pcap-bpf.c revision 241231
1/*
2 * Copyright (c) 1993, 1994, 1995, 1996, 1998
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 * $FreeBSD: head/contrib/libpcap/pcap-bpf.c 241231 2012-10-05 18:42:50Z delphij $
22 */
23#ifndef lint
24static const char rcsid[] _U_ =
25    "@(#) $Header: /tcpdump/master/libpcap/pcap-bpf.c,v 1.116 2008-09-16 18:42:29 guy Exp $ (LBL)";
26#endif
27
28#ifdef HAVE_CONFIG_H
29#include "config.h"
30#endif
31
32#include <sys/param.h>			/* optionally get BSD define */
33#ifdef HAVE_ZEROCOPY_BPF
34#include <sys/mman.h>
35#endif
36#include <sys/socket.h>
37#include <time.h>
38/*
39 * <net/bpf.h> defines ioctls, but doesn't include <sys/ioccom.h>.
40 *
41 * We include <sys/ioctl.h> as it might be necessary to declare ioctl();
42 * at least on *BSD and Mac OS X, it also defines various SIOC ioctls -
43 * we could include <sys/sockio.h>, but if we're already including
44 * <sys/ioctl.h>, which includes <sys/sockio.h> on those platforms,
45 * there's not much point in doing so.
46 *
47 * If we have <sys/ioccom.h>, we include it as well, to handle systems
48 * such as Solaris which don't arrange to include <sys/ioccom.h> if you
49 * include <sys/ioctl.h>
50 */
51#include <sys/ioctl.h>
52#ifdef HAVE_SYS_IOCCOM_H
53#include <sys/ioccom.h>
54#endif
55#include <sys/utsname.h>
56
57#ifdef HAVE_ZEROCOPY_BPF
58#include <machine/atomic.h>
59#endif
60
61#include <net/if.h>
62
63#ifdef _AIX
64
65/*
66 * Make "pcap.h" not include "pcap/bpf.h"; we are going to include the
67 * native OS version, as we need "struct bpf_config" from it.
68 */
69#define PCAP_DONT_INCLUDE_PCAP_BPF_H
70
71#include <sys/types.h>
72
73/*
74 * Prevent bpf.h from redefining the DLT_ values to their
75 * IFT_ values, as we're going to return the standard libpcap
76 * values, not IBM's non-standard IFT_ values.
77 */
78#undef _AIX
79#include <net/bpf.h>
80#define _AIX
81
82#include <net/if_types.h>		/* for IFT_ values */
83#include <sys/sysconfig.h>
84#include <sys/device.h>
85#include <sys/cfgodm.h>
86#include <cf.h>
87
88#ifdef __64BIT__
89#define domakedev makedev64
90#define getmajor major64
91#define bpf_hdr bpf_hdr32
92#else /* __64BIT__ */
93#define domakedev makedev
94#define getmajor major
95#endif /* __64BIT__ */
96
97#define BPF_NAME "bpf"
98#define BPF_MINORS 4
99#define DRIVER_PATH "/usr/lib/drivers"
100#define BPF_NODE "/dev/bpf"
101static int bpfloadedflag = 0;
102static int odmlockid = 0;
103
104static int bpf_load(char *errbuf);
105
106#else /* _AIX */
107
108#include <net/bpf.h>
109
110#endif /* _AIX */
111
112#include <ctype.h>
113#include <fcntl.h>
114#include <errno.h>
115#include <netdb.h>
116#include <stdio.h>
117#include <stdlib.h>
118#include <string.h>
119#include <unistd.h>
120
121#ifdef HAVE_NET_IF_MEDIA_H
122# include <net/if_media.h>
123#endif
124
125#include "pcap-int.h"
126
127#ifdef HAVE_DAG_API
128#include "pcap-dag.h"
129#endif /* HAVE_DAG_API */
130
131#ifdef HAVE_SNF_API
132#include "pcap-snf.h"
133#endif /* HAVE_SNF_API */
134
135#ifdef HAVE_OS_PROTO_H
136#include "os-proto.h"
137#endif
138
139#ifdef BIOCGDLTLIST
140# if (defined(HAVE_NET_IF_MEDIA_H) && defined(IFM_IEEE80211)) && !defined(__APPLE__)
141#define HAVE_BSD_IEEE80211
142# endif
143
144# if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)
145static int find_802_11(struct bpf_dltlist *);
146
147#  ifdef HAVE_BSD_IEEE80211
148static int monitor_mode(pcap_t *, int);
149#  endif
150
151#  if defined(__APPLE__)
152static void remove_en(pcap_t *);
153static void remove_802_11(pcap_t *);
154#  endif
155
156# endif /* defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) */
157
158#endif /* BIOCGDLTLIST */
159
160#if defined(sun) && defined(LIFNAMSIZ) && defined(lifr_zoneid)
161#include <zone.h>
162#endif
163
164/*
165 * We include the OS's <net/bpf.h>, not our "pcap/bpf.h", so we probably
166 * don't get DLT_DOCSIS defined.
167 */
168#ifndef DLT_DOCSIS
169#define DLT_DOCSIS	143
170#endif
171
172/*
173 * On OS X, we don't even get any of the 802.11-plus-radio-header DLT_'s
174 * defined, even though some of them are used by various Airport drivers.
175 */
176#ifndef DLT_PRISM_HEADER
177#define DLT_PRISM_HEADER	119
178#endif
179#ifndef DLT_AIRONET_HEADER
180#define DLT_AIRONET_HEADER	120
181#endif
182#ifndef DLT_IEEE802_11_RADIO
183#define DLT_IEEE802_11_RADIO	127
184#endif
185#ifndef DLT_IEEE802_11_RADIO_AVS
186#define DLT_IEEE802_11_RADIO_AVS 163
187#endif
188
189static int pcap_can_set_rfmon_bpf(pcap_t *p);
190static int pcap_activate_bpf(pcap_t *p);
191static int pcap_setfilter_bpf(pcap_t *p, struct bpf_program *fp);
192static int pcap_setdirection_bpf(pcap_t *, pcap_direction_t);
193static int pcap_set_datalink_bpf(pcap_t *p, int dlt);
194
195/*
196 * For zerocopy bpf, the setnonblock/getnonblock routines need to modify
197 * p->md.timeout so we don't call select(2) if the pcap handle is in non-
198 * blocking mode.  We preserve the timeout supplied by pcap_open functions
199 * to make sure it does not get clobbered if the pcap handle moves between
200 * blocking and non-blocking mode.
201 */
202static int
203pcap_getnonblock_bpf(pcap_t *p, char *errbuf)
204{
205#ifdef HAVE_ZEROCOPY_BPF
206	if (p->md.zerocopy) {
207		/*
208		 * Use a negative value for the timeout to represent that the
209		 * pcap handle is in non-blocking mode.
210		 */
211		return (p->md.timeout < 0);
212	}
213#endif
214	return (pcap_getnonblock_fd(p, errbuf));
215}
216
217static int
218pcap_setnonblock_bpf(pcap_t *p, int nonblock, char *errbuf)
219{
220#ifdef HAVE_ZEROCOPY_BPF
221	if (p->md.zerocopy) {
222		/*
223		 * Map each value to the corresponding 2's complement, to
224		 * preserve the timeout value provided with pcap_set_timeout.
225		 * (from pcap-linux.c).
226		 */
227		if (nonblock) {
228			if (p->md.timeout >= 0) {
229				/*
230				 * Timeout is non-negative, so we're not
231				 * currently in non-blocking mode; set it
232				 * to the 2's complement, to make it
233				 * negative, as an indication that we're
234				 * in non-blocking mode.
235				 */
236				p->md.timeout = p->md.timeout * -1 - 1;
237			}
238		} else {
239			if (p->md.timeout < 0) {
240				/*
241				 * Timeout is negative, so we're currently
242				 * in blocking mode; reverse the previous
243				 * operation, to make the timeout non-negative
244				 * again.
245				 */
246				p->md.timeout = (p->md.timeout + 1) * -1;
247			}
248		}
249		return (0);
250	}
251#endif
252	return (pcap_setnonblock_fd(p, nonblock, errbuf));
253}
254
255#ifdef HAVE_ZEROCOPY_BPF
256/*
257 * Zero-copy BPF buffer routines to check for and acknowledge BPF data in
258 * shared memory buffers.
259 *
260 * pcap_next_zbuf_shm(): Check for a newly available shared memory buffer,
261 * and set up p->buffer and cc to reflect one if available.  Notice that if
262 * there was no prior buffer, we select zbuf1 as this will be the first
263 * buffer filled for a fresh BPF session.
264 */
265static int
266pcap_next_zbuf_shm(pcap_t *p, int *cc)
267{
268	struct bpf_zbuf_header *bzh;
269
270	if (p->md.zbuffer == p->md.zbuf2 || p->md.zbuffer == NULL) {
271		bzh = (struct bpf_zbuf_header *)p->md.zbuf1;
272		if (bzh->bzh_user_gen !=
273		    atomic_load_acq_int(&bzh->bzh_kernel_gen)) {
274			p->md.bzh = bzh;
275			p->md.zbuffer = (u_char *)p->md.zbuf1;
276			p->buffer = p->md.zbuffer + sizeof(*bzh);
277			*cc = bzh->bzh_kernel_len;
278			return (1);
279		}
280	} else if (p->md.zbuffer == p->md.zbuf1) {
281		bzh = (struct bpf_zbuf_header *)p->md.zbuf2;
282		if (bzh->bzh_user_gen !=
283		    atomic_load_acq_int(&bzh->bzh_kernel_gen)) {
284			p->md.bzh = bzh;
285			p->md.zbuffer = (u_char *)p->md.zbuf2;
286  			p->buffer = p->md.zbuffer + sizeof(*bzh);
287			*cc = bzh->bzh_kernel_len;
288			return (1);
289		}
290	}
291	*cc = 0;
292	return (0);
293}
294
295/*
296 * pcap_next_zbuf() -- Similar to pcap_next_zbuf_shm(), except wait using
297 * select() for data or a timeout, and possibly force rotation of the buffer
298 * in the event we time out or are in immediate mode.  Invoke the shared
299 * memory check before doing system calls in order to avoid doing avoidable
300 * work.
301 */
302static int
303pcap_next_zbuf(pcap_t *p, int *cc)
304{
305	struct bpf_zbuf bz;
306	struct timeval tv;
307	struct timespec cur;
308	fd_set r_set;
309	int data, r;
310	int expire, tmout;
311
312#define TSTOMILLI(ts) (((ts)->tv_sec * 1000) + ((ts)->tv_nsec / 1000000))
313	/*
314	 * Start out by seeing whether anything is waiting by checking the
315	 * next shared memory buffer for data.
316	 */
317	data = pcap_next_zbuf_shm(p, cc);
318	if (data)
319		return (data);
320	/*
321	 * If a previous sleep was interrupted due to signal delivery, make
322	 * sure that the timeout gets adjusted accordingly.  This requires
323	 * that we analyze when the timeout should be been expired, and
324	 * subtract the current time from that.  If after this operation,
325	 * our timeout is less then or equal to zero, handle it like a
326	 * regular timeout.
327	 */
328	tmout = p->md.timeout;
329	if (tmout)
330		(void) clock_gettime(CLOCK_MONOTONIC, &cur);
331	if (p->md.interrupted && p->md.timeout) {
332		expire = TSTOMILLI(&p->md.firstsel) + p->md.timeout;
333		tmout = expire - TSTOMILLI(&cur);
334#undef TSTOMILLI
335		if (tmout <= 0) {
336			p->md.interrupted = 0;
337			data = pcap_next_zbuf_shm(p, cc);
338			if (data)
339				return (data);
340			if (ioctl(p->fd, BIOCROTZBUF, &bz) < 0) {
341				(void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
342				    "BIOCROTZBUF: %s", strerror(errno));
343				return (PCAP_ERROR);
344			}
345			return (pcap_next_zbuf_shm(p, cc));
346		}
347	}
348	/*
349	 * No data in the buffer, so must use select() to wait for data or
350	 * the next timeout.  Note that we only call select if the handle
351	 * is in blocking mode.
352	 */
353	if (p->md.timeout >= 0) {
354		FD_ZERO(&r_set);
355		FD_SET(p->fd, &r_set);
356		if (tmout != 0) {
357			tv.tv_sec = tmout / 1000;
358			tv.tv_usec = (tmout * 1000) % 1000000;
359		}
360		r = select(p->fd + 1, &r_set, NULL, NULL,
361		    p->md.timeout != 0 ? &tv : NULL);
362		if (r < 0 && errno == EINTR) {
363			if (!p->md.interrupted && p->md.timeout) {
364				p->md.interrupted = 1;
365				p->md.firstsel = cur;
366			}
367			return (0);
368		} else if (r < 0) {
369			(void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
370			    "select: %s", strerror(errno));
371			return (PCAP_ERROR);
372		}
373	}
374	p->md.interrupted = 0;
375	/*
376	 * Check again for data, which may exist now that we've either been
377	 * woken up as a result of data or timed out.  Try the "there's data"
378	 * case first since it doesn't require a system call.
379	 */
380	data = pcap_next_zbuf_shm(p, cc);
381	if (data)
382		return (data);
383	/*
384	 * Try forcing a buffer rotation to dislodge timed out or immediate
385	 * data.
386	 */
387	if (ioctl(p->fd, BIOCROTZBUF, &bz) < 0) {
388		(void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
389		    "BIOCROTZBUF: %s", strerror(errno));
390		return (PCAP_ERROR);
391	}
392	return (pcap_next_zbuf_shm(p, cc));
393}
394
395/*
396 * Notify kernel that we are done with the buffer.  We don't reset zbuffer so
397 * that we know which buffer to use next time around.
398 */
399static int
400pcap_ack_zbuf(pcap_t *p)
401{
402
403	atomic_store_rel_int(&p->md.bzh->bzh_user_gen,
404	    p->md.bzh->bzh_kernel_gen);
405	p->md.bzh = NULL;
406	p->buffer = NULL;
407	return (0);
408}
409#endif /* HAVE_ZEROCOPY_BPF */
410
411pcap_t *
412pcap_create(const char *device, char *ebuf)
413{
414	pcap_t *p;
415
416#ifdef HAVE_DAG_API
417	if (strstr(device, "dag"))
418		return (dag_create(device, ebuf));
419#endif /* HAVE_DAG_API */
420#ifdef HAVE_SNF_API
421	if (strstr(device, "snf"))
422		return (snf_create(device, ebuf));
423#endif /* HAVE_SNF_API */
424
425	p = pcap_create_common(device, ebuf);
426	if (p == NULL)
427		return (NULL);
428
429	p->activate_op = pcap_activate_bpf;
430	p->can_set_rfmon_op = pcap_can_set_rfmon_bpf;
431	return (p);
432}
433
434/*
435 * On success, returns a file descriptor for a BPF device.
436 * On failure, returns a PCAP_ERROR_ value, and sets p->errbuf.
437 */
438static int
439bpf_open(pcap_t *p)
440{
441	int fd;
442#ifdef HAVE_CLONING_BPF
443	static const char device[] = "/dev/bpf";
444#else
445	int n = 0;
446	char device[sizeof "/dev/bpf0000000000"];
447#endif
448
449#ifdef _AIX
450	/*
451	 * Load the bpf driver, if it isn't already loaded,
452	 * and create the BPF device entries, if they don't
453	 * already exist.
454	 */
455	if (bpf_load(p->errbuf) == PCAP_ERROR)
456		return (PCAP_ERROR);
457#endif
458
459#ifdef HAVE_CLONING_BPF
460	if ((fd = open(device, O_RDWR)) == -1 &&
461	    (errno != EACCES || (fd = open(device, O_RDONLY)) == -1)) {
462		if (errno == EACCES)
463			fd = PCAP_ERROR_PERM_DENIED;
464		else
465			fd = PCAP_ERROR;
466		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
467		  "(cannot open device) %s: %s", device, pcap_strerror(errno));
468	}
469#else
470	/*
471	 * Go through all the minors and find one that isn't in use.
472	 */
473	do {
474		(void)snprintf(device, sizeof(device), "/dev/bpf%d", n++);
475		/*
476		 * Initially try a read/write open (to allow the inject
477		 * method to work).  If that fails due to permission
478		 * issues, fall back to read-only.  This allows a
479		 * non-root user to be granted specific access to pcap
480		 * capabilities via file permissions.
481		 *
482		 * XXX - we should have an API that has a flag that
483		 * controls whether to open read-only or read-write,
484		 * so that denial of permission to send (or inability
485		 * to send, if sending packets isn't supported on
486		 * the device in question) can be indicated at open
487		 * time.
488		 */
489		fd = open(device, O_RDWR);
490		if (fd == -1 && errno == EACCES)
491			fd = open(device, O_RDONLY);
492	} while (fd < 0 && errno == EBUSY);
493
494	/*
495	 * XXX better message for all minors used
496	 */
497	if (fd < 0) {
498		switch (errno) {
499
500		case ENOENT:
501			fd = PCAP_ERROR;
502			if (n == 1) {
503				/*
504				 * /dev/bpf0 doesn't exist, which
505				 * means we probably have no BPF
506				 * devices.
507				 */
508				snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
509				    "(there are no BPF devices)");
510			} else {
511				/*
512				 * We got EBUSY on at least one
513				 * BPF device, so we have BPF
514				 * devices, but all the ones
515				 * that exist are busy.
516				 */
517				snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
518				    "(all BPF devices are busy)");
519			}
520			break;
521
522		case EACCES:
523			/*
524			 * Got EACCES on the last device we tried,
525			 * and EBUSY on all devices before that,
526			 * if any.
527			 */
528			fd = PCAP_ERROR_PERM_DENIED;
529			snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
530			    "(cannot open BPF device) %s: %s", device,
531			    pcap_strerror(errno));
532			break;
533
534		default:
535			/*
536			 * Some other problem.
537			 */
538			fd = PCAP_ERROR;
539			snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
540			    "(cannot open BPF device) %s: %s", device,
541			    pcap_strerror(errno));
542			break;
543		}
544	}
545#endif
546
547	return (fd);
548}
549
550#ifdef BIOCGDLTLIST
551static int
552get_dlt_list(int fd, int v, struct bpf_dltlist *bdlp, char *ebuf)
553{
554	memset(bdlp, 0, sizeof(*bdlp));
555	if (ioctl(fd, BIOCGDLTLIST, (caddr_t)bdlp) == 0) {
556		u_int i;
557		int is_ethernet;
558
559		bdlp->bfl_list = (u_int *) malloc(sizeof(u_int) * (bdlp->bfl_len + 1));
560		if (bdlp->bfl_list == NULL) {
561			(void)snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s",
562			    pcap_strerror(errno));
563			return (PCAP_ERROR);
564		}
565
566		if (ioctl(fd, BIOCGDLTLIST, (caddr_t)bdlp) < 0) {
567			(void)snprintf(ebuf, PCAP_ERRBUF_SIZE,
568			    "BIOCGDLTLIST: %s", pcap_strerror(errno));
569			free(bdlp->bfl_list);
570			return (PCAP_ERROR);
571		}
572
573		/*
574		 * OK, for real Ethernet devices, add DLT_DOCSIS to the
575		 * list, so that an application can let you choose it,
576		 * in case you're capturing DOCSIS traffic that a Cisco
577		 * Cable Modem Termination System is putting out onto
578		 * an Ethernet (it doesn't put an Ethernet header onto
579		 * the wire, it puts raw DOCSIS frames out on the wire
580		 * inside the low-level Ethernet framing).
581		 *
582		 * A "real Ethernet device" is defined here as a device
583		 * that has a link-layer type of DLT_EN10MB and that has
584		 * no alternate link-layer types; that's done to exclude
585		 * 802.11 interfaces (which might or might not be the
586		 * right thing to do, but I suspect it is - Ethernet <->
587		 * 802.11 bridges would probably badly mishandle frames
588		 * that don't have Ethernet headers).
589		 *
590		 * On Solaris with BPF, Ethernet devices also offer
591		 * DLT_IPNET, so we, if DLT_IPNET is defined, we don't
592		 * treat it as an indication that the device isn't an
593		 * Ethernet.
594		 */
595		if (v == DLT_EN10MB) {
596			is_ethernet = 1;
597			for (i = 0; i < bdlp->bfl_len; i++) {
598				if (bdlp->bfl_list[i] != DLT_EN10MB
599#ifdef DLT_IPNET
600				    && bdlp->bfl_list[i] != DLT_IPNET
601#endif
602				    ) {
603					is_ethernet = 0;
604					break;
605				}
606			}
607			if (is_ethernet) {
608				/*
609				 * We reserved one more slot at the end of
610				 * the list.
611				 */
612				bdlp->bfl_list[bdlp->bfl_len] = DLT_DOCSIS;
613				bdlp->bfl_len++;
614			}
615		}
616	} else {
617		/*
618		 * EINVAL just means "we don't support this ioctl on
619		 * this device"; don't treat it as an error.
620		 */
621		if (errno != EINVAL) {
622			(void)snprintf(ebuf, PCAP_ERRBUF_SIZE,
623			    "BIOCGDLTLIST: %s", pcap_strerror(errno));
624			return (PCAP_ERROR);
625		}
626	}
627	return (0);
628}
629#endif
630
631static int
632pcap_can_set_rfmon_bpf(pcap_t *p)
633{
634#if defined(__APPLE__)
635	struct utsname osinfo;
636	struct ifreq ifr;
637	int fd;
638#ifdef BIOCGDLTLIST
639	struct bpf_dltlist bdl;
640#endif
641
642	/*
643	 * The joys of monitor mode on OS X.
644	 *
645	 * Prior to 10.4, it's not supported at all.
646	 *
647	 * In 10.4, if adapter enN supports monitor mode, there's a
648	 * wltN adapter corresponding to it; you open it, instead of
649	 * enN, to get monitor mode.  You get whatever link-layer
650	 * headers it supplies.
651	 *
652	 * In 10.5, and, we assume, later releases, if adapter enN
653	 * supports monitor mode, it offers, among its selectable
654	 * DLT_ values, values that let you get the 802.11 header;
655	 * selecting one of those values puts the adapter into monitor
656	 * mode (i.e., you can't get 802.11 headers except in monitor
657	 * mode, and you can't get Ethernet headers in monitor mode).
658	 */
659	if (uname(&osinfo) == -1) {
660		/*
661		 * Can't get the OS version; just say "no".
662		 */
663		return (0);
664	}
665	/*
666	 * We assume osinfo.sysname is "Darwin", because
667	 * __APPLE__ is defined.  We just check the version.
668	 */
669	if (osinfo.release[0] < '8' && osinfo.release[1] == '.') {
670		/*
671		 * 10.3 (Darwin 7.x) or earlier.
672		 * Monitor mode not supported.
673		 */
674		return (0);
675	}
676	if (osinfo.release[0] == '8' && osinfo.release[1] == '.') {
677		/*
678		 * 10.4 (Darwin 8.x).  s/en/wlt/, and check
679		 * whether the device exists.
680		 */
681		if (strncmp(p->opt.source, "en", 2) != 0) {
682			/*
683			 * Not an enN device; no monitor mode.
684			 */
685			return (0);
686		}
687		fd = socket(AF_INET, SOCK_DGRAM, 0);
688		if (fd == -1) {
689			(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
690			    "socket: %s", pcap_strerror(errno));
691			return (PCAP_ERROR);
692		}
693		strlcpy(ifr.ifr_name, "wlt", sizeof(ifr.ifr_name));
694		strlcat(ifr.ifr_name, p->opt.source + 2, sizeof(ifr.ifr_name));
695		if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifr) < 0) {
696			/*
697			 * No such device?
698			 */
699			close(fd);
700			return (0);
701		}
702		close(fd);
703		return (1);
704	}
705
706#ifdef BIOCGDLTLIST
707	/*
708	 * Everything else is 10.5 or later; for those,
709	 * we just open the enN device, and check whether
710	 * we have any 802.11 devices.
711	 *
712	 * First, open a BPF device.
713	 */
714	fd = bpf_open(p);
715	if (fd < 0)
716		return (fd);	/* fd is the appropriate error code */
717
718	/*
719	 * Now bind to the device.
720	 */
721	(void)strncpy(ifr.ifr_name, p->opt.source, sizeof(ifr.ifr_name));
722	if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) {
723		switch (errno) {
724
725		case ENXIO:
726			/*
727			 * There's no such device.
728			 */
729			close(fd);
730			return (PCAP_ERROR_NO_SUCH_DEVICE);
731
732		case ENETDOWN:
733			/*
734			 * Return a "network down" indication, so that
735			 * the application can report that rather than
736			 * saying we had a mysterious failure and
737			 * suggest that they report a problem to the
738			 * libpcap developers.
739			 */
740			close(fd);
741			return (PCAP_ERROR_IFACE_NOT_UP);
742
743		default:
744			snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
745			    "BIOCSETIF: %s: %s",
746			    p->opt.source, pcap_strerror(errno));
747			close(fd);
748			return (PCAP_ERROR);
749		}
750	}
751
752	/*
753	 * We know the default link type -- now determine all the DLTs
754	 * this interface supports.  If this fails with EINVAL, it's
755	 * not fatal; we just don't get to use the feature later.
756	 * (We don't care about DLT_DOCSIS, so we pass DLT_NULL
757	 * as the default DLT for this adapter.)
758	 */
759	if (get_dlt_list(fd, DLT_NULL, &bdl, p->errbuf) == PCAP_ERROR) {
760		close(fd);
761		return (PCAP_ERROR);
762	}
763	if (find_802_11(&bdl) != -1) {
764		/*
765		 * We have an 802.11 DLT, so we can set monitor mode.
766		 */
767		free(bdl.bfl_list);
768		close(fd);
769		return (1);
770	}
771	free(bdl.bfl_list);
772#endif /* BIOCGDLTLIST */
773	return (0);
774#elif defined(HAVE_BSD_IEEE80211)
775	int ret;
776
777	ret = monitor_mode(p, 0);
778	if (ret == PCAP_ERROR_RFMON_NOTSUP)
779		return (0);	/* not an error, just a "can't do" */
780	if (ret == 0)
781		return (1);	/* success */
782	return (ret);
783#else
784	return (0);
785#endif
786}
787
788static int
789pcap_stats_bpf(pcap_t *p, struct pcap_stat *ps)
790{
791	struct bpf_stat s;
792
793	/*
794	 * "ps_recv" counts packets handed to the filter, not packets
795	 * that passed the filter.  This includes packets later dropped
796	 * because we ran out of buffer space.
797	 *
798	 * "ps_drop" counts packets dropped inside the BPF device
799	 * because we ran out of buffer space.  It doesn't count
800	 * packets dropped by the interface driver.  It counts
801	 * only packets that passed the filter.
802	 *
803	 * Both statistics include packets not yet read from the kernel
804	 * by libpcap, and thus not yet seen by the application.
805	 */
806	if (ioctl(p->fd, BIOCGSTATS, (caddr_t)&s) < 0) {
807		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGSTATS: %s",
808		    pcap_strerror(errno));
809		return (PCAP_ERROR);
810	}
811
812	ps->ps_recv = s.bs_recv;
813	ps->ps_drop = s.bs_drop;
814	ps->ps_ifdrop = 0;
815	return (0);
816}
817
818static int
819pcap_read_bpf(pcap_t *p, int cnt, pcap_handler callback, u_char *user)
820{
821	int cc;
822	int n = 0;
823	register u_char *bp, *ep;
824	u_char *datap;
825#ifdef PCAP_FDDIPAD
826	register int pad;
827#endif
828#ifdef HAVE_ZEROCOPY_BPF
829	int i;
830#endif
831
832 again:
833	/*
834	 * Has "pcap_breakloop()" been called?
835	 */
836	if (p->break_loop) {
837		/*
838		 * Yes - clear the flag that indicates that it
839		 * has, and return PCAP_ERROR_BREAK to indicate
840		 * that we were told to break out of the loop.
841		 */
842		p->break_loop = 0;
843		return (PCAP_ERROR_BREAK);
844	}
845	cc = p->cc;
846	if (p->cc == 0) {
847		/*
848		 * When reading without zero-copy from a file descriptor, we
849		 * use a single buffer and return a length of data in the
850		 * buffer.  With zero-copy, we update the p->buffer pointer
851		 * to point at whatever underlying buffer contains the next
852		 * data and update cc to reflect the data found in the
853		 * buffer.
854		 */
855#ifdef HAVE_ZEROCOPY_BPF
856		if (p->md.zerocopy) {
857			if (p->buffer != NULL)
858				pcap_ack_zbuf(p);
859			i = pcap_next_zbuf(p, &cc);
860			if (i == 0)
861				goto again;
862			if (i < 0)
863				return (PCAP_ERROR);
864		} else
865#endif
866		{
867			cc = read(p->fd, (char *)p->buffer, p->bufsize);
868		}
869		if (cc < 0) {
870			/* Don't choke when we get ptraced */
871			switch (errno) {
872
873			case EINTR:
874				goto again;
875
876#ifdef _AIX
877			case EFAULT:
878				/*
879				 * Sigh.  More AIX wonderfulness.
880				 *
881				 * For some unknown reason the uiomove()
882				 * operation in the bpf kernel extension
883				 * used to copy the buffer into user
884				 * space sometimes returns EFAULT. I have
885				 * no idea why this is the case given that
886				 * a kernel debugger shows the user buffer
887				 * is correct. This problem appears to
888				 * be mostly mitigated by the memset of
889				 * the buffer before it is first used.
890				 * Very strange.... Shaun Clowes
891				 *
892				 * In any case this means that we shouldn't
893				 * treat EFAULT as a fatal error; as we
894				 * don't have an API for returning
895				 * a "some packets were dropped since
896				 * the last packet you saw" indication,
897				 * we just ignore EFAULT and keep reading.
898				 */
899				goto again;
900#endif
901
902			case EWOULDBLOCK:
903				return (0);
904
905			case ENXIO:
906				/*
907				 * The device on which we're capturing
908				 * went away.
909				 *
910				 * XXX - we should really return
911				 * PCAP_ERROR_IFACE_NOT_UP, but
912				 * pcap_dispatch() etc. aren't
913				 * defined to retur that.
914				 */
915				snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
916				    "The interface went down");
917				return (PCAP_ERROR);
918
919#if defined(sun) && !defined(BSD) && !defined(__svr4__) && !defined(__SVR4)
920			/*
921			 * Due to a SunOS bug, after 2^31 bytes, the kernel
922			 * file offset overflows and read fails with EINVAL.
923			 * The lseek() to 0 will fix things.
924			 */
925			case EINVAL:
926				if (lseek(p->fd, 0L, SEEK_CUR) +
927				    p->bufsize < 0) {
928					(void)lseek(p->fd, 0L, SEEK_SET);
929					goto again;
930				}
931				/* fall through */
932#endif
933			}
934			snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "read: %s",
935			    pcap_strerror(errno));
936			return (PCAP_ERROR);
937		}
938		bp = p->buffer;
939	} else
940		bp = p->bp;
941
942	/*
943	 * Loop through each packet.
944	 */
945#define bhp ((struct bpf_hdr *)bp)
946	ep = bp + cc;
947#ifdef PCAP_FDDIPAD
948	pad = p->fddipad;
949#endif
950	while (bp < ep) {
951		register int caplen, hdrlen;
952
953		/*
954		 * Has "pcap_breakloop()" been called?
955		 * If so, return immediately - if we haven't read any
956		 * packets, clear the flag and return PCAP_ERROR_BREAK
957		 * to indicate that we were told to break out of the loop,
958		 * otherwise leave the flag set, so that the *next* call
959		 * will break out of the loop without having read any
960		 * packets, and return the number of packets we've
961		 * processed so far.
962		 */
963		if (p->break_loop) {
964			p->bp = bp;
965			p->cc = ep - bp;
966			/*
967			 * ep is set based on the return value of read(),
968			 * but read() from a BPF device doesn't necessarily
969			 * return a value that's a multiple of the alignment
970			 * value for BPF_WORDALIGN().  However, whenever we
971			 * increment bp, we round up the increment value by
972			 * a value rounded up by BPF_WORDALIGN(), so we
973			 * could increment bp past ep after processing the
974			 * last packet in the buffer.
975			 *
976			 * We treat ep < bp as an indication that this
977			 * happened, and just set p->cc to 0.
978			 */
979			if (p->cc < 0)
980				p->cc = 0;
981			if (n == 0) {
982				p->break_loop = 0;
983				return (PCAP_ERROR_BREAK);
984			} else
985				return (n);
986		}
987
988		caplen = bhp->bh_caplen;
989		hdrlen = bhp->bh_hdrlen;
990		datap = bp + hdrlen;
991		/*
992		 * Short-circuit evaluation: if using BPF filter
993		 * in kernel, no need to do it now - we already know
994		 * the packet passed the filter.
995		 *
996#ifdef PCAP_FDDIPAD
997		 * Note: the filter code was generated assuming
998		 * that p->fddipad was the amount of padding
999		 * before the header, as that's what's required
1000		 * in the kernel, so we run the filter before
1001		 * skipping that padding.
1002#endif
1003		 */
1004		if (p->md.use_bpf ||
1005		    bpf_filter(p->fcode.bf_insns, datap, bhp->bh_datalen, caplen)) {
1006			struct pcap_pkthdr pkthdr;
1007
1008			pkthdr.ts.tv_sec = bhp->bh_tstamp.tv_sec;
1009#ifdef _AIX
1010			/*
1011			 * AIX's BPF returns seconds/nanoseconds time
1012			 * stamps, not seconds/microseconds time stamps.
1013			 */
1014			pkthdr.ts.tv_usec = bhp->bh_tstamp.tv_usec/1000;
1015#else
1016			pkthdr.ts.tv_usec = bhp->bh_tstamp.tv_usec;
1017#endif
1018#ifdef PCAP_FDDIPAD
1019			if (caplen > pad)
1020				pkthdr.caplen = caplen - pad;
1021			else
1022				pkthdr.caplen = 0;
1023			if (bhp->bh_datalen > pad)
1024				pkthdr.len = bhp->bh_datalen - pad;
1025			else
1026				pkthdr.len = 0;
1027			datap += pad;
1028#else
1029			pkthdr.caplen = caplen;
1030			pkthdr.len = bhp->bh_datalen;
1031#endif
1032			(*callback)(user, &pkthdr, datap);
1033			bp += BPF_WORDALIGN(caplen + hdrlen);
1034			if (++n >= cnt && cnt > 0) {
1035				p->bp = bp;
1036				p->cc = ep - bp;
1037				/*
1038				 * See comment above about p->cc < 0.
1039				 */
1040				if (p->cc < 0)
1041					p->cc = 0;
1042				return (n);
1043			}
1044		} else {
1045			/*
1046			 * Skip this packet.
1047			 */
1048			bp += BPF_WORDALIGN(caplen + hdrlen);
1049		}
1050	}
1051#undef bhp
1052	p->cc = 0;
1053	return (n);
1054}
1055
1056static int
1057pcap_inject_bpf(pcap_t *p, const void *buf, size_t size)
1058{
1059	int ret;
1060
1061	ret = write(p->fd, buf, size);
1062#ifdef __APPLE__
1063	if (ret == -1 && errno == EAFNOSUPPORT) {
1064		/*
1065		 * In Mac OS X, there's a bug wherein setting the
1066		 * BIOCSHDRCMPLT flag causes writes to fail; see,
1067		 * for example:
1068		 *
1069		 *	http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/BIOCSHDRCMPLT-10.3.3.patch
1070		 *
1071		 * So, if, on OS X, we get EAFNOSUPPORT from the write, we
1072		 * assume it's due to that bug, and turn off that flag
1073		 * and try again.  If we succeed, it either means that
1074		 * somebody applied the fix from that URL, or other patches
1075		 * for that bug from
1076		 *
1077		 *	http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/
1078		 *
1079		 * and are running a Darwin kernel with those fixes, or
1080		 * that Apple fixed the problem in some OS X release.
1081		 */
1082		u_int spoof_eth_src = 0;
1083
1084		if (ioctl(p->fd, BIOCSHDRCMPLT, &spoof_eth_src) == -1) {
1085			(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1086			    "send: can't turn off BIOCSHDRCMPLT: %s",
1087			    pcap_strerror(errno));
1088			return (PCAP_ERROR);
1089		}
1090
1091		/*
1092		 * Now try the write again.
1093		 */
1094		ret = write(p->fd, buf, size);
1095	}
1096#endif /* __APPLE__ */
1097	if (ret == -1) {
1098		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "send: %s",
1099		    pcap_strerror(errno));
1100		return (PCAP_ERROR);
1101	}
1102	return (ret);
1103}
1104
1105#ifdef _AIX
1106static int
1107bpf_odminit(char *errbuf)
1108{
1109	char *errstr;
1110
1111	if (odm_initialize() == -1) {
1112		if (odm_err_msg(odmerrno, &errstr) == -1)
1113			errstr = "Unknown error";
1114		snprintf(errbuf, PCAP_ERRBUF_SIZE,
1115		    "bpf_load: odm_initialize failed: %s",
1116		    errstr);
1117		return (PCAP_ERROR);
1118	}
1119
1120	if ((odmlockid = odm_lock("/etc/objrepos/config_lock", ODM_WAIT)) == -1) {
1121		if (odm_err_msg(odmerrno, &errstr) == -1)
1122			errstr = "Unknown error";
1123		snprintf(errbuf, PCAP_ERRBUF_SIZE,
1124		    "bpf_load: odm_lock of /etc/objrepos/config_lock failed: %s",
1125		    errstr);
1126		(void)odm_terminate();
1127		return (PCAP_ERROR);
1128	}
1129
1130	return (0);
1131}
1132
1133static int
1134bpf_odmcleanup(char *errbuf)
1135{
1136	char *errstr;
1137
1138	if (odm_unlock(odmlockid) == -1) {
1139		if (errbuf != NULL) {
1140			if (odm_err_msg(odmerrno, &errstr) == -1)
1141				errstr = "Unknown error";
1142			snprintf(errbuf, PCAP_ERRBUF_SIZE,
1143			    "bpf_load: odm_unlock failed: %s",
1144			    errstr);
1145		}
1146		return (PCAP_ERROR);
1147	}
1148
1149	if (odm_terminate() == -1) {
1150		if (errbuf != NULL) {
1151			if (odm_err_msg(odmerrno, &errstr) == -1)
1152				errstr = "Unknown error";
1153			snprintf(errbuf, PCAP_ERRBUF_SIZE,
1154			    "bpf_load: odm_terminate failed: %s",
1155			    errstr);
1156		}
1157		return (PCAP_ERROR);
1158	}
1159
1160	return (0);
1161}
1162
1163static int
1164bpf_load(char *errbuf)
1165{
1166	long major;
1167	int *minors;
1168	int numminors, i, rc;
1169	char buf[1024];
1170	struct stat sbuf;
1171	struct bpf_config cfg_bpf;
1172	struct cfg_load cfg_ld;
1173	struct cfg_kmod cfg_km;
1174
1175	/*
1176	 * This is very very close to what happens in the real implementation
1177	 * but I've fixed some (unlikely) bug situations.
1178	 */
1179	if (bpfloadedflag)
1180		return (0);
1181
1182	if (bpf_odminit(errbuf) == PCAP_ERROR)
1183		return (PCAP_ERROR);
1184
1185	major = genmajor(BPF_NAME);
1186	if (major == -1) {
1187		snprintf(errbuf, PCAP_ERRBUF_SIZE,
1188		    "bpf_load: genmajor failed: %s", pcap_strerror(errno));
1189		(void)bpf_odmcleanup(NULL);
1190		return (PCAP_ERROR);
1191	}
1192
1193	minors = getminor(major, &numminors, BPF_NAME);
1194	if (!minors) {
1195		minors = genminor("bpf", major, 0, BPF_MINORS, 1, 1);
1196		if (!minors) {
1197			snprintf(errbuf, PCAP_ERRBUF_SIZE,
1198			    "bpf_load: genminor failed: %s",
1199			    pcap_strerror(errno));
1200			(void)bpf_odmcleanup(NULL);
1201			return (PCAP_ERROR);
1202		}
1203	}
1204
1205	if (bpf_odmcleanup(errbuf) == PCAP_ERROR)
1206		return (PCAP_ERROR);
1207
1208	rc = stat(BPF_NODE "0", &sbuf);
1209	if (rc == -1 && errno != ENOENT) {
1210		snprintf(errbuf, PCAP_ERRBUF_SIZE,
1211		    "bpf_load: can't stat %s: %s",
1212		    BPF_NODE "0", pcap_strerror(errno));
1213		return (PCAP_ERROR);
1214	}
1215
1216	if (rc == -1 || getmajor(sbuf.st_rdev) != major) {
1217		for (i = 0; i < BPF_MINORS; i++) {
1218			sprintf(buf, "%s%d", BPF_NODE, i);
1219			unlink(buf);
1220			if (mknod(buf, S_IRUSR | S_IFCHR, domakedev(major, i)) == -1) {
1221				snprintf(errbuf, PCAP_ERRBUF_SIZE,
1222				    "bpf_load: can't mknod %s: %s",
1223				    buf, pcap_strerror(errno));
1224				return (PCAP_ERROR);
1225			}
1226		}
1227	}
1228
1229	/* Check if the driver is loaded */
1230	memset(&cfg_ld, 0x0, sizeof(cfg_ld));
1231	cfg_ld.path = buf;
1232	sprintf(cfg_ld.path, "%s/%s", DRIVER_PATH, BPF_NAME);
1233	if ((sysconfig(SYS_QUERYLOAD, (void *)&cfg_ld, sizeof(cfg_ld)) == -1) ||
1234	    (cfg_ld.kmid == 0)) {
1235		/* Driver isn't loaded, load it now */
1236		if (sysconfig(SYS_SINGLELOAD, (void *)&cfg_ld, sizeof(cfg_ld)) == -1) {
1237			snprintf(errbuf, PCAP_ERRBUF_SIZE,
1238			    "bpf_load: could not load driver: %s",
1239			    strerror(errno));
1240			return (PCAP_ERROR);
1241		}
1242	}
1243
1244	/* Configure the driver */
1245	cfg_km.cmd = CFG_INIT;
1246	cfg_km.kmid = cfg_ld.kmid;
1247	cfg_km.mdilen = sizeof(cfg_bpf);
1248	cfg_km.mdiptr = (void *)&cfg_bpf;
1249	for (i = 0; i < BPF_MINORS; i++) {
1250		cfg_bpf.devno = domakedev(major, i);
1251		if (sysconfig(SYS_CFGKMOD, (void *)&cfg_km, sizeof(cfg_km)) == -1) {
1252			snprintf(errbuf, PCAP_ERRBUF_SIZE,
1253			    "bpf_load: could not configure driver: %s",
1254			    strerror(errno));
1255			return (PCAP_ERROR);
1256		}
1257	}
1258
1259	bpfloadedflag = 1;
1260
1261	return (0);
1262}
1263#endif
1264
1265/*
1266 * Turn off rfmon mode if necessary.
1267 */
1268static void
1269pcap_cleanup_bpf(pcap_t *p)
1270{
1271#ifdef HAVE_BSD_IEEE80211
1272	int sock;
1273	struct ifmediareq req;
1274	struct ifreq ifr;
1275#endif
1276
1277	if (p->md.must_do_on_close != 0) {
1278		/*
1279		 * There's something we have to do when closing this
1280		 * pcap_t.
1281		 */
1282#ifdef HAVE_BSD_IEEE80211
1283		if (p->md.must_do_on_close & MUST_CLEAR_RFMON) {
1284			/*
1285			 * We put the interface into rfmon mode;
1286			 * take it out of rfmon mode.
1287			 *
1288			 * XXX - if somebody else wants it in rfmon
1289			 * mode, this code cannot know that, so it'll take
1290			 * it out of rfmon mode.
1291			 */
1292			sock = socket(AF_INET, SOCK_DGRAM, 0);
1293			if (sock == -1) {
1294				fprintf(stderr,
1295				    "Can't restore interface flags (socket() failed: %s).\n"
1296				    "Please adjust manually.\n",
1297				    strerror(errno));
1298			} else {
1299				memset(&req, 0, sizeof(req));
1300				strncpy(req.ifm_name, p->md.device,
1301				    sizeof(req.ifm_name));
1302				if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) {
1303					fprintf(stderr,
1304					    "Can't restore interface flags (SIOCGIFMEDIA failed: %s).\n"
1305					    "Please adjust manually.\n",
1306					    strerror(errno));
1307				} else {
1308					if (req.ifm_current & IFM_IEEE80211_MONITOR) {
1309						/*
1310						 * Rfmon mode is currently on;
1311						 * turn it off.
1312						 */
1313						memset(&ifr, 0, sizeof(ifr));
1314						(void)strncpy(ifr.ifr_name,
1315						    p->md.device,
1316						    sizeof(ifr.ifr_name));
1317						ifr.ifr_media =
1318						    req.ifm_current & ~IFM_IEEE80211_MONITOR;
1319						if (ioctl(sock, SIOCSIFMEDIA,
1320						    &ifr) == -1) {
1321							fprintf(stderr,
1322							    "Can't restore interface flags (SIOCSIFMEDIA failed: %s).\n"
1323							    "Please adjust manually.\n",
1324							    strerror(errno));
1325						}
1326					}
1327				}
1328				close(sock);
1329			}
1330		}
1331#endif /* HAVE_BSD_IEEE80211 */
1332
1333		/*
1334		 * Take this pcap out of the list of pcaps for which we
1335		 * have to take the interface out of some mode.
1336		 */
1337		pcap_remove_from_pcaps_to_close(p);
1338		p->md.must_do_on_close = 0;
1339	}
1340
1341#ifdef HAVE_ZEROCOPY_BPF
1342	if (p->md.zerocopy) {
1343		/*
1344		 * Delete the mappings.  Note that p->buffer gets
1345		 * initialized to one of the mmapped regions in
1346		 * this case, so do not try and free it directly;
1347		 * null it out so that pcap_cleanup_live_common()
1348		 * doesn't try to free it.
1349		 */
1350		if (p->md.zbuf1 != MAP_FAILED && p->md.zbuf1 != NULL)
1351			(void) munmap(p->md.zbuf1, p->md.zbufsize);
1352		if (p->md.zbuf2 != MAP_FAILED && p->md.zbuf2 != NULL)
1353			(void) munmap(p->md.zbuf2, p->md.zbufsize);
1354		p->buffer = NULL;
1355		p->buffer = NULL;
1356	}
1357#endif
1358	if (p->md.device != NULL) {
1359		free(p->md.device);
1360		p->md.device = NULL;
1361	}
1362	pcap_cleanup_live_common(p);
1363}
1364
1365static int
1366check_setif_failure(pcap_t *p, int error)
1367{
1368#ifdef __APPLE__
1369	int fd;
1370	struct ifreq ifr;
1371	int err;
1372#endif
1373
1374	if (error == ENXIO) {
1375		/*
1376		 * No such device exists.
1377		 */
1378#ifdef __APPLE__
1379		if (p->opt.rfmon && strncmp(p->opt.source, "wlt", 3) == 0) {
1380			/*
1381			 * Monitor mode was requested, and we're trying
1382			 * to open a "wltN" device.  Assume that this
1383			 * is 10.4 and that we were asked to open an
1384			 * "enN" device; if that device exists, return
1385			 * "monitor mode not supported on the device".
1386			 */
1387			fd = socket(AF_INET, SOCK_DGRAM, 0);
1388			if (fd != -1) {
1389				strlcpy(ifr.ifr_name, "en",
1390				    sizeof(ifr.ifr_name));
1391				strlcat(ifr.ifr_name, p->opt.source + 3,
1392				    sizeof(ifr.ifr_name));
1393				if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifr) < 0) {
1394					/*
1395					 * We assume this failed because
1396					 * the underlying device doesn't
1397					 * exist.
1398					 */
1399					err = PCAP_ERROR_NO_SUCH_DEVICE;
1400					snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1401					    "SIOCGIFFLAGS on %s failed: %s",
1402					    ifr.ifr_name, pcap_strerror(errno));
1403				} else {
1404					/*
1405					 * The underlying "enN" device
1406					 * exists, but there's no
1407					 * corresponding "wltN" device;
1408					 * that means that the "enN"
1409					 * device doesn't support
1410					 * monitor mode, probably because
1411					 * it's an Ethernet device rather
1412					 * than a wireless device.
1413					 */
1414					err = PCAP_ERROR_RFMON_NOTSUP;
1415				}
1416				close(fd);
1417			} else {
1418				/*
1419				 * We can't find out whether there's
1420				 * an underlying "enN" device, so
1421				 * just report "no such device".
1422				 */
1423				err = PCAP_ERROR_NO_SUCH_DEVICE;
1424				snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1425				    "socket() failed: %s",
1426				    pcap_strerror(errno));
1427			}
1428			return (err);
1429		}
1430#endif
1431		/*
1432		 * No such device.
1433		 */
1434		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF failed: %s",
1435		    pcap_strerror(errno));
1436		return (PCAP_ERROR_NO_SUCH_DEVICE);
1437	} else if (errno == ENETDOWN) {
1438		/*
1439		 * Return a "network down" indication, so that
1440		 * the application can report that rather than
1441		 * saying we had a mysterious failure and
1442		 * suggest that they report a problem to the
1443		 * libpcap developers.
1444		 */
1445		return (PCAP_ERROR_IFACE_NOT_UP);
1446	} else {
1447		/*
1448		 * Some other error; fill in the error string, and
1449		 * return PCAP_ERROR.
1450		 */
1451		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s",
1452		    p->opt.source, pcap_strerror(errno));
1453		return (PCAP_ERROR);
1454	}
1455}
1456
1457/*
1458 * Default capture buffer size.
1459 * 32K isn't very much for modern machines with fast networks; we
1460 * pick .5M, as that's the maximum on at least some systems with BPF.
1461 *
1462 * However, on AIX 3.5, the larger buffer sized caused unrecoverable
1463 * read failures under stress, so we leave it as 32K; yet another
1464 * place where AIX's BPF is broken.
1465 */
1466#ifdef _AIX
1467#define DEFAULT_BUFSIZE	32768
1468#else
1469#define DEFAULT_BUFSIZE	524288
1470#endif
1471
1472static int
1473pcap_activate_bpf(pcap_t *p)
1474{
1475	int status = 0;
1476	int fd;
1477#ifdef LIFNAMSIZ
1478	char *zonesep;
1479	struct lifreq ifr;
1480	char *ifrname = ifr.lifr_name;
1481	const size_t ifnamsiz = sizeof(ifr.lifr_name);
1482#else
1483	struct ifreq ifr;
1484	char *ifrname = ifr.ifr_name;
1485	const size_t ifnamsiz = sizeof(ifr.ifr_name);
1486#endif
1487	struct bpf_version bv;
1488#ifdef __APPLE__
1489	int sockfd;
1490	char *wltdev = NULL;
1491#endif
1492#ifdef BIOCGDLTLIST
1493	struct bpf_dltlist bdl;
1494#if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)
1495	int new_dlt;
1496#endif
1497#endif /* BIOCGDLTLIST */
1498#if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT)
1499	u_int spoof_eth_src = 1;
1500#endif
1501	u_int v;
1502	struct bpf_insn total_insn;
1503	struct bpf_program total_prog;
1504	struct utsname osinfo;
1505
1506#ifdef HAVE_DAG_API
1507	if (strstr(device, "dag")) {
1508		return dag_open_live(device, snaplen, promisc, to_ms, ebuf);
1509	}
1510#endif /* HAVE_DAG_API */
1511
1512#ifdef BIOCGDLTLIST
1513	memset(&bdl, 0, sizeof(bdl));
1514	int have_osinfo = 0;
1515#ifdef HAVE_ZEROCOPY_BPF
1516	struct bpf_zbuf bz;
1517	u_int bufmode, zbufmax;
1518#endif
1519
1520	fd = bpf_open(p);
1521	if (fd < 0) {
1522		status = fd;
1523		goto bad;
1524	}
1525
1526	p->fd = fd;
1527
1528	if (ioctl(fd, BIOCVERSION, (caddr_t)&bv) < 0) {
1529		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCVERSION: %s",
1530		    pcap_strerror(errno));
1531		status = PCAP_ERROR;
1532		goto bad;
1533	}
1534	if (bv.bv_major != BPF_MAJOR_VERSION ||
1535	    bv.bv_minor < BPF_MINOR_VERSION) {
1536		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1537		    "kernel bpf filter out of date");
1538		status = PCAP_ERROR;
1539		goto bad;
1540	}
1541
1542#if defined(LIFNAMSIZ) && defined(ZONENAME_MAX) && defined(lifr_zoneid)
1543	/*
1544	 * Check if the given source network device has a '/' separated
1545	 * zonename prefix string. The zonename prefixed source device
1546	 * can be used by libpcap consumers to capture network traffic
1547	 * in non-global zones from the global zone on Solaris 11 and
1548	 * above. If the zonename prefix is present then we strip the
1549	 * prefix and pass the zone ID as part of lifr_zoneid.
1550	 */
1551	if ((zonesep = strchr(p->opt.source, '/')) != NULL) {
1552		char zonename[ZONENAME_MAX];
1553		int  znamelen;
1554		char *lnamep;
1555
1556		znamelen = zonesep - p->opt.source;
1557		(void) strlcpy(zonename, p->opt.source, znamelen + 1);
1558		lnamep = strdup(zonesep + 1);
1559		ifr.lifr_zoneid = getzoneidbyname(zonename);
1560		free(p->opt.source);
1561		p->opt.source = lnamep;
1562	}
1563#endif
1564
1565	p->md.device = strdup(p->opt.source);
1566	if (p->md.device == NULL) {
1567		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "strdup: %s",
1568		     pcap_strerror(errno));
1569		status = PCAP_ERROR;
1570		goto bad;
1571	}
1572
1573	/*
1574	 * Try finding a good size for the buffer; 32768 may be too
1575	 * big, so keep cutting it in half until we find a size
1576	 * that works, or run out of sizes to try.  If the default
1577	 * is larger, don't make it smaller.
1578	 *
1579	 * XXX - there should be a user-accessible hook to set the
1580	 * initial buffer size.
1581	 * Attempt to find out the version of the OS on which we're running.
1582	 */
1583	if (uname(&osinfo) == 0)
1584		have_osinfo = 1;
1585
1586#ifdef __APPLE__
1587	/*
1588	 * See comment in pcap_can_set_rfmon_bpf() for an explanation
1589	 * of why we check the version number.
1590	 */
1591	if (p->opt.rfmon) {
1592		if (have_osinfo) {
1593			/*
1594			 * We assume osinfo.sysname is "Darwin", because
1595			 * __APPLE__ is defined.  We just check the version.
1596			 */
1597			if (osinfo.release[0] < '8' &&
1598			    osinfo.release[1] == '.') {
1599				/*
1600				 * 10.3 (Darwin 7.x) or earlier.
1601				 */
1602				status = PCAP_ERROR_RFMON_NOTSUP;
1603				goto bad;
1604			}
1605			if (osinfo.release[0] == '8' &&
1606			    osinfo.release[1] == '.') {
1607				/*
1608				 * 10.4 (Darwin 8.x).  s/en/wlt/
1609				 */
1610				if (strncmp(p->opt.source, "en", 2) != 0) {
1611					/*
1612					 * Not an enN device; check
1613					 * whether the device even exists.
1614					 */
1615					sockfd = socket(AF_INET, SOCK_DGRAM, 0);
1616					if (sockfd != -1) {
1617						strlcpy(ifrname,
1618						    p->opt.source, ifnamsiz);
1619						if (ioctl(sockfd, SIOCGIFFLAGS,
1620						    (char *)&ifr) < 0) {
1621							/*
1622							 * We assume this
1623							 * failed because
1624							 * the underlying
1625							 * device doesn't
1626							 * exist.
1627							 */
1628							status = PCAP_ERROR_NO_SUCH_DEVICE;
1629							snprintf(p->errbuf,
1630							    PCAP_ERRBUF_SIZE,
1631							    "SIOCGIFFLAGS failed: %s",
1632							    pcap_strerror(errno));
1633						} else
1634							status = PCAP_ERROR_RFMON_NOTSUP;
1635						close(sockfd);
1636					} else {
1637						/*
1638						 * We can't find out whether
1639						 * the device exists, so just
1640						 * report "no such device".
1641						 */
1642						status = PCAP_ERROR_NO_SUCH_DEVICE;
1643						snprintf(p->errbuf,
1644						    PCAP_ERRBUF_SIZE,
1645						    "socket() failed: %s",
1646						    pcap_strerror(errno));
1647					}
1648					goto bad;
1649				}
1650				wltdev = malloc(strlen(p->opt.source) + 2);
1651				if (wltdev == NULL) {
1652					(void)snprintf(p->errbuf,
1653					    PCAP_ERRBUF_SIZE, "malloc: %s",
1654					    pcap_strerror(errno));
1655					status = PCAP_ERROR;
1656					goto bad;
1657				}
1658				strcpy(wltdev, "wlt");
1659				strcat(wltdev, p->opt.source + 2);
1660				free(p->opt.source);
1661				p->opt.source = wltdev;
1662			}
1663			/*
1664			 * Everything else is 10.5 or later; for those,
1665			 * we just open the enN device, and set the DLT.
1666			 */
1667		}
1668	}
1669#endif /* __APPLE__ */
1670#ifdef HAVE_ZEROCOPY_BPF
1671	/*
1672	 * If the BPF extension to set buffer mode is present, try setting
1673	 * the mode to zero-copy.  If that fails, use regular buffering.  If
1674	 * it succeeds but other setup fails, return an error to the user.
1675	 */
1676	bufmode = BPF_BUFMODE_ZBUF;
1677	if (ioctl(fd, BIOCSETBUFMODE, (caddr_t)&bufmode) == 0) {
1678		/*
1679		 * We have zerocopy BPF; use it.
1680		 */
1681		p->md.zerocopy = 1;
1682
1683		/*
1684		 * How to pick a buffer size: first, query the maximum buffer
1685		 * size supported by zero-copy.  This also lets us quickly
1686		 * determine whether the kernel generally supports zero-copy.
1687		 * Then, if a buffer size was specified, use that, otherwise
1688		 * query the default buffer size, which reflects kernel
1689		 * policy for a desired default.  Round to the nearest page
1690		 * size.
1691		 */
1692		if (ioctl(fd, BIOCGETZMAX, (caddr_t)&zbufmax) < 0) {
1693			snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGETZMAX: %s",
1694			    pcap_strerror(errno));
1695			goto bad;
1696		}
1697
1698		if (p->opt.buffer_size != 0) {
1699			/*
1700			 * A buffer size was explicitly specified; use it.
1701			 */
1702			v = p->opt.buffer_size;
1703		} else {
1704			if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) ||
1705			    v < DEFAULT_BUFSIZE)
1706				v = DEFAULT_BUFSIZE;
1707		}
1708#ifndef roundup
1709#define roundup(x, y)   ((((x)+((y)-1))/(y))*(y))  /* to any y */
1710#endif
1711		p->md.zbufsize = roundup(v, getpagesize());
1712		if (p->md.zbufsize > zbufmax)
1713			p->md.zbufsize = zbufmax;
1714		p->md.zbuf1 = mmap(NULL, p->md.zbufsize, PROT_READ | PROT_WRITE,
1715		    MAP_ANON, -1, 0);
1716		p->md.zbuf2 = mmap(NULL, p->md.zbufsize, PROT_READ | PROT_WRITE,
1717		    MAP_ANON, -1, 0);
1718		if (p->md.zbuf1 == MAP_FAILED || p->md.zbuf2 == MAP_FAILED) {
1719			snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "mmap: %s",
1720			    pcap_strerror(errno));
1721			goto bad;
1722		}
1723		bzero(&bz, sizeof(bz));
1724		bz.bz_bufa = p->md.zbuf1;
1725		bz.bz_bufb = p->md.zbuf2;
1726		bz.bz_buflen = p->md.zbufsize;
1727		if (ioctl(fd, BIOCSETZBUF, (caddr_t)&bz) < 0) {
1728			snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETZBUF: %s",
1729			    pcap_strerror(errno));
1730			goto bad;
1731		}
1732		(void)strncpy(ifrname, p->opt.source, ifnamsiz);
1733		if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) {
1734			snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s",
1735			    p->opt.source, pcap_strerror(errno));
1736			goto bad;
1737		}
1738		v = p->md.zbufsize - sizeof(struct bpf_zbuf_header);
1739	} else
1740#endif
1741	{
1742		/*
1743		 * We don't have zerocopy BPF.
1744		 * Set the buffer size.
1745		 */
1746		if (p->opt.buffer_size != 0) {
1747			/*
1748			 * A buffer size was explicitly specified; use it.
1749			 */
1750			if (ioctl(fd, BIOCSBLEN,
1751			    (caddr_t)&p->opt.buffer_size) < 0) {
1752				snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1753				    "BIOCSBLEN: %s: %s", p->opt.source,
1754				    pcap_strerror(errno));
1755				status = PCAP_ERROR;
1756				goto bad;
1757			}
1758
1759			/*
1760			 * Now bind to the device.
1761			 */
1762			(void)strncpy(ifrname, p->opt.source, ifnamsiz);
1763#ifdef BIOCSETLIF
1764			if (ioctl(fd, BIOCSETLIF, (caddr_t)&ifr) < 0)
1765#else
1766			if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0)
1767#endif
1768			{
1769				status = check_setif_failure(p, errno);
1770				goto bad;
1771			}
1772		} else {
1773			/*
1774			 * No buffer size was explicitly specified.
1775			 *
1776			 * Try finding a good size for the buffer;
1777			 * DEFAULT_BUFSIZE may be too big, so keep
1778			 * cutting it in half until we find a size
1779			 * that works, or run out of sizes to try.
1780			 * If the default is larger, don't make it smaller.
1781			 */
1782			if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) ||
1783			    v < DEFAULT_BUFSIZE)
1784				v = DEFAULT_BUFSIZE;
1785			for ( ; v != 0; v >>= 1) {
1786				/*
1787				 * Ignore the return value - this is because the
1788				 * call fails on BPF systems that don't have
1789				 * kernel malloc.  And if the call fails, it's
1790				 * no big deal, we just continue to use the
1791				 * standard buffer size.
1792				 */
1793				(void) ioctl(fd, BIOCSBLEN, (caddr_t)&v);
1794
1795				(void)strncpy(ifrname, p->opt.source, ifnamsiz);
1796#ifdef BIOCSETLIF
1797				if (ioctl(fd, BIOCSETLIF, (caddr_t)&ifr) >= 0)
1798#else
1799				if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) >= 0)
1800#endif
1801					break;	/* that size worked; we're done */
1802
1803				if (errno != ENOBUFS) {
1804					status = check_setif_failure(p, errno);
1805					goto bad;
1806				}
1807			}
1808
1809			if (v == 0) {
1810				snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1811				    "BIOCSBLEN: %s: No buffer size worked",
1812				    p->opt.source);
1813				status = PCAP_ERROR;
1814				goto bad;
1815			}
1816		}
1817	}
1818#endif
1819
1820	/* Get the data link layer type. */
1821	if (ioctl(fd, BIOCGDLT, (caddr_t)&v) < 0) {
1822		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGDLT: %s",
1823		    pcap_strerror(errno));
1824		status = PCAP_ERROR;
1825		goto bad;
1826	}
1827
1828#ifdef _AIX
1829	/*
1830	 * AIX's BPF returns IFF_ types, not DLT_ types, in BIOCGDLT.
1831	 */
1832	switch (v) {
1833
1834	case IFT_ETHER:
1835	case IFT_ISO88023:
1836		v = DLT_EN10MB;
1837		break;
1838
1839	case IFT_FDDI:
1840		v = DLT_FDDI;
1841		break;
1842
1843	case IFT_ISO88025:
1844		v = DLT_IEEE802;
1845		break;
1846
1847	case IFT_LOOP:
1848		v = DLT_NULL;
1849		break;
1850
1851	default:
1852		/*
1853		 * We don't know what to map this to yet.
1854		 */
1855		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "unknown interface type %u",
1856		    v);
1857		status = PCAP_ERROR;
1858		goto bad;
1859	}
1860#endif
1861#if _BSDI_VERSION - 0 >= 199510
1862	/* The SLIP and PPP link layer header changed in BSD/OS 2.1 */
1863	switch (v) {
1864
1865	case DLT_SLIP:
1866		v = DLT_SLIP_BSDOS;
1867		break;
1868
1869	case DLT_PPP:
1870		v = DLT_PPP_BSDOS;
1871		break;
1872
1873	case 11:	/*DLT_FR*/
1874		v = DLT_FRELAY;
1875		break;
1876
1877	case 12:	/*DLT_C_HDLC*/
1878		v = DLT_CHDLC;
1879		break;
1880	}
1881#endif
1882
1883#ifdef BIOCGDLTLIST
1884	/*
1885	 * We know the default link type -- now determine all the DLTs
1886	 * this interface supports.  If this fails with EINVAL, it's
1887	 * not fatal; we just don't get to use the feature later.
1888	 */
1889	if (get_dlt_list(fd, v, &bdl, p->errbuf) == -1) {
1890		status = PCAP_ERROR;
1891		goto bad;
1892	}
1893	p->dlt_count = bdl.bfl_len;
1894	p->dlt_list = bdl.bfl_list;
1895
1896#ifdef __APPLE__
1897	/*
1898	 * Monitor mode fun, continued.
1899	 *
1900	 * For 10.5 and, we're assuming, later releases, as noted above,
1901	 * 802.1 adapters that support monitor mode offer both DLT_EN10MB,
1902	 * DLT_IEEE802_11, and possibly some 802.11-plus-radio-information
1903	 * DLT_ value.  Choosing one of the 802.11 DLT_ values will turn
1904	 * monitor mode on.
1905	 *
1906	 * Therefore, if the user asked for monitor mode, we filter out
1907	 * the DLT_EN10MB value, as you can't get that in monitor mode,
1908	 * and, if the user didn't ask for monitor mode, we filter out
1909	 * the 802.11 DLT_ values, because selecting those will turn
1910	 * monitor mode on.  Then, for monitor mode, if an 802.11-plus-
1911	 * radio DLT_ value is offered, we try to select that, otherwise
1912	 * we try to select DLT_IEEE802_11.
1913	 */
1914	if (have_osinfo) {
1915		if (isdigit((unsigned)osinfo.release[0]) &&
1916		     (osinfo.release[0] == '9' ||
1917		     isdigit((unsigned)osinfo.release[1]))) {
1918			/*
1919			 * 10.5 (Darwin 9.x), or later.
1920			 */
1921			new_dlt = find_802_11(&bdl);
1922			if (new_dlt != -1) {
1923				/*
1924				 * We have at least one 802.11 DLT_ value,
1925				 * so this is an 802.11 interface.
1926				 * new_dlt is the best of the 802.11
1927				 * DLT_ values in the list.
1928				 */
1929				if (p->opt.rfmon) {
1930					/*
1931					 * Our caller wants monitor mode.
1932					 * Purge DLT_EN10MB from the list
1933					 * of link-layer types, as selecting
1934					 * it will keep monitor mode off.
1935					 */
1936					remove_en(p);
1937
1938					/*
1939					 * If the new mode we want isn't
1940					 * the default mode, attempt to
1941					 * select the new mode.
1942					 */
1943					if (new_dlt != v) {
1944						if (ioctl(p->fd, BIOCSDLT,
1945						    &new_dlt) != -1) {
1946							/*
1947							 * We succeeded;
1948							 * make this the
1949							 * new DLT_ value.
1950							 */
1951							v = new_dlt;
1952						}
1953					}
1954				} else {
1955					/*
1956					 * Our caller doesn't want
1957					 * monitor mode.  Unless this
1958					 * is being done by pcap_open_live(),
1959					 * purge the 802.11 link-layer types
1960					 * from the list, as selecting
1961					 * one of them will turn monitor
1962					 * mode on.
1963					 */
1964					if (!p->oldstyle)
1965						remove_802_11(p);
1966				}
1967			} else {
1968				if (p->opt.rfmon) {
1969					/*
1970					 * The caller requested monitor
1971					 * mode, but we have no 802.11
1972					 * link-layer types, so they
1973					 * can't have it.
1974					 */
1975					status = PCAP_ERROR_RFMON_NOTSUP;
1976					goto bad;
1977				}
1978			}
1979		}
1980	}
1981#elif defined(HAVE_BSD_IEEE80211)
1982	/*
1983	 * *BSD with the new 802.11 ioctls.
1984	 * Do we want monitor mode?
1985	 */
1986	if (p->opt.rfmon) {
1987		/*
1988		 * Try to put the interface into monitor mode.
1989		 */
1990		status = monitor_mode(p, 1);
1991		if (status != 0) {
1992			/*
1993			 * We failed.
1994			 */
1995			goto bad;
1996		}
1997
1998		/*
1999		 * We're in monitor mode.
2000		 * Try to find the best 802.11 DLT_ value and, if we
2001		 * succeed, try to switch to that mode if we're not
2002		 * already in that mode.
2003		 */
2004		new_dlt = find_802_11(&bdl);
2005		if (new_dlt != -1) {
2006			/*
2007			 * We have at least one 802.11 DLT_ value.
2008			 * new_dlt is the best of the 802.11
2009			 * DLT_ values in the list.
2010			 *
2011			 * If the new mode we want isn't the default mode,
2012			 * attempt to select the new mode.
2013			 */
2014			if (new_dlt != v) {
2015				if (ioctl(p->fd, BIOCSDLT, &new_dlt) != -1) {
2016					/*
2017					 * We succeeded; make this the
2018					 * new DLT_ value.
2019					 */
2020					v = new_dlt;
2021				}
2022			}
2023		}
2024	}
2025#endif /* various platforms */
2026#endif /* BIOCGDLTLIST */
2027
2028	/*
2029	 * If this is an Ethernet device, and we don't have a DLT_ list,
2030	 * give it a list with DLT_EN10MB and DLT_DOCSIS.  (That'd give
2031	 * 802.11 interfaces DLT_DOCSIS, which isn't the right thing to
2032	 * do, but there's not much we can do about that without finding
2033	 * some other way of determining whether it's an Ethernet or 802.11
2034	 * device.)
2035	 */
2036	if (v == DLT_EN10MB && p->dlt_count == 0) {
2037		p->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
2038		/*
2039		 * If that fails, just leave the list empty.
2040		 */
2041		if (p->dlt_list != NULL) {
2042			p->dlt_list[0] = DLT_EN10MB;
2043			p->dlt_list[1] = DLT_DOCSIS;
2044			p->dlt_count = 2;
2045		}
2046	}
2047#ifdef PCAP_FDDIPAD
2048	if (v == DLT_FDDI)
2049		p->fddipad = PCAP_FDDIPAD;
2050	else
2051		p->fddipad = 0;
2052#endif
2053	p->linktype = v;
2054
2055#if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT)
2056	/*
2057	 * Do a BIOCSHDRCMPLT, if defined, to turn that flag on, so
2058	 * the link-layer source address isn't forcibly overwritten.
2059	 * (Should we ignore errors?  Should we do this only if
2060	 * we're open for writing?)
2061	 *
2062	 * XXX - I seem to remember some packet-sending bug in some
2063	 * BSDs - check CVS log for "bpf.c"?
2064	 */
2065	if (ioctl(fd, BIOCSHDRCMPLT, &spoof_eth_src) == -1) {
2066		(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2067		    "BIOCSHDRCMPLT: %s", pcap_strerror(errno));
2068		status = PCAP_ERROR;
2069		goto bad;
2070	}
2071#endif
2072	/* set timeout */
2073#ifdef HAVE_ZEROCOPY_BPF
2074	if (p->md.timeout != 0 && !p->md.zerocopy) {
2075#else
2076	if (p->md.timeout) {
2077#endif
2078		/*
2079		 * XXX - is this seconds/nanoseconds in AIX?
2080		 * (Treating it as such doesn't fix the timeout
2081		 * problem described below.)
2082		 *
2083		 * XXX - Mac OS X 10.6 mishandles BIOCSRTIMEOUT in
2084		 * 64-bit userland - it takes, as an argument, a
2085		 * "struct BPF_TIMEVAL", which has 32-bit tv_sec
2086		 * and tv_usec, rather than a "struct timeval".
2087		 *
2088		 * If this platform defines "struct BPF_TIMEVAL",
2089		 * we check whether the structure size in BIOCSRTIMEOUT
2090		 * is that of a "struct timeval" and, if not, we use
2091		 * a "struct BPF_TIMEVAL" rather than a "struct timeval".
2092		 * (That way, if the bug is fixed in a future release,
2093		 * we will still do the right thing.)
2094		 */
2095		struct timeval to;
2096#ifdef HAVE_STRUCT_BPF_TIMEVAL
2097		struct BPF_TIMEVAL bpf_to;
2098
2099		if (IOCPARM_LEN(BIOCSRTIMEOUT) != sizeof(struct timeval)) {
2100			bpf_to.tv_sec = p->md.timeout / 1000;
2101			bpf_to.tv_usec = (p->md.timeout * 1000) % 1000000;
2102			if (ioctl(p->fd, BIOCSRTIMEOUT, (caddr_t)&bpf_to) < 0) {
2103				snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2104				    "BIOCSRTIMEOUT: %s", pcap_strerror(errno));
2105				status = PCAP_ERROR;
2106				goto bad;
2107			}
2108		} else {
2109#endif
2110			to.tv_sec = p->md.timeout / 1000;
2111			to.tv_usec = (p->md.timeout * 1000) % 1000000;
2112			if (ioctl(p->fd, BIOCSRTIMEOUT, (caddr_t)&to) < 0) {
2113				snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2114				    "BIOCSRTIMEOUT: %s", pcap_strerror(errno));
2115				status = PCAP_ERROR;
2116				goto bad;
2117			}
2118#ifdef HAVE_STRUCT_BPF_TIMEVAL
2119		}
2120#endif
2121	}
2122
2123#ifdef _AIX
2124#ifdef	BIOCIMMEDIATE
2125	/*
2126	 * Darren Reed notes that
2127	 *
2128	 *	On AIX (4.2 at least), if BIOCIMMEDIATE is not set, the
2129	 *	timeout appears to be ignored and it waits until the buffer
2130	 *	is filled before returning.  The result of not having it
2131	 *	set is almost worse than useless if your BPF filter
2132	 *	is reducing things to only a few packets (i.e. one every
2133	 *	second or so).
2134	 *
2135	 * so we turn BIOCIMMEDIATE mode on if this is AIX.
2136	 *
2137	 * We don't turn it on for other platforms, as that means we
2138	 * get woken up for every packet, which may not be what we want;
2139	 * in the Winter 1993 USENIX paper on BPF, they say:
2140	 *
2141	 *	Since a process might want to look at every packet on a
2142	 *	network and the time between packets can be only a few
2143	 *	microseconds, it is not possible to do a read system call
2144	 *	per packet and BPF must collect the data from several
2145	 *	packets and return it as a unit when the monitoring
2146	 *	application does a read.
2147	 *
2148	 * which I infer is the reason for the timeout - it means we
2149	 * wait that amount of time, in the hopes that more packets
2150	 * will arrive and we'll get them all with one read.
2151	 *
2152	 * Setting BIOCIMMEDIATE mode on FreeBSD (and probably other
2153	 * BSDs) causes the timeout to be ignored.
2154	 *
2155	 * On the other hand, some platforms (e.g., Linux) don't support
2156	 * timeouts, they just hand stuff to you as soon as it arrives;
2157	 * if that doesn't cause a problem on those platforms, it may
2158	 * be OK to have BIOCIMMEDIATE mode on BSD as well.
2159	 *
2160	 * (Note, though, that applications may depend on the read
2161	 * completing, even if no packets have arrived, when the timeout
2162	 * expires, e.g. GUI applications that have to check for input
2163	 * while waiting for packets to arrive; a non-zero timeout
2164	 * prevents "select()" from working right on FreeBSD and
2165	 * possibly other BSDs, as the timer doesn't start until a
2166	 * "read()" is done, so the timer isn't in effect if the
2167	 * application is blocked on a "select()", and the "select()"
2168	 * doesn't get woken up for a BPF device until the buffer
2169	 * fills up.)
2170	 */
2171	v = 1;
2172	if (ioctl(p->fd, BIOCIMMEDIATE, &v) < 0) {
2173		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCIMMEDIATE: %s",
2174		    pcap_strerror(errno));
2175		status = PCAP_ERROR;
2176		goto bad;
2177	}
2178#endif	/* BIOCIMMEDIATE */
2179#endif	/* _AIX */
2180
2181	if (p->opt.promisc) {
2182		/* set promiscuous mode, just warn if it fails */
2183		if (ioctl(p->fd, BIOCPROMISC, NULL) < 0) {
2184			snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCPROMISC: %s",
2185			    pcap_strerror(errno));
2186			status = PCAP_WARNING_PROMISC_NOTSUP;
2187		}
2188	}
2189
2190	if (ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) {
2191		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGBLEN: %s",
2192		    pcap_strerror(errno));
2193		status = PCAP_ERROR;
2194		goto bad;
2195	}
2196	p->bufsize = v;
2197#ifdef HAVE_ZEROCOPY_BPF
2198	if (!p->md.zerocopy) {
2199#endif
2200	p->buffer = (u_char *)malloc(p->bufsize);
2201	if (p->buffer == NULL) {
2202		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "malloc: %s",
2203		    pcap_strerror(errno));
2204		status = PCAP_ERROR;
2205		goto bad;
2206	}
2207#ifdef _AIX
2208	/* For some strange reason this seems to prevent the EFAULT
2209	 * problems we have experienced from AIX BPF. */
2210	memset(p->buffer, 0x0, p->bufsize);
2211#endif
2212#ifdef HAVE_ZEROCOPY_BPF
2213	}
2214#endif
2215
2216	/*
2217	 * If there's no filter program installed, there's
2218	 * no indication to the kernel of what the snapshot
2219	 * length should be, so no snapshotting is done.
2220	 *
2221	 * Therefore, when we open the device, we install
2222	 * an "accept everything" filter with the specified
2223	 * snapshot length.
2224	 */
2225	total_insn.code = (u_short)(BPF_RET | BPF_K);
2226	total_insn.jt = 0;
2227	total_insn.jf = 0;
2228	total_insn.k = p->snapshot;
2229
2230	total_prog.bf_len = 1;
2231	total_prog.bf_insns = &total_insn;
2232	if (ioctl(p->fd, BIOCSETF, (caddr_t)&total_prog) < 0) {
2233		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETF: %s",
2234		    pcap_strerror(errno));
2235		status = PCAP_ERROR;
2236		goto bad;
2237	}
2238
2239	/*
2240	 * On most BPF platforms, either you can do a "select()" or
2241	 * "poll()" on a BPF file descriptor and it works correctly,
2242	 * or you can do it and it will return "readable" if the
2243	 * hold buffer is full but not if the timeout expires *and*
2244	 * a non-blocking read will, if the hold buffer is empty
2245	 * but the store buffer isn't empty, rotate the buffers
2246	 * and return what packets are available.
2247	 *
2248	 * In the latter case, the fact that a non-blocking read
2249	 * will give you the available packets means you can work
2250	 * around the failure of "select()" and "poll()" to wake up
2251	 * and return "readable" when the timeout expires by using
2252	 * the timeout as the "select()" or "poll()" timeout, putting
2253	 * the BPF descriptor into non-blocking mode, and read from
2254	 * it regardless of whether "select()" reports it as readable
2255	 * or not.
2256	 *
2257	 * However, in FreeBSD 4.3 and 4.4, "select()" and "poll()"
2258	 * won't wake up and return "readable" if the timer expires
2259	 * and non-blocking reads return EWOULDBLOCK if the hold
2260	 * buffer is empty, even if the store buffer is non-empty.
2261	 *
2262	 * This means the workaround in question won't work.
2263	 *
2264	 * Therefore, on FreeBSD 4.3 and 4.4, we set "p->selectable_fd"
2265	 * to -1, which means "sorry, you can't use 'select()' or 'poll()'
2266	 * here".  On all other BPF platforms, we set it to the FD for
2267	 * the BPF device; in NetBSD, OpenBSD, and Darwin, a non-blocking
2268	 * read will, if the hold buffer is empty and the store buffer
2269	 * isn't empty, rotate the buffers and return what packets are
2270	 * there (and in sufficiently recent versions of OpenBSD
2271	 * "select()" and "poll()" should work correctly).
2272	 *
2273	 * XXX - what about AIX?
2274	 */
2275	p->selectable_fd = p->fd;	/* assume select() works until we know otherwise */
2276	if (have_osinfo) {
2277		/*
2278		 * We can check what OS this is.
2279		 */
2280		if (strcmp(osinfo.sysname, "FreeBSD") == 0) {
2281			if (strncmp(osinfo.release, "4.3-", 4) == 0 ||
2282			     strncmp(osinfo.release, "4.4-", 4) == 0)
2283				p->selectable_fd = -1;
2284		}
2285	}
2286
2287	p->read_op = pcap_read_bpf;
2288	p->inject_op = pcap_inject_bpf;
2289	p->setfilter_op = pcap_setfilter_bpf;
2290	p->setdirection_op = pcap_setdirection_bpf;
2291	p->set_datalink_op = pcap_set_datalink_bpf;
2292	p->getnonblock_op = pcap_getnonblock_bpf;
2293	p->setnonblock_op = pcap_setnonblock_bpf;
2294	p->stats_op = pcap_stats_bpf;
2295	p->cleanup_op = pcap_cleanup_bpf;
2296
2297	return (status);
2298 bad:
2299 	pcap_cleanup_bpf(p);
2300	return (status);
2301}
2302
2303int
2304pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf)
2305{
2306#ifdef HAVE_DAG_API
2307	if (dag_platform_finddevs(alldevsp, errbuf) < 0)
2308		return (-1);
2309#endif /* HAVE_DAG_API */
2310#ifdef HAVE_SNF_API
2311	if (snf_platform_finddevs(alldevsp, errbuf) < 0)
2312		return (-1);
2313#endif /* HAVE_SNF_API */
2314
2315	return (0);
2316}
2317
2318#ifdef HAVE_BSD_IEEE80211
2319static int
2320monitor_mode(pcap_t *p, int set)
2321{
2322	int sock;
2323	struct ifmediareq req;
2324	int *media_list;
2325	int i;
2326	int can_do;
2327	struct ifreq ifr;
2328
2329	sock = socket(AF_INET, SOCK_DGRAM, 0);
2330	if (sock == -1) {
2331		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "can't open socket: %s",
2332		    pcap_strerror(errno));
2333		return (PCAP_ERROR);
2334	}
2335
2336	memset(&req, 0, sizeof req);
2337	strncpy(req.ifm_name, p->opt.source, sizeof req.ifm_name);
2338
2339	/*
2340	 * Find out how many media types we have.
2341	 */
2342	if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) {
2343		/*
2344		 * Can't get the media types.
2345		 */
2346		switch (errno) {
2347
2348		case ENXIO:
2349			/*
2350			 * There's no such device.
2351			 */
2352			close(sock);
2353			return (PCAP_ERROR_NO_SUCH_DEVICE);
2354
2355		case EINVAL:
2356			/*
2357			 * Interface doesn't support SIOC{G,S}IFMEDIA.
2358			 */
2359			close(sock);
2360			return (PCAP_ERROR_RFMON_NOTSUP);
2361
2362		default:
2363			snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2364			    "SIOCGIFMEDIA 1: %s", pcap_strerror(errno));
2365			close(sock);
2366			return (PCAP_ERROR);
2367		}
2368	}
2369	if (req.ifm_count == 0) {
2370		/*
2371		 * No media types.
2372		 */
2373		close(sock);
2374		return (PCAP_ERROR_RFMON_NOTSUP);
2375	}
2376
2377	/*
2378	 * Allocate a buffer to hold all the media types, and
2379	 * get the media types.
2380	 */
2381	media_list = malloc(req.ifm_count * sizeof(int));
2382	if (media_list == NULL) {
2383		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "malloc: %s",
2384		    pcap_strerror(errno));
2385		close(sock);
2386		return (PCAP_ERROR);
2387	}
2388	req.ifm_ulist = media_list;
2389	if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) {
2390		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "SIOCGIFMEDIA: %s",
2391		    pcap_strerror(errno));
2392		free(media_list);
2393		close(sock);
2394		return (PCAP_ERROR);
2395	}
2396
2397	/*
2398	 * Look for an 802.11 "automatic" media type.
2399	 * We assume that all 802.11 adapters have that media type,
2400	 * and that it will carry the monitor mode supported flag.
2401	 */
2402	can_do = 0;
2403	for (i = 0; i < req.ifm_count; i++) {
2404		if (IFM_TYPE(media_list[i]) == IFM_IEEE80211
2405		    && IFM_SUBTYPE(media_list[i]) == IFM_AUTO) {
2406			/* OK, does it do monitor mode? */
2407			if (media_list[i] & IFM_IEEE80211_MONITOR) {
2408				can_do = 1;
2409				break;
2410			}
2411		}
2412	}
2413	free(media_list);
2414	if (!can_do) {
2415		/*
2416		 * This adapter doesn't support monitor mode.
2417		 */
2418		close(sock);
2419		return (PCAP_ERROR_RFMON_NOTSUP);
2420	}
2421
2422	if (set) {
2423		/*
2424		 * Don't just check whether we can enable monitor mode,
2425		 * do so, if it's not already enabled.
2426		 */
2427		if ((req.ifm_current & IFM_IEEE80211_MONITOR) == 0) {
2428			/*
2429			 * Monitor mode isn't currently on, so turn it on,
2430			 * and remember that we should turn it off when the
2431			 * pcap_t is closed.
2432			 */
2433
2434			/*
2435			 * If we haven't already done so, arrange to have
2436			 * "pcap_close_all()" called when we exit.
2437			 */
2438			if (!pcap_do_addexit(p)) {
2439				/*
2440				 * "atexit()" failed; don't put the interface
2441				 * in monitor mode, just give up.
2442				 */
2443				snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2444				     "atexit failed");
2445				close(sock);
2446				return (PCAP_ERROR);
2447			}
2448			memset(&ifr, 0, sizeof(ifr));
2449			(void)strncpy(ifr.ifr_name, p->opt.source,
2450			    sizeof(ifr.ifr_name));
2451			ifr.ifr_media = req.ifm_current | IFM_IEEE80211_MONITOR;
2452			if (ioctl(sock, SIOCSIFMEDIA, &ifr) == -1) {
2453				snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2454				     "SIOCSIFMEDIA: %s", pcap_strerror(errno));
2455				close(sock);
2456				return (PCAP_ERROR);
2457			}
2458
2459			p->md.must_do_on_close |= MUST_CLEAR_RFMON;
2460
2461			/*
2462			 * Add this to the list of pcaps to close when we exit.
2463			 */
2464			pcap_add_to_pcaps_to_close(p);
2465		}
2466	}
2467	return (0);
2468}
2469#endif /* HAVE_BSD_IEEE80211 */
2470
2471#if defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211))
2472/*
2473 * Check whether we have any 802.11 link-layer types; return the best
2474 * of the 802.11 link-layer types if we find one, and return -1
2475 * otherwise.
2476 *
2477 * DLT_IEEE802_11_RADIO, with the radiotap header, is considered the
2478 * best 802.11 link-layer type; any of the other 802.11-plus-radio
2479 * headers are second-best; 802.11 with no radio information is
2480 * the least good.
2481 */
2482static int
2483find_802_11(struct bpf_dltlist *bdlp)
2484{
2485	int new_dlt;
2486	int i;
2487
2488	/*
2489	 * Scan the list of DLT_ values, looking for 802.11 values,
2490	 * and, if we find any, choose the best of them.
2491	 */
2492	new_dlt = -1;
2493	for (i = 0; i < bdlp->bfl_len; i++) {
2494		switch (bdlp->bfl_list[i]) {
2495
2496		case DLT_IEEE802_11:
2497			/*
2498			 * 802.11, but no radio.
2499			 *
2500			 * Offer this, and select it as the new mode
2501			 * unless we've already found an 802.11
2502			 * header with radio information.
2503			 */
2504			if (new_dlt == -1)
2505				new_dlt = bdlp->bfl_list[i];
2506			break;
2507
2508		case DLT_PRISM_HEADER:
2509		case DLT_AIRONET_HEADER:
2510		case DLT_IEEE802_11_RADIO_AVS:
2511			/*
2512			 * 802.11 with radio, but not radiotap.
2513			 *
2514			 * Offer this, and select it as the new mode
2515			 * unless we've already found the radiotap DLT_.
2516			 */
2517			if (new_dlt != DLT_IEEE802_11_RADIO)
2518				new_dlt = bdlp->bfl_list[i];
2519			break;
2520
2521		case DLT_IEEE802_11_RADIO:
2522			/*
2523			 * 802.11 with radiotap.
2524			 *
2525			 * Offer this, and select it as the new mode.
2526			 */
2527			new_dlt = bdlp->bfl_list[i];
2528			break;
2529
2530		default:
2531			/*
2532			 * Not 802.11.
2533			 */
2534			break;
2535		}
2536	}
2537
2538	return (new_dlt);
2539}
2540#endif /* defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)) */
2541
2542#if defined(__APPLE__) && defined(BIOCGDLTLIST)
2543/*
2544 * Remove DLT_EN10MB from the list of DLT_ values, as we're in monitor mode,
2545 * and DLT_EN10MB isn't supported in monitor mode.
2546 */
2547static void
2548remove_en(pcap_t *p)
2549{
2550	int i, j;
2551
2552	/*
2553	 * Scan the list of DLT_ values and discard DLT_EN10MB.
2554	 */
2555	j = 0;
2556	for (i = 0; i < p->dlt_count; i++) {
2557		switch (p->dlt_list[i]) {
2558
2559		case DLT_EN10MB:
2560			/*
2561			 * Don't offer this one.
2562			 */
2563			continue;
2564
2565		default:
2566			/*
2567			 * Just copy this mode over.
2568			 */
2569			break;
2570		}
2571
2572		/*
2573		 * Copy this DLT_ value to its new position.
2574		 */
2575		p->dlt_list[j] = p->dlt_list[i];
2576		j++;
2577	}
2578
2579	/*
2580	 * Set the DLT_ count to the number of entries we copied.
2581	 */
2582	p->dlt_count = j;
2583}
2584
2585/*
2586 * Remove 802.11 link-layer types from the list of DLT_ values, as
2587 * we're not in monitor mode, and those DLT_ values will switch us
2588 * to monitor mode.
2589 */
2590static void
2591remove_802_11(pcap_t *p)
2592{
2593	int i, j;
2594
2595	/*
2596	 * Scan the list of DLT_ values and discard 802.11 values.
2597	 */
2598	j = 0;
2599	for (i = 0; i < p->dlt_count; i++) {
2600		switch (p->dlt_list[i]) {
2601
2602		case DLT_IEEE802_11:
2603		case DLT_PRISM_HEADER:
2604		case DLT_AIRONET_HEADER:
2605		case DLT_IEEE802_11_RADIO:
2606		case DLT_IEEE802_11_RADIO_AVS:
2607			/*
2608			 * 802.11.  Don't offer this one.
2609			 */
2610			continue;
2611
2612		default:
2613			/*
2614			 * Just copy this mode over.
2615			 */
2616			break;
2617		}
2618
2619		/*
2620		 * Copy this DLT_ value to its new position.
2621		 */
2622		p->dlt_list[j] = p->dlt_list[i];
2623		j++;
2624	}
2625
2626	/*
2627	 * Set the DLT_ count to the number of entries we copied.
2628	 */
2629	p->dlt_count = j;
2630}
2631#endif /* defined(__APPLE__) && defined(BIOCGDLTLIST) */
2632
2633static int
2634pcap_setfilter_bpf(pcap_t *p, struct bpf_program *fp)
2635{
2636	/*
2637	 * Free any user-mode filter we might happen to have installed.
2638	 */
2639	pcap_freecode(&p->fcode);
2640
2641	/*
2642	 * Try to install the kernel filter.
2643	 */
2644	if (ioctl(p->fd, BIOCSETF, (caddr_t)fp) == 0) {
2645		/*
2646		 * It worked.
2647		 */
2648		p->md.use_bpf = 1;	/* filtering in the kernel */
2649
2650		/*
2651		 * Discard any previously-received packets, as they might
2652		 * have passed whatever filter was formerly in effect, but
2653		 * might not pass this filter (BIOCSETF discards packets
2654		 * buffered in the kernel, so you can lose packets in any
2655		 * case).
2656		 */
2657		p->cc = 0;
2658		return (0);
2659	}
2660
2661	/*
2662	 * We failed.
2663	 *
2664	 * If it failed with EINVAL, that's probably because the program
2665	 * is invalid or too big.  Validate it ourselves; if we like it
2666	 * (we currently allow backward branches, to support protochain),
2667	 * run it in userland.  (There's no notion of "too big" for
2668	 * userland.)
2669	 *
2670	 * Otherwise, just give up.
2671	 * XXX - if the copy of the program into the kernel failed,
2672	 * we will get EINVAL rather than, say, EFAULT on at least
2673	 * some kernels.
2674	 */
2675	if (errno != EINVAL) {
2676		snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETF: %s",
2677		    pcap_strerror(errno));
2678		return (-1);
2679	}
2680
2681	/*
2682	 * install_bpf_program() validates the program.
2683	 *
2684	 * XXX - what if we already have a filter in the kernel?
2685	 */
2686	if (install_bpf_program(p, fp) < 0)
2687		return (-1);
2688	p->md.use_bpf = 0;	/* filtering in userland */
2689	return (0);
2690}
2691
2692/*
2693 * Set direction flag: Which packets do we accept on a forwarding
2694 * single device? IN, OUT or both?
2695 */
2696static int
2697pcap_setdirection_bpf(pcap_t *p, pcap_direction_t d)
2698{
2699#if defined(BIOCSDIRECTION)
2700	u_int direction;
2701
2702	direction = (d == PCAP_D_IN) ? BPF_D_IN :
2703	    ((d == PCAP_D_OUT) ? BPF_D_OUT : BPF_D_INOUT);
2704	if (ioctl(p->fd, BIOCSDIRECTION, &direction) == -1) {
2705		(void) snprintf(p->errbuf, sizeof(p->errbuf),
2706		    "Cannot set direction to %s: %s",
2707		        (d == PCAP_D_IN) ? "PCAP_D_IN" :
2708			((d == PCAP_D_OUT) ? "PCAP_D_OUT" : "PCAP_D_INOUT"),
2709			strerror(errno));
2710		return (-1);
2711	}
2712	return (0);
2713#elif defined(BIOCSSEESENT)
2714	u_int seesent;
2715
2716	/*
2717	 * We don't support PCAP_D_OUT.
2718	 */
2719	if (d == PCAP_D_OUT) {
2720		snprintf(p->errbuf, sizeof(p->errbuf),
2721		    "Setting direction to PCAP_D_OUT is not supported on BPF");
2722		return -1;
2723	}
2724
2725	seesent = (d == PCAP_D_INOUT);
2726	if (ioctl(p->fd, BIOCSSEESENT, &seesent) == -1) {
2727		(void) snprintf(p->errbuf, sizeof(p->errbuf),
2728		    "Cannot set direction to %s: %s",
2729		        (d == PCAP_D_INOUT) ? "PCAP_D_INOUT" : "PCAP_D_IN",
2730			strerror(errno));
2731		return (-1);
2732	}
2733	return (0);
2734#else
2735	(void) snprintf(p->errbuf, sizeof(p->errbuf),
2736	    "This system doesn't support BIOCSSEESENT, so the direction can't be set");
2737	return (-1);
2738#endif
2739}
2740
2741static int
2742pcap_set_datalink_bpf(pcap_t *p, int dlt)
2743{
2744#ifdef BIOCSDLT
2745	if (ioctl(p->fd, BIOCSDLT, &dlt) == -1) {
2746		(void) snprintf(p->errbuf, sizeof(p->errbuf),
2747		    "Cannot set DLT %d: %s", dlt, strerror(errno));
2748		return (-1);
2749	}
2750#endif
2751	return (0);
2752}
2753