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
555      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
556	    typename iterator_traits<_ForwardIterator1>::value_type,
557	    typename iterator_traits<_ForwardIterator2>::value_type>)
558      __glibcxx_requires_valid_range(__first1, __last1);
559      __glibcxx_requires_valid_range(__first2, __last2);
560
561      // Test for empty ranges
562      if (__first1 == __last1 || __first2 == __last2)
563	return __first1;
564
565      // Test for a pattern of length 1.
566      _ForwardIterator2 __tmp(__first2);
567      ++__tmp;
568      if (__tmp == __last2)
569	{
570	  while (__first1 != __last1 && !__predicate(*__first1, *__first2))
571	    ++__first1;
572	  return __first1;
573	}
574
575      // General case.
576      _ForwardIterator2 __p1, __p;
577      __p1 = __first2; ++__p1;
578      _ForwardIterator1 __current = __first1;
579
580      while (__first1 != __last1)
581	{
582	  while (__first1 != __last1)
583	    {
584	      if (__predicate(*__first1, *__first2))
585		break;
586	      ++__first1;
587	    }
588	  while (__first1 != __last1 && !__predicate(*__first1, *__first2))
589	    ++__first1;
590	  if (__first1 == __last1)
591	    return __last1;
592
593	  __p = __p1;
594	  __current = __first1;
595	  if (++__current == __last1)
596	    return __last1;
597
598	  while (__predicate(*__current, *__p))
599	    {
600	      if (++__p == __last2)
601		return __first1;
602	      if (++__current == __last1)
603		return __last1;
604	    }
605	  ++__first1;
606	}
607      return __first1;
608    }
609
610  /**
611   *  @brief Search a sequence for a number of consecutive values.
612   *  @param  first  A forward iterator.
613   *  @param  last   A forward iterator.
614   *  @param  count  The number of consecutive values.
615   *  @param  val    The value to find.
616   *  @return   The first iterator @c i in the range @p [first,last-count)
617   *  such that @c *(i+N) == @p val for each @c N in the range @p [0,count),
618   *  or @p last if no such iterator exists.
619   *
620   *  Searches the range @p [first,last) for @p count consecutive elements
621   *  equal to @p val.
622  */
623  template<typename _ForwardIterator, typename _Integer, typename _Tp>
624    _ForwardIterator
625    search_n(_ForwardIterator __first, _ForwardIterator __last,
626	     _Integer __count, const _Tp& __val)
627    {
628      // concept requirements
629      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
630      __glibcxx_function_requires(_EqualityComparableConcept<
631	    typename iterator_traits<_ForwardIterator>::value_type>)
632      __glibcxx_function_requires(_EqualityComparableConcept<_Tp>)
633      __glibcxx_requires_valid_range(__first, __last);
634
635      if (__count <= 0)
636	return __first;
637      else
638	{
639	  __first = std::find(__first, __last, __val);
640	  while (__first != __last)
641	    {
642	      typename iterator_traits<_ForwardIterator>::difference_type
643		__n = __count;
644	      _ForwardIterator __i = __first;
645	      ++__i;
646	      while (__i != __last && __n != 1 && *__i == __val)
647		{
648		  ++__i;
649		  --__n;
650		}
651	      if (__n == 1)
652		return __first;
653	      else
654		__first = std::find(__i, __last, __val);
655	    }
656	  return __last;
657	}
658    }
659
660  /**
661   *  @brief Search a sequence for a number of consecutive values using a
662   *         predicate.
663   *  @param  first        A forward iterator.
664   *  @param  last         A forward iterator.
665   *  @param  count        The number of consecutive values.
666   *  @param  val          The value to find.
667   *  @param  binary_pred  A binary predicate.
668   *  @return   The first iterator @c i in the range @p [first,last-count)
669   *  such that @p binary_pred(*(i+N),val) is true for each @c N in the
670   *  range @p [0,count), or @p last if no such iterator exists.
671   *
672   *  Searches the range @p [first,last) for @p count consecutive elements
673   *  for which the predicate returns true.
674  */
675  template<typename _ForwardIterator, typename _Integer, typename _Tp,
676           typename _BinaryPredicate>
677    _ForwardIterator
678    search_n(_ForwardIterator __first, _ForwardIterator __last,
679	     _Integer __count, const _Tp& __val,
680	     _BinaryPredicate __binary_pred)
681    {
682      // concept requirements
683      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
684      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
685	    typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
686      __glibcxx_requires_valid_range(__first, __last);
687
688      if (__count <= 0)
689	return __first;
690      else
691	{
692	  while (__first != __last)
693	    {
694	      if (__binary_pred(*__first, __val))
695		break;
696	      ++__first;
697	    }
698	  while (__first != __last)
699	    {
700	      typename iterator_traits<_ForwardIterator>::difference_type
701		__n = __count;
702	      _ForwardIterator __i = __first;
703	      ++__i;
704	      while (__i != __last && __n != 1 && __binary_pred(*__i, __val))
705		{
706		  ++__i;
707		  --__n;
708		}
709	      if (__n == 1)
710		return __first;
711	      else
712		{
713		  while (__i != __last)
714		    {
715		      if (__binary_pred(*__i, __val))
716			break;
717		      ++__i;
718		    }
719		  __first = __i;
720		}
721	    }
722	  return __last;
723	}
724    }
725
726  /**
727   *  @brief Swap the elements of two sequences.
728   *  @param  first1  A forward iterator.
729   *  @param  last1   A forward iterator.
730   *  @param  first2  A forward iterator.
731   *  @return   An iterator equal to @p first2+(last1-first1).
732   *
733   *  Swaps each element in the range @p [first1,last1) with the
734   *  corresponding element in the range @p [first2,(last1-first1)).
735   *  The ranges must not overlap.
736  */
737  template<typename _ForwardIterator1, typename _ForwardIterator2>
738    _ForwardIterator2
739    swap_ranges(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
740		_ForwardIterator2 __first2)
741    {
742      // concept requirements
743      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
744				  _ForwardIterator1>)
745      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
746				  _ForwardIterator2>)
747      __glibcxx_function_requires(_ConvertibleConcept<
748	    typename iterator_traits<_ForwardIterator1>::value_type,
749	    typename iterator_traits<_ForwardIterator2>::value_type>)
750      __glibcxx_function_requires(_ConvertibleConcept<
751	    typename iterator_traits<_ForwardIterator2>::value_type,
752	    typename iterator_traits<_ForwardIterator1>::value_type>)
753      __glibcxx_requires_valid_range(__first1, __last1);
754
755      for ( ; __first1 != __last1; ++__first1, ++__first2)
756	std::iter_swap(__first1, __first2);
757      return __first2;
758    }
759
760  /**
761   *  @brief Perform an operation on a sequence.
762   *  @param  first     An input iterator.
763   *  @param  last      An input iterator.
764   *  @param  result    An output iterator.
765   *  @param  unary_op  A unary operator.
766   *  @return   An output iterator equal to @p result+(last-first).
767   *
768   *  Applies the operator to each element in the input range and assigns
769   *  the results to successive elements of the output sequence.
770   *  Evaluates @p *(result+N)=unary_op(*(first+N)) for each @c N in the
771   *  range @p [0,last-first).
772   *
773   *  @p unary_op must not alter its argument.
774  */
775  template<typename _InputIterator, typename _OutputIterator,
776	   typename _UnaryOperation>
777    _OutputIterator
778    transform(_InputIterator __first, _InputIterator __last,
779	      _OutputIterator __result, _UnaryOperation __unary_op)
780    {
781      // concept requirements
782      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
783      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
784            // "the type returned by a _UnaryOperation"
785            __typeof__(__unary_op(*__first))>)
786      __glibcxx_requires_valid_range(__first, __last);
787
788      for ( ; __first != __last; ++__first, ++__result)
789	*__result = __unary_op(*__first);
790      return __result;
791    }
792
793  /**
794   *  @brief Perform an operation on corresponding elements of two sequences.
795   *  @param  first1     An input iterator.
796   *  @param  last1      An input iterator.
797   *  @param  first2     An input iterator.
798   *  @param  result     An output iterator.
799   *  @param  binary_op  A binary operator.
800   *  @return   An output iterator equal to @p result+(last-first).
801   *
802   *  Applies the operator to the corresponding elements in the two
803   *  input ranges and assigns the results to successive elements of the
804   *  output sequence.
805   *  Evaluates @p *(result+N)=binary_op(*(first1+N),*(first2+N)) for each
806   *  @c N in the range @p [0,last1-first1).
807   *
808   *  @p binary_op must not alter either of its arguments.
809  */
810  template<typename _InputIterator1, typename _InputIterator2,
811	   typename _OutputIterator, typename _BinaryOperation>
812    _OutputIterator
813    transform(_InputIterator1 __first1, _InputIterator1 __last1,
814	      _InputIterator2 __first2, _OutputIterator __result,
815	      _BinaryOperation __binary_op)
816    {
817      // concept requirements
818      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
819      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
820      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
821            // "the type returned by a _BinaryOperation"
822            __typeof__(__binary_op(*__first1,*__first2))>)
823      __glibcxx_requires_valid_range(__first1, __last1);
824
825      for ( ; __first1 != __last1; ++__first1, ++__first2, ++__result)
826	*__result = __binary_op(*__first1, *__first2);
827      return __result;
828    }
829
830  /**
831   *  @brief Replace each occurrence of one value in a sequence with another
832   *         value.
833   *  @param  first      A forward iterator.
834   *  @param  last       A forward iterator.
835   *  @param  old_value  The value to be replaced.
836   *  @param  new_value  The replacement value.
837   *  @return   replace() returns no value.
838   *
839   *  For each iterator @c i in the range @p [first,last) if @c *i ==
840   *  @p old_value then the assignment @c *i = @p new_value is performed.
841  */
842  template<typename _ForwardIterator, typename _Tp>
843    void
844    replace(_ForwardIterator __first, _ForwardIterator __last,
845	    const _Tp& __old_value, const _Tp& __new_value)
846    {
847      // concept requirements
848      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
849				  _ForwardIterator>)
850      __glibcxx_function_requires(_EqualOpConcept<
851	    typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
852      __glibcxx_function_requires(_ConvertibleConcept<_Tp,
853	    typename iterator_traits<_ForwardIterator>::value_type>)
854      __glibcxx_requires_valid_range(__first, __last);
855
856      for ( ; __first != __last; ++__first)
857	if (*__first == __old_value)
858	  *__first = __new_value;
859    }
860
861  /**
862   *  @brief Replace each value in a sequence for which a predicate returns
863   *         true with another value.
864   *  @param  first      A forward iterator.
865   *  @param  last       A forward iterator.
866   *  @param  pred       A predicate.
867   *  @param  new_value  The replacement value.
868   *  @return   replace_if() returns no value.
869   *
870   *  For each iterator @c i in the range @p [first,last) if @p pred(*i)
871   *  is true then the assignment @c *i = @p new_value is performed.
872  */
873  template<typename _ForwardIterator, typename _Predicate, typename _Tp>
874    void
875    replace_if(_ForwardIterator __first, _ForwardIterator __last,
876	       _Predicate __pred, const _Tp& __new_value)
877    {
878      // concept requirements
879      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
880				  _ForwardIterator>)
881      __glibcxx_function_requires(_ConvertibleConcept<_Tp,
882	    typename iterator_traits<_ForwardIterator>::value_type>)
883      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
884	    typename iterator_traits<_ForwardIterator>::value_type>)
885      __glibcxx_requires_valid_range(__first, __last);
886
887      for ( ; __first != __last; ++__first)
888	if (__pred(*__first))
889	  *__first = __new_value;
890    }
891
892  /**
893   *  @brief Copy a sequence, replacing each element of one value with another
894   *         value.
895   *  @param  first      An input iterator.
896   *  @param  last       An input iterator.
897   *  @param  result     An output iterator.
898   *  @param  old_value  The value to be replaced.
899   *  @param  new_value  The replacement value.
900   *  @return   The end of the output sequence, @p result+(last-first).
901   *
902   *  Copies each element in the input range @p [first,last) to the
903   *  output range @p [result,result+(last-first)) replacing elements
904   *  equal to @p old_value with @p new_value.
905  */
906  template<typename _InputIterator, typename _OutputIterator, typename _Tp>
907    _OutputIterator
908    replace_copy(_InputIterator __first, _InputIterator __last,
909		 _OutputIterator __result,
910		 const _Tp& __old_value, const _Tp& __new_value)
911    {
912      // concept requirements
913      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
914      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
915	    typename iterator_traits<_InputIterator>::value_type>)
916      __glibcxx_function_requires(_EqualOpConcept<
917	    typename iterator_traits<_InputIterator>::value_type, _Tp>)
918      __glibcxx_requires_valid_range(__first, __last);
919
920      for ( ; __first != __last; ++__first, ++__result)
921	*__result = *__first == __old_value ? __new_value : *__first;
922      return __result;
923    }
924
925  /**
926   *  @brief Copy a sequence, replacing each value for which a predicate
927   *         returns true with another value.
928   *  @param  first      An input iterator.
929   *  @param  last       An input iterator.
930   *  @param  result     An output iterator.
931   *  @param  pred       A predicate.
932   *  @param  new_value  The replacement value.
933   *  @return   The end of the output sequence, @p result+(last-first).
934   *
935   *  Copies each element in the range @p [first,last) to the range
936   *  @p [result,result+(last-first)) replacing elements for which
937   *  @p pred returns true with @p new_value.
938  */
939  template<typename _InputIterator, typename _OutputIterator,
940	   typename _Predicate, typename _Tp>
941    _OutputIterator
942    replace_copy_if(_InputIterator __first, _InputIterator __last,
943		    _OutputIterator __result,
944		    _Predicate __pred, const _Tp& __new_value)
945    {
946      // concept requirements
947      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
948      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
949	    typename iterator_traits<_InputIterator>::value_type>)
950      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
951	    typename iterator_traits<_InputIterator>::value_type>)
952      __glibcxx_requires_valid_range(__first, __last);
953
954      for ( ; __first != __last; ++__first, ++__result)
955	*__result = __pred(*__first) ? __new_value : *__first;
956      return __result;
957    }
958
959  /**
960   *  @brief Assign the result of a function object to each value in a
961   *         sequence.
962   *  @param  first  A forward iterator.
963   *  @param  last   A forward iterator.
964   *  @param  gen    A function object taking no arguments.
965   *  @return   generate() returns no value.
966   *
967   *  Performs the assignment @c *i = @p gen() for each @c i in the range
968   *  @p [first,last).
969  */
970  template<typename _ForwardIterator, typename _Generator>
971    void
972    generate(_ForwardIterator __first, _ForwardIterator __last,
973	     _Generator __gen)
974    {
975      // concept requirements
976      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
977      __glibcxx_function_requires(_GeneratorConcept<_Generator,
978	    typename iterator_traits<_ForwardIterator>::value_type>)
979      __glibcxx_requires_valid_range(__first, __last);
980
981      for ( ; __first != __last; ++__first)
982	*__first = __gen();
983    }
984
985  /**
986   *  @brief Assign the result of a function object to each value in a
987   *         sequence.
988   *  @param  first  A forward iterator.
989   *  @param  n      The length of the sequence.
990   *  @param  gen    A function object taking no arguments.
991   *  @return   The end of the sequence, @p first+n
992   *
993   *  Performs the assignment @c *i = @p gen() for each @c i in the range
994   *  @p [first,first+n).
995  */
996  template<typename _OutputIterator, typename _Size, typename _Generator>
997    _OutputIterator
998    generate_n(_OutputIterator __first, _Size __n, _Generator __gen)
999    {
1000      // concept requirements
1001      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1002            // "the type returned by a _Generator"
1003            __typeof__(__gen())>)
1004
1005      for ( ; __n > 0; --__n, ++__first)
1006	*__first = __gen();
1007      return __first;
1008    }
1009
1010  /**
1011   *  @brief Copy a sequence, removing elements of a given value.
1012   *  @param  first   An input iterator.
1013   *  @param  last    An input iterator.
1014   *  @param  result  An output iterator.
1015   *  @param  value   The value to be removed.
1016   *  @return   An iterator designating the end of the resulting sequence.
1017   *
1018   *  Copies each element in the range @p [first,last) not equal to @p value
1019   *  to the range beginning at @p result.
1020   *  remove_copy() is stable, so the relative order of elements that are
1021   *  copied is unchanged.
1022  */
1023  template<typename _InputIterator, typename _OutputIterator, typename _Tp>
1024    _OutputIterator
1025    remove_copy(_InputIterator __first, _InputIterator __last,
1026		_OutputIterator __result, const _Tp& __value)
1027    {
1028      // concept requirements
1029      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
1030      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1031	    typename iterator_traits<_InputIterator>::value_type>)
1032      __glibcxx_function_requires(_EqualOpConcept<
1033	    typename iterator_traits<_InputIterator>::value_type, _Tp>)
1034      __glibcxx_requires_valid_range(__first, __last);
1035
1036      for ( ; __first != __last; ++__first)
1037	if (!(*__first == __value))
1038	  {
1039	    *__result = *__first;
1040	    ++__result;
1041	  }
1042      return __result;
1043    }
1044
1045  /**
1046   *  @brief Copy a sequence, removing elements for which a predicate is true.
1047   *  @param  first   An input iterator.
1048   *  @param  last    An input iterator.
1049   *  @param  result  An output iterator.
1050   *  @param  pred    A predicate.
1051   *  @return   An iterator designating the end of the resulting sequence.
1052   *
1053   *  Copies each element in the range @p [first,last) for which
1054   *  @p pred returns true to the range beginning at @p result.
1055   *
1056   *  remove_copy_if() is stable, so the relative order of elements that are
1057   *  copied is unchanged.
1058  */
1059  template<typename _InputIterator, typename _OutputIterator,
1060	   typename _Predicate>
1061    _OutputIterator
1062    remove_copy_if(_InputIterator __first, _InputIterator __last,
1063		   _OutputIterator __result, _Predicate __pred)
1064    {
1065      // concept requirements
1066      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
1067      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1068	    typename iterator_traits<_InputIterator>::value_type>)
1069      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
1070	    typename iterator_traits<_InputIterator>::value_type>)
1071      __glibcxx_requires_valid_range(__first, __last);
1072
1073      for ( ; __first != __last; ++__first)
1074	if (!__pred(*__first))
1075	  {
1076	    *__result = *__first;
1077	    ++__result;
1078	  }
1079      return __result;
1080    }
1081
1082  /**
1083   *  @brief Remove elements from a sequence.
1084   *  @param  first  An input iterator.
1085   *  @param  last   An input iterator.
1086   *  @param  value  The value to be removed.
1087   *  @return   An iterator designating the end of the resulting sequence.
1088   *
1089   *  All elements equal to @p value are removed from the range
1090   *  @p [first,last).
1091   *
1092   *  remove() is stable, so the relative order of elements that are
1093   *  not removed is unchanged.
1094   *
1095   *  Elements between the end of the resulting sequence and @p last
1096   *  are still present, but their value is unspecified.
1097  */
1098  template<typename _ForwardIterator, typename _Tp>
1099    _ForwardIterator
1100    remove(_ForwardIterator __first, _ForwardIterator __last,
1101	   const _Tp& __value)
1102    {
1103      // concept requirements
1104      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1105				  _ForwardIterator>)
1106      __glibcxx_function_requires(_EqualOpConcept<
1107	    typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
1108      __glibcxx_requires_valid_range(__first, __last);
1109
1110      __first = std::find(__first, __last, __value);
1111      _ForwardIterator __i = __first;
1112      return __first == __last ? __first
1113			       : std::remove_copy(++__i, __last,
1114						  __first, __value);
1115    }
1116
1117  /**
1118   *  @brief Remove elements from a sequence using a predicate.
1119   *  @param  first  A forward iterator.
1120   *  @param  last   A forward iterator.
1121   *  @param  pred   A predicate.
1122   *  @return   An iterator designating the end of the resulting sequence.
1123   *
1124   *  All elements for which @p pred returns true are removed from the range
1125   *  @p [first,last).
1126   *
1127   *  remove_if() is stable, so the relative order of elements that are
1128   *  not removed is unchanged.
1129   *
1130   *  Elements between the end of the resulting sequence and @p last
1131   *  are still present, but their value is unspecified.
1132  */
1133  template<typename _ForwardIterator, typename _Predicate>
1134    _ForwardIterator
1135    remove_if(_ForwardIterator __first, _ForwardIterator __last,
1136	      _Predicate __pred)
1137    {
1138      // concept requirements
1139      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1140				  _ForwardIterator>)
1141      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
1142	    typename iterator_traits<_ForwardIterator>::value_type>)
1143      __glibcxx_requires_valid_range(__first, __last);
1144
1145      __first = std::find_if(__first, __last, __pred);
1146      _ForwardIterator __i = __first;
1147      return __first == __last ? __first
1148			       : std::remove_copy_if(++__i, __last,
1149						     __first, __pred);
1150    }
1151
1152  /**
1153   *  @if maint
1154   *  This is an uglified unique_copy(_InputIterator, _InputIterator,
1155   *                                  _OutputIterator)
1156   *  overloaded for output iterators.
1157   *  @endif
1158  */
1159  template<typename _InputIterator, typename _OutputIterator>
1160    _OutputIterator
1161    __unique_copy(_InputIterator __first, _InputIterator __last,
1162		  _OutputIterator __result,
1163		  output_iterator_tag)
1164    {
1165      // concept requirements -- taken care of in dispatching function
1166      typename iterator_traits<_InputIterator>::value_type __value = *__first;
1167      *__result = __value;
1168      while (++__first != __last)
1169	if (!(__value == *__first))
1170	  {
1171	    __value = *__first;
1172	    *++__result = __value;
1173	  }
1174      return ++__result;
1175    }
1176
1177  /**
1178   *  @if maint
1179   *  This is an uglified unique_copy(_InputIterator, _InputIterator,
1180   *                                  _OutputIterator)
1181   *  overloaded for forward iterators.
1182   *  @endif
1183  */
1184  template<typename _InputIterator, typename _ForwardIterator>
1185    _ForwardIterator
1186    __unique_copy(_InputIterator __first, _InputIterator __last,
1187		  _ForwardIterator __result,
1188		  forward_iterator_tag)
1189    {
1190      // concept requirements -- taken care of in dispatching function
1191      *__result = *__first;
1192      while (++__first != __last)
1193	if (!(*__result == *__first))
1194	  *++__result = *__first;
1195      return ++__result;
1196    }
1197
1198  /**
1199   *  @if maint
1200   *  This is an uglified
1201   *  unique_copy(_InputIterator, _InputIterator, _OutputIterator,
1202   *              _BinaryPredicate)
1203   *  overloaded for output iterators.
1204   *  @endif
1205  */
1206  template<typename _InputIterator, typename _OutputIterator,
1207	   typename _BinaryPredicate>
1208    _OutputIterator
1209    __unique_copy(_InputIterator __first, _InputIterator __last,
1210		  _OutputIterator __result,
1211		  _BinaryPredicate __binary_pred,
1212		  output_iterator_tag)
1213    {
1214      // concept requirements -- iterators already checked
1215      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
1216	  typename iterator_traits<_InputIterator>::value_type,
1217	  typename iterator_traits<_InputIterator>::value_type>)
1218
1219      typename iterator_traits<_InputIterator>::value_type __value = *__first;
1220      *__result = __value;
1221      while (++__first != __last)
1222	if (!__binary_pred(__value, *__first))
1223	  {
1224	    __value = *__first;
1225	    *++__result = __value;
1226	  }
1227      return ++__result;
1228    }
1229
1230  /**
1231   *  @if maint
1232   *  This is an uglified
1233   *  unique_copy(_InputIterator, _InputIterator, _OutputIterator,
1234   *              _BinaryPredicate)
1235   *  overloaded for forward iterators.
1236   *  @endif
1237  */
1238  template<typename _InputIterator, typename _ForwardIterator,
1239	   typename _BinaryPredicate>
1240    _ForwardIterator
1241    __unique_copy(_InputIterator __first, _InputIterator __last,
1242		  _ForwardIterator __result,
1243		  _BinaryPredicate __binary_pred,
1244		  forward_iterator_tag)
1245    {
1246      // concept requirements -- iterators already checked
1247      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
1248	    typename iterator_traits<_ForwardIterator>::value_type,
1249	    typename iterator_traits<_InputIterator>::value_type>)
1250
1251      *__result = *__first;
1252      while (++__first != __last)
1253	if (!__binary_pred(*__result, *__first)) *++__result = *__first;
1254      return ++__result;
1255    }
1256
1257  /**
1258   *  @brief Copy a sequence, removing consecutive duplicate values.
1259   *  @param  first   An input iterator.
1260   *  @param  last    An input iterator.
1261   *  @param  result  An output iterator.
1262   *  @return   An iterator designating the end of the resulting sequence.
1263   *
1264   *  Copies each element in the range @p [first,last) to the range
1265   *  beginning at @p result, except that only the first element is copied
1266   *  from groups of consecutive elements that compare equal.
1267   *  unique_copy() is stable, so the relative order of elements that are
1268   *  copied is unchanged.
1269  */
1270  template<typename _InputIterator, typename _OutputIterator>
1271    inline _OutputIterator
1272    unique_copy(_InputIterator __first, _InputIterator __last,
1273		_OutputIterator __result)
1274    {
1275      // concept requirements
1276      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
1277      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1278	    typename iterator_traits<_InputIterator>::value_type>)
1279      __glibcxx_function_requires(_EqualityComparableConcept<
1280	    typename iterator_traits<_InputIterator>::value_type>)
1281      __glibcxx_requires_valid_range(__first, __last);
1282
1283      typedef typename iterator_traits<_OutputIterator>::iterator_category
1284	_IterType;
1285
1286      if (__first == __last) return __result;
1287      return std::__unique_copy(__first, __last, __result, _IterType());
1288    }
1289
1290  /**
1291   *  @brief Copy a sequence, removing consecutive values using a predicate.
1292   *  @param  first        An input iterator.
1293   *  @param  last         An input iterator.
1294   *  @param  result       An output iterator.
1295   *  @param  binary_pred  A binary predicate.
1296   *  @return   An iterator designating the end of the resulting sequence.
1297   *
1298   *  Copies each element in the range @p [first,last) to the range
1299   *  beginning at @p result, except that only the first element is copied
1300   *  from groups of consecutive elements for which @p binary_pred returns
1301   *  true.
1302   *  unique_copy() is stable, so the relative order of elements that are
1303   *  copied is unchanged.
1304  */
1305  template<typename _InputIterator, typename _OutputIterator,
1306	   typename _BinaryPredicate>
1307    inline _OutputIterator
1308    unique_copy(_InputIterator __first, _InputIterator __last,
1309		_OutputIterator __result,
1310		_BinaryPredicate __binary_pred)
1311    {
1312      // concept requirements -- predicates checked later
1313      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
1314      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1315	    typename iterator_traits<_InputIterator>::value_type>)
1316      __glibcxx_requires_valid_range(__first, __last);
1317
1318      typedef typename iterator_traits<_OutputIterator>::iterator_category
1319	_IterType;
1320
1321      if (__first == __last) return __result;
1322      return std::__unique_copy(__first, __last, __result,
1323				__binary_pred, _IterType());
1324    }
1325
1326  /**
1327   *  @brief Remove consecutive duplicate values from a sequence.
1328   *  @param  first  A forward iterator.
1329   *  @param  last   A forward iterator.
1330   *  @return  An iterator designating the end of the resulting sequence.
1331   *
1332   *  Removes all but the first element from each group of consecutive
1333   *  values that compare equal.
1334   *  unique() is stable, so the relative order of elements that are
1335   *  not removed is unchanged.
1336   *  Elements between the end of the resulting sequence and @p last
1337   *  are still present, but their value is unspecified.
1338  */
1339  template<typename _ForwardIterator>
1340    _ForwardIterator
1341    unique(_ForwardIterator __first, _ForwardIterator __last)
1342    {
1343      // concept requirements
1344      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1345				  _ForwardIterator>)
1346      __glibcxx_function_requires(_EqualityComparableConcept<
1347		     typename iterator_traits<_ForwardIterator>::value_type>)
1348      __glibcxx_requires_valid_range(__first, __last);
1349
1350      // Skip the beginning, if already unique.
1351      __first = std::adjacent_find(__first, __last);
1352      if (__first == __last)
1353	return __last;
1354
1355      // Do the real copy work.
1356      _ForwardIterator __dest = __first;
1357      ++__first;
1358      while (++__first != __last)
1359	if (!(*__dest == *__first))
1360	  *++__dest = *__first;
1361      return ++__dest;
1362    }
1363
1364  /**
1365   *  @brief Remove consecutive values from a sequence using a predicate.
1366   *  @param  first        A forward iterator.
1367   *  @param  last         A forward iterator.
1368   *  @param  binary_pred  A binary predicate.
1369   *  @return  An iterator designating the end of the resulting sequence.
1370   *
1371   *  Removes all but the first element from each group of consecutive
1372   *  values for which @p binary_pred returns true.
1373   *  unique() is stable, so the relative order of elements that are
1374   *  not removed is unchanged.
1375   *  Elements between the end of the resulting sequence and @p last
1376   *  are still present, but their value is unspecified.
1377  */
1378  template<typename _ForwardIterator, typename _BinaryPredicate>
1379    _ForwardIterator
1380    unique(_ForwardIterator __first, _ForwardIterator __last,
1381           _BinaryPredicate __binary_pred)
1382    {
1383      // concept requirements
1384      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1385				  _ForwardIterator>)
1386      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
1387		typename iterator_traits<_ForwardIterator>::value_type,
1388		typename iterator_traits<_ForwardIterator>::value_type>)
1389      __glibcxx_requires_valid_range(__first, __last);
1390
1391      // Skip the beginning, if already unique.
1392      __first = std::adjacent_find(__first, __last, __binary_pred);
1393      if (__first == __last)
1394	return __last;
1395
1396      // Do the real copy work.
1397      _ForwardIterator __dest = __first;
1398      ++__first;
1399      while (++__first != __last)
1400	if (!__binary_pred(*__dest, *__first))
1401	  *++__dest = *__first;
1402      return ++__dest;
1403    }
1404
1405  /**
1406   *  @if maint
1407   *  This is an uglified reverse(_BidirectionalIterator,
1408   *                              _BidirectionalIterator)
1409   *  overloaded for bidirectional iterators.
1410   *  @endif
1411  */
1412  template<typename _BidirectionalIterator>
1413    void
1414    __reverse(_BidirectionalIterator __first, _BidirectionalIterator __last,
1415			  bidirectional_iterator_tag)
1416    {
1417      while (true)
1418	if (__first == __last || __first == --__last)
1419	  return;
1420	else
1421	  std::iter_swap(__first++, __last);
1422    }
1423
1424  /**
1425   *  @if maint
1426   *  This is an uglified reverse(_BidirectionalIterator,
1427   *                              _BidirectionalIterator)
1428   *  overloaded for bidirectional iterators.
1429   *  @endif
1430  */
1431  template<typename _RandomAccessIterator>
1432    void
1433    __reverse(_RandomAccessIterator __first, _RandomAccessIterator __last,
1434			  random_access_iterator_tag)
1435    {
1436      while (__first < __last)
1437	std::iter_swap(__first++, --__last);
1438    }
1439
1440  /**
1441   *  @brief Reverse a sequence.
1442   *  @param  first  A bidirectional iterator.
1443   *  @param  last   A bidirectional iterator.
1444   *  @return   reverse() returns no value.
1445   *
1446   *  Reverses the order of the elements in the range @p [first,last),
1447   *  so that the first element becomes the last etc.
1448   *  For every @c i such that @p 0<=i<=(last-first)/2), @p reverse()
1449   *  swaps @p *(first+i) and @p *(last-(i+1))
1450  */
1451  template<typename _BidirectionalIterator>
1452    inline void
1453    reverse(_BidirectionalIterator __first, _BidirectionalIterator __last)
1454    {
1455      // concept requirements
1456      __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
1457		    _BidirectionalIterator>)
1458      __glibcxx_requires_valid_range(__first, __last);
1459      std::__reverse(__first, __last, std::__iterator_category(__first));
1460    }
1461
1462  /**
1463   *  @brief Copy a sequence, reversing its elements.
1464   *  @param  first   A bidirectional iterator.
1465   *  @param  last    A bidirectional iterator.
1466   *  @param  result  An output iterator.
1467   *  @return  An iterator designating the end of the resulting sequence.
1468   *
1469   *  Copies the elements in the range @p [first,last) to the range
1470   *  @p [result,result+(last-first)) such that the order of the
1471   *  elements is reversed.
1472   *  For every @c i such that @p 0<=i<=(last-first), @p reverse_copy()
1473   *  performs the assignment @p *(result+(last-first)-i) = *(first+i).
1474   *  The ranges @p [first,last) and @p [result,result+(last-first))
1475   *  must not overlap.
1476  */
1477  template<typename _BidirectionalIterator, typename _OutputIterator>
1478    _OutputIterator
1479    reverse_copy(_BidirectionalIterator __first, _BidirectionalIterator __last,
1480			     _OutputIterator __result)
1481    {
1482      // concept requirements
1483      __glibcxx_function_requires(_BidirectionalIteratorConcept<
1484				  _BidirectionalIterator>)
1485      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1486		typename iterator_traits<_BidirectionalIterator>::value_type>)
1487      __glibcxx_requires_valid_range(__first, __last);
1488
1489      while (__first != __last)
1490	{
1491	  --__last;
1492	  *__result = *__last;
1493	  ++__result;
1494	}
1495      return __result;
1496    }
1497
1498
1499  /**
1500   *  @if maint
1501   *  This is a helper function for the rotate algorithm specialized on RAIs.
1502   *  It returns the greatest common divisor of two integer values.
1503   *  @endif
1504  */
1505  template<typename _EuclideanRingElement>
1506    _EuclideanRingElement
1507    __gcd(_EuclideanRingElement __m, _EuclideanRingElement __n)
1508    {
1509      while (__n != 0)
1510	{
1511	  _EuclideanRingElement __t = __m % __n;
1512	  __m = __n;
1513	  __n = __t;
1514	}
1515      return __m;
1516    }
1517
1518  /**
1519   *  @if maint
1520   *  This is a helper function for the rotate algorithm.
1521   *  @endif
1522  */
1523  template<typename _ForwardIterator>
1524    void
1525    __rotate(_ForwardIterator __first,
1526	     _ForwardIterator __middle,
1527	     _ForwardIterator __last,
1528	      forward_iterator_tag)
1529    {
1530      if ((__first == __middle) || (__last  == __middle))
1531	return;
1532
1533      _ForwardIterator __first2 = __middle;
1534      do
1535	{
1536	  swap(*__first++, *__first2++);
1537	  if (__first == __middle)
1538	    __middle = __first2;
1539	}
1540      while (__first2 != __last);
1541
1542      __first2 = __middle;
1543
1544      while (__first2 != __last)
1545	{
1546	  swap(*__first++, *__first2++);
1547	  if (__first == __middle)
1548	    __middle = __first2;
1549	  else if (__first2 == __last)
1550	    __first2 = __middle;
1551	}
1552    }
1553
1554  /**
1555   *  @if maint
1556   *  This is a helper function for the rotate algorithm.
1557   *  @endif
1558  */
1559  template<typename _BidirectionalIterator>
1560    void
1561    __rotate(_BidirectionalIterator __first,
1562	     _BidirectionalIterator __middle,
1563	     _BidirectionalIterator __last,
1564	      bidirectional_iterator_tag)
1565    {
1566      // concept requirements
1567      __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
1568	    _BidirectionalIterator>)
1569
1570      if ((__first == __middle) || (__last  == __middle))
1571	return;
1572
1573      std::__reverse(__first,  __middle, bidirectional_iterator_tag());
1574      std::__reverse(__middle, __last,   bidirectional_iterator_tag());
1575
1576      while (__first != __middle && __middle != __last)
1577	swap(*__first++, *--__last);
1578
1579      if (__first == __middle)
1580	std::__reverse(__middle, __last,   bidirectional_iterator_tag());
1581      else
1582	std::__reverse(__first,  __middle, bidirectional_iterator_tag());
1583    }
1584
1585  /**
1586   *  @if maint
1587   *  This is a helper function for the rotate algorithm.
1588   *  @endif
1589  */
1590  template<typename _RandomAccessIterator>
1591    void
1592    __rotate(_RandomAccessIterator __first,
1593	     _RandomAccessIterator __middle,
1594	     _RandomAccessIterator __last,
1595	     random_access_iterator_tag)
1596    {
1597      // concept requirements
1598      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
1599	    _RandomAccessIterator>)
1600
1601      if ((__first == __middle) || (__last  == __middle))
1602	return;
1603
1604      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
1605	_Distance;
1606      typedef typename iterator_traits<_RandomAccessIterator>::value_type
1607	_ValueType;
1608
1609      const _Distance __n = __last   - __first;
1610      const _Distance __k = __middle - __first;
1611      const _Distance __l = __n - __k;
1612
1613      if (__k == __l)
1614	{
1615	  std::swap_ranges(__first, __middle, __middle);
1616	  return;
1617	}
1618
1619      const _Distance __d = __gcd(__n, __k);
1620
1621      for (_Distance __i = 0; __i < __d; __i++)
1622	{
1623	  const _ValueType __tmp = *__first;
1624	  _RandomAccessIterator __p = __first;
1625
1626	  if (__k < __l)
1627	    {
1628	      for (_Distance __j = 0; __j < __l / __d; __j++)
1629		{
1630		  if (__p > __first + __l)
1631		    {
1632		      *__p = *(__p - __l);
1633		      __p -= __l;
1634		    }
1635
1636		  *__p = *(__p + __k);
1637		  __p += __k;
1638		}
1639	    }
1640	  else
1641	    {
1642	      for (_Distance __j = 0; __j < __k / __d - 1; __j ++)
1643		{
1644		  if (__p < __last - __k)
1645		    {
1646		      *__p = *(__p + __k);
1647		      __p += __k;
1648		    }
1649		  *__p = * (__p - __l);
1650		  __p -= __l;
1651		}
1652	    }
1653
1654	  *__p = __tmp;
1655	  ++__first;
1656	}
1657    }
1658
1659  /**
1660   *  @brief Rotate the elements of a sequence.
1661   *  @param  first   A forward iterator.
1662   *  @param  middle  A forward iterator.
1663   *  @param  last    A forward iterator.
1664   *  @return  Nothing.
1665   *
1666   *  Rotates the elements of the range @p [first,last) by @p (middle-first)
1667   *  positions so that the element at @p middle is moved to @p first, the
1668   *  element at @p middle+1 is moved to @first+1 and so on for each element
1669   *  in the range @p [first,last).
1670   *
1671   *  This effectively swaps the ranges @p [first,middle) and
1672   *  @p [middle,last).
1673   *
1674   *  Performs @p *(first+(n+(last-middle))%(last-first))=*(first+n) for
1675   *  each @p n in the range @p [0,last-first).
1676  */
1677  template<typename _ForwardIterator>
1678    inline void
1679    rotate(_ForwardIterator __first, _ForwardIterator __middle,
1680	   _ForwardIterator __last)
1681    {
1682      // concept requirements
1683      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1684				  _ForwardIterator>)
1685      __glibcxx_requires_valid_range(__first, __middle);
1686      __glibcxx_requires_valid_range(__middle, __last);
1687
1688      typedef typename iterator_traits<_ForwardIterator>::iterator_category
1689	_IterType;
1690      std::__rotate(__first, __middle, __last, _IterType());
1691    }
1692
1693  /**
1694   *  @brief Copy a sequence, rotating its elements.
1695   *  @param  first   A forward iterator.
1696   *  @param  middle  A forward iterator.
1697   *  @param  last    A forward iterator.
1698   *  @param  result  An output iterator.
1699   *  @return   An iterator designating the end of the resulting sequence.
1700   *
1701   *  Copies the elements of the range @p [first,last) to the range
1702   *  beginning at @result, rotating the copied elements by @p (middle-first)
1703   *  positions so that the element at @p middle is moved to @p result, the
1704   *  element at @p middle+1 is moved to @result+1 and so on for each element
1705   *  in the range @p [first,last).
1706   *
1707   *  Performs @p *(result+(n+(last-middle))%(last-first))=*(first+n) for
1708   *  each @p n in the range @p [0,last-first).
1709  */
1710  template<typename _ForwardIterator, typename _OutputIterator>
1711    _OutputIterator
1712    rotate_copy(_ForwardIterator __first, _ForwardIterator __middle,
1713                _ForwardIterator __last, _OutputIterator __result)
1714    {
1715      // concept requirements
1716      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
1717      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
1718		typename iterator_traits<_ForwardIterator>::value_type>)
1719      __glibcxx_requires_valid_range(__first, __middle);
1720      __glibcxx_requires_valid_range(__middle, __last);
1721
1722      return std::copy(__first, __middle, copy(__middle, __last, __result));
1723    }
1724
1725  /**
1726   *  @brief Randomly shuffle the elements of a sequence.
1727   *  @param  first   A forward iterator.
1728   *  @param  last    A forward iterator.
1729   *  @return  Nothing.
1730   *
1731   *  Reorder the elements in the range @p [first,last) using a random
1732   *  distribution, so that every possible ordering of the sequence is
1733   *  equally likely.
1734  */
1735  template<typename _RandomAccessIterator>
1736    inline void
1737    random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last)
1738    {
1739      // concept requirements
1740      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
1741	    _RandomAccessIterator>)
1742      __glibcxx_requires_valid_range(__first, __last);
1743
1744      if (__first != __last)
1745	for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
1746	  std::iter_swap(__i, __first + (std::rand() % ((__i - __first) + 1)));
1747    }
1748
1749  /**
1750   *  @brief Shuffle the elements of a sequence using a random number
1751   *         generator.
1752   *  @param  first   A forward iterator.
1753   *  @param  last    A forward iterator.
1754   *  @param  rand    The RNG functor or function.
1755   *  @return  Nothing.
1756   *
1757   *  Reorders the elements in the range @p [first,last) using @p rand to
1758   *  provide a random distribution. Calling @p rand(N) for a positive
1759   *  integer @p N should return a randomly chosen integer from the
1760   *  range [0,N).
1761  */
1762  template<typename _RandomAccessIterator, typename _RandomNumberGenerator>
1763    void
1764    random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last,
1765		   _RandomNumberGenerator& __rand)
1766    {
1767      // concept requirements
1768      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
1769	    _RandomAccessIterator>)
1770      __glibcxx_requires_valid_range(__first, __last);
1771
1772      if (__first == __last)
1773	return;
1774      for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
1775	std::iter_swap(__i, __first + __rand((__i - __first) + 1));
1776    }
1777
1778
1779  /**
1780   *  @if maint
1781   *  This is a helper function...
1782   *  @endif
1783  */
1784  template<typename _ForwardIterator, typename _Predicate>
1785    _ForwardIterator
1786    __partition(_ForwardIterator __first, _ForwardIterator __last,
1787		_Predicate __pred,
1788		forward_iterator_tag)
1789    {
1790      if (__first == __last)
1791	return __first;
1792
1793      while (__pred(*__first))
1794	if (++__first == __last)
1795	  return __first;
1796
1797      _ForwardIterator __next = __first;
1798
1799      while (++__next != __last)
1800	if (__pred(*__next))
1801	  {
1802	    swap(*__first, *__next);
1803	    ++__first;
1804	  }
1805
1806      return __first;
1807    }
1808
1809  /**
1810   *  @if maint
1811   *  This is a helper function...
1812   *  @endif
1813  */
1814  template<typename _BidirectionalIterator, typename _Predicate>
1815    _BidirectionalIterator
1816    __partition(_BidirectionalIterator __first, _BidirectionalIterator __last,
1817		_Predicate __pred,
1818		bidirectional_iterator_tag)
1819    {
1820      while (true)
1821	{
1822	  while (true)
1823	    if (__first == __last)
1824	      return __first;
1825	    else if (__pred(*__first))
1826	      ++__first;
1827	    else
1828	      break;
1829	  --__last;
1830	  while (true)
1831	    if (__first == __last)
1832	      return __first;
1833	    else if (!__pred(*__last))
1834	      --__last;
1835	    else
1836	      break;
1837	  std::iter_swap(__first, __last);
1838	  ++__first;
1839	}
1840    }
1841
1842  /**
1843   *  @brief Move elements for which a predicate is true to the beginning
1844   *         of a sequence.
1845   *  @param  first   A forward iterator.
1846   *  @param  last    A forward iterator.
1847   *  @param  pred    A predicate functor.
1848   *  @return  An iterator @p middle such that @p pred(i) is true for each
1849   *  iterator @p i in the range @p [first,middle) and false for each @p i
1850   *  in the range @p [middle,last).
1851   *
1852   *  @p pred must not modify its operand. @p partition() does not preserve
1853   *  the relative ordering of elements in each group, use
1854   *  @p stable_partition() if this is needed.
1855  */
1856  template<typename _ForwardIterator, typename _Predicate>
1857    inline _ForwardIterator
1858    partition(_ForwardIterator __first, _ForwardIterator __last,
1859	      _Predicate   __pred)
1860    {
1861      // concept requirements
1862      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1863				  _ForwardIterator>)
1864      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
1865	    typename iterator_traits<_ForwardIterator>::value_type>)
1866      __glibcxx_requires_valid_range(__first, __last);
1867
1868      return std::__partition(__first, __last, __pred,
1869			      std::__iterator_category(__first));
1870    }
1871
1872
1873  /**
1874   *  @if maint
1875   *  This is a helper function...
1876   *  @endif
1877  */
1878  template<typename _ForwardIterator, typename _Predicate, typename _Distance>
1879    _ForwardIterator
1880    __inplace_stable_partition(_ForwardIterator __first,
1881			       _ForwardIterator __last,
1882			       _Predicate __pred, _Distance __len)
1883    {
1884      if (__len == 1)
1885	return __pred(*__first) ? __last : __first;
1886      _ForwardIterator __middle = __first;
1887      std::advance(__middle, __len / 2);
1888      _ForwardIterator __begin = std::__inplace_stable_partition(__first,
1889								 __middle,
1890								 __pred,
1891								 __len / 2);
1892      _ForwardIterator __end = std::__inplace_stable_partition(__middle, __last,
1893							       __pred,
1894							       __len
1895							       - __len / 2);
1896      std::rotate(__begin, __middle, __end);
1897      std::advance(__begin, std::distance(__middle, __end));
1898      return __begin;
1899    }
1900
1901  /**
1902   *  @if maint
1903   *  This is a helper function...
1904   *  @endif
1905  */
1906  template<typename _ForwardIterator, typename _Pointer, typename _Predicate,
1907	   typename _Distance>
1908    _ForwardIterator
1909    __stable_partition_adaptive(_ForwardIterator __first,
1910				_ForwardIterator __last,
1911				_Predicate __pred, _Distance __len,
1912				_Pointer __buffer,
1913				_Distance __buffer_size)
1914    {
1915      if (__len <= __buffer_size)
1916	{
1917	  _ForwardIterator __result1 = __first;
1918	  _Pointer __result2 = __buffer;
1919	  for ( ; __first != __last ; ++__first)
1920	    if (__pred(*__first))
1921	      {
1922		*__result1 = *__first;
1923		++__result1;
1924	      }
1925	    else
1926	      {
1927		*__result2 = *__first;
1928		++__result2;
1929	      }
1930	  std::copy(__buffer, __result2, __result1);
1931	  return __result1;
1932	}
1933      else
1934	{
1935	  _ForwardIterator __middle = __first;
1936	  std::advance(__middle, __len / 2);
1937	  _ForwardIterator __begin =
1938	    std::__stable_partition_adaptive(__first, __middle, __pred,
1939					     __len / 2, __buffer,
1940					     __buffer_size);
1941	  _ForwardIterator __end =
1942	    std::__stable_partition_adaptive(__middle, __last, __pred,
1943					     __len - __len / 2,
1944					     __buffer, __buffer_size);
1945	  std::rotate(__begin, __middle, __end);
1946	  std::advance(__begin, std::distance(__middle, __end));
1947	  return __begin;
1948	}
1949    }
1950
1951  /**
1952   *  @brief Move elements for which a predicate is true to the beginning
1953   *         of a sequence, preserving relative ordering.
1954   *  @param  first   A forward iterator.
1955   *  @param  last    A forward iterator.
1956   *  @param  pred    A predicate functor.
1957   *  @return  An iterator @p middle such that @p pred(i) is true for each
1958   *  iterator @p i in the range @p [first,middle) and false for each @p i
1959   *  in the range @p [middle,last).
1960   *
1961   *  Performs the same function as @p partition() with the additional
1962   *  guarantee that the relative ordering of elements in each group is
1963   *  preserved, so any two elements @p x and @p y in the range
1964   *  @p [first,last) such that @p pred(x)==pred(y) will have the same
1965   *  relative ordering after calling @p stable_partition().
1966  */
1967  template<typename _ForwardIterator, typename _Predicate>
1968    _ForwardIterator
1969    stable_partition(_ForwardIterator __first, _ForwardIterator __last,
1970		     _Predicate __pred)
1971    {
1972      // concept requirements
1973      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
1974				  _ForwardIterator>)
1975      __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
1976	    typename iterator_traits<_ForwardIterator>::value_type>)
1977      __glibcxx_requires_valid_range(__first, __last);
1978
1979      if (__first == __last)
1980	return __first;
1981      else
1982	{
1983	  typedef typename iterator_traits<_ForwardIterator>::value_type
1984	    _ValueType;
1985	  typedef typename iterator_traits<_ForwardIterator>::difference_type
1986	    _DistanceType;
1987
1988	  _Temporary_buffer<_ForwardIterator, _ValueType> __buf(__first,
1989								__last);
1990	if (__buf.size() > 0)
1991	  return
1992	    std::__stable_partition_adaptive(__first, __last, __pred,
1993					  _DistanceType(__buf.requested_size()),
1994					  __buf.begin(), __buf.size());
1995	else
1996	  return
1997	    std::__inplace_stable_partition(__first, __last, __pred,
1998					 _DistanceType(__buf.requested_size()));
1999	}
2000    }
2001
2002  /**
2003   *  @if maint
2004   *  This is a helper function...
2005   *  @endif
2006  */
2007  template<typename _RandomAccessIterator, typename _Tp>
2008    _RandomAccessIterator
2009    __unguarded_partition(_RandomAccessIterator __first,
2010			  _RandomAccessIterator __last, _Tp __pivot)
2011    {
2012      while (true)
2013	{
2014	  while (*__first < __pivot)
2015	    ++__first;
2016	  --__last;
2017	  while (__pivot < *__last)
2018	    --__last;
2019	  if (!(__first < __last))
2020	    return __first;
2021	  std::iter_swap(__first, __last);
2022	  ++__first;
2023	}
2024    }
2025
2026  /**
2027   *  @if maint
2028   *  This is a helper function...
2029   *  @endif
2030  */
2031  template<typename _RandomAccessIterator, typename _Tp, typename _Compare>
2032    _RandomAccessIterator
2033    __unguarded_partition(_RandomAccessIterator __first,
2034			  _RandomAccessIterator __last,
2035			  _Tp __pivot, _Compare __comp)
2036    {
2037      while (true)
2038	{
2039	  while (__comp(*__first, __pivot))
2040	    ++__first;
2041	  --__last;
2042	  while (__comp(__pivot, *__last))
2043	    --__last;
2044	  if (!(__first < __last))
2045	    return __first;
2046	  std::iter_swap(__first, __last);
2047	  ++__first;
2048	}
2049    }
2050
2051  /**
2052   *  @if maint
2053   *  @doctodo
2054   *  This controls some aspect of the sort routines.
2055   *  @endif
2056  */
2057  enum { _S_threshold = 16 };
2058
2059  /**
2060   *  @if maint
2061   *  This is a helper function for the sort routine.
2062   *  @endif
2063  */
2064  template<typename _RandomAccessIterator, typename _Tp>
2065    void
2066    __unguarded_linear_insert(_RandomAccessIterator __last, _Tp __val)
2067    {
2068      _RandomAccessIterator __next = __last;
2069      --__next;
2070      while (__val < *__next)
2071	{
2072	  *__last = *__next;
2073	  __last = __next;
2074	  --__next;
2075	}
2076      *__last = __val;
2077    }
2078
2079  /**
2080   *  @if maint
2081   *  This is a helper function for the sort routine.
2082   *  @endif
2083  */
2084  template<typename _RandomAccessIterator, typename _Tp, typename _Compare>
2085    void
2086    __unguarded_linear_insert(_RandomAccessIterator __last, _Tp __val,
2087			      _Compare __comp)
2088    {
2089      _RandomAccessIterator __next = __last;
2090      --__next;
2091      while (__comp(__val, *__next))
2092	{
2093	  *__last = *__next;
2094	  __last = __next;
2095	  --__next;
2096	}
2097      *__last = __val;
2098    }
2099
2100  /**
2101   *  @if maint
2102   *  This is a helper function for the sort routine.
2103   *  @endif
2104  */
2105  template<typename _RandomAccessIterator>
2106    void
2107    __insertion_sort(_RandomAccessIterator __first,
2108		     _RandomAccessIterator __last)
2109    {
2110      if (__first == __last)
2111	return;
2112
2113      for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
2114	{
2115	  typename iterator_traits<_RandomAccessIterator>::value_type
2116	    __val = *__i;
2117	  if (__val < *__first)
2118	    {
2119	      std::copy_backward(__first, __i, __i + 1);
2120	      *__first = __val;
2121	    }
2122	  else
2123	    std::__unguarded_linear_insert(__i, __val);
2124	}
2125    }
2126
2127  /**
2128   *  @if maint
2129   *  This is a helper function for the sort routine.
2130   *  @endif
2131  */
2132  template<typename _RandomAccessIterator, typename _Compare>
2133    void
2134    __insertion_sort(_RandomAccessIterator __first,
2135		     _RandomAccessIterator __last, _Compare __comp)
2136    {
2137      if (__first == __last) return;
2138
2139      for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
2140	{
2141	  typename iterator_traits<_RandomAccessIterator>::value_type
2142	    __val = *__i;
2143	  if (__comp(__val, *__first))
2144	    {
2145	      std::copy_backward(__first, __i, __i + 1);
2146	      *__first = __val;
2147	    }
2148	  else
2149	    std::__unguarded_linear_insert(__i, __val, __comp);
2150	}
2151    }
2152
2153  /**
2154   *  @if maint
2155   *  This is a helper function for the sort routine.
2156   *  @endif
2157  */
2158  template<typename _RandomAccessIterator>
2159    inline void
2160    __unguarded_insertion_sort(_RandomAccessIterator __first,
2161			       _RandomAccessIterator __last)
2162    {
2163      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2164	_ValueType;
2165
2166      for (_RandomAccessIterator __i = __first; __i != __last; ++__i)
2167	std::__unguarded_linear_insert(__i, _ValueType(*__i));
2168    }
2169
2170  /**
2171   *  @if maint
2172   *  This is a helper function for the sort routine.
2173   *  @endif
2174  */
2175  template<typename _RandomAccessIterator, typename _Compare>
2176    inline void
2177    __unguarded_insertion_sort(_RandomAccessIterator __first,
2178			       _RandomAccessIterator __last, _Compare __comp)
2179    {
2180      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2181	_ValueType;
2182
2183      for (_RandomAccessIterator __i = __first; __i != __last; ++__i)
2184	std::__unguarded_linear_insert(__i, _ValueType(*__i), __comp);
2185    }
2186
2187  /**
2188   *  @if maint
2189   *  This is a helper function for the sort routine.
2190   *  @endif
2191  */
2192  template<typename _RandomAccessIterator>
2193    void
2194    __final_insertion_sort(_RandomAccessIterator __first,
2195			   _RandomAccessIterator __last)
2196    {
2197      if (__last - __first > _S_threshold)
2198	{
2199	  std::__insertion_sort(__first, __first + _S_threshold);
2200	  std::__unguarded_insertion_sort(__first + _S_threshold, __last);
2201	}
2202      else
2203	std::__insertion_sort(__first, __last);
2204    }
2205
2206  /**
2207   *  @if maint
2208   *  This is a helper function for the sort routine.
2209   *  @endif
2210  */
2211  template<typename _RandomAccessIterator, typename _Compare>
2212    void
2213    __final_insertion_sort(_RandomAccessIterator __first,
2214			   _RandomAccessIterator __last, _Compare __comp)
2215    {
2216      if (__last - __first > _S_threshold)
2217	{
2218	  std::__insertion_sort(__first, __first + _S_threshold, __comp);
2219	  std::__unguarded_insertion_sort(__first + _S_threshold, __last,
2220					  __comp);
2221	}
2222      else
2223	std::__insertion_sort(__first, __last, __comp);
2224    }
2225
2226  /**
2227   *  @if maint
2228   *  This is a helper function for the sort routine.
2229   *  @endif
2230  */
2231  template<typename _Size>
2232    inline _Size
2233    __lg(_Size __n)
2234    {
2235      _Size __k;
2236      for (__k = 0; __n != 1; __n >>= 1)
2237	++__k;
2238      return __k;
2239    }
2240
2241  /**
2242   *  @brief Sort the smallest elements of a sequence.
2243   *  @param  first   An iterator.
2244   *  @param  middle  Another iterator.
2245   *  @param  last    Another iterator.
2246   *  @return  Nothing.
2247   *
2248   *  Sorts the smallest @p (middle-first) elements in the range
2249   *  @p [first,last) and moves them to the range @p [first,middle). The
2250   *  order of the remaining elements in the range @p [middle,last) is
2251   *  undefined.
2252   *  After the sort if @p i and @j are iterators in the range
2253   *  @p [first,middle) such that @i precedes @j and @k is an iterator in
2254   *  the range @p [middle,last) then @p *j<*i and @p *k<*i are both false.
2255  */
2256  template<typename _RandomAccessIterator>
2257    void
2258    partial_sort(_RandomAccessIterator __first,
2259		 _RandomAccessIterator __middle,
2260		 _RandomAccessIterator __last)
2261    {
2262      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2263	_ValueType;
2264
2265      // concept requirements
2266      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
2267	    _RandomAccessIterator>)
2268      __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
2269      __glibcxx_requires_valid_range(__first, __middle);
2270      __glibcxx_requires_valid_range(__middle, __last);
2271
2272      std::make_heap(__first, __middle);
2273      for (_RandomAccessIterator __i = __middle; __i < __last; ++__i)
2274	if (*__i < *__first)
2275	  std::__pop_heap(__first, __middle, __i, _ValueType(*__i));
2276      std::sort_heap(__first, __middle);
2277    }
2278
2279  /**
2280   *  @brief Sort the smallest elements of a sequence using a predicate
2281   *         for comparison.
2282   *  @param  first   An iterator.
2283   *  @param  middle  Another iterator.
2284   *  @param  last    Another iterator.
2285   *  @param  comp    A comparison functor.
2286   *  @return  Nothing.
2287   *
2288   *  Sorts the smallest @p (middle-first) elements in the range
2289   *  @p [first,last) and moves them to the range @p [first,middle). The
2290   *  order of the remaining elements in the range @p [middle,last) is
2291   *  undefined.
2292   *  After the sort if @p i and @j are iterators in the range
2293   *  @p [first,middle) such that @i precedes @j and @k is an iterator in
2294   *  the range @p [middle,last) then @p *comp(j,*i) and @p comp(*k,*i)
2295   *  are both false.
2296  */
2297  template<typename _RandomAccessIterator, typename _Compare>
2298    void
2299    partial_sort(_RandomAccessIterator __first,
2300		 _RandomAccessIterator __middle,
2301		 _RandomAccessIterator __last,
2302		 _Compare __comp)
2303    {
2304      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2305	_ValueType;
2306
2307      // concept requirements
2308      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
2309	    _RandomAccessIterator>)
2310      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
2311				  _ValueType, _ValueType>)
2312      __glibcxx_requires_valid_range(__first, __middle);
2313      __glibcxx_requires_valid_range(__middle, __last);
2314
2315      std::make_heap(__first, __middle, __comp);
2316      for (_RandomAccessIterator __i = __middle; __i < __last; ++__i)
2317	if (__comp(*__i, *__first))
2318	  std::__pop_heap(__first, __middle, __i, _ValueType(*__i), __comp);
2319      std::sort_heap(__first, __middle, __comp);
2320    }
2321
2322  /**
2323   *  @brief Copy the smallest elements of a sequence.
2324   *  @param  first   An iterator.
2325   *  @param  last    Another iterator.
2326   *  @param  result_first   A random-access iterator.
2327   *  @param  result_last    Another random-access iterator.
2328   *  @return   An iterator indicating the end of the resulting sequence.
2329   *
2330   *  Copies and sorts the smallest N values from the range @p [first,last)
2331   *  to the range beginning at @p result_first, where the number of
2332   *  elements to be copied, @p N, is the smaller of @p (last-first) and
2333   *  @p (result_last-result_first).
2334   *  After the sort if @p i and @j are iterators in the range
2335   *  @p [result_first,result_first+N) such that @i precedes @j then
2336   *  @p *j<*i is false.
2337   *  The value returned is @p result_first+N.
2338  */
2339  template<typename _InputIterator, typename _RandomAccessIterator>
2340    _RandomAccessIterator
2341    partial_sort_copy(_InputIterator __first, _InputIterator __last,
2342		      _RandomAccessIterator __result_first,
2343		      _RandomAccessIterator __result_last)
2344    {
2345      typedef typename iterator_traits<_InputIterator>::value_type
2346	_InputValueType;
2347      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2348	_OutputValueType;
2349      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
2350	_DistanceType;
2351
2352      // concept requirements
2353      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
2354      __glibcxx_function_requires(_ConvertibleConcept<_InputValueType,
2355				  _OutputValueType>)
2356      __glibcxx_function_requires(_LessThanComparableConcept<_OutputValueType>)
2357      __glibcxx_function_requires(_LessThanComparableConcept<_InputValueType>)
2358      __glibcxx_requires_valid_range(__first, __last);
2359      __glibcxx_requires_valid_range(__result_first, __result_last);
2360
2361      if (__result_first == __result_last)
2362	return __result_last;
2363      _RandomAccessIterator __result_real_last = __result_first;
2364      while(__first != __last && __result_real_last != __result_last)
2365	{
2366	  *__result_real_last = *__first;
2367	  ++__result_real_last;
2368	  ++__first;
2369	}
2370      std::make_heap(__result_first, __result_real_last);
2371      while (__first != __last)
2372	{
2373	  if (*__first < *__result_first)
2374	    std::__adjust_heap(__result_first, _DistanceType(0),
2375			       _DistanceType(__result_real_last
2376					     - __result_first),
2377			       _InputValueType(*__first));
2378	  ++__first;
2379	}
2380      std::sort_heap(__result_first, __result_real_last);
2381      return __result_real_last;
2382    }
2383
2384  /**
2385   *  @brief Copy the smallest elements of a sequence using a predicate for
2386   *         comparison.
2387   *  @param  first   An input iterator.
2388   *  @param  last    Another input iterator.
2389   *  @param  result_first   A random-access iterator.
2390   *  @param  result_last    Another random-access iterator.
2391   *  @param  comp    A comparison functor.
2392   *  @return   An iterator indicating the end of the resulting sequence.
2393   *
2394   *  Copies and sorts the smallest N values from the range @p [first,last)
2395   *  to the range beginning at @p result_first, where the number of
2396   *  elements to be copied, @p N, is the smaller of @p (last-first) and
2397   *  @p (result_last-result_first).
2398   *  After the sort if @p i and @j are iterators in the range
2399   *  @p [result_first,result_first+N) such that @i precedes @j then
2400   *  @p comp(*j,*i) is false.
2401   *  The value returned is @p result_first+N.
2402  */
2403  template<typename _InputIterator, typename _RandomAccessIterator, typename _Compare>
2404    _RandomAccessIterator
2405    partial_sort_copy(_InputIterator __first, _InputIterator __last,
2406		      _RandomAccessIterator __result_first,
2407		      _RandomAccessIterator __result_last,
2408		      _Compare __comp)
2409    {
2410      typedef typename iterator_traits<_InputIterator>::value_type
2411	_InputValueType;
2412      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2413	_OutputValueType;
2414      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
2415	_DistanceType;
2416
2417      // concept requirements
2418      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
2419      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
2420				  _RandomAccessIterator>)
2421      __glibcxx_function_requires(_ConvertibleConcept<_InputValueType,
2422				  _OutputValueType>)
2423      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
2424				  _OutputValueType, _OutputValueType>)
2425      __glibcxx_requires_valid_range(__first, __last);
2426      __glibcxx_requires_valid_range(__result_first, __result_last);
2427
2428      if (__result_first == __result_last)
2429	return __result_last;
2430      _RandomAccessIterator __result_real_last = __result_first;
2431      while(__first != __last && __result_real_last != __result_last)
2432	{
2433	  *__result_real_last = *__first;
2434	  ++__result_real_last;
2435	  ++__first;
2436	}
2437      std::make_heap(__result_first, __result_real_last, __comp);
2438      while (__first != __last)
2439	{
2440	  if (__comp(*__first, *__result_first))
2441	    std::__adjust_heap(__result_first, _DistanceType(0),
2442			       _DistanceType(__result_real_last
2443					     - __result_first),
2444			       _InputValueType(*__first),
2445			       __comp);
2446	  ++__first;
2447	}
2448      std::sort_heap(__result_first, __result_real_last, __comp);
2449      return __result_real_last;
2450    }
2451
2452  /**
2453   *  @if maint
2454   *  This is a helper function for the sort routine.
2455   *  @endif
2456  */
2457  template<typename _RandomAccessIterator, typename _Size>
2458    void
2459    __introsort_loop(_RandomAccessIterator __first,
2460		     _RandomAccessIterator __last,
2461		     _Size __depth_limit)
2462    {
2463      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2464	_ValueType;
2465
2466      while (__last - __first > _S_threshold)
2467	{
2468	  if (__depth_limit == 0)
2469	    {
2470	      std::partial_sort(__first, __last, __last);
2471	      return;
2472	    }
2473	  --__depth_limit;
2474	  _RandomAccessIterator __cut =
2475	    std::__unguarded_partition(__first, __last,
2476				       _ValueType(std::__median(*__first,
2477								*(__first
2478								  + (__last
2479								     - __first)
2480								  / 2),
2481								*(__last
2482								  - 1))));
2483	  std::__introsort_loop(__cut, __last, __depth_limit);
2484	  __last = __cut;
2485	}
2486    }
2487
2488  /**
2489   *  @if maint
2490   *  This is a helper function for the sort routine.
2491   *  @endif
2492  */
2493  template<typename _RandomAccessIterator, typename _Size, typename _Compare>
2494    void
2495    __introsort_loop(_RandomAccessIterator __first,
2496		     _RandomAccessIterator __last,
2497		     _Size __depth_limit, _Compare __comp)
2498    {
2499      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2500	_ValueType;
2501
2502      while (__last - __first > _S_threshold)
2503	{
2504	  if (__depth_limit == 0)
2505	    {
2506	      std::partial_sort(__first, __last, __last, __comp);
2507	      return;
2508	    }
2509	  --__depth_limit;
2510	  _RandomAccessIterator __cut =
2511	    std::__unguarded_partition(__first, __last,
2512				       _ValueType(std::__median(*__first,
2513								*(__first
2514								  + (__last
2515								     - __first)
2516								  / 2),
2517								*(__last - 1),
2518								__comp)),
2519				       __comp);
2520	  std::__introsort_loop(__cut, __last, __depth_limit, __comp);
2521	  __last = __cut;
2522	}
2523    }
2524
2525  /**
2526   *  @brief Sort the elements of a sequence.
2527   *  @param  first   An iterator.
2528   *  @param  last    Another iterator.
2529   *  @return  Nothing.
2530   *
2531   *  Sorts the elements in the range @p [first,last) in ascending order,
2532   *  such that @p *(i+1)<*i is false for each iterator @p i in the range
2533   *  @p [first,last-1).
2534   *
2535   *  The relative ordering of equivalent elements is not preserved, use
2536   *  @p stable_sort() if this is needed.
2537  */
2538  template<typename _RandomAccessIterator>
2539    inline void
2540    sort(_RandomAccessIterator __first, _RandomAccessIterator __last)
2541    {
2542      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2543	_ValueType;
2544
2545      // concept requirements
2546      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
2547	    _RandomAccessIterator>)
2548      __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
2549      __glibcxx_requires_valid_range(__first, __last);
2550
2551      if (__first != __last)
2552	{
2553	  std::__introsort_loop(__first, __last, __lg(__last - __first) * 2);
2554	  std::__final_insertion_sort(__first, __last);
2555	}
2556    }
2557
2558  /**
2559   *  @brief Sort the elements of a sequence using a predicate for comparison.
2560   *  @param  first   An iterator.
2561   *  @param  last    Another iterator.
2562   *  @param  comp    A comparison functor.
2563   *  @return  Nothing.
2564   *
2565   *  Sorts the elements in the range @p [first,last) in ascending order,
2566   *  such that @p comp(*(i+1),*i) is false for every iterator @p i in the
2567   *  range @p [first,last-1).
2568   *
2569   *  The relative ordering of equivalent elements is not preserved, use
2570   *  @p stable_sort() if this is needed.
2571  */
2572  template<typename _RandomAccessIterator, typename _Compare>
2573    inline void
2574    sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
2575	 _Compare __comp)
2576    {
2577      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2578	_ValueType;
2579
2580      // concept requirements
2581      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
2582	    _RandomAccessIterator>)
2583      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType,
2584				  _ValueType>)
2585      __glibcxx_requires_valid_range(__first, __last);
2586
2587      if (__first != __last)
2588	{
2589	  std::__introsort_loop(__first, __last, __lg(__last - __first) * 2,
2590				__comp);
2591	  std::__final_insertion_sort(__first, __last, __comp);
2592	}
2593    }
2594
2595  /**
2596   *  @brief Finds the first position in which @a val could be inserted
2597   *         without changing the ordering.
2598   *  @param  first   An iterator.
2599   *  @param  last    Another iterator.
2600   *  @param  val     The search term.
2601   *  @return  An iterator pointing to the first element "not less than" @a val,
2602   *           or end() if every element is less than @a val.
2603   *  @ingroup binarysearch
2604  */
2605  template<typename _ForwardIterator, typename _Tp>
2606    _ForwardIterator
2607    lower_bound(_ForwardIterator __first, _ForwardIterator __last,
2608		const _Tp& __val)
2609    {
2610      typedef typename iterator_traits<_ForwardIterator>::value_type
2611	_ValueType;
2612      typedef typename iterator_traits<_ForwardIterator>::difference_type
2613	_DistanceType;
2614
2615      // concept requirements
2616      // Note that these are slightly stricter than those of the 4-argument
2617      // version, defined next.  The difference is in the strictness of the
2618      // comparison operations... so for looser checking, define your own
2619      // comparison function, as was intended.
2620      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2621      __glibcxx_function_requires(_SameTypeConcept<_Tp, _ValueType>)
2622      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
2623      __glibcxx_requires_partitioned(__first, __last, __val);
2624
2625      _DistanceType __len = std::distance(__first, __last);
2626      _DistanceType __half;
2627      _ForwardIterator __middle;
2628
2629      while (__len > 0)
2630	{
2631	  __half = __len >> 1;
2632	  __middle = __first;
2633	  std::advance(__middle, __half);
2634	  if (*__middle < __val)
2635	    {
2636	      __first = __middle;
2637	      ++__first;
2638	      __len = __len - __half - 1;
2639	    }
2640	  else
2641	    __len = __half;
2642	}
2643      return __first;
2644    }
2645
2646  /**
2647   *  @brief Finds the first position in which @a val could be inserted
2648   *         without changing the ordering.
2649   *  @param  first   An iterator.
2650   *  @param  last    Another iterator.
2651   *  @param  val     The search term.
2652   *  @param  comp    A functor to use for comparisons.
2653   *  @return  An iterator pointing to the first element "not less than" @a val,
2654   *           or end() if every element is less than @a val.
2655   *  @ingroup binarysearch
2656   *
2657   *  The comparison function should have the same effects on ordering as
2658   *  the function used for the initial sort.
2659  */
2660  template<typename _ForwardIterator, typename _Tp, typename _Compare>
2661    _ForwardIterator
2662    lower_bound(_ForwardIterator __first, _ForwardIterator __last,
2663		const _Tp& __val, _Compare __comp)
2664    {
2665      typedef typename iterator_traits<_ForwardIterator>::value_type
2666	_ValueType;
2667      typedef typename iterator_traits<_ForwardIterator>::difference_type
2668	_DistanceType;
2669
2670      // concept requirements
2671      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2672      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
2673				  _ValueType, _Tp>)
2674      __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
2675
2676      _DistanceType __len = std::distance(__first, __last);
2677      _DistanceType __half;
2678      _ForwardIterator __middle;
2679
2680      while (__len > 0)
2681	{
2682	  __half = __len >> 1;
2683	  __middle = __first;
2684	  std::advance(__middle, __half);
2685	  if (__comp(*__middle, __val))
2686	    {
2687	      __first = __middle;
2688	      ++__first;
2689	      __len = __len - __half - 1;
2690	    }
2691	  else
2692	    __len = __half;
2693	}
2694      return __first;
2695    }
2696
2697  /**
2698   *  @brief Finds the last position in which @a val could be inserted
2699   *         without changing the ordering.
2700   *  @param  first   An iterator.
2701   *  @param  last    Another iterator.
2702   *  @param  val     The search term.
2703   *  @return  An iterator pointing to the first element greater than @a val,
2704   *           or end() if no elements are greater than @a val.
2705   *  @ingroup binarysearch
2706  */
2707  template<typename _ForwardIterator, typename _Tp>
2708    _ForwardIterator
2709    upper_bound(_ForwardIterator __first, _ForwardIterator __last,
2710		const _Tp& __val)
2711    {
2712      typedef typename iterator_traits<_ForwardIterator>::value_type
2713	_ValueType;
2714      typedef typename iterator_traits<_ForwardIterator>::difference_type
2715	_DistanceType;
2716
2717      // concept requirements
2718      // See comments on lower_bound.
2719      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2720      __glibcxx_function_requires(_SameTypeConcept<_Tp, _ValueType>)
2721      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
2722      __glibcxx_requires_partitioned(__first, __last, __val);
2723
2724      _DistanceType __len = std::distance(__first, __last);
2725      _DistanceType __half;
2726      _ForwardIterator __middle;
2727
2728      while (__len > 0)
2729	{
2730	  __half = __len >> 1;
2731	  __middle = __first;
2732	  std::advance(__middle, __half);
2733	  if (__val < *__middle)
2734	    __len = __half;
2735	  else
2736	    {
2737	      __first = __middle;
2738	      ++__first;
2739	      __len = __len - __half - 1;
2740	    }
2741	}
2742      return __first;
2743    }
2744
2745  /**
2746   *  @brief Finds the last position in which @a val could be inserted
2747   *         without changing the ordering.
2748   *  @param  first   An iterator.
2749   *  @param  last    Another iterator.
2750   *  @param  val     The search term.
2751   *  @param  comp    A functor to use for comparisons.
2752   *  @return  An iterator pointing to the first element greater than @a val,
2753   *           or end() if no elements are greater than @a val.
2754   *  @ingroup binarysearch
2755   *
2756   *  The comparison function should have the same effects on ordering as
2757   *  the function used for the initial sort.
2758  */
2759  template<typename _ForwardIterator, typename _Tp, typename _Compare>
2760    _ForwardIterator
2761    upper_bound(_ForwardIterator __first, _ForwardIterator __last,
2762		const _Tp& __val, _Compare __comp)
2763    {
2764      typedef typename iterator_traits<_ForwardIterator>::value_type
2765	_ValueType;
2766      typedef typename iterator_traits<_ForwardIterator>::difference_type
2767	_DistanceType;
2768
2769      // concept requirements
2770      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
2771      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
2772				  _Tp, _ValueType>)
2773      __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
2774
2775      _DistanceType __len = std::distance(__first, __last);
2776      _DistanceType __half;
2777      _ForwardIterator __middle;
2778
2779      while (__len > 0)
2780	{
2781	  __half = __len >> 1;
2782	  __middle = __first;
2783	  std::advance(__middle, __half);
2784	  if (__comp(__val, *__middle))
2785	    __len = __half;
2786	  else
2787	    {
2788	      __first = __middle;
2789	      ++__first;
2790	      __len = __len - __half - 1;
2791	    }
2792	}
2793      return __first;
2794    }
2795
2796  /**
2797   *  @if maint
2798   *  This is a helper function for the merge routines.
2799   *  @endif
2800  */
2801  template<typename _BidirectionalIterator, typename _Distance>
2802    void
2803    __merge_without_buffer(_BidirectionalIterator __first,
2804			   _BidirectionalIterator __middle,
2805			   _BidirectionalIterator __last,
2806			   _Distance __len1, _Distance __len2)
2807    {
2808      if (__len1 == 0 || __len2 == 0)
2809	return;
2810      if (__len1 + __len2 == 2)
2811	{
2812	  if (*__middle < *__first)
2813	    std::iter_swap(__first, __middle);
2814	  return;
2815	}
2816      _BidirectionalIterator __first_cut = __first;
2817      _BidirectionalIterator __second_cut = __middle;
2818      _Distance __len11 = 0;
2819      _Distance __len22 = 0;
2820      if (__len1 > __len2)
2821	{
2822	  __len11 = __len1 / 2;
2823	  std::advance(__first_cut, __len11);
2824	  __second_cut = std::lower_bound(__middle, __last, *__first_cut);
2825	  __len22 = std::distance(__middle, __second_cut);
2826	}
2827      else
2828	{
2829	  __len22 = __len2 / 2;
2830	  std::advance(__second_cut, __len22);
2831	  __first_cut = std::upper_bound(__first, __middle, *__second_cut);
2832	  __len11 = std::distance(__first, __first_cut);
2833	}
2834      std::rotate(__first_cut, __middle, __second_cut);
2835      _BidirectionalIterator __new_middle = __first_cut;
2836      std::advance(__new_middle, std::distance(__middle, __second_cut));
2837      std::__merge_without_buffer(__first, __first_cut, __new_middle,
2838				  __len11, __len22);
2839      std::__merge_without_buffer(__new_middle, __second_cut, __last,
2840				  __len1 - __len11, __len2 - __len22);
2841    }
2842
2843  /**
2844   *  @if maint
2845   *  This is a helper function for the merge routines.
2846   *  @endif
2847  */
2848  template<typename _BidirectionalIterator, typename _Distance,
2849	   typename _Compare>
2850    void
2851    __merge_without_buffer(_BidirectionalIterator __first,
2852                           _BidirectionalIterator __middle,
2853			   _BidirectionalIterator __last,
2854			   _Distance __len1, _Distance __len2,
2855			   _Compare __comp)
2856    {
2857      if (__len1 == 0 || __len2 == 0)
2858	return;
2859      if (__len1 + __len2 == 2)
2860	{
2861	  if (__comp(*__middle, *__first))
2862	    std::iter_swap(__first, __middle);
2863	  return;
2864	}
2865      _BidirectionalIterator __first_cut = __first;
2866      _BidirectionalIterator __second_cut = __middle;
2867      _Distance __len11 = 0;
2868      _Distance __len22 = 0;
2869      if (__len1 > __len2)
2870	{
2871	  __len11 = __len1 / 2;
2872	  std::advance(__first_cut, __len11);
2873	  __second_cut = std::lower_bound(__middle, __last, *__first_cut,
2874					  __comp);
2875	  __len22 = std::distance(__middle, __second_cut);
2876	}
2877      else
2878	{
2879	  __len22 = __len2 / 2;
2880	  std::advance(__second_cut, __len22);
2881	  __first_cut = std::upper_bound(__first, __middle, *__second_cut,
2882					 __comp);
2883	  __len11 = std::distance(__first, __first_cut);
2884	}
2885      std::rotate(__first_cut, __middle, __second_cut);
2886      _BidirectionalIterator __new_middle = __first_cut;
2887      std::advance(__new_middle, std::distance(__middle, __second_cut));
2888      std::__merge_without_buffer(__first, __first_cut, __new_middle,
2889				  __len11, __len22, __comp);
2890      std::__merge_without_buffer(__new_middle, __second_cut, __last,
2891				  __len1 - __len11, __len2 - __len22, __comp);
2892    }
2893
2894  /**
2895   *  @if maint
2896   *  This is a helper function for the stable sorting routines.
2897   *  @endif
2898  */
2899  template<typename _RandomAccessIterator>
2900    void
2901    __inplace_stable_sort(_RandomAccessIterator __first,
2902			  _RandomAccessIterator __last)
2903    {
2904      if (__last - __first < 15)
2905	{
2906	  std::__insertion_sort(__first, __last);
2907	  return;
2908	}
2909      _RandomAccessIterator __middle = __first + (__last - __first) / 2;
2910      std::__inplace_stable_sort(__first, __middle);
2911      std::__inplace_stable_sort(__middle, __last);
2912      std::__merge_without_buffer(__first, __middle, __last,
2913				  __middle - __first,
2914				  __last - __middle);
2915    }
2916
2917  /**
2918   *  @if maint
2919   *  This is a helper function for the stable sorting routines.
2920   *  @endif
2921  */
2922  template<typename _RandomAccessIterator, typename _Compare>
2923    void
2924    __inplace_stable_sort(_RandomAccessIterator __first,
2925			  _RandomAccessIterator __last, _Compare __comp)
2926    {
2927      if (__last - __first < 15)
2928	{
2929	  std::__insertion_sort(__first, __last, __comp);
2930	  return;
2931	}
2932      _RandomAccessIterator __middle = __first + (__last - __first) / 2;
2933      std::__inplace_stable_sort(__first, __middle, __comp);
2934      std::__inplace_stable_sort(__middle, __last, __comp);
2935      std::__merge_without_buffer(__first, __middle, __last,
2936				  __middle - __first,
2937				  __last - __middle,
2938				  __comp);
2939    }
2940
2941  /**
2942   *  @brief Merges two sorted ranges.
2943   *  @param  first1  An iterator.
2944   *  @param  first2  Another iterator.
2945   *  @param  last1   Another iterator.
2946   *  @param  last2   Another iterator.
2947   *  @param  result  An iterator pointing to the end of the merged range.
2948   *  @return  An iterator pointing to the first element "not less than" @a val.
2949   *
2950   *  Merges the ranges [first1,last1) and [first2,last2) into the sorted range
2951   *  [result, result + (last1-first1) + (last2-first2)).  Both input ranges
2952   *  must be sorted, and the output range must not overlap with either of
2953   *  the input ranges.  The sort is @e stable, that is, for equivalent
2954   *  elements in the two ranges, elements from the first range will always
2955   *  come before elements from the second.
2956  */
2957  template<typename _InputIterator1, typename _InputIterator2,
2958	   typename _OutputIterator>
2959    _OutputIterator
2960    merge(_InputIterator1 __first1, _InputIterator1 __last1,
2961	  _InputIterator2 __first2, _InputIterator2 __last2,
2962	  _OutputIterator __result)
2963    {
2964      // concept requirements
2965      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
2966      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
2967      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
2968	    typename iterator_traits<_InputIterator1>::value_type>)
2969      __glibcxx_function_requires(_SameTypeConcept<
2970	    typename iterator_traits<_InputIterator1>::value_type,
2971	    typename iterator_traits<_InputIterator2>::value_type>)
2972      __glibcxx_function_requires(_LessThanComparableConcept<
2973	    typename iterator_traits<_InputIterator1>::value_type>)
2974      __glibcxx_requires_sorted(__first1, __last1);
2975      __glibcxx_requires_sorted(__first2, __last2);
2976
2977      while (__first1 != __last1 && __first2 != __last2)
2978	{
2979	  if (*__first2 < *__first1)
2980	    {
2981	      *__result = *__first2;
2982	      ++__first2;
2983	    }
2984	  else
2985	    {
2986	      *__result = *__first1;
2987	      ++__first1;
2988	    }
2989	  ++__result;
2990	}
2991      return std::copy(__first2, __last2, std::copy(__first1, __last1,
2992						    __result));
2993    }
2994
2995  /**
2996   *  @brief Merges two sorted ranges.
2997   *  @param  first1  An iterator.
2998   *  @param  first2  Another iterator.
2999   *  @param  last1   Another iterator.
3000   *  @param  last2   Another iterator.
3001   *  @param  result  An iterator pointing to the end of the merged range.
3002   *  @param  comp    A functor to use for comparisons.
3003   *  @return  An iterator pointing to the first element "not less than" @a val.
3004   *
3005   *  Merges the ranges [first1,last1) and [first2,last2) into the sorted range
3006   *  [result, result + (last1-first1) + (last2-first2)).  Both input ranges
3007   *  must be sorted, and the output range must not overlap with either of
3008   *  the input ranges.  The sort is @e stable, that is, for equivalent
3009   *  elements in the two ranges, elements from the first range will always
3010   *  come before elements from the second.
3011   *
3012   *  The comparison function should have the same effects on ordering as
3013   *  the function used for the initial sort.
3014  */
3015  template<typename _InputIterator1, typename _InputIterator2,
3016	   typename _OutputIterator, typename _Compare>
3017    _OutputIterator
3018    merge(_InputIterator1 __first1, _InputIterator1 __last1,
3019	  _InputIterator2 __first2, _InputIterator2 __last2,
3020	  _OutputIterator __result, _Compare __comp)
3021    {
3022      // concept requirements
3023      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
3024      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
3025      __glibcxx_function_requires(_SameTypeConcept<
3026	    typename iterator_traits<_InputIterator1>::value_type,
3027	    typename iterator_traits<_InputIterator2>::value_type>)
3028      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
3029	    typename iterator_traits<_InputIterator1>::value_type>)
3030      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3031	    typename iterator_traits<_InputIterator1>::value_type,
3032	    typename iterator_traits<_InputIterator2>::value_type>)
3033      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
3034      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
3035
3036      while (__first1 != __last1 && __first2 != __last2)
3037	{
3038	  if (__comp(*__first2, *__first1))
3039	    {
3040	      *__result = *__first2;
3041	      ++__first2;
3042	    }
3043	  else
3044	    {
3045	      *__result = *__first1;
3046	      ++__first1;
3047	    }
3048	  ++__result;
3049	}
3050      return std::copy(__first2, __last2, std::copy(__first1, __last1,
3051						    __result));
3052    }
3053
3054  template<typename _RandomAccessIterator1, typename _RandomAccessIterator2,
3055	   typename _Distance>
3056    void
3057    __merge_sort_loop(_RandomAccessIterator1 __first,
3058		      _RandomAccessIterator1 __last,
3059		      _RandomAccessIterator2 __result,
3060		      _Distance __step_size)
3061    {
3062      const _Distance __two_step = 2 * __step_size;
3063
3064      while (__last - __first >= __two_step)
3065	{
3066	  __result = std::merge(__first, __first + __step_size,
3067				__first + __step_size, __first + __two_step,
3068				__result);
3069	  __first += __two_step;
3070	}
3071
3072      __step_size = std::min(_Distance(__last - __first), __step_size);
3073      std::merge(__first, __first + __step_size, __first + __step_size, __last,
3074		 __result);
3075    }
3076
3077  template<typename _RandomAccessIterator1, typename _RandomAccessIterator2,
3078	   typename _Distance, typename _Compare>
3079    void
3080    __merge_sort_loop(_RandomAccessIterator1 __first,
3081		      _RandomAccessIterator1 __last,
3082		      _RandomAccessIterator2 __result, _Distance __step_size,
3083		      _Compare __comp)
3084    {
3085      const _Distance __two_step = 2 * __step_size;
3086
3087      while (__last - __first >= __two_step)
3088	{
3089	  __result = std::merge(__first, __first + __step_size,
3090				__first + __step_size, __first + __two_step,
3091				__result,
3092				__comp);
3093	  __first += __two_step;
3094	}
3095      __step_size = std::min(_Distance(__last - __first), __step_size);
3096
3097      std::merge(__first, __first + __step_size,
3098		 __first + __step_size, __last,
3099		 __result,
3100		 __comp);
3101    }
3102
3103  enum { _S_chunk_size = 7 };
3104
3105  template<typename _RandomAccessIterator, typename _Distance>
3106    void
3107    __chunk_insertion_sort(_RandomAccessIterator __first,
3108			   _RandomAccessIterator __last,
3109			   _Distance __chunk_size)
3110    {
3111      while (__last - __first >= __chunk_size)
3112	{
3113	  std::__insertion_sort(__first, __first + __chunk_size);
3114	  __first += __chunk_size;
3115	}
3116      std::__insertion_sort(__first, __last);
3117    }
3118
3119  template<typename _RandomAccessIterator, typename _Distance, typename _Compare>
3120    void
3121    __chunk_insertion_sort(_RandomAccessIterator __first,
3122			   _RandomAccessIterator __last,
3123			   _Distance __chunk_size, _Compare __comp)
3124    {
3125      while (__last - __first >= __chunk_size)
3126	{
3127	  std::__insertion_sort(__first, __first + __chunk_size, __comp);
3128	  __first += __chunk_size;
3129	}
3130      std::__insertion_sort(__first, __last, __comp);
3131    }
3132
3133  template<typename _RandomAccessIterator, typename _Pointer>
3134    void
3135    __merge_sort_with_buffer(_RandomAccessIterator __first,
3136			     _RandomAccessIterator __last,
3137                             _Pointer __buffer)
3138    {
3139      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
3140	_Distance;
3141
3142      const _Distance __len = __last - __first;
3143      const _Pointer __buffer_last = __buffer + __len;
3144
3145      _Distance __step_size = _S_chunk_size;
3146      std::__chunk_insertion_sort(__first, __last, __step_size);
3147
3148      while (__step_size < __len)
3149	{
3150	  std::__merge_sort_loop(__first, __last, __buffer, __step_size);
3151	  __step_size *= 2;
3152	  std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size);
3153	  __step_size *= 2;
3154	}
3155    }
3156
3157  template<typename _RandomAccessIterator, typename _Pointer, typename _Compare>
3158    void
3159    __merge_sort_with_buffer(_RandomAccessIterator __first,
3160			     _RandomAccessIterator __last,
3161                             _Pointer __buffer, _Compare __comp)
3162    {
3163      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
3164	_Distance;
3165
3166      const _Distance __len = __last - __first;
3167      const _Pointer __buffer_last = __buffer + __len;
3168
3169      _Distance __step_size = _S_chunk_size;
3170      std::__chunk_insertion_sort(__first, __last, __step_size, __comp);
3171
3172      while (__step_size < __len)
3173	{
3174	  std::__merge_sort_loop(__first, __last, __buffer,
3175				 __step_size, __comp);
3176	  __step_size *= 2;
3177	  std::__merge_sort_loop(__buffer, __buffer_last, __first,
3178				 __step_size, __comp);
3179	  __step_size *= 2;
3180	}
3181    }
3182
3183  /**
3184   *  @if maint
3185   *  This is a helper function for the merge routines.
3186   *  @endif
3187  */
3188  template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
3189	   typename _BidirectionalIterator3>
3190    _BidirectionalIterator3
3191    __merge_backward(_BidirectionalIterator1 __first1,
3192		     _BidirectionalIterator1 __last1,
3193		     _BidirectionalIterator2 __first2,
3194		     _BidirectionalIterator2 __last2,
3195		     _BidirectionalIterator3 __result)
3196    {
3197      if (__first1 == __last1)
3198	return std::copy_backward(__first2, __last2, __result);
3199      if (__first2 == __last2)
3200	return std::copy_backward(__first1, __last1, __result);
3201      --__last1;
3202      --__last2;
3203      while (true)
3204	{
3205	  if (*__last2 < *__last1)
3206	    {
3207	      *--__result = *__last1;
3208	      if (__first1 == __last1)
3209		return std::copy_backward(__first2, ++__last2, __result);
3210	      --__last1;
3211	    }
3212	  else
3213	    {
3214	      *--__result = *__last2;
3215	      if (__first2 == __last2)
3216		return std::copy_backward(__first1, ++__last1, __result);
3217	      --__last2;
3218	    }
3219	}
3220    }
3221
3222  /**
3223   *  @if maint
3224   *  This is a helper function for the merge routines.
3225   *  @endif
3226  */
3227  template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
3228	   typename _BidirectionalIterator3, typename _Compare>
3229    _BidirectionalIterator3
3230    __merge_backward(_BidirectionalIterator1 __first1,
3231		     _BidirectionalIterator1 __last1,
3232		     _BidirectionalIterator2 __first2,
3233		     _BidirectionalIterator2 __last2,
3234		     _BidirectionalIterator3 __result,
3235		     _Compare __comp)
3236    {
3237      if (__first1 == __last1)
3238	return std::copy_backward(__first2, __last2, __result);
3239      if (__first2 == __last2)
3240	return std::copy_backward(__first1, __last1, __result);
3241      --__last1;
3242      --__last2;
3243      while (true)
3244	{
3245	  if (__comp(*__last2, *__last1))
3246	    {
3247	      *--__result = *__last1;
3248	      if (__first1 == __last1)
3249		return std::copy_backward(__first2, ++__last2, __result);
3250	      --__last1;
3251	    }
3252	  else
3253	    {
3254	      *--__result = *__last2;
3255	      if (__first2 == __last2)
3256		return std::copy_backward(__first1, ++__last1, __result);
3257	      --__last2;
3258	    }
3259	}
3260    }
3261
3262  /**
3263   *  @if maint
3264   *  This is a helper function for the merge routines.
3265   *  @endif
3266  */
3267  template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
3268	   typename _Distance>
3269    _BidirectionalIterator1
3270    __rotate_adaptive(_BidirectionalIterator1 __first,
3271		      _BidirectionalIterator1 __middle,
3272		      _BidirectionalIterator1 __last,
3273		      _Distance __len1, _Distance __len2,
3274		      _BidirectionalIterator2 __buffer,
3275		      _Distance __buffer_size)
3276    {
3277      _BidirectionalIterator2 __buffer_end;
3278      if (__len1 > __len2 && __len2 <= __buffer_size)
3279	{
3280	  __buffer_end = std::copy(__middle, __last, __buffer);
3281	  std::copy_backward(__first, __middle, __last);
3282	  return std::copy(__buffer, __buffer_end, __first);
3283	}
3284      else if (__len1 <= __buffer_size)
3285	{
3286	  __buffer_end = std::copy(__first, __middle, __buffer);
3287	  std::copy(__middle, __last, __first);
3288	  return std::copy_backward(__buffer, __buffer_end, __last);
3289	}
3290      else
3291	{
3292	  std::rotate(__first, __middle, __last);
3293	  std::advance(__first, std::distance(__middle, __last));
3294	  return __first;
3295	}
3296    }
3297
3298  /**
3299   *  @if maint
3300   *  This is a helper function for the merge routines.
3301   *  @endif
3302  */
3303  template<typename _BidirectionalIterator, typename _Distance,
3304	   typename _Pointer>
3305    void
3306    __merge_adaptive(_BidirectionalIterator __first,
3307                     _BidirectionalIterator __middle,
3308		     _BidirectionalIterator __last,
3309		     _Distance __len1, _Distance __len2,
3310		     _Pointer __buffer, _Distance __buffer_size)
3311    {
3312      if (__len1 <= __len2 && __len1 <= __buffer_size)
3313	{
3314	  _Pointer __buffer_end = std::copy(__first, __middle, __buffer);
3315	  std::merge(__buffer, __buffer_end, __middle, __last, __first);
3316	}
3317      else if (__len2 <= __buffer_size)
3318	{
3319	  _Pointer __buffer_end = std::copy(__middle, __last, __buffer);
3320	  std::__merge_backward(__first, __middle, __buffer,
3321				__buffer_end, __last);
3322	}
3323      else
3324	{
3325	  _BidirectionalIterator __first_cut = __first;
3326	  _BidirectionalIterator __second_cut = __middle;
3327	  _Distance __len11 = 0;
3328	  _Distance __len22 = 0;
3329	  if (__len1 > __len2)
3330	    {
3331	      __len11 = __len1 / 2;
3332	      std::advance(__first_cut, __len11);
3333	      __second_cut = std::lower_bound(__middle, __last,
3334					      *__first_cut);
3335	      __len22 = std::distance(__middle, __second_cut);
3336	    }
3337	  else
3338	    {
3339	      __len22 = __len2 / 2;
3340	      std::advance(__second_cut, __len22);
3341	      __first_cut = std::upper_bound(__first, __middle,
3342					     *__second_cut);
3343	      __len11 = std::distance(__first, __first_cut);
3344	    }
3345	  _BidirectionalIterator __new_middle =
3346	    std::__rotate_adaptive(__first_cut, __middle, __second_cut,
3347				   __len1 - __len11, __len22, __buffer,
3348				   __buffer_size);
3349	  std::__merge_adaptive(__first, __first_cut, __new_middle, __len11,
3350				__len22, __buffer, __buffer_size);
3351	  std::__merge_adaptive(__new_middle, __second_cut, __last,
3352				__len1 - __len11,
3353				__len2 - __len22, __buffer, __buffer_size);
3354	}
3355    }
3356
3357  /**
3358   *  @if maint
3359   *  This is a helper function for the merge routines.
3360   *  @endif
3361  */
3362  template<typename _BidirectionalIterator, typename _Distance, typename _Pointer,
3363	   typename _Compare>
3364    void
3365    __merge_adaptive(_BidirectionalIterator __first,
3366                     _BidirectionalIterator __middle,
3367		     _BidirectionalIterator __last,
3368		     _Distance __len1, _Distance __len2,
3369		     _Pointer __buffer, _Distance __buffer_size,
3370		     _Compare __comp)
3371    {
3372      if (__len1 <= __len2 && __len1 <= __buffer_size)
3373	{
3374	  _Pointer __buffer_end = std::copy(__first, __middle, __buffer);
3375	  std::merge(__buffer, __buffer_end, __middle, __last, __first, __comp);
3376	}
3377      else if (__len2 <= __buffer_size)
3378	{
3379	  _Pointer __buffer_end = std::copy(__middle, __last, __buffer);
3380	  std::__merge_backward(__first, __middle, __buffer, __buffer_end,
3381				__last, __comp);
3382	}
3383      else
3384	{
3385	  _BidirectionalIterator __first_cut = __first;
3386	  _BidirectionalIterator __second_cut = __middle;
3387	  _Distance __len11 = 0;
3388	  _Distance __len22 = 0;
3389	  if (__len1 > __len2)
3390	    {
3391	      __len11 = __len1 / 2;
3392	      std::advance(__first_cut, __len11);
3393	      __second_cut = std::lower_bound(__middle, __last, *__first_cut,
3394					      __comp);
3395	      __len22 = std::distance(__middle, __second_cut);
3396	    }
3397	  else
3398	    {
3399	      __len22 = __len2 / 2;
3400	      std::advance(__second_cut, __len22);
3401	      __first_cut = std::upper_bound(__first, __middle, *__second_cut,
3402					     __comp);
3403	      __len11 = std::distance(__first, __first_cut);
3404	    }
3405	  _BidirectionalIterator __new_middle =
3406	    std::__rotate_adaptive(__first_cut, __middle, __second_cut,
3407				   __len1 - __len11, __len22, __buffer,
3408				   __buffer_size);
3409	  std::__merge_adaptive(__first, __first_cut, __new_middle, __len11,
3410				__len22, __buffer, __buffer_size, __comp);
3411	  std::__merge_adaptive(__new_middle, __second_cut, __last,
3412				__len1 - __len11,
3413				__len2 - __len22, __buffer,
3414				__buffer_size, __comp);
3415	}
3416    }
3417
3418  /**
3419   *  @brief Merges two sorted ranges in place.
3420   *  @param  first   An iterator.
3421   *  @param  middle  Another iterator.
3422   *  @param  last    Another iterator.
3423   *  @return  Nothing.
3424   *
3425   *  Merges two sorted and consecutive ranges, [first,middle) and
3426   *  [middle,last), and puts the result in [first,last).  The output will
3427   *  be sorted.  The sort is @e stable, that is, for equivalent
3428   *  elements in the two ranges, elements from the first range will always
3429   *  come before elements from the second.
3430   *
3431   *  If enough additional memory is available, this takes (last-first)-1
3432   *  comparisons.  Otherwise an NlogN algorithm is used, where N is
3433   *  distance(first,last).
3434  */
3435  template<typename _BidirectionalIterator>
3436    void
3437    inplace_merge(_BidirectionalIterator __first,
3438		  _BidirectionalIterator __middle,
3439		  _BidirectionalIterator __last)
3440    {
3441      typedef typename iterator_traits<_BidirectionalIterator>::value_type
3442          _ValueType;
3443      typedef typename iterator_traits<_BidirectionalIterator>::difference_type
3444          _DistanceType;
3445
3446      // concept requirements
3447      __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
3448	    _BidirectionalIterator>)
3449      __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
3450      __glibcxx_requires_sorted(__first, __middle);
3451      __glibcxx_requires_sorted(__middle, __last);
3452
3453      if (__first == __middle || __middle == __last)
3454	return;
3455
3456      _DistanceType __len1 = std::distance(__first, __middle);
3457      _DistanceType __len2 = std::distance(__middle, __last);
3458
3459      _Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first,
3460								  __last);
3461      if (__buf.begin() == 0)
3462	std::__merge_without_buffer(__first, __middle, __last, __len1, __len2);
3463      else
3464	std::__merge_adaptive(__first, __middle, __last, __len1, __len2,
3465			      __buf.begin(), _DistanceType(__buf.size()));
3466    }
3467
3468  /**
3469   *  @brief Merges two sorted ranges in place.
3470   *  @param  first   An iterator.
3471   *  @param  middle  Another iterator.
3472   *  @param  last    Another iterator.
3473   *  @param  comp    A functor to use for comparisons.
3474   *  @return  Nothing.
3475   *
3476   *  Merges two sorted and consecutive ranges, [first,middle) and
3477   *  [middle,last), and puts the result in [first,last).  The output will
3478   *  be sorted.  The sort is @e stable, that is, for equivalent
3479   *  elements in the two ranges, elements from the first range will always
3480   *  come before elements from the second.
3481   *
3482   *  If enough additional memory is available, this takes (last-first)-1
3483   *  comparisons.  Otherwise an NlogN algorithm is used, where N is
3484   *  distance(first,last).
3485   *
3486   *  The comparison function should have the same effects on ordering as
3487   *  the function used for the initial sort.
3488  */
3489  template<typename _BidirectionalIterator, typename _Compare>
3490    void
3491    inplace_merge(_BidirectionalIterator __first,
3492		  _BidirectionalIterator __middle,
3493		  _BidirectionalIterator __last,
3494		  _Compare __comp)
3495    {
3496      typedef typename iterator_traits<_BidirectionalIterator>::value_type
3497          _ValueType;
3498      typedef typename iterator_traits<_BidirectionalIterator>::difference_type
3499          _DistanceType;
3500
3501      // concept requirements
3502      __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
3503	    _BidirectionalIterator>)
3504      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3505	    _ValueType, _ValueType>)
3506      __glibcxx_requires_sorted_pred(__first, __middle, __comp);
3507      __glibcxx_requires_sorted_pred(__middle, __last, __comp);
3508
3509      if (__first == __middle || __middle == __last)
3510	return;
3511
3512      const _DistanceType __len1 = std::distance(__first, __middle);
3513      const _DistanceType __len2 = std::distance(__middle, __last);
3514
3515      _Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first,
3516								  __last);
3517      if (__buf.begin() == 0)
3518	std::__merge_without_buffer(__first, __middle, __last, __len1,
3519				    __len2, __comp);
3520      else
3521	std::__merge_adaptive(__first, __middle, __last, __len1, __len2,
3522			      __buf.begin(), _DistanceType(__buf.size()),
3523			      __comp);
3524    }
3525
3526  template<typename _RandomAccessIterator, typename _Pointer,
3527	   typename _Distance>
3528    void
3529    __stable_sort_adaptive(_RandomAccessIterator __first,
3530			   _RandomAccessIterator __last,
3531                           _Pointer __buffer, _Distance __buffer_size)
3532    {
3533      const _Distance __len = (__last - __first + 1) / 2;
3534      const _RandomAccessIterator __middle = __first + __len;
3535      if (__len > __buffer_size)
3536	{
3537	  std::__stable_sort_adaptive(__first, __middle,
3538				      __buffer, __buffer_size);
3539	  std::__stable_sort_adaptive(__middle, __last,
3540				      __buffer, __buffer_size);
3541	}
3542      else
3543	{
3544	  std::__merge_sort_with_buffer(__first, __middle, __buffer);
3545	  std::__merge_sort_with_buffer(__middle, __last, __buffer);
3546	}
3547      std::__merge_adaptive(__first, __middle, __last,
3548			    _Distance(__middle - __first),
3549			    _Distance(__last - __middle),
3550			    __buffer, __buffer_size);
3551    }
3552
3553  template<typename _RandomAccessIterator, typename _Pointer,
3554	   typename _Distance, typename _Compare>
3555    void
3556    __stable_sort_adaptive(_RandomAccessIterator __first,
3557			   _RandomAccessIterator __last,
3558                           _Pointer __buffer, _Distance __buffer_size,
3559                           _Compare __comp)
3560    {
3561      const _Distance __len = (__last - __first + 1) / 2;
3562      const _RandomAccessIterator __middle = __first + __len;
3563      if (__len > __buffer_size)
3564	{
3565	  std::__stable_sort_adaptive(__first, __middle, __buffer,
3566				      __buffer_size, __comp);
3567	  std::__stable_sort_adaptive(__middle, __last, __buffer,
3568				      __buffer_size, __comp);
3569	}
3570      else
3571	{
3572	  std::__merge_sort_with_buffer(__first, __middle, __buffer, __comp);
3573	  std::__merge_sort_with_buffer(__middle, __last, __buffer, __comp);
3574	}
3575      std::__merge_adaptive(__first, __middle, __last,
3576			    _Distance(__middle - __first),
3577			    _Distance(__last - __middle),
3578			    __buffer, __buffer_size,
3579			    __comp);
3580    }
3581
3582  /**
3583   *  @brief Sort the elements of a sequence, preserving the relative order
3584   *         of equivalent elements.
3585   *  @param  first   An iterator.
3586   *  @param  last    Another iterator.
3587   *  @return  Nothing.
3588   *
3589   *  Sorts the elements in the range @p [first,last) in ascending order,
3590   *  such that @p *(i+1)<*i is false for each iterator @p i in the range
3591   *  @p [first,last-1).
3592   *
3593   *  The relative ordering of equivalent elements is preserved, so any two
3594   *  elements @p x and @p y in the range @p [first,last) such that
3595   *  @p x<y is false and @p y<x is false will have the same relative
3596   *  ordering after calling @p stable_sort().
3597  */
3598  template<typename _RandomAccessIterator>
3599    inline void
3600    stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last)
3601    {
3602      typedef typename iterator_traits<_RandomAccessIterator>::value_type
3603	_ValueType;
3604      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
3605	_DistanceType;
3606
3607      // concept requirements
3608      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
3609	    _RandomAccessIterator>)
3610      __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
3611      __glibcxx_requires_valid_range(__first, __last);
3612
3613      _Temporary_buffer<_RandomAccessIterator, _ValueType>
3614	buf(__first, __last);
3615      if (buf.begin() == 0)
3616	std::__inplace_stable_sort(__first, __last);
3617      else
3618	std::__stable_sort_adaptive(__first, __last, buf.begin(),
3619				    _DistanceType(buf.size()));
3620    }
3621
3622  /**
3623   *  @brief Sort the elements of a sequence using a predicate for comparison,
3624   *         preserving the relative order of equivalent elements.
3625   *  @param  first   An iterator.
3626   *  @param  last    Another iterator.
3627   *  @param  comp    A comparison functor.
3628   *  @return  Nothing.
3629   *
3630   *  Sorts the elements in the range @p [first,last) in ascending order,
3631   *  such that @p comp(*(i+1),*i) is false for each iterator @p i in the
3632   *  range @p [first,last-1).
3633   *
3634   *  The relative ordering of equivalent elements is preserved, so any two
3635   *  elements @p x and @p y in the range @p [first,last) such that
3636   *  @p comp(x,y) is false and @p comp(y,x) is false will have the same
3637   *  relative ordering after calling @p stable_sort().
3638  */
3639  template<typename _RandomAccessIterator, typename _Compare>
3640    inline void
3641    stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
3642		_Compare __comp)
3643    {
3644      typedef typename iterator_traits<_RandomAccessIterator>::value_type
3645	_ValueType;
3646      typedef typename iterator_traits<_RandomAccessIterator>::difference_type
3647	_DistanceType;
3648
3649      // concept requirements
3650      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
3651	    _RandomAccessIterator>)
3652      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3653				  _ValueType,
3654				  _ValueType>)
3655      __glibcxx_requires_valid_range(__first, __last);
3656
3657      _Temporary_buffer<_RandomAccessIterator, _ValueType> buf(__first, __last);
3658      if (buf.begin() == 0)
3659	std::__inplace_stable_sort(__first, __last, __comp);
3660      else
3661	std::__stable_sort_adaptive(__first, __last, buf.begin(),
3662				    _DistanceType(buf.size()), __comp);
3663    }
3664
3665  /**
3666   *  @brief Sort a sequence just enough to find a particular position.
3667   *  @param  first   An iterator.
3668   *  @param  nth     Another iterator.
3669   *  @param  last    Another iterator.
3670   *  @return  Nothing.
3671   *
3672   *  Rearranges the elements in the range @p [first,last) so that @p *nth
3673   *  is the same element that would have been in that position had the
3674   *  whole sequence been sorted.
3675   *  whole sequence been sorted. The elements either side of @p *nth are
3676   *  not completely sorted, but for any iterator @i in the range
3677   *  @p [first,nth) and any iterator @j in the range @p [nth,last) it
3678   *  holds that @p *j<*i is false.
3679  */
3680  template<typename _RandomAccessIterator>
3681    void
3682    nth_element(_RandomAccessIterator __first,
3683		_RandomAccessIterator __nth,
3684		_RandomAccessIterator __last)
3685    {
3686      typedef typename iterator_traits<_RandomAccessIterator>::value_type
3687	_ValueType;
3688
3689      // concept requirements
3690      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
3691				  _RandomAccessIterator>)
3692      __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>)
3693      __glibcxx_requires_valid_range(__first, __nth);
3694      __glibcxx_requires_valid_range(__nth, __last);
3695
3696      while (__last - __first > 3)
3697	{
3698	  _RandomAccessIterator __cut =
3699	    std::__unguarded_partition(__first, __last,
3700				       _ValueType(std::__median(*__first,
3701								*(__first
3702								  + (__last
3703								     - __first)
3704								  / 2),
3705								*(__last
3706								  - 1))));
3707	  if (__cut <= __nth)
3708	    __first = __cut;
3709	  else
3710	    __last = __cut;
3711	}
3712      std::__insertion_sort(__first, __last);
3713    }
3714
3715  /**
3716   *  @brief Sort a sequence just enough to find a particular position
3717   *         using a predicate for comparison.
3718   *  @param  first   An iterator.
3719   *  @param  nth     Another iterator.
3720   *  @param  last    Another iterator.
3721   *  @param  comp    A comparison functor.
3722   *  @return  Nothing.
3723   *
3724   *  Rearranges the elements in the range @p [first,last) so that @p *nth
3725   *  is the same element that would have been in that position had the
3726   *  whole sequence been sorted. The elements either side of @p *nth are
3727   *  not completely sorted, but for any iterator @i in the range
3728   *  @p [first,nth) and any iterator @j in the range @p [nth,last) it
3729   *  holds that @p comp(*j,*i) is false.
3730  */
3731  template<typename _RandomAccessIterator, typename _Compare>
3732    void
3733    nth_element(_RandomAccessIterator __first,
3734		_RandomAccessIterator __nth,
3735		_RandomAccessIterator __last,
3736			    _Compare __comp)
3737    {
3738      typedef typename iterator_traits<_RandomAccessIterator>::value_type
3739	_ValueType;
3740
3741      // concept requirements
3742      __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
3743				  _RandomAccessIterator>)
3744      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3745				  _ValueType, _ValueType>)
3746      __glibcxx_requires_valid_range(__first, __nth);
3747      __glibcxx_requires_valid_range(__nth, __last);
3748
3749      while (__last - __first > 3)
3750	{
3751	  _RandomAccessIterator __cut =
3752	    std::__unguarded_partition(__first, __last,
3753				       _ValueType(std::__median(*__first,
3754								*(__first
3755								  + (__last
3756								     - __first)
3757								  / 2),
3758								*(__last - 1),
3759							      __comp)), __comp);
3760	  if (__cut <= __nth)
3761	    __first = __cut;
3762	  else
3763	    __last = __cut;
3764	}
3765      std::__insertion_sort(__first, __last, __comp);
3766    }
3767
3768  /**
3769   *  @brief Finds the largest subrange in which @a val could be inserted
3770   *         at any place in it without changing the ordering.
3771   *  @param  first   An iterator.
3772   *  @param  last    Another iterator.
3773   *  @param  val     The search term.
3774   *  @return  An pair of iterators defining the subrange.
3775   *  @ingroup binarysearch
3776   *
3777   *  This is equivalent to
3778   *  @code
3779   *    std::make_pair(lower_bound(first, last, val),
3780   *                   upper_bound(first, last, val))
3781   *  @endcode
3782   *  but does not actually call those functions.
3783  */
3784  template<typename _ForwardIterator, typename _Tp>
3785    pair<_ForwardIterator, _ForwardIterator>
3786    equal_range(_ForwardIterator __first, _ForwardIterator __last,
3787		const _Tp& __val)
3788    {
3789      typedef typename iterator_traits<_ForwardIterator>::value_type
3790	_ValueType;
3791      typedef typename iterator_traits<_ForwardIterator>::difference_type
3792	_DistanceType;
3793
3794      // concept requirements
3795      // See comments on lower_bound.
3796      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
3797      __glibcxx_function_requires(_SameTypeConcept<_Tp, _ValueType>)
3798      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
3799      __glibcxx_requires_partitioned(__first, __last, __val);
3800
3801      _DistanceType __len = std::distance(__first, __last);
3802      _DistanceType __half;
3803      _ForwardIterator __middle, __left, __right;
3804
3805      while (__len > 0)
3806	{
3807	  __half = __len >> 1;
3808	  __middle = __first;
3809	  std::advance(__middle, __half);
3810	  if (*__middle < __val)
3811	    {
3812	      __first = __middle;
3813	      ++__first;
3814	      __len = __len - __half - 1;
3815	    }
3816	  else if (__val < *__middle)
3817	    __len = __half;
3818	  else
3819	    {
3820	      __left = std::lower_bound(__first, __middle, __val);
3821	      std::advance(__first, __len);
3822	      __right = std::upper_bound(++__middle, __first, __val);
3823	      return pair<_ForwardIterator, _ForwardIterator>(__left, __right);
3824	    }
3825	}
3826      return pair<_ForwardIterator, _ForwardIterator>(__first, __first);
3827    }
3828
3829  /**
3830   *  @brief Finds the largest subrange in which @a val could be inserted
3831   *         at any place in it without changing the ordering.
3832   *  @param  first   An iterator.
3833   *  @param  last    Another iterator.
3834   *  @param  val     The search term.
3835   *  @param  comp    A functor to use for comparisons.
3836   *  @return  An pair of iterators defining the subrange.
3837   *  @ingroup binarysearch
3838   *
3839   *  This is equivalent to
3840   *  @code
3841   *    std::make_pair(lower_bound(first, last, val, comp),
3842   *                   upper_bound(first, last, val, comp))
3843   *  @endcode
3844   *  but does not actually call those functions.
3845  */
3846  template<typename _ForwardIterator, typename _Tp, typename _Compare>
3847    pair<_ForwardIterator, _ForwardIterator>
3848    equal_range(_ForwardIterator __first, _ForwardIterator __last,
3849		const _Tp& __val,
3850		_Compare __comp)
3851    {
3852      typedef typename iterator_traits<_ForwardIterator>::value_type
3853	_ValueType;
3854      typedef typename iterator_traits<_ForwardIterator>::difference_type
3855	_DistanceType;
3856
3857      // concept requirements
3858      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
3859      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3860				  _ValueType, _Tp>)
3861      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3862				  _Tp, _ValueType>)
3863      __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
3864
3865      _DistanceType __len = std::distance(__first, __last);
3866      _DistanceType __half;
3867      _ForwardIterator __middle, __left, __right;
3868
3869      while (__len > 0)
3870	{
3871	  __half = __len >> 1;
3872	  __middle = __first;
3873	  std::advance(__middle, __half);
3874	  if (__comp(*__middle, __val))
3875	    {
3876	      __first = __middle;
3877	      ++__first;
3878	      __len = __len - __half - 1;
3879	    }
3880	  else if (__comp(__val, *__middle))
3881	    __len = __half;
3882	  else
3883	    {
3884	      __left = std::lower_bound(__first, __middle, __val, __comp);
3885	      std::advance(__first, __len);
3886	      __right = std::upper_bound(++__middle, __first, __val, __comp);
3887	      return pair<_ForwardIterator, _ForwardIterator>(__left, __right);
3888	    }
3889	}
3890      return pair<_ForwardIterator, _ForwardIterator>(__first, __first);
3891    }
3892
3893  /**
3894   *  @brief Determines whether an element exists in a range.
3895   *  @param  first   An iterator.
3896   *  @param  last    Another iterator.
3897   *  @param  val     The search term.
3898   *  @return  True if @a val (or its equivelent) is in [@a first,@a last ].
3899   *  @ingroup binarysearch
3900   *
3901   *  Note that this does not actually return an iterator to @a val.  For
3902   *  that, use std::find or a container's specialized find member functions.
3903  */
3904  template<typename _ForwardIterator, typename _Tp>
3905    bool
3906    binary_search(_ForwardIterator __first, _ForwardIterator __last,
3907                  const _Tp& __val)
3908    {
3909      // concept requirements
3910      // See comments on lower_bound.
3911      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
3912      __glibcxx_function_requires(_SameTypeConcept<_Tp,
3913		typename iterator_traits<_ForwardIterator>::value_type>)
3914      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
3915      __glibcxx_requires_partitioned(__first, __last, __val);
3916
3917      _ForwardIterator __i = std::lower_bound(__first, __last, __val);
3918      return __i != __last && !(__val < *__i);
3919    }
3920
3921  /**
3922   *  @brief Determines whether an element exists in a range.
3923   *  @param  first   An iterator.
3924   *  @param  last    Another iterator.
3925   *  @param  val     The search term.
3926   *  @param  comp    A functor to use for comparisons.
3927   *  @return  True if @a val (or its equivelent) is in [@a first,@a last ].
3928   *  @ingroup binarysearch
3929   *
3930   *  Note that this does not actually return an iterator to @a val.  For
3931   *  that, use std::find or a container's specialized find member functions.
3932   *
3933   *  The comparison function should have the same effects on ordering as
3934   *  the function used for the initial sort.
3935  */
3936  template<typename _ForwardIterator, typename _Tp, typename _Compare>
3937    bool
3938    binary_search(_ForwardIterator __first, _ForwardIterator __last,
3939                  const _Tp& __val, _Compare __comp)
3940    {
3941      // concept requirements
3942      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
3943      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
3944		typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
3945      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp,
3946		typename iterator_traits<_ForwardIterator>::value_type>)
3947      __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
3948
3949      _ForwardIterator __i = std::lower_bound(__first, __last, __val, __comp);
3950      return __i != __last && !__comp(__val, *__i);
3951    }
3952
3953  // Set algorithms: includes, set_union, set_intersection, set_difference,
3954  // set_symmetric_difference.  All of these algorithms have the precondition
3955  // that their input ranges are sorted and the postcondition that their output
3956  // ranges are sorted.
3957
3958  /**
3959   *  @brief Determines whether all elements of a sequence exists in a range.
3960   *  @param  first1  Start of search range.
3961   *  @param  last1   End of search range.
3962   *  @param  first2  Start of sequence
3963   *  @param  last2   End of sequence.
3964   *  @return  True if each element in [first2,last2) is contained in order
3965   *  within [first1,last1).  False otherwise.
3966   *  @ingroup setoperations
3967   *
3968   *  This operation expects both [first1,last1) and [first2,last2) to be
3969   *  sorted.  Searches for the presence of each element in [first2,last2)
3970   *  within [first1,last1).  The iterators over each range only move forward,
3971   *  so this is a linear algorithm.  If an element in [first2,last2) is not
3972   *  found before the search iterator reaches @a last2, false is returned.
3973  */
3974  template<typename _InputIterator1, typename _InputIterator2>
3975    bool
3976    includes(_InputIterator1 __first1, _InputIterator1 __last1,
3977	     _InputIterator2 __first2, _InputIterator2 __last2)
3978    {
3979      // concept requirements
3980      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
3981      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
3982      __glibcxx_function_requires(_SameTypeConcept<
3983	    typename iterator_traits<_InputIterator1>::value_type,
3984	    typename iterator_traits<_InputIterator2>::value_type>)
3985      __glibcxx_function_requires(_LessThanComparableConcept<
3986	    typename iterator_traits<_InputIterator1>::value_type>)
3987      __glibcxx_requires_sorted(__first1, __last1);
3988      __glibcxx_requires_sorted(__first2, __last2);
3989
3990      while (__first1 != __last1 && __first2 != __last2)
3991	if (*__first2 < *__first1)
3992	  return false;
3993	else if(*__first1 < *__first2)
3994	  ++__first1;
3995	else
3996	  ++__first1, ++__first2;
3997
3998      return __first2 == __last2;
3999    }
4000
4001  /**
4002   *  @brief Determines whether all elements of a sequence exists in a range
4003   *  using comparison.
4004   *  @param  first1  Start of search range.
4005   *  @param  last1   End of search range.
4006   *  @param  first2  Start of sequence
4007   *  @param  last2   End of sequence.
4008   *  @param  comp    Comparison function to use.
4009   *  @return  True if each element in [first2,last2) is contained in order
4010   *  within [first1,last1) according to comp.  False otherwise.
4011   *  @ingroup setoperations
4012   *
4013   *  This operation expects both [first1,last1) and [first2,last2) to be
4014   *  sorted.  Searches for the presence of each element in [first2,last2)
4015   *  within [first1,last1), using comp to decide.  The iterators over each
4016   *  range only move forward, so this is a linear algorithm.  If an element
4017   *  in [first2,last2) is not found before the search iterator reaches @a
4018   *  last2, false is returned.
4019  */
4020  template<typename _InputIterator1, typename _InputIterator2,
4021	   typename _Compare>
4022    bool
4023    includes(_InputIterator1 __first1, _InputIterator1 __last1,
4024	     _InputIterator2 __first2, _InputIterator2 __last2, _Compare __comp)
4025    {
4026      // concept requirements
4027      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4028      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4029      __glibcxx_function_requires(_SameTypeConcept<
4030	    typename iterator_traits<_InputIterator1>::value_type,
4031	    typename iterator_traits<_InputIterator2>::value_type>)
4032      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4033	    typename iterator_traits<_InputIterator1>::value_type,
4034	    typename iterator_traits<_InputIterator2>::value_type>)
4035      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
4036      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
4037
4038      while (__first1 != __last1 && __first2 != __last2)
4039	if (__comp(*__first2, *__first1))
4040	  return false;
4041	else if(__comp(*__first1, *__first2))
4042	  ++__first1;
4043	else
4044	  ++__first1, ++__first2;
4045
4046      return __first2 == __last2;
4047    }
4048
4049  /**
4050   *  @brief Return the union of two sorted ranges.
4051   *  @param  first1  Start of first range.
4052   *  @param  last1   End of first range.
4053   *  @param  first2  Start of second range.
4054   *  @param  last2   End of second range.
4055   *  @return  End of the output range.
4056   *  @ingroup setoperations
4057   *
4058   *  This operation iterates over both ranges, copying elements present in
4059   *  each range in order to the output range.  Iterators increment for each
4060   *  range.  When the current element of one range is less than the other,
4061   *  that element is copied and the iterator advanced.  If an element is
4062   *  contained in both ranges, the element from the first range is copied and
4063   *  both ranges advance.  The output range may not overlap either input
4064   *  range.
4065  */
4066  template<typename _InputIterator1, typename _InputIterator2,
4067	   typename _OutputIterator>
4068    _OutputIterator
4069    set_union(_InputIterator1 __first1, _InputIterator1 __last1,
4070	      _InputIterator2 __first2, _InputIterator2 __last2,
4071	      _OutputIterator __result)
4072    {
4073      // concept requirements
4074      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4075      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4076      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4077	    typename iterator_traits<_InputIterator1>::value_type>)
4078      __glibcxx_function_requires(_SameTypeConcept<
4079	    typename iterator_traits<_InputIterator1>::value_type,
4080	    typename iterator_traits<_InputIterator2>::value_type>)
4081      __glibcxx_function_requires(_LessThanComparableConcept<
4082	    typename iterator_traits<_InputIterator1>::value_type>)
4083      __glibcxx_requires_sorted(__first1, __last1);
4084      __glibcxx_requires_sorted(__first2, __last2);
4085
4086      while (__first1 != __last1 && __first2 != __last2)
4087	{
4088	  if (*__first1 < *__first2)
4089	    {
4090	      *__result = *__first1;
4091	      ++__first1;
4092	    }
4093	  else if (*__first2 < *__first1)
4094	    {
4095	      *__result = *__first2;
4096	      ++__first2;
4097	    }
4098	  else
4099	    {
4100	      *__result = *__first1;
4101	      ++__first1;
4102	      ++__first2;
4103	    }
4104	  ++__result;
4105	}
4106      return std::copy(__first2, __last2, std::copy(__first1, __last1,
4107						    __result));
4108    }
4109
4110  /**
4111   *  @brief Return the union of two sorted ranges using a comparison functor.
4112   *  @param  first1  Start of first range.
4113   *  @param  last1   End of first range.
4114   *  @param  first2  Start of second range.
4115   *  @param  last2   End of second range.
4116   *  @param  comp    The comparison functor.
4117   *  @return  End of the output range.
4118   *  @ingroup setoperations
4119   *
4120   *  This operation iterates over both ranges, copying elements present in
4121   *  each range in order to the output range.  Iterators increment for each
4122   *  range.  When the current element of one range is less than the other
4123   *  according to @a comp, that element is copied and the iterator advanced.
4124   *  If an equivalent element according to @a comp is contained in both
4125   *  ranges, the element from the first range is copied and both ranges
4126   *  advance.  The output range may not overlap either input range.
4127  */
4128  template<typename _InputIterator1, typename _InputIterator2,
4129	   typename _OutputIterator, typename _Compare>
4130    _OutputIterator
4131    set_union(_InputIterator1 __first1, _InputIterator1 __last1,
4132	      _InputIterator2 __first2, _InputIterator2 __last2,
4133	      _OutputIterator __result, _Compare __comp)
4134    {
4135      // concept requirements
4136      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4137      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4138      __glibcxx_function_requires(_SameTypeConcept<
4139	    typename iterator_traits<_InputIterator1>::value_type,
4140	    typename iterator_traits<_InputIterator2>::value_type>)
4141      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4142	    typename iterator_traits<_InputIterator1>::value_type>)
4143      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4144	    typename iterator_traits<_InputIterator1>::value_type,
4145	    typename iterator_traits<_InputIterator2>::value_type>)
4146      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
4147      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
4148
4149      while (__first1 != __last1 && __first2 != __last2)
4150	{
4151	  if (__comp(*__first1, *__first2))
4152	    {
4153	      *__result = *__first1;
4154	      ++__first1;
4155	    }
4156	  else if (__comp(*__first2, *__first1))
4157	    {
4158	      *__result = *__first2;
4159	      ++__first2;
4160	    }
4161	  else
4162	    {
4163	      *__result = *__first1;
4164	      ++__first1;
4165	      ++__first2;
4166	    }
4167	  ++__result;
4168	}
4169      return std::copy(__first2, __last2, std::copy(__first1, __last1,
4170						    __result));
4171    }
4172
4173  /**
4174   *  @brief Return the intersection of two sorted ranges.
4175   *  @param  first1  Start of first range.
4176   *  @param  last1   End of first range.
4177   *  @param  first2  Start of second range.
4178   *  @param  last2   End of second range.
4179   *  @return  End of the output range.
4180   *  @ingroup setoperations
4181   *
4182   *  This operation iterates over both ranges, copying elements present in
4183   *  both ranges in order to the output range.  Iterators increment for each
4184   *  range.  When the current element of one range is less than the other,
4185   *  that iterator advances.  If an element is contained in both ranges, the
4186   *  element from the first range is copied and both ranges advance.  The
4187   *  output range may not overlap either input range.
4188  */
4189  template<typename _InputIterator1, typename _InputIterator2,
4190	   typename _OutputIterator>
4191    _OutputIterator
4192    set_intersection(_InputIterator1 __first1, _InputIterator1 __last1,
4193		     _InputIterator2 __first2, _InputIterator2 __last2,
4194		     _OutputIterator __result)
4195    {
4196      // concept requirements
4197      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4198      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4199      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4200	    typename iterator_traits<_InputIterator1>::value_type>)
4201      __glibcxx_function_requires(_SameTypeConcept<
4202	    typename iterator_traits<_InputIterator1>::value_type,
4203	    typename iterator_traits<_InputIterator2>::value_type>)
4204      __glibcxx_function_requires(_LessThanComparableConcept<
4205	    typename iterator_traits<_InputIterator1>::value_type>)
4206      __glibcxx_requires_sorted(__first1, __last1);
4207      __glibcxx_requires_sorted(__first2, __last2);
4208
4209      while (__first1 != __last1 && __first2 != __last2)
4210	if (*__first1 < *__first2)
4211	  ++__first1;
4212	else if (*__first2 < *__first1)
4213	  ++__first2;
4214	else
4215	  {
4216	    *__result = *__first1;
4217	    ++__first1;
4218	    ++__first2;
4219	    ++__result;
4220	  }
4221      return __result;
4222    }
4223
4224  /**
4225   *  @brief Return the intersection of two sorted ranges using comparison
4226   *  functor.
4227   *  @param  first1  Start of first range.
4228   *  @param  last1   End of first range.
4229   *  @param  first2  Start of second range.
4230   *  @param  last2   End of second range.
4231   *  @param  comp    The comparison functor.
4232   *  @return  End of the output range.
4233   *  @ingroup setoperations
4234   *
4235   *  This operation iterates over both ranges, copying elements present in
4236   *  both ranges in order to the output range.  Iterators increment for each
4237   *  range.  When the current element of one range is less than the other
4238   *  according to @a comp, that iterator advances.  If an element is
4239   *  contained in both ranges according to @a comp, the element from the
4240   *  first range is copied and both ranges advance.  The output range may not
4241   *  overlap either input range.
4242  */
4243  template<typename _InputIterator1, typename _InputIterator2,
4244	   typename _OutputIterator, typename _Compare>
4245    _OutputIterator
4246    set_intersection(_InputIterator1 __first1, _InputIterator1 __last1,
4247		     _InputIterator2 __first2, _InputIterator2 __last2,
4248		     _OutputIterator __result, _Compare __comp)
4249    {
4250      // concept requirements
4251      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4252      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4253      __glibcxx_function_requires(_SameTypeConcept<
4254	    typename iterator_traits<_InputIterator1>::value_type,
4255	    typename iterator_traits<_InputIterator2>::value_type>)
4256      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4257	    typename iterator_traits<_InputIterator1>::value_type>)
4258      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4259	    typename iterator_traits<_InputIterator1>::value_type,
4260	    typename iterator_traits<_InputIterator2>::value_type>)
4261      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
4262      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
4263
4264      while (__first1 != __last1 && __first2 != __last2)
4265	if (__comp(*__first1, *__first2))
4266	  ++__first1;
4267	else if (__comp(*__first2, *__first1))
4268	  ++__first2;
4269	else
4270	  {
4271	    *__result = *__first1;
4272	    ++__first1;
4273	    ++__first2;
4274	    ++__result;
4275	  }
4276      return __result;
4277    }
4278
4279  /**
4280   *  @brief Return the difference of two sorted ranges.
4281   *  @param  first1  Start of first range.
4282   *  @param  last1   End of first range.
4283   *  @param  first2  Start of second range.
4284   *  @param  last2   End of second range.
4285   *  @return  End of the output range.
4286   *  @ingroup setoperations
4287   *
4288   *  This operation iterates over both ranges, copying elements present in
4289   *  the first range but not the second in order to the output range.
4290   *  Iterators increment for each range.  When the current element of the
4291   *  first range is less than the second, that element is copied and the
4292   *  iterator advances.  If the current element of the second range is less,
4293   *  the iterator advances, but no element is copied.  If an element is
4294   *  contained in both ranges, no elements are copied and both ranges
4295   *  advance.  The output range may not overlap either input range.
4296  */
4297  template<typename _InputIterator1, typename _InputIterator2,
4298	   typename _OutputIterator>
4299    _OutputIterator
4300    set_difference(_InputIterator1 __first1, _InputIterator1 __last1,
4301		   _InputIterator2 __first2, _InputIterator2 __last2,
4302		   _OutputIterator __result)
4303    {
4304      // concept requirements
4305      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4306      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4307      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4308	    typename iterator_traits<_InputIterator1>::value_type>)
4309      __glibcxx_function_requires(_SameTypeConcept<
4310	    typename iterator_traits<_InputIterator1>::value_type,
4311	    typename iterator_traits<_InputIterator2>::value_type>)
4312      __glibcxx_function_requires(_LessThanComparableConcept<
4313	    typename iterator_traits<_InputIterator1>::value_type>)
4314      __glibcxx_requires_sorted(__first1, __last1);
4315      __glibcxx_requires_sorted(__first2, __last2);
4316
4317      while (__first1 != __last1 && __first2 != __last2)
4318	if (*__first1 < *__first2)
4319	  {
4320	    *__result = *__first1;
4321	    ++__first1;
4322	    ++__result;
4323	  }
4324	else if (*__first2 < *__first1)
4325	  ++__first2;
4326	else
4327	  {
4328	    ++__first1;
4329	    ++__first2;
4330	  }
4331      return std::copy(__first1, __last1, __result);
4332    }
4333
4334  /**
4335   *  @brief  Return the difference of two sorted ranges using comparison
4336   *  functor.
4337   *  @param  first1  Start of first range.
4338   *  @param  last1   End of first range.
4339   *  @param  first2  Start of second range.
4340   *  @param  last2   End of second range.
4341   *  @param  comp    The comparison functor.
4342   *  @return  End of the output range.
4343   *  @ingroup setoperations
4344   *
4345   *  This operation iterates over both ranges, copying elements present in
4346   *  the first range but not the second in order to the output range.
4347   *  Iterators increment for each range.  When the current element of the
4348   *  first range is less than the second according to @a comp, that element
4349   *  is copied and the iterator advances.  If the current element of the
4350   *  second range is less, no element is copied and the iterator advances.
4351   *  If an element is contained in both ranges according to @a comp, no
4352   *  elements are copied and both ranges advance.  The output range may not
4353   *  overlap either input range.
4354  */
4355  template<typename _InputIterator1, typename _InputIterator2,
4356	   typename _OutputIterator, typename _Compare>
4357    _OutputIterator
4358    set_difference(_InputIterator1 __first1, _InputIterator1 __last1,
4359		   _InputIterator2 __first2, _InputIterator2 __last2,
4360		   _OutputIterator __result, _Compare __comp)
4361    {
4362      // concept requirements
4363      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4364      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4365      __glibcxx_function_requires(_SameTypeConcept<
4366	    typename iterator_traits<_InputIterator1>::value_type,
4367	    typename iterator_traits<_InputIterator2>::value_type>)
4368      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4369	    typename iterator_traits<_InputIterator1>::value_type>)
4370      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4371	    typename iterator_traits<_InputIterator1>::value_type,
4372	    typename iterator_traits<_InputIterator2>::value_type>)
4373      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
4374      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
4375
4376      while (__first1 != __last1 && __first2 != __last2)
4377	if (__comp(*__first1, *__first2))
4378	  {
4379	    *__result = *__first1;
4380	    ++__first1;
4381	    ++__result;
4382	  }
4383	else if (__comp(*__first2, *__first1))
4384	  ++__first2;
4385	else
4386	  {
4387	    ++__first1;
4388	    ++__first2;
4389	  }
4390      return std::copy(__first1, __last1, __result);
4391    }
4392
4393  /**
4394   *  @brief  Return the symmetric difference of two sorted ranges.
4395   *  @param  first1  Start of first range.
4396   *  @param  last1   End of first range.
4397   *  @param  first2  Start of second range.
4398   *  @param  last2   End of second range.
4399   *  @return  End of the output range.
4400   *  @ingroup setoperations
4401   *
4402   *  This operation iterates over both ranges, copying elements present in
4403   *  one range but not the other in order to the output range.  Iterators
4404   *  increment for each range.  When the current element of one range is less
4405   *  than the other, that element is copied and the iterator advances.  If an
4406   *  element is contained in both ranges, no elements are copied and both
4407   *  ranges advance.  The output range may not overlap either input range.
4408  */
4409  template<typename _InputIterator1, typename _InputIterator2,
4410	   typename _OutputIterator>
4411    _OutputIterator
4412    set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1,
4413			     _InputIterator2 __first2, _InputIterator2 __last2,
4414			     _OutputIterator __result)
4415    {
4416      // concept requirements
4417      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4418      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4419      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4420	    typename iterator_traits<_InputIterator1>::value_type>)
4421      __glibcxx_function_requires(_SameTypeConcept<
4422	    typename iterator_traits<_InputIterator1>::value_type,
4423	    typename iterator_traits<_InputIterator2>::value_type>)
4424      __glibcxx_function_requires(_LessThanComparableConcept<
4425	    typename iterator_traits<_InputIterator1>::value_type>)
4426      __glibcxx_requires_sorted(__first1, __last1);
4427      __glibcxx_requires_sorted(__first2, __last2);
4428
4429      while (__first1 != __last1 && __first2 != __last2)
4430	if (*__first1 < *__first2)
4431	  {
4432	    *__result = *__first1;
4433	    ++__first1;
4434	    ++__result;
4435	  }
4436	else if (*__first2 < *__first1)
4437	  {
4438	    *__result = *__first2;
4439	    ++__first2;
4440	    ++__result;
4441	  }
4442	else
4443	  {
4444	    ++__first1;
4445	    ++__first2;
4446	  }
4447      return std::copy(__first2, __last2, std::copy(__first1,
4448						    __last1, __result));
4449    }
4450
4451  /**
4452   *  @brief  Return the symmetric difference of two sorted ranges using
4453   *  comparison functor.
4454   *  @param  first1  Start of first range.
4455   *  @param  last1   End of first range.
4456   *  @param  first2  Start of second range.
4457   *  @param  last2   End of second range.
4458   *  @param  comp    The comparison functor.
4459   *  @return  End of the output range.
4460   *  @ingroup setoperations
4461   *
4462   *  This operation iterates over both ranges, copying elements present in
4463   *  one range but not the other in order to the output range.  Iterators
4464   *  increment for each range.  When the current element of one range is less
4465   *  than the other according to @a comp, that element is copied and the
4466   *  iterator advances.  If an element is contained in both ranges according
4467   *  to @a comp, no elements are copied and both ranges advance.  The output
4468   *  range may not overlap either input range.
4469  */
4470  template<typename _InputIterator1, typename _InputIterator2,
4471	   typename _OutputIterator, typename _Compare>
4472    _OutputIterator
4473    set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1,
4474			     _InputIterator2 __first2, _InputIterator2 __last2,
4475			     _OutputIterator __result,
4476			     _Compare __comp)
4477    {
4478      // concept requirements
4479      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
4480      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
4481      __glibcxx_function_requires(_SameTypeConcept<
4482	    typename iterator_traits<_InputIterator1>::value_type,
4483	    typename iterator_traits<_InputIterator2>::value_type>)
4484      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
4485	    typename iterator_traits<_InputIterator1>::value_type>)
4486      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4487	    typename iterator_traits<_InputIterator1>::value_type,
4488	    typename iterator_traits<_InputIterator2>::value_type>)
4489      __glibcxx_requires_sorted_pred(__first1, __last1, __comp);
4490      __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
4491
4492      while (__first1 != __last1 && __first2 != __last2)
4493	if (__comp(*__first1, *__first2))
4494	  {
4495	    *__result = *__first1;
4496	    ++__first1;
4497	    ++__result;
4498	  }
4499	else if (__comp(*__first2, *__first1))
4500	  {
4501	    *__result = *__first2;
4502	    ++__first2;
4503	    ++__result;
4504	  }
4505	else
4506	  {
4507	    ++__first1;
4508	    ++__first2;
4509	  }
4510      return std::copy(__first2, __last2, std::copy(__first1,
4511						    __last1, __result));
4512    }
4513
4514  // min_element and max_element, with and without an explicitly supplied
4515  // comparison function.
4516
4517  /**
4518   *  @brief  Return the maximum element in a range.
4519   *  @param  first  Start of range.
4520   *  @param  last   End of range.
4521   *  @return  Iterator referencing the first instance of the largest value.
4522  */
4523  template<typename _ForwardIterator>
4524    _ForwardIterator
4525    max_element(_ForwardIterator __first, _ForwardIterator __last)
4526    {
4527      // concept requirements
4528      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4529      __glibcxx_function_requires(_LessThanComparableConcept<
4530	    typename iterator_traits<_ForwardIterator>::value_type>)
4531      __glibcxx_requires_valid_range(__first, __last);
4532
4533      if (__first == __last)
4534	return __first;
4535      _ForwardIterator __result = __first;
4536      while (++__first != __last)
4537	if (*__result < *__first)
4538	  __result = __first;
4539      return __result;
4540    }
4541
4542  /**
4543   *  @brief  Return the maximum element in a range using comparison functor.
4544   *  @param  first  Start of range.
4545   *  @param  last   End of range.
4546   *  @param  comp   Comparison functor.
4547   *  @return  Iterator referencing the first instance of the largest value
4548   *  according to comp.
4549  */
4550  template<typename _ForwardIterator, typename _Compare>
4551    _ForwardIterator
4552    max_element(_ForwardIterator __first, _ForwardIterator __last,
4553		_Compare __comp)
4554    {
4555      // concept requirements
4556      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4557      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4558	    typename iterator_traits<_ForwardIterator>::value_type,
4559	    typename iterator_traits<_ForwardIterator>::value_type>)
4560      __glibcxx_requires_valid_range(__first, __last);
4561
4562      if (__first == __last) return __first;
4563      _ForwardIterator __result = __first;
4564      while (++__first != __last)
4565	if (__comp(*__result, *__first)) __result = __first;
4566      return __result;
4567    }
4568
4569  /**
4570   *  @brief  Return the minimum element in a range.
4571   *  @param  first  Start of range.
4572   *  @param  last   End of range.
4573   *  @return  Iterator referencing the first instance of the smallest value.
4574  */
4575  template<typename _ForwardIterator>
4576    _ForwardIterator
4577    min_element(_ForwardIterator __first, _ForwardIterator __last)
4578    {
4579      // concept requirements
4580      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4581      __glibcxx_function_requires(_LessThanComparableConcept<
4582	    typename iterator_traits<_ForwardIterator>::value_type>)
4583      __glibcxx_requires_valid_range(__first, __last);
4584
4585      if (__first == __last)
4586	return __first;
4587      _ForwardIterator __result = __first;
4588      while (++__first != __last)
4589	if (*__first < *__result)
4590	  __result = __first;
4591      return __result;
4592    }
4593
4594  /**
4595   *  @brief  Return the minimum element in a range using comparison functor.
4596   *  @param  first  Start of range.
4597   *  @param  last   End of range.
4598   *  @param  comp   Comparison functor.
4599   *  @return  Iterator referencing the first instance of the smallest value
4600   *  according to comp.
4601  */
4602  template<typename _ForwardIterator, typename _Compare>
4603    _ForwardIterator
4604    min_element(_ForwardIterator __first, _ForwardIterator __last,
4605		_Compare __comp)
4606    {
4607      // concept requirements
4608      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4609      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4610	    typename iterator_traits<_ForwardIterator>::value_type,
4611	    typename iterator_traits<_ForwardIterator>::value_type>)
4612      __glibcxx_requires_valid_range(__first, __last);
4613
4614      if (__first == __last)
4615	return __first;
4616      _ForwardIterator __result = __first;
4617      while (++__first != __last)
4618	if (__comp(*__first, *__result))
4619	  __result = __first;
4620      return __result;
4621    }
4622
4623  // next_permutation and prev_permutation, with and without an explicitly
4624  // supplied comparison function.
4625
4626  /**
4627   *  @brief  Permute range into the next "dictionary" ordering.
4628   *  @param  first  Start of range.
4629   *  @param  last   End of range.
4630   *  @return  False if wrapped to first permutation, true otherwise.
4631   *
4632   *  Treats all permutations of the range as a set of "dictionary" sorted
4633   *  sequences.  Permutes the current sequence into the next one of this set.
4634   *  Returns true if there are more sequences to generate.  If the sequence
4635   *  is the largest of the set, the smallest is generated and false returned.
4636  */
4637  template<typename _BidirectionalIterator>
4638    bool
4639    next_permutation(_BidirectionalIterator __first,
4640		     _BidirectionalIterator __last)
4641    {
4642      // concept requirements
4643      __glibcxx_function_requires(_BidirectionalIteratorConcept<
4644				  _BidirectionalIterator>)
4645      __glibcxx_function_requires(_LessThanComparableConcept<
4646	    typename iterator_traits<_BidirectionalIterator>::value_type>)
4647      __glibcxx_requires_valid_range(__first, __last);
4648
4649      if (__first == __last)
4650	return false;
4651      _BidirectionalIterator __i = __first;
4652      ++__i;
4653      if (__i == __last)
4654	return false;
4655      __i = __last;
4656      --__i;
4657
4658      for(;;)
4659	{
4660	  _BidirectionalIterator __ii = __i;
4661	  --__i;
4662	  if (*__i < *__ii)
4663	    {
4664	      _BidirectionalIterator __j = __last;
4665	      while (!(*__i < *--__j))
4666		{}
4667	      std::iter_swap(__i, __j);
4668	      std::reverse(__ii, __last);
4669	      return true;
4670	    }
4671	  if (__i == __first)
4672	    {
4673	      std::reverse(__first, __last);
4674	      return false;
4675	    }
4676	}
4677    }
4678
4679  /**
4680   *  @brief  Permute range into the next "dictionary" ordering using
4681   *  comparison functor.
4682   *  @param  first  Start of range.
4683   *  @param  last   End of range.
4684   *  @param  comp
4685   *  @return  False if wrapped to first permutation, true otherwise.
4686   *
4687   *  Treats all permutations of the range [first,last) as a set of
4688   *  "dictionary" sorted sequences ordered by @a comp.  Permutes the current
4689   *  sequence into the next one of this set.  Returns true if there are more
4690   *  sequences to generate.  If the sequence is the largest of the set, the
4691   *  smallest is generated and false returned.
4692  */
4693  template<typename _BidirectionalIterator, typename _Compare>
4694    bool
4695    next_permutation(_BidirectionalIterator __first,
4696		     _BidirectionalIterator __last, _Compare __comp)
4697    {
4698      // concept requirements
4699      __glibcxx_function_requires(_BidirectionalIteratorConcept<
4700				  _BidirectionalIterator>)
4701      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4702	    typename iterator_traits<_BidirectionalIterator>::value_type,
4703	    typename iterator_traits<_BidirectionalIterator>::value_type>)
4704      __glibcxx_requires_valid_range(__first, __last);
4705
4706      if (__first == __last)
4707	return false;
4708      _BidirectionalIterator __i = __first;
4709      ++__i;
4710      if (__i == __last)
4711	return false;
4712      __i = __last;
4713      --__i;
4714
4715      for(;;)
4716	{
4717	  _BidirectionalIterator __ii = __i;
4718	  --__i;
4719	  if (__comp(*__i, *__ii))
4720	    {
4721	      _BidirectionalIterator __j = __last;
4722	      while (!__comp(*__i, *--__j))
4723		{}
4724	      std::iter_swap(__i, __j);
4725	      std::reverse(__ii, __last);
4726	      return true;
4727	    }
4728	  if (__i == __first)
4729	    {
4730	      std::reverse(__first, __last);
4731	      return false;
4732	    }
4733	}
4734    }
4735
4736  /**
4737   *  @brief  Permute range into the previous "dictionary" ordering.
4738   *  @param  first  Start of range.
4739   *  @param  last   End of range.
4740   *  @return  False if wrapped to last permutation, true otherwise.
4741   *
4742   *  Treats all permutations of the range as a set of "dictionary" sorted
4743   *  sequences.  Permutes the current sequence into the previous one of this
4744   *  set.  Returns true if there are more sequences to generate.  If the
4745   *  sequence is the smallest of the set, the largest is generated and false
4746   *  returned.
4747  */
4748  template<typename _BidirectionalIterator>
4749    bool
4750    prev_permutation(_BidirectionalIterator __first,
4751		     _BidirectionalIterator __last)
4752    {
4753      // concept requirements
4754      __glibcxx_function_requires(_BidirectionalIteratorConcept<
4755				  _BidirectionalIterator>)
4756      __glibcxx_function_requires(_LessThanComparableConcept<
4757	    typename iterator_traits<_BidirectionalIterator>::value_type>)
4758      __glibcxx_requires_valid_range(__first, __last);
4759
4760      if (__first == __last)
4761	return false;
4762      _BidirectionalIterator __i = __first;
4763      ++__i;
4764      if (__i == __last)
4765	return false;
4766      __i = __last;
4767      --__i;
4768
4769      for(;;)
4770	{
4771	  _BidirectionalIterator __ii = __i;
4772	  --__i;
4773	  if (*__ii < *__i)
4774	    {
4775	      _BidirectionalIterator __j = __last;
4776	      while (!(*--__j < *__i))
4777		{}
4778	      std::iter_swap(__i, __j);
4779	      std::reverse(__ii, __last);
4780	      return true;
4781	    }
4782	  if (__i == __first)
4783	    {
4784	      std::reverse(__first, __last);
4785	      return false;
4786	    }
4787	}
4788    }
4789
4790  /**
4791   *  @brief  Permute range into the previous "dictionary" ordering using
4792   *  comparison functor.
4793   *  @param  first  Start of range.
4794   *  @param  last   End of range.
4795   *  @param  comp
4796   *  @return  False if wrapped to last permutation, true otherwise.
4797   *
4798   *  Treats all permutations of the range [first,last) as a set of
4799   *  "dictionary" sorted sequences ordered by @a comp.  Permutes the current
4800   *  sequence into the previous one of this set.  Returns true if there are
4801   *  more sequences to generate.  If the sequence is the smallest of the set,
4802   *  the largest is generated and false returned.
4803  */
4804  template<typename _BidirectionalIterator, typename _Compare>
4805    bool
4806    prev_permutation(_BidirectionalIterator __first,
4807		     _BidirectionalIterator __last, _Compare __comp)
4808    {
4809      // concept requirements
4810      __glibcxx_function_requires(_BidirectionalIteratorConcept<
4811				  _BidirectionalIterator>)
4812      __glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
4813	    typename iterator_traits<_BidirectionalIterator>::value_type,
4814	    typename iterator_traits<_BidirectionalIterator>::value_type>)
4815      __glibcxx_requires_valid_range(__first, __last);
4816
4817      if (__first == __last)
4818	return false;
4819      _BidirectionalIterator __i = __first;
4820      ++__i;
4821      if (__i == __last)
4822	return false;
4823      __i = __last;
4824      --__i;
4825
4826      for(;;)
4827	{
4828	  _BidirectionalIterator __ii = __i;
4829	  --__i;
4830	  if (__comp(*__ii, *__i))
4831	    {
4832	      _BidirectionalIterator __j = __last;
4833	      while (!__comp(*--__j, *__i))
4834		{}
4835	      std::iter_swap(__i, __j);
4836	      std::reverse(__ii, __last);
4837	      return true;
4838	    }
4839	  if (__i == __first)
4840	    {
4841	      std::reverse(__first, __last);
4842	      return false;
4843	    }
4844	}
4845    }
4846
4847  // find_first_of, with and without an explicitly supplied comparison function.
4848
4849  /**
4850   *  @brief  Find element from a set in a sequence.
4851   *  @param  first1  Start of range to search.
4852   *  @param  last1   End of range to search.
4853   *  @param  first2  Start of match candidates.
4854   *  @param  last2   End of match candidates.
4855   *  @return   The first iterator @c i in the range
4856   *  @p [first1,last1) such that @c *i == @p *(i2) such that i2 is an
4857   *  interator in [first2,last2), or @p last1 if no such iterator exists.
4858   *
4859   *  Searches the range @p [first1,last1) for an element that is equal to
4860   *  some element in the range [first2,last2).  If found, returns an iterator
4861   *  in the range [first1,last1), otherwise returns @p last1.
4862  */
4863  template<typename _InputIterator, typename _ForwardIterator>
4864    _InputIterator
4865    find_first_of(_InputIterator __first1, _InputIterator __last1,
4866		  _ForwardIterator __first2, _ForwardIterator __last2)
4867    {
4868      // concept requirements
4869      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
4870      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4871      __glibcxx_function_requires(_EqualOpConcept<
4872	    typename iterator_traits<_InputIterator>::value_type,
4873	    typename iterator_traits<_ForwardIterator>::value_type>)
4874      __glibcxx_requires_valid_range(__first1, __last1);
4875      __glibcxx_requires_valid_range(__first2, __last2);
4876
4877      for ( ; __first1 != __last1; ++__first1)
4878	for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter)
4879	  if (*__first1 == *__iter)
4880	    return __first1;
4881      return __last1;
4882    }
4883
4884  /**
4885   *  @brief  Find element from a set in a sequence using a predicate.
4886   *  @param  first1  Start of range to search.
4887   *  @param  last1   End of range to search.
4888   *  @param  first2  Start of match candidates.
4889   *  @param  last2   End of match candidates.
4890   *  @param  comp    Predicate to use.
4891   *  @return   The first iterator @c i in the range
4892   *  @p [first1,last1) such that @c comp(*i, @p *(i2)) is true and i2 is an
4893   *  interator in [first2,last2), or @p last1 if no such iterator exists.
4894   *
4895   *  Searches the range @p [first1,last1) for an element that is equal to
4896   *  some element in the range [first2,last2).  If found, returns an iterator in
4897   *  the range [first1,last1), otherwise returns @p last1.
4898  */
4899  template<typename _InputIterator, typename _ForwardIterator,
4900	   typename _BinaryPredicate>
4901    _InputIterator
4902    find_first_of(_InputIterator __first1, _InputIterator __last1,
4903		  _ForwardIterator __first2, _ForwardIterator __last2,
4904		  _BinaryPredicate __comp)
4905    {
4906      // concept requirements
4907      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
4908      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
4909      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
4910	    typename iterator_traits<_InputIterator>::value_type,
4911	    typename iterator_traits<_ForwardIterator>::value_type>)
4912      __glibcxx_requires_valid_range(__first1, __last1);
4913      __glibcxx_requires_valid_range(__first2, __last2);
4914
4915      for ( ; __first1 != __last1; ++__first1)
4916	for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter)
4917	  if (__comp(*__first1, *__iter))
4918	    return __first1;
4919      return __last1;
4920    }
4921
4922
4923  // find_end, with and without an explicitly supplied comparison function.
4924  // Search [first2, last2) as a subsequence in [first1, last1), and return
4925  // the *last* possible match.  Note that find_end for bidirectional iterators
4926  // is much faster than for forward iterators.
4927
4928  // find_end for forward iterators.
4929  template<typename _ForwardIterator1, typename _ForwardIterator2>
4930    _ForwardIterator1
4931    __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
4932	       _ForwardIterator2 __first2, _ForwardIterator2 __last2,
4933	       forward_iterator_tag, forward_iterator_tag)
4934    {
4935      if (__first2 == __last2)
4936	return __last1;
4937      else
4938	{
4939	  _ForwardIterator1 __result = __last1;
4940	  while (1)
4941	    {
4942	      _ForwardIterator1 __new_result
4943		= std::search(__first1, __last1, __first2, __last2);
4944	      if (__new_result == __last1)
4945		return __result;
4946	      else
4947		{
4948		  __result = __new_result;
4949		  __first1 = __new_result;
4950		  ++__first1;
4951		}
4952	    }
4953	}
4954    }
4955
4956  template<typename _ForwardIterator1, typename _ForwardIterator2,
4957	   typename _BinaryPredicate>
4958    _ForwardIterator1
4959    __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
4960	       _ForwardIterator2 __first2, _ForwardIterator2 __last2,
4961	       forward_iterator_tag, forward_iterator_tag,
4962	       _BinaryPredicate __comp)
4963    {
4964      if (__first2 == __last2)
4965	return __last1;
4966      else
4967	{
4968	  _ForwardIterator1 __result = __last1;
4969	  while (1)
4970	    {
4971	      _ForwardIterator1 __new_result
4972		= std::search(__first1, __last1, __first2, __last2, __comp);
4973	      if (__new_result == __last1)
4974		return __result;
4975	      else
4976		{
4977		  __result = __new_result;
4978		  __first1 = __new_result;
4979		  ++__first1;
4980		}
4981	    }
4982	}
4983    }
4984
4985  // find_end for bidirectional iterators.  Requires partial specialization.
4986  template<typename _BidirectionalIterator1, typename _BidirectionalIterator2>
4987    _BidirectionalIterator1
4988    __find_end(_BidirectionalIterator1 __first1,
4989	       _BidirectionalIterator1 __last1,
4990	       _BidirectionalIterator2 __first2,
4991	       _BidirectionalIterator2 __last2,
4992	       bidirectional_iterator_tag, bidirectional_iterator_tag)
4993    {
4994      // concept requirements
4995      __glibcxx_function_requires(_BidirectionalIteratorConcept<
4996				  _BidirectionalIterator1>)
4997      __glibcxx_function_requires(_BidirectionalIteratorConcept<
4998				  _BidirectionalIterator2>)
4999
5000      typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1;
5001      typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2;
5002
5003      _RevIterator1 __rlast1(__first1);
5004      _RevIterator2 __rlast2(__first2);
5005      _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1,
5006					    _RevIterator2(__last2), __rlast2);
5007
5008      if (__rresult == __rlast1)
5009	return __last1;
5010      else
5011	{
5012	  _BidirectionalIterator1 __result = __rresult.base();
5013	  std::advance(__result, -std::distance(__first2, __last2));
5014	  return __result;
5015	}
5016    }
5017
5018  template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
5019	   typename _BinaryPredicate>
5020    _BidirectionalIterator1
5021    __find_end(_BidirectionalIterator1 __first1,
5022	       _BidirectionalIterator1 __last1,
5023	       _BidirectionalIterator2 __first2,
5024	       _BidirectionalIterator2 __last2,
5025	       bidirectional_iterator_tag, bidirectional_iterator_tag,
5026	       _BinaryPredicate __comp)
5027    {
5028      // concept requirements
5029      __glibcxx_function_requires(_BidirectionalIteratorConcept<
5030				  _BidirectionalIterator1>)
5031      __glibcxx_function_requires(_BidirectionalIteratorConcept<
5032				  _BidirectionalIterator2>)
5033
5034      typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1;
5035      typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2;
5036
5037      _RevIterator1 __rlast1(__first1);
5038      _RevIterator2 __rlast2(__first2);
5039      _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1,
5040					    _RevIterator2(__last2), __rlast2,
5041					    __comp);
5042
5043      if (__rresult == __rlast1)
5044	return __last1;
5045      else
5046	{
5047	  _BidirectionalIterator1 __result = __rresult.base();
5048	  std::advance(__result, -std::distance(__first2, __last2));
5049	  return __result;
5050	}
5051    }
5052
5053  // Dispatching functions for find_end.
5054
5055  /**
5056   *  @brief  Find last matching subsequence in a sequence.
5057   *  @param  first1  Start of range to search.
5058   *  @param  last1   End of range to search.
5059   *  @param  first2  Start of sequence to match.
5060   *  @param  last2   End of sequence to match.
5061   *  @return   The last iterator @c i in the range
5062   *  @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N)
5063   *  for each @c N in the range @p [0,last2-first2), or @p last1 if no
5064   *  such iterator exists.
5065   *
5066   *  Searches the range @p [first1,last1) for a sub-sequence that compares
5067   *  equal value-by-value with the sequence given by @p [first2,last2) and
5068   *  returns an iterator to the first element of the sub-sequence, or
5069   *  @p last1 if the sub-sequence is not found.  The sub-sequence will be the
5070   *  last such subsequence contained in [first,last1).
5071   *
5072   *  Because the sub-sequence must lie completely within the range
5073   *  @p [first1,last1) it must start at a position less than
5074   *  @p last1-(last2-first2) where @p last2-first2 is the length of the
5075   *  sub-sequence.
5076   *  This means that the returned iterator @c i will be in the range
5077   *  @p [first1,last1-(last2-first2))
5078  */
5079  template<typename _ForwardIterator1, typename _ForwardIterator2>
5080    inline _ForwardIterator1
5081    find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
5082	     _ForwardIterator2 __first2, _ForwardIterator2 __last2)
5083    {
5084      // concept requirements
5085      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
5086      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
5087      __glibcxx_function_requires(_EqualOpConcept<
5088	    typename iterator_traits<_ForwardIterator1>::value_type,
5089	    typename iterator_traits<_ForwardIterator2>::value_type>)
5090      __glibcxx_requires_valid_range(__first1, __last1);
5091      __glibcxx_requires_valid_range(__first2, __last2);
5092
5093      return std::__find_end(__first1, __last1, __first2, __last2,
5094			     std::__iterator_category(__first1),
5095			     std::__iterator_category(__first2));
5096    }
5097
5098  /**
5099   *  @brief  Find last matching subsequence in a sequence using a predicate.
5100   *  @param  first1  Start of range to search.
5101   *  @param  last1   End of range to search.
5102   *  @param  first2  Start of sequence to match.
5103   *  @param  last2   End of sequence to match.
5104   *  @param  comp    The predicate to use.
5105   *  @return   The last iterator @c i in the range
5106   *  @p [first1,last1-(last2-first2)) such that @c predicate(*(i+N), @p
5107   *  (first2+N)) is true for each @c N in the range @p [0,last2-first2), or
5108   *  @p last1 if no such iterator exists.
5109   *
5110   *  Searches the range @p [first1,last1) for a sub-sequence that compares
5111   *  equal value-by-value with the sequence given by @p [first2,last2) using
5112   *  comp as a predicate and returns an iterator to the first element of the
5113   *  sub-sequence, or @p last1 if the sub-sequence is not found.  The
5114   *  sub-sequence will be the last such subsequence contained in
5115   *  [first,last1).
5116   *
5117   *  Because the sub-sequence must lie completely within the range
5118   *  @p [first1,last1) it must start at a position less than
5119   *  @p last1-(last2-first2) where @p last2-first2 is the length of the
5120   *  sub-sequence.
5121   *  This means that the returned iterator @c i will be in the range
5122   *  @p [first1,last1-(last2-first2))
5123  */
5124  template<typename _ForwardIterator1, typename _ForwardIterator2,
5125	   typename _BinaryPredicate>
5126    inline _ForwardIterator1
5127    find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
5128	     _ForwardIterator2 __first2, _ForwardIterator2 __last2,
5129	     _BinaryPredicate __comp)
5130    {
5131      // concept requirements
5132      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
5133      __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
5134      __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
5135	    typename iterator_traits<_ForwardIterator1>::value_type,
5136	    typename iterator_traits<_ForwardIterator2>::value_type>)
5137      __glibcxx_requires_valid_range(__first1, __last1);
5138      __glibcxx_requires_valid_range(__first2, __last2);
5139
5140      return std::__find_end(__first1, __last1, __first2, __last2,
5141			     std::__iterator_category(__first1),
5142			     std::__iterator_category(__first2),
5143			     __comp);
5144    }
5145
5146} // namespace std
5147
5148#endif /* _ALGO_H */
5149