optimize.c revision 98530
1/*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 *  Optimization module for tcpdump intermediate representation.
22 */
23#ifndef lint
24static const char rcsid[] =
25    "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.69 2001/11/12 21:57:06 fenner Exp $ (LBL)";
26#endif
27
28#ifdef HAVE_CONFIG_H
29#include "config.h"
30#endif
31
32#include <sys/types.h>
33#include <sys/time.h>
34
35#include <stdio.h>
36#include <stdlib.h>
37#include <memory.h>
38
39#include <errno.h>
40
41#include "pcap-int.h"
42
43#include "gencode.h"
44
45#ifdef HAVE_OS_PROTO_H
46#include "os-proto.h"
47#endif
48
49#ifdef BDEBUG
50extern int dflag;
51#endif
52
53#define A_ATOM BPF_MEMWORDS
54#define X_ATOM (BPF_MEMWORDS+1)
55
56#define NOP -1
57
58/*
59 * This define is used to represent *both* the accumulator and
60 * x register in use-def computations.
61 * Currently, the use-def code assumes only one definition per instruction.
62 */
63#define AX_ATOM N_ATOMS
64
65/*
66 * A flag to indicate that further optimization is needed.
67 * Iterative passes are continued until a given pass yields no
68 * branch movement.
69 */
70static int done;
71
72/*
73 * A block is marked if only if its mark equals the current mark.
74 * Rather than traverse the code array, marking each item, 'cur_mark' is
75 * incremented.  This automatically makes each element unmarked.
76 */
77static int cur_mark;
78#define isMarked(p) ((p)->mark == cur_mark)
79#define unMarkAll() cur_mark += 1
80#define Mark(p) ((p)->mark = cur_mark)
81
82static void opt_init(struct block *);
83static void opt_cleanup(void);
84
85static void make_marks(struct block *);
86static void mark_code(struct block *);
87
88static void intern_blocks(struct block *);
89
90static int eq_slist(struct slist *, struct slist *);
91
92static void find_levels_r(struct block *);
93
94static void find_levels(struct block *);
95static void find_dom(struct block *);
96static void propedom(struct edge *);
97static void find_edom(struct block *);
98static void find_closure(struct block *);
99static int atomuse(struct stmt *);
100static int atomdef(struct stmt *);
101static void compute_local_ud(struct block *);
102static void find_ud(struct block *);
103static void init_val(void);
104static int F(int, int, int);
105static inline void vstore(struct stmt *, int *, int, int);
106static void opt_blk(struct block *, int);
107static int use_conflict(struct block *, struct block *);
108static void opt_j(struct edge *);
109static void or_pullup(struct block *);
110static void and_pullup(struct block *);
111static void opt_blks(struct block *, int);
112static inline void link_inedge(struct edge *, struct block *);
113static void find_inedges(struct block *);
114static void opt_root(struct block **);
115static void opt_loop(struct block *, int);
116static void fold_op(struct stmt *, int, int);
117static inline struct slist *this_op(struct slist *);
118static void opt_not(struct block *);
119static void opt_peep(struct block *);
120static void opt_stmt(struct stmt *, int[], int);
121static void deadstmt(struct stmt *, struct stmt *[]);
122static void opt_deadstores(struct block *);
123static void opt_blk(struct block *, int);
124static int use_conflict(struct block *, struct block *);
125static void opt_j(struct edge *);
126static struct block *fold_edge(struct block *, struct edge *);
127static inline int eq_blk(struct block *, struct block *);
128static int slength(struct slist *);
129static int count_blocks(struct block *);
130static void number_blks_r(struct block *);
131static int count_stmts(struct block *);
132static int convert_code_r(struct block *);
133#ifdef BDEBUG
134static void opt_dump(struct block *);
135#endif
136
137static int n_blocks;
138struct block **blocks;
139static int n_edges;
140struct edge **edges;
141
142/*
143 * A bit vector set representation of the dominators.
144 * We round up the set size to the next power of two.
145 */
146static int nodewords;
147static int edgewords;
148struct block **levels;
149bpf_u_int32 *space;
150#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
151/*
152 * True if a is in uset {p}
153 */
154#define SET_MEMBER(p, a) \
155((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
156
157/*
158 * Add 'a' to uset p.
159 */
160#define SET_INSERT(p, a) \
161(p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
162
163/*
164 * Delete 'a' from uset p.
165 */
166#define SET_DELETE(p, a) \
167(p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
168
169/*
170 * a := a intersect b
171 */
172#define SET_INTERSECT(a, b, n)\
173{\
174	register bpf_u_int32 *_x = a, *_y = b;\
175	register int _n = n;\
176	while (--_n >= 0) *_x++ &= *_y++;\
177}
178
179/*
180 * a := a - b
181 */
182#define SET_SUBTRACT(a, b, n)\
183{\
184	register bpf_u_int32 *_x = a, *_y = b;\
185	register int _n = n;\
186	while (--_n >= 0) *_x++ &=~ *_y++;\
187}
188
189/*
190 * a := a union b
191 */
192#define SET_UNION(a, b, n)\
193{\
194	register bpf_u_int32 *_x = a, *_y = b;\
195	register int _n = n;\
196	while (--_n >= 0) *_x++ |= *_y++;\
197}
198
199static uset all_dom_sets;
200static uset all_closure_sets;
201static uset all_edge_sets;
202
203#ifndef MAX
204#define MAX(a,b) ((a)>(b)?(a):(b))
205#endif
206
207static void
208find_levels_r(b)
209	struct block *b;
210{
211	int level;
212
213	if (isMarked(b))
214		return;
215
216	Mark(b);
217	b->link = 0;
218
219	if (JT(b)) {
220		find_levels_r(JT(b));
221		find_levels_r(JF(b));
222		level = MAX(JT(b)->level, JF(b)->level) + 1;
223	} else
224		level = 0;
225	b->level = level;
226	b->link = levels[level];
227	levels[level] = b;
228}
229
230/*
231 * Level graph.  The levels go from 0 at the leaves to
232 * N_LEVELS at the root.  The levels[] array points to the
233 * first node of the level list, whose elements are linked
234 * with the 'link' field of the struct block.
235 */
236static void
237find_levels(root)
238	struct block *root;
239{
240	memset((char *)levels, 0, n_blocks * sizeof(*levels));
241	unMarkAll();
242	find_levels_r(root);
243}
244
245/*
246 * Find dominator relationships.
247 * Assumes graph has been leveled.
248 */
249static void
250find_dom(root)
251	struct block *root;
252{
253	int i;
254	struct block *b;
255	bpf_u_int32 *x;
256
257	/*
258	 * Initialize sets to contain all nodes.
259	 */
260	x = all_dom_sets;
261	i = n_blocks * nodewords;
262	while (--i >= 0)
263		*x++ = ~0;
264	/* Root starts off empty. */
265	for (i = nodewords; --i >= 0;)
266		root->dom[i] = 0;
267
268	/* root->level is the highest level no found. */
269	for (i = root->level; i >= 0; --i) {
270		for (b = levels[i]; b; b = b->link) {
271			SET_INSERT(b->dom, b->id);
272			if (JT(b) == 0)
273				continue;
274			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
275			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
276		}
277	}
278}
279
280static void
281propedom(ep)
282	struct edge *ep;
283{
284	SET_INSERT(ep->edom, ep->id);
285	if (ep->succ) {
286		SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
287		SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
288	}
289}
290
291/*
292 * Compute edge dominators.
293 * Assumes graph has been leveled and predecessors established.
294 */
295static void
296find_edom(root)
297	struct block *root;
298{
299	int i;
300	uset x;
301	struct block *b;
302
303	x = all_edge_sets;
304	for (i = n_edges * edgewords; --i >= 0; )
305		x[i] = ~0;
306
307	/* root->level is the highest level no found. */
308	memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
309	memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
310	for (i = root->level; i >= 0; --i) {
311		for (b = levels[i]; b != 0; b = b->link) {
312			propedom(&b->et);
313			propedom(&b->ef);
314		}
315	}
316}
317
318/*
319 * Find the backwards transitive closure of the flow graph.  These sets
320 * are backwards in the sense that we find the set of nodes that reach
321 * a given node, not the set of nodes that can be reached by a node.
322 *
323 * Assumes graph has been leveled.
324 */
325static void
326find_closure(root)
327	struct block *root;
328{
329	int i;
330	struct block *b;
331
332	/*
333	 * Initialize sets to contain no nodes.
334	 */
335	memset((char *)all_closure_sets, 0,
336	      n_blocks * nodewords * sizeof(*all_closure_sets));
337
338	/* root->level is the highest level no found. */
339	for (i = root->level; i >= 0; --i) {
340		for (b = levels[i]; b; b = b->link) {
341			SET_INSERT(b->closure, b->id);
342			if (JT(b) == 0)
343				continue;
344			SET_UNION(JT(b)->closure, b->closure, nodewords);
345			SET_UNION(JF(b)->closure, b->closure, nodewords);
346		}
347	}
348}
349
350/*
351 * Return the register number that is used by s.  If A and X are both
352 * used, return AX_ATOM.  If no register is used, return -1.
353 *
354 * The implementation should probably change to an array access.
355 */
356static int
357atomuse(s)
358	struct stmt *s;
359{
360	register int c = s->code;
361
362	if (c == NOP)
363		return -1;
364
365	switch (BPF_CLASS(c)) {
366
367	case BPF_RET:
368		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
369			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
370
371	case BPF_LD:
372	case BPF_LDX:
373		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
374			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
375
376	case BPF_ST:
377		return A_ATOM;
378
379	case BPF_STX:
380		return X_ATOM;
381
382	case BPF_JMP:
383	case BPF_ALU:
384		if (BPF_SRC(c) == BPF_X)
385			return AX_ATOM;
386		return A_ATOM;
387
388	case BPF_MISC:
389		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
390	}
391	abort();
392	/* NOTREACHED */
393}
394
395/*
396 * Return the register number that is defined by 's'.  We assume that
397 * a single stmt cannot define more than one register.  If no register
398 * is defined, return -1.
399 *
400 * The implementation should probably change to an array access.
401 */
402static int
403atomdef(s)
404	struct stmt *s;
405{
406	if (s->code == NOP)
407		return -1;
408
409	switch (BPF_CLASS(s->code)) {
410
411	case BPF_LD:
412	case BPF_ALU:
413		return A_ATOM;
414
415	case BPF_LDX:
416		return X_ATOM;
417
418	case BPF_ST:
419	case BPF_STX:
420		return s->k;
421
422	case BPF_MISC:
423		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
424	}
425	return -1;
426}
427
428static void
429compute_local_ud(b)
430	struct block *b;
431{
432	struct slist *s;
433	atomset def = 0, use = 0, kill = 0;
434	int atom;
435
436	for (s = b->stmts; s; s = s->next) {
437		if (s->s.code == NOP)
438			continue;
439		atom = atomuse(&s->s);
440		if (atom >= 0) {
441			if (atom == AX_ATOM) {
442				if (!ATOMELEM(def, X_ATOM))
443					use |= ATOMMASK(X_ATOM);
444				if (!ATOMELEM(def, A_ATOM))
445					use |= ATOMMASK(A_ATOM);
446			}
447			else if (atom < N_ATOMS) {
448				if (!ATOMELEM(def, atom))
449					use |= ATOMMASK(atom);
450			}
451			else
452				abort();
453		}
454		atom = atomdef(&s->s);
455		if (atom >= 0) {
456			if (!ATOMELEM(use, atom))
457				kill |= ATOMMASK(atom);
458			def |= ATOMMASK(atom);
459		}
460	}
461	if (!ATOMELEM(def, A_ATOM) && BPF_CLASS(b->s.code) == BPF_JMP)
462		use |= ATOMMASK(A_ATOM);
463
464	b->def = def;
465	b->kill = kill;
466	b->in_use = use;
467}
468
469/*
470 * Assume graph is already leveled.
471 */
472static void
473find_ud(root)
474	struct block *root;
475{
476	int i, maxlevel;
477	struct block *p;
478
479	/*
480	 * root->level is the highest level no found;
481	 * count down from there.
482	 */
483	maxlevel = root->level;
484	for (i = maxlevel; i >= 0; --i)
485		for (p = levels[i]; p; p = p->link) {
486			compute_local_ud(p);
487			p->out_use = 0;
488		}
489
490	for (i = 1; i <= maxlevel; ++i) {
491		for (p = levels[i]; p; p = p->link) {
492			p->out_use |= JT(p)->in_use | JF(p)->in_use;
493			p->in_use |= p->out_use &~ p->kill;
494		}
495	}
496}
497
498/*
499 * These data structures are used in a Cocke and Shwarz style
500 * value numbering scheme.  Since the flowgraph is acyclic,
501 * exit values can be propagated from a node's predecessors
502 * provided it is uniquely defined.
503 */
504struct valnode {
505	int code;
506	int v0, v1;
507	int val;
508	struct valnode *next;
509};
510
511#define MODULUS 213
512static struct valnode *hashtbl[MODULUS];
513static int curval;
514static int maxval;
515
516/* Integer constants mapped with the load immediate opcode. */
517#define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
518
519struct vmapinfo {
520	int is_const;
521	bpf_int32 const_val;
522};
523
524struct vmapinfo *vmap;
525struct valnode *vnode_base;
526struct valnode *next_vnode;
527
528static void
529init_val()
530{
531	curval = 0;
532	next_vnode = vnode_base;
533	memset((char *)vmap, 0, maxval * sizeof(*vmap));
534	memset((char *)hashtbl, 0, sizeof hashtbl);
535}
536
537/* Because we really don't have an IR, this stuff is a little messy. */
538static int
539F(code, v0, v1)
540	int code;
541	int v0, v1;
542{
543	u_int hash;
544	int val;
545	struct valnode *p;
546
547	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
548	hash %= MODULUS;
549
550	for (p = hashtbl[hash]; p; p = p->next)
551		if (p->code == code && p->v0 == v0 && p->v1 == v1)
552			return p->val;
553
554	val = ++curval;
555	if (BPF_MODE(code) == BPF_IMM &&
556	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
557		vmap[val].const_val = v0;
558		vmap[val].is_const = 1;
559	}
560	p = next_vnode++;
561	p->val = val;
562	p->code = code;
563	p->v0 = v0;
564	p->v1 = v1;
565	p->next = hashtbl[hash];
566	hashtbl[hash] = p;
567
568	return val;
569}
570
571static inline void
572vstore(s, valp, newval, alter)
573	struct stmt *s;
574	int *valp;
575	int newval;
576	int alter;
577{
578	if (alter && *valp == newval)
579		s->code = NOP;
580	else
581		*valp = newval;
582}
583
584static void
585fold_op(s, v0, v1)
586	struct stmt *s;
587	int v0, v1;
588{
589	bpf_int32 a, b;
590
591	a = vmap[v0].const_val;
592	b = vmap[v1].const_val;
593
594	switch (BPF_OP(s->code)) {
595	case BPF_ADD:
596		a += b;
597		break;
598
599	case BPF_SUB:
600		a -= b;
601		break;
602
603	case BPF_MUL:
604		a *= b;
605		break;
606
607	case BPF_DIV:
608		if (b == 0)
609			bpf_error("division by zero");
610		a /= b;
611		break;
612
613	case BPF_AND:
614		a &= b;
615		break;
616
617	case BPF_OR:
618		a |= b;
619		break;
620
621	case BPF_LSH:
622		a <<= b;
623		break;
624
625	case BPF_RSH:
626		a >>= b;
627		break;
628
629	case BPF_NEG:
630		a = -a;
631		break;
632
633	default:
634		abort();
635	}
636	s->k = a;
637	s->code = BPF_LD|BPF_IMM;
638	done = 0;
639}
640
641static inline struct slist *
642this_op(s)
643	struct slist *s;
644{
645	while (s != 0 && s->s.code == NOP)
646		s = s->next;
647	return s;
648}
649
650static void
651opt_not(b)
652	struct block *b;
653{
654	struct block *tmp = JT(b);
655
656	JT(b) = JF(b);
657	JF(b) = tmp;
658}
659
660static void
661opt_peep(b)
662	struct block *b;
663{
664	struct slist *s;
665	struct slist *next, *last;
666	int val;
667
668	s = b->stmts;
669	if (s == 0)
670		return;
671
672	last = s;
673	while (1) {
674		s = this_op(s);
675		if (s == 0)
676			break;
677		next = this_op(s->next);
678		if (next == 0)
679			break;
680		last = next;
681
682		/*
683		 * st  M[k]	-->	st  M[k]
684		 * ldx M[k]		tax
685		 */
686		if (s->s.code == BPF_ST &&
687		    next->s.code == (BPF_LDX|BPF_MEM) &&
688		    s->s.k == next->s.k) {
689			done = 0;
690			next->s.code = BPF_MISC|BPF_TAX;
691		}
692		/*
693		 * ld  #k	-->	ldx  #k
694		 * tax			txa
695		 */
696		if (s->s.code == (BPF_LD|BPF_IMM) &&
697		    next->s.code == (BPF_MISC|BPF_TAX)) {
698			s->s.code = BPF_LDX|BPF_IMM;
699			next->s.code = BPF_MISC|BPF_TXA;
700			done = 0;
701		}
702		/*
703		 * This is an ugly special case, but it happens
704		 * when you say tcp[k] or udp[k] where k is a constant.
705		 */
706		if (s->s.code == (BPF_LD|BPF_IMM)) {
707			struct slist *add, *tax, *ild;
708
709			/*
710			 * Check that X isn't used on exit from this
711			 * block (which the optimizer might cause).
712			 * We know the code generator won't generate
713			 * any local dependencies.
714			 */
715			if (ATOMELEM(b->out_use, X_ATOM))
716				break;
717
718			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
719				add = next;
720			else
721				add = this_op(next->next);
722			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
723				break;
724
725			tax = this_op(add->next);
726			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
727				break;
728
729			ild = this_op(tax->next);
730			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
731			    BPF_MODE(ild->s.code) != BPF_IND)
732				break;
733			/*
734			 * XXX We need to check that X is not
735			 * subsequently used.  We know we can eliminate the
736			 * accumulator modifications since it is defined
737			 * by the last stmt of this sequence.
738			 *
739			 * We want to turn this sequence:
740			 *
741			 * (004) ldi     #0x2		{s}
742			 * (005) ldxms   [14]		{next}  -- optional
743			 * (006) addx			{add}
744			 * (007) tax			{tax}
745			 * (008) ild     [x+0]		{ild}
746			 *
747			 * into this sequence:
748			 *
749			 * (004) nop
750			 * (005) ldxms   [14]
751			 * (006) nop
752			 * (007) nop
753			 * (008) ild     [x+2]
754			 *
755			 */
756			ild->s.k += s->s.k;
757			s->s.code = NOP;
758			add->s.code = NOP;
759			tax->s.code = NOP;
760			done = 0;
761		}
762		s = next;
763	}
764	/*
765	 * If we have a subtract to do a comparison, and the X register
766	 * is a known constant, we can merge this value into the
767	 * comparison.
768	 */
769	if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X) &&
770	    !ATOMELEM(b->out_use, A_ATOM)) {
771		val = b->val[X_ATOM];
772		if (vmap[val].is_const) {
773			int op;
774
775			b->s.k += vmap[val].const_val;
776			op = BPF_OP(b->s.code);
777			if (op == BPF_JGT || op == BPF_JGE) {
778				struct block *t = JT(b);
779				JT(b) = JF(b);
780				JF(b) = t;
781				b->s.k += 0x80000000;
782			}
783			last->s.code = NOP;
784			done = 0;
785		} else if (b->s.k == 0) {
786			/*
787			 * sub x  ->	nop
788			 * j  #0	j  x
789			 */
790			last->s.code = NOP;
791			b->s.code = BPF_CLASS(b->s.code) | BPF_OP(b->s.code) |
792				BPF_X;
793			done = 0;
794		}
795	}
796	/*
797	 * Likewise, a constant subtract can be simplified.
798	 */
799	else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K) &&
800		 !ATOMELEM(b->out_use, A_ATOM)) {
801		int op;
802
803		b->s.k += last->s.k;
804		last->s.code = NOP;
805		op = BPF_OP(b->s.code);
806		if (op == BPF_JGT || op == BPF_JGE) {
807			struct block *t = JT(b);
808			JT(b) = JF(b);
809			JF(b) = t;
810			b->s.k += 0x80000000;
811		}
812		done = 0;
813	}
814	/*
815	 * and #k	nop
816	 * jeq #0  ->	jset #k
817	 */
818	if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
819	    !ATOMELEM(b->out_use, A_ATOM) && b->s.k == 0) {
820		b->s.k = last->s.k;
821		b->s.code = BPF_JMP|BPF_K|BPF_JSET;
822		last->s.code = NOP;
823		done = 0;
824		opt_not(b);
825	}
826	/*
827	 * If the accumulator is a known constant, we can compute the
828	 * comparison result.
829	 */
830	val = b->val[A_ATOM];
831	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
832		bpf_int32 v = vmap[val].const_val;
833		switch (BPF_OP(b->s.code)) {
834
835		case BPF_JEQ:
836			v = v == b->s.k;
837			break;
838
839		case BPF_JGT:
840			v = (unsigned)v > b->s.k;
841			break;
842
843		case BPF_JGE:
844			v = (unsigned)v >= b->s.k;
845			break;
846
847		case BPF_JSET:
848			v &= b->s.k;
849			break;
850
851		default:
852			abort();
853		}
854		if (JF(b) != JT(b))
855			done = 0;
856		if (v)
857			JF(b) = JT(b);
858		else
859			JT(b) = JF(b);
860	}
861}
862
863/*
864 * Compute the symbolic value of expression of 's', and update
865 * anything it defines in the value table 'val'.  If 'alter' is true,
866 * do various optimizations.  This code would be cleaner if symbolic
867 * evaluation and code transformations weren't folded together.
868 */
869static void
870opt_stmt(s, val, alter)
871	struct stmt *s;
872	int val[];
873	int alter;
874{
875	int op;
876	int v;
877
878	switch (s->code) {
879
880	case BPF_LD|BPF_ABS|BPF_W:
881	case BPF_LD|BPF_ABS|BPF_H:
882	case BPF_LD|BPF_ABS|BPF_B:
883		v = F(s->code, s->k, 0L);
884		vstore(s, &val[A_ATOM], v, alter);
885		break;
886
887	case BPF_LD|BPF_IND|BPF_W:
888	case BPF_LD|BPF_IND|BPF_H:
889	case BPF_LD|BPF_IND|BPF_B:
890		v = val[X_ATOM];
891		if (alter && vmap[v].is_const) {
892			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
893			s->k += vmap[v].const_val;
894			v = F(s->code, s->k, 0L);
895			done = 0;
896		}
897		else
898			v = F(s->code, s->k, v);
899		vstore(s, &val[A_ATOM], v, alter);
900		break;
901
902	case BPF_LD|BPF_LEN:
903		v = F(s->code, 0L, 0L);
904		vstore(s, &val[A_ATOM], v, alter);
905		break;
906
907	case BPF_LD|BPF_IMM:
908		v = K(s->k);
909		vstore(s, &val[A_ATOM], v, alter);
910		break;
911
912	case BPF_LDX|BPF_IMM:
913		v = K(s->k);
914		vstore(s, &val[X_ATOM], v, alter);
915		break;
916
917	case BPF_LDX|BPF_MSH|BPF_B:
918		v = F(s->code, s->k, 0L);
919		vstore(s, &val[X_ATOM], v, alter);
920		break;
921
922	case BPF_ALU|BPF_NEG:
923		if (alter && vmap[val[A_ATOM]].is_const) {
924			s->code = BPF_LD|BPF_IMM;
925			s->k = -vmap[val[A_ATOM]].const_val;
926			val[A_ATOM] = K(s->k);
927		}
928		else
929			val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
930		break;
931
932	case BPF_ALU|BPF_ADD|BPF_K:
933	case BPF_ALU|BPF_SUB|BPF_K:
934	case BPF_ALU|BPF_MUL|BPF_K:
935	case BPF_ALU|BPF_DIV|BPF_K:
936	case BPF_ALU|BPF_AND|BPF_K:
937	case BPF_ALU|BPF_OR|BPF_K:
938	case BPF_ALU|BPF_LSH|BPF_K:
939	case BPF_ALU|BPF_RSH|BPF_K:
940		op = BPF_OP(s->code);
941		if (alter) {
942			if (s->k == 0) {
943				/* don't optimize away "sub #0"
944				 * as it may be needed later to
945				 * fixup the generated math code */
946				if (op == BPF_ADD ||
947				    op == BPF_LSH || op == BPF_RSH ||
948				    op == BPF_OR) {
949					s->code = NOP;
950					break;
951				}
952				if (op == BPF_MUL || op == BPF_AND) {
953					s->code = BPF_LD|BPF_IMM;
954					val[A_ATOM] = K(s->k);
955					break;
956				}
957			}
958			if (vmap[val[A_ATOM]].is_const) {
959				fold_op(s, val[A_ATOM], K(s->k));
960				val[A_ATOM] = K(s->k);
961				break;
962			}
963		}
964		val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
965		break;
966
967	case BPF_ALU|BPF_ADD|BPF_X:
968	case BPF_ALU|BPF_SUB|BPF_X:
969	case BPF_ALU|BPF_MUL|BPF_X:
970	case BPF_ALU|BPF_DIV|BPF_X:
971	case BPF_ALU|BPF_AND|BPF_X:
972	case BPF_ALU|BPF_OR|BPF_X:
973	case BPF_ALU|BPF_LSH|BPF_X:
974	case BPF_ALU|BPF_RSH|BPF_X:
975		op = BPF_OP(s->code);
976		if (alter && vmap[val[X_ATOM]].is_const) {
977			if (vmap[val[A_ATOM]].is_const) {
978				fold_op(s, val[A_ATOM], val[X_ATOM]);
979				val[A_ATOM] = K(s->k);
980			}
981			else {
982				s->code = BPF_ALU|BPF_K|op;
983				s->k = vmap[val[X_ATOM]].const_val;
984				done = 0;
985				val[A_ATOM] =
986					F(s->code, val[A_ATOM], K(s->k));
987			}
988			break;
989		}
990		/*
991		 * Check if we're doing something to an accumulator
992		 * that is 0, and simplify.  This may not seem like
993		 * much of a simplification but it could open up further
994		 * optimizations.
995		 * XXX We could also check for mul by 1, and -1, etc.
996		 */
997		if (alter && vmap[val[A_ATOM]].is_const
998		    && vmap[val[A_ATOM]].const_val == 0) {
999			if (op == BPF_ADD || op == BPF_OR ||
1000			    op == BPF_LSH || op == BPF_RSH || op == BPF_SUB) {
1001				s->code = BPF_MISC|BPF_TXA;
1002				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1003				break;
1004			}
1005			else if (op == BPF_MUL || op == BPF_DIV ||
1006				 op == BPF_AND) {
1007				s->code = BPF_LD|BPF_IMM;
1008				s->k = 0;
1009				vstore(s, &val[A_ATOM], K(s->k), alter);
1010				break;
1011			}
1012			else if (op == BPF_NEG) {
1013				s->code = NOP;
1014				break;
1015			}
1016		}
1017		val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1018		break;
1019
1020	case BPF_MISC|BPF_TXA:
1021		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1022		break;
1023
1024	case BPF_LD|BPF_MEM:
1025		v = val[s->k];
1026		if (alter && vmap[v].is_const) {
1027			s->code = BPF_LD|BPF_IMM;
1028			s->k = vmap[v].const_val;
1029			done = 0;
1030		}
1031		vstore(s, &val[A_ATOM], v, alter);
1032		break;
1033
1034	case BPF_MISC|BPF_TAX:
1035		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1036		break;
1037
1038	case BPF_LDX|BPF_MEM:
1039		v = val[s->k];
1040		if (alter && vmap[v].is_const) {
1041			s->code = BPF_LDX|BPF_IMM;
1042			s->k = vmap[v].const_val;
1043			done = 0;
1044		}
1045		vstore(s, &val[X_ATOM], v, alter);
1046		break;
1047
1048	case BPF_ST:
1049		vstore(s, &val[s->k], val[A_ATOM], alter);
1050		break;
1051
1052	case BPF_STX:
1053		vstore(s, &val[s->k], val[X_ATOM], alter);
1054		break;
1055	}
1056}
1057
1058static void
1059deadstmt(s, last)
1060	register struct stmt *s;
1061	register struct stmt *last[];
1062{
1063	register int atom;
1064
1065	atom = atomuse(s);
1066	if (atom >= 0) {
1067		if (atom == AX_ATOM) {
1068			last[X_ATOM] = 0;
1069			last[A_ATOM] = 0;
1070		}
1071		else
1072			last[atom] = 0;
1073	}
1074	atom = atomdef(s);
1075	if (atom >= 0) {
1076		if (last[atom]) {
1077			done = 0;
1078			last[atom]->code = NOP;
1079		}
1080		last[atom] = s;
1081	}
1082}
1083
1084static void
1085opt_deadstores(b)
1086	register struct block *b;
1087{
1088	register struct slist *s;
1089	register int atom;
1090	struct stmt *last[N_ATOMS];
1091
1092	memset((char *)last, 0, sizeof last);
1093
1094	for (s = b->stmts; s != 0; s = s->next)
1095		deadstmt(&s->s, last);
1096	deadstmt(&b->s, last);
1097
1098	for (atom = 0; atom < N_ATOMS; ++atom)
1099		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1100			last[atom]->code = NOP;
1101			done = 0;
1102		}
1103}
1104
1105static void
1106opt_blk(b, do_stmts)
1107	struct block *b;
1108	int do_stmts;
1109{
1110	struct slist *s;
1111	struct edge *p;
1112	int i;
1113	bpf_int32 aval;
1114
1115#if 0
1116	for (s = b->stmts; s && s->next; s = s->next)
1117		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1118			do_stmts = 0;
1119			break;
1120		}
1121#endif
1122
1123	/*
1124	 * Initialize the atom values.
1125	 * If we have no predecessors, everything is undefined.
1126	 * Otherwise, we inherent our values from our predecessors.
1127	 * If any register has an ambiguous value (i.e. control paths are
1128	 * merging) give it the undefined value of 0.
1129	 */
1130	p = b->in_edges;
1131	if (p == 0)
1132		memset((char *)b->val, 0, sizeof(b->val));
1133	else {
1134		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1135		while ((p = p->next) != NULL) {
1136			for (i = 0; i < N_ATOMS; ++i)
1137				if (b->val[i] != p->pred->val[i])
1138					b->val[i] = 0;
1139		}
1140	}
1141	aval = b->val[A_ATOM];
1142	for (s = b->stmts; s; s = s->next)
1143		opt_stmt(&s->s, b->val, do_stmts);
1144
1145	/*
1146	 * This is a special case: if we don't use anything from this
1147	 * block, and we load the accumulator with value that is
1148	 * already there, or if this block is a return,
1149	 * eliminate all the statements.
1150	 */
1151	if (do_stmts &&
1152	    ((b->out_use == 0 && aval != 0 &&b->val[A_ATOM] == aval) ||
1153	     BPF_CLASS(b->s.code) == BPF_RET)) {
1154		if (b->stmts != 0) {
1155			b->stmts = 0;
1156			done = 0;
1157		}
1158	} else {
1159		opt_peep(b);
1160		opt_deadstores(b);
1161	}
1162	/*
1163	 * Set up values for branch optimizer.
1164	 */
1165	if (BPF_SRC(b->s.code) == BPF_K)
1166		b->oval = K(b->s.k);
1167	else
1168		b->oval = b->val[X_ATOM];
1169	b->et.code = b->s.code;
1170	b->ef.code = -b->s.code;
1171}
1172
1173/*
1174 * Return true if any register that is used on exit from 'succ', has
1175 * an exit value that is different from the corresponding exit value
1176 * from 'b'.
1177 */
1178static int
1179use_conflict(b, succ)
1180	struct block *b, *succ;
1181{
1182	int atom;
1183	atomset use = succ->out_use;
1184
1185	if (use == 0)
1186		return 0;
1187
1188	for (atom = 0; atom < N_ATOMS; ++atom)
1189		if (ATOMELEM(use, atom))
1190			if (b->val[atom] != succ->val[atom])
1191				return 1;
1192	return 0;
1193}
1194
1195static struct block *
1196fold_edge(child, ep)
1197	struct block *child;
1198	struct edge *ep;
1199{
1200	int sense;
1201	int aval0, aval1, oval0, oval1;
1202	int code = ep->code;
1203
1204	if (code < 0) {
1205		code = -code;
1206		sense = 0;
1207	} else
1208		sense = 1;
1209
1210	if (child->s.code != code)
1211		return 0;
1212
1213	aval0 = child->val[A_ATOM];
1214	oval0 = child->oval;
1215	aval1 = ep->pred->val[A_ATOM];
1216	oval1 = ep->pred->oval;
1217
1218	if (aval0 != aval1)
1219		return 0;
1220
1221	if (oval0 == oval1)
1222		/*
1223		 * The operands are identical, so the
1224		 * result is true if a true branch was
1225		 * taken to get here, otherwise false.
1226		 */
1227		return sense ? JT(child) : JF(child);
1228
1229	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1230		/*
1231		 * At this point, we only know the comparison if we
1232		 * came down the true branch, and it was an equality
1233		 * comparison with a constant.  We rely on the fact that
1234		 * distinct constants have distinct value numbers.
1235		 */
1236		return JF(child);
1237
1238	return 0;
1239}
1240
1241static void
1242opt_j(ep)
1243	struct edge *ep;
1244{
1245	register int i, k;
1246	register struct block *target;
1247
1248	if (JT(ep->succ) == 0)
1249		return;
1250
1251	if (JT(ep->succ) == JF(ep->succ)) {
1252		/*
1253		 * Common branch targets can be eliminated, provided
1254		 * there is no data dependency.
1255		 */
1256		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1257			done = 0;
1258			ep->succ = JT(ep->succ);
1259		}
1260	}
1261	/*
1262	 * For each edge dominator that matches the successor of this
1263	 * edge, promote the edge successor to the its grandchild.
1264	 *
1265	 * XXX We violate the set abstraction here in favor a reasonably
1266	 * efficient loop.
1267	 */
1268 top:
1269	for (i = 0; i < edgewords; ++i) {
1270		register bpf_u_int32 x = ep->edom[i];
1271
1272		while (x != 0) {
1273			k = ffs(x) - 1;
1274			x &=~ (1 << k);
1275			k += i * BITS_PER_WORD;
1276
1277			target = fold_edge(ep->succ, edges[k]);
1278			/*
1279			 * Check that there is no data dependency between
1280			 * nodes that will be violated if we move the edge.
1281			 */
1282			if (target != 0 && !use_conflict(ep->pred, target)) {
1283				done = 0;
1284				ep->succ = target;
1285				if (JT(target) != 0)
1286					/*
1287					 * Start over unless we hit a leaf.
1288					 */
1289					goto top;
1290				return;
1291			}
1292		}
1293	}
1294}
1295
1296
1297static void
1298or_pullup(b)
1299	struct block *b;
1300{
1301	int val, at_top;
1302	struct block *pull;
1303	struct block **diffp, **samep;
1304	struct edge *ep;
1305
1306	ep = b->in_edges;
1307	if (ep == 0)
1308		return;
1309
1310	/*
1311	 * Make sure each predecessor loads the same value.
1312	 * XXX why?
1313	 */
1314	val = ep->pred->val[A_ATOM];
1315	for (ep = ep->next; ep != 0; ep = ep->next)
1316		if (val != ep->pred->val[A_ATOM])
1317			return;
1318
1319	if (JT(b->in_edges->pred) == b)
1320		diffp = &JT(b->in_edges->pred);
1321	else
1322		diffp = &JF(b->in_edges->pred);
1323
1324	at_top = 1;
1325	while (1) {
1326		if (*diffp == 0)
1327			return;
1328
1329		if (JT(*diffp) != JT(b))
1330			return;
1331
1332		if (!SET_MEMBER((*diffp)->dom, b->id))
1333			return;
1334
1335		if ((*diffp)->val[A_ATOM] != val)
1336			break;
1337
1338		diffp = &JF(*diffp);
1339		at_top = 0;
1340	}
1341	samep = &JF(*diffp);
1342	while (1) {
1343		if (*samep == 0)
1344			return;
1345
1346		if (JT(*samep) != JT(b))
1347			return;
1348
1349		if (!SET_MEMBER((*samep)->dom, b->id))
1350			return;
1351
1352		if ((*samep)->val[A_ATOM] == val)
1353			break;
1354
1355		/* XXX Need to check that there are no data dependencies
1356		   between dp0 and dp1.  Currently, the code generator
1357		   will not produce such dependencies. */
1358		samep = &JF(*samep);
1359	}
1360#ifdef notdef
1361	/* XXX This doesn't cover everything. */
1362	for (i = 0; i < N_ATOMS; ++i)
1363		if ((*samep)->val[i] != pred->val[i])
1364			return;
1365#endif
1366	/* Pull up the node. */
1367	pull = *samep;
1368	*samep = JF(pull);
1369	JF(pull) = *diffp;
1370
1371	/*
1372	 * At the top of the chain, each predecessor needs to point at the
1373	 * pulled up node.  Inside the chain, there is only one predecessor
1374	 * to worry about.
1375	 */
1376	if (at_top) {
1377		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1378			if (JT(ep->pred) == b)
1379				JT(ep->pred) = pull;
1380			else
1381				JF(ep->pred) = pull;
1382		}
1383	}
1384	else
1385		*diffp = pull;
1386
1387	done = 0;
1388}
1389
1390static void
1391and_pullup(b)
1392	struct block *b;
1393{
1394	int val, at_top;
1395	struct block *pull;
1396	struct block **diffp, **samep;
1397	struct edge *ep;
1398
1399	ep = b->in_edges;
1400	if (ep == 0)
1401		return;
1402
1403	/*
1404	 * Make sure each predecessor loads the same value.
1405	 */
1406	val = ep->pred->val[A_ATOM];
1407	for (ep = ep->next; ep != 0; ep = ep->next)
1408		if (val != ep->pred->val[A_ATOM])
1409			return;
1410
1411	if (JT(b->in_edges->pred) == b)
1412		diffp = &JT(b->in_edges->pred);
1413	else
1414		diffp = &JF(b->in_edges->pred);
1415
1416	at_top = 1;
1417	while (1) {
1418		if (*diffp == 0)
1419			return;
1420
1421		if (JF(*diffp) != JF(b))
1422			return;
1423
1424		if (!SET_MEMBER((*diffp)->dom, b->id))
1425			return;
1426
1427		if ((*diffp)->val[A_ATOM] != val)
1428			break;
1429
1430		diffp = &JT(*diffp);
1431		at_top = 0;
1432	}
1433	samep = &JT(*diffp);
1434	while (1) {
1435		if (*samep == 0)
1436			return;
1437
1438		if (JF(*samep) != JF(b))
1439			return;
1440
1441		if (!SET_MEMBER((*samep)->dom, b->id))
1442			return;
1443
1444		if ((*samep)->val[A_ATOM] == val)
1445			break;
1446
1447		/* XXX Need to check that there are no data dependencies
1448		   between diffp and samep.  Currently, the code generator
1449		   will not produce such dependencies. */
1450		samep = &JT(*samep);
1451	}
1452#ifdef notdef
1453	/* XXX This doesn't cover everything. */
1454	for (i = 0; i < N_ATOMS; ++i)
1455		if ((*samep)->val[i] != pred->val[i])
1456			return;
1457#endif
1458	/* Pull up the node. */
1459	pull = *samep;
1460	*samep = JT(pull);
1461	JT(pull) = *diffp;
1462
1463	/*
1464	 * At the top of the chain, each predecessor needs to point at the
1465	 * pulled up node.  Inside the chain, there is only one predecessor
1466	 * to worry about.
1467	 */
1468	if (at_top) {
1469		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1470			if (JT(ep->pred) == b)
1471				JT(ep->pred) = pull;
1472			else
1473				JF(ep->pred) = pull;
1474		}
1475	}
1476	else
1477		*diffp = pull;
1478
1479	done = 0;
1480}
1481
1482static void
1483opt_blks(root, do_stmts)
1484	struct block *root;
1485	int do_stmts;
1486{
1487	int i, maxlevel;
1488	struct block *p;
1489
1490	init_val();
1491	maxlevel = root->level;
1492
1493	find_inedges(root);
1494	for (i = maxlevel; i >= 0; --i)
1495		for (p = levels[i]; p; p = p->link)
1496			opt_blk(p, do_stmts);
1497
1498	if (do_stmts)
1499		/*
1500		 * No point trying to move branches; it can't possibly
1501		 * make a difference at this point.
1502		 */
1503		return;
1504
1505	for (i = 1; i <= maxlevel; ++i) {
1506		for (p = levels[i]; p; p = p->link) {
1507			opt_j(&p->et);
1508			opt_j(&p->ef);
1509		}
1510	}
1511
1512	find_inedges(root);
1513	for (i = 1; i <= maxlevel; ++i) {
1514		for (p = levels[i]; p; p = p->link) {
1515			or_pullup(p);
1516			and_pullup(p);
1517		}
1518	}
1519}
1520
1521static inline void
1522link_inedge(parent, child)
1523	struct edge *parent;
1524	struct block *child;
1525{
1526	parent->next = child->in_edges;
1527	child->in_edges = parent;
1528}
1529
1530static void
1531find_inedges(root)
1532	struct block *root;
1533{
1534	int i;
1535	struct block *b;
1536
1537	for (i = 0; i < n_blocks; ++i)
1538		blocks[i]->in_edges = 0;
1539
1540	/*
1541	 * Traverse the graph, adding each edge to the predecessor
1542	 * list of its successors.  Skip the leaves (i.e. level 0).
1543	 */
1544	for (i = root->level; i > 0; --i) {
1545		for (b = levels[i]; b != 0; b = b->link) {
1546			link_inedge(&b->et, JT(b));
1547			link_inedge(&b->ef, JF(b));
1548		}
1549	}
1550}
1551
1552static void
1553opt_root(b)
1554	struct block **b;
1555{
1556	struct slist *tmp, *s;
1557
1558	s = (*b)->stmts;
1559	(*b)->stmts = 0;
1560	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1561		*b = JT(*b);
1562
1563	tmp = (*b)->stmts;
1564	if (tmp != 0)
1565		sappend(s, tmp);
1566	(*b)->stmts = s;
1567
1568	/*
1569	 * If the root node is a return, then there is no
1570	 * point executing any statements (since the bpf machine
1571	 * has no side effects).
1572	 */
1573	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1574		(*b)->stmts = 0;
1575}
1576
1577static void
1578opt_loop(root, do_stmts)
1579	struct block *root;
1580	int do_stmts;
1581{
1582
1583#ifdef BDEBUG
1584	if (dflag > 1) {
1585		printf("opt_loop(root, %d) begin\n", do_stmts);
1586		opt_dump(root);
1587	}
1588#endif
1589	do {
1590		done = 1;
1591		find_levels(root);
1592		find_dom(root);
1593		find_closure(root);
1594		find_ud(root);
1595		find_edom(root);
1596		opt_blks(root, do_stmts);
1597#ifdef BDEBUG
1598		if (dflag > 1) {
1599			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1600			opt_dump(root);
1601		}
1602#endif
1603	} while (!done);
1604}
1605
1606/*
1607 * Optimize the filter code in its dag representation.
1608 */
1609void
1610bpf_optimize(rootp)
1611	struct block **rootp;
1612{
1613	struct block *root;
1614
1615	root = *rootp;
1616
1617	opt_init(root);
1618	opt_loop(root, 0);
1619	opt_loop(root, 1);
1620	intern_blocks(root);
1621#ifdef BDEBUG
1622	if (dflag > 1) {
1623		printf("after intern_blocks()\n");
1624		opt_dump(root);
1625	}
1626#endif
1627	opt_root(rootp);
1628#ifdef BDEBUG
1629	if (dflag > 1) {
1630		printf("after opt_root()\n");
1631		opt_dump(root);
1632	}
1633#endif
1634	opt_cleanup();
1635}
1636
1637static void
1638make_marks(p)
1639	struct block *p;
1640{
1641	if (!isMarked(p)) {
1642		Mark(p);
1643		if (BPF_CLASS(p->s.code) != BPF_RET) {
1644			make_marks(JT(p));
1645			make_marks(JF(p));
1646		}
1647	}
1648}
1649
1650/*
1651 * Mark code array such that isMarked(i) is true
1652 * only for nodes that are alive.
1653 */
1654static void
1655mark_code(p)
1656	struct block *p;
1657{
1658	cur_mark += 1;
1659	make_marks(p);
1660}
1661
1662/*
1663 * True iff the two stmt lists load the same value from the packet into
1664 * the accumulator.
1665 */
1666static int
1667eq_slist(x, y)
1668	struct slist *x, *y;
1669{
1670	while (1) {
1671		while (x && x->s.code == NOP)
1672			x = x->next;
1673		while (y && y->s.code == NOP)
1674			y = y->next;
1675		if (x == 0)
1676			return y == 0;
1677		if (y == 0)
1678			return x == 0;
1679		if (x->s.code != y->s.code || x->s.k != y->s.k)
1680			return 0;
1681		x = x->next;
1682		y = y->next;
1683	}
1684}
1685
1686static inline int
1687eq_blk(b0, b1)
1688	struct block *b0, *b1;
1689{
1690	if (b0->s.code == b1->s.code &&
1691	    b0->s.k == b1->s.k &&
1692	    b0->et.succ == b1->et.succ &&
1693	    b0->ef.succ == b1->ef.succ)
1694		return eq_slist(b0->stmts, b1->stmts);
1695	return 0;
1696}
1697
1698static void
1699intern_blocks(root)
1700	struct block *root;
1701{
1702	struct block *p;
1703	int i, j;
1704	int done;
1705 top:
1706	done = 1;
1707	for (i = 0; i < n_blocks; ++i)
1708		blocks[i]->link = 0;
1709
1710	mark_code(root);
1711
1712	for (i = n_blocks - 1; --i >= 0; ) {
1713		if (!isMarked(blocks[i]))
1714			continue;
1715		for (j = i + 1; j < n_blocks; ++j) {
1716			if (!isMarked(blocks[j]))
1717				continue;
1718			if (eq_blk(blocks[i], blocks[j])) {
1719				blocks[i]->link = blocks[j]->link ?
1720					blocks[j]->link : blocks[j];
1721				break;
1722			}
1723		}
1724	}
1725	for (i = 0; i < n_blocks; ++i) {
1726		p = blocks[i];
1727		if (JT(p) == 0)
1728			continue;
1729		if (JT(p)->link) {
1730			done = 0;
1731			JT(p) = JT(p)->link;
1732		}
1733		if (JF(p)->link) {
1734			done = 0;
1735			JF(p) = JF(p)->link;
1736		}
1737	}
1738	if (!done)
1739		goto top;
1740}
1741
1742static void
1743opt_cleanup()
1744{
1745	free((void *)vnode_base);
1746	free((void *)vmap);
1747	free((void *)edges);
1748	free((void *)space);
1749	free((void *)levels);
1750	free((void *)blocks);
1751}
1752
1753/*
1754 * Return the number of stmts in 's'.
1755 */
1756static int
1757slength(s)
1758	struct slist *s;
1759{
1760	int n = 0;
1761
1762	for (; s; s = s->next)
1763		if (s->s.code != NOP)
1764			++n;
1765	return n;
1766}
1767
1768/*
1769 * Return the number of nodes reachable by 'p'.
1770 * All nodes should be initially unmarked.
1771 */
1772static int
1773count_blocks(p)
1774	struct block *p;
1775{
1776	if (p == 0 || isMarked(p))
1777		return 0;
1778	Mark(p);
1779	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1780}
1781
1782/*
1783 * Do a depth first search on the flow graph, numbering the
1784 * the basic blocks, and entering them into the 'blocks' array.`
1785 */
1786static void
1787number_blks_r(p)
1788	struct block *p;
1789{
1790	int n;
1791
1792	if (p == 0 || isMarked(p))
1793		return;
1794
1795	Mark(p);
1796	n = n_blocks++;
1797	p->id = n;
1798	blocks[n] = p;
1799
1800	number_blks_r(JT(p));
1801	number_blks_r(JF(p));
1802}
1803
1804/*
1805 * Return the number of stmts in the flowgraph reachable by 'p'.
1806 * The nodes should be unmarked before calling.
1807 *
1808 * Note that "stmts" means "instructions", and that this includes
1809 *
1810 *	side-effect statements in 'p' (slength(p->stmts));
1811 *
1812 *	statements in the true branch from 'p' (count_stmts(JT(p)));
1813 *
1814 *	statements in the false branch from 'p' (count_stmts(JF(p)));
1815 *
1816 *	the conditional jump itself (1);
1817 *
1818 *	an extra long jump if the true branch requires it (p->longjt);
1819 *
1820 *	an extra long jump if the false branch requires it (p->longjf).
1821 */
1822static int
1823count_stmts(p)
1824	struct block *p;
1825{
1826	int n;
1827
1828	if (p == 0 || isMarked(p))
1829		return 0;
1830	Mark(p);
1831	n = count_stmts(JT(p)) + count_stmts(JF(p));
1832	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1833}
1834
1835/*
1836 * Allocate memory.  All allocation is done before optimization
1837 * is begun.  A linear bound on the size of all data structures is computed
1838 * from the total number of blocks and/or statements.
1839 */
1840static void
1841opt_init(root)
1842	struct block *root;
1843{
1844	bpf_u_int32 *p;
1845	int i, n, max_stmts;
1846
1847	/*
1848	 * First, count the blocks, so we can malloc an array to map
1849	 * block number to block.  Then, put the blocks into the array.
1850	 */
1851	unMarkAll();
1852	n = count_blocks(root);
1853	blocks = (struct block **)malloc(n * sizeof(*blocks));
1854	unMarkAll();
1855	n_blocks = 0;
1856	number_blks_r(root);
1857
1858	n_edges = 2 * n_blocks;
1859	edges = (struct edge **)malloc(n_edges * sizeof(*edges));
1860
1861	/*
1862	 * The number of levels is bounded by the number of nodes.
1863	 */
1864	levels = (struct block **)malloc(n_blocks * sizeof(*levels));
1865
1866	edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1867	nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1868
1869	/* XXX */
1870	space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1871				 + n_edges * edgewords * sizeof(*space));
1872	p = space;
1873	all_dom_sets = p;
1874	for (i = 0; i < n; ++i) {
1875		blocks[i]->dom = p;
1876		p += nodewords;
1877	}
1878	all_closure_sets = p;
1879	for (i = 0; i < n; ++i) {
1880		blocks[i]->closure = p;
1881		p += nodewords;
1882	}
1883	all_edge_sets = p;
1884	for (i = 0; i < n; ++i) {
1885		register struct block *b = blocks[i];
1886
1887		b->et.edom = p;
1888		p += edgewords;
1889		b->ef.edom = p;
1890		p += edgewords;
1891		b->et.id = i;
1892		edges[i] = &b->et;
1893		b->ef.id = n_blocks + i;
1894		edges[n_blocks + i] = &b->ef;
1895		b->et.pred = b;
1896		b->ef.pred = b;
1897	}
1898	max_stmts = 0;
1899	for (i = 0; i < n; ++i)
1900		max_stmts += slength(blocks[i]->stmts) + 1;
1901	/*
1902	 * We allocate at most 3 value numbers per statement,
1903	 * so this is an upper bound on the number of valnodes
1904	 * we'll need.
1905	 */
1906	maxval = 3 * max_stmts;
1907	vmap = (struct vmapinfo *)malloc(maxval * sizeof(*vmap));
1908	vnode_base = (struct valnode *)malloc(maxval * sizeof(*vnode_base));
1909}
1910
1911/*
1912 * Some pointers used to convert the basic block form of the code,
1913 * into the array form that BPF requires.  'fstart' will point to
1914 * the malloc'd array while 'ftail' is used during the recursive traversal.
1915 */
1916static struct bpf_insn *fstart;
1917static struct bpf_insn *ftail;
1918
1919#ifdef BDEBUG
1920int bids[1000];
1921#endif
1922
1923/*
1924 * Returns true if successful.  Returns false if a branch has
1925 * an offset that is too large.  If so, we have marked that
1926 * branch so that on a subsequent iteration, it will be treated
1927 * properly.
1928 */
1929static int
1930convert_code_r(p)
1931	struct block *p;
1932{
1933	struct bpf_insn *dst;
1934	struct slist *src;
1935	int slen;
1936	u_int off;
1937	int extrajmps;		/* number of extra jumps inserted */
1938	struct slist **offset = NULL;
1939
1940	if (p == 0 || isMarked(p))
1941		return (1);
1942	Mark(p);
1943
1944	if (convert_code_r(JF(p)) == 0)
1945		return (0);
1946	if (convert_code_r(JT(p)) == 0)
1947		return (0);
1948
1949	slen = slength(p->stmts);
1950	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
1951		/* inflate length by any extra jumps */
1952
1953	p->offset = dst - fstart;
1954
1955	/* generate offset[] for convenience  */
1956	if (slen) {
1957		offset = (struct slist **)calloc(sizeof(struct slist *), slen);
1958		if (!offset) {
1959			bpf_error("not enough core");
1960			/*NOTREACHED*/
1961		}
1962	}
1963	src = p->stmts;
1964	for (off = 0; off < slen && src; off++) {
1965#if 0
1966		printf("off=%d src=%x\n", off, src);
1967#endif
1968		offset[off] = src;
1969		src = src->next;
1970	}
1971
1972	off = 0;
1973	for (src = p->stmts; src; src = src->next) {
1974		if (src->s.code == NOP)
1975			continue;
1976		dst->code = (u_short)src->s.code;
1977		dst->k = src->s.k;
1978
1979		/* fill block-local relative jump */
1980		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
1981#if 0
1982			if (src->s.jt || src->s.jf) {
1983				bpf_error("illegal jmp destination");
1984				/*NOTREACHED*/
1985			}
1986#endif
1987			goto filled;
1988		}
1989		if (off == slen - 2)	/*???*/
1990			goto filled;
1991
1992	    {
1993		int i;
1994		int jt, jf;
1995		char *ljerr = "%s for block-local relative jump: off=%d";
1996
1997#if 0
1998		printf("code=%x off=%d %x %x\n", src->s.code,
1999			off, src->s.jt, src->s.jf);
2000#endif
2001
2002		if (!src->s.jt || !src->s.jf) {
2003			bpf_error(ljerr, "no jmp destination", off);
2004			/*NOTREACHED*/
2005		}
2006
2007		jt = jf = 0;
2008		for (i = 0; i < slen; i++) {
2009			if (offset[i] == src->s.jt) {
2010				if (jt) {
2011					bpf_error(ljerr, "multiple matches", off);
2012					/*NOTREACHED*/
2013				}
2014
2015				dst->jt = i - off - 1;
2016				jt++;
2017			}
2018			if (offset[i] == src->s.jf) {
2019				if (jf) {
2020					bpf_error(ljerr, "multiple matches", off);
2021					/*NOTREACHED*/
2022				}
2023				dst->jf = i - off - 1;
2024				jf++;
2025			}
2026		}
2027		if (!jt || !jf) {
2028			bpf_error(ljerr, "no destination found", off);
2029			/*NOTREACHED*/
2030		}
2031	    }
2032filled:
2033		++dst;
2034		++off;
2035	}
2036	if (offset)
2037		free(offset);
2038
2039#ifdef BDEBUG
2040	bids[dst - fstart] = p->id + 1;
2041#endif
2042	dst->code = (u_short)p->s.code;
2043	dst->k = p->s.k;
2044	if (JT(p)) {
2045		extrajmps = 0;
2046		off = JT(p)->offset - (p->offset + slen) - 1;
2047		if (off >= 256) {
2048		    /* offset too large for branch, must add a jump */
2049		    if (p->longjt == 0) {
2050		    	/* mark this instruction and retry */
2051			p->longjt++;
2052			return(0);
2053		    }
2054		    /* branch if T to following jump */
2055		    dst->jt = extrajmps;
2056		    extrajmps++;
2057		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2058		    dst[extrajmps].k = off - extrajmps;
2059		}
2060		else
2061		    dst->jt = off;
2062		off = JF(p)->offset - (p->offset + slen) - 1;
2063		if (off >= 256) {
2064		    /* offset too large for branch, must add a jump */
2065		    if (p->longjf == 0) {
2066		    	/* mark this instruction and retry */
2067			p->longjf++;
2068			return(0);
2069		    }
2070		    /* branch if F to following jump */
2071		    /* if two jumps are inserted, F goes to second one */
2072		    dst->jf = extrajmps;
2073		    extrajmps++;
2074		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2075		    dst[extrajmps].k = off - extrajmps;
2076		}
2077		else
2078		    dst->jf = off;
2079	}
2080	return (1);
2081}
2082
2083
2084/*
2085 * Convert flowgraph intermediate representation to the
2086 * BPF array representation.  Set *lenp to the number of instructions.
2087 */
2088struct bpf_insn *
2089icode_to_fcode(root, lenp)
2090	struct block *root;
2091	int *lenp;
2092{
2093	int n;
2094	struct bpf_insn *fp;
2095
2096	/*
2097	 * Loop doing convert_code_r() until no branches remain
2098	 * with too-large offsets.
2099	 */
2100	while (1) {
2101	    unMarkAll();
2102	    n = *lenp = count_stmts(root);
2103
2104	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2105	    memset((char *)fp, 0, sizeof(*fp) * n);
2106	    fstart = fp;
2107	    ftail = fp + n;
2108
2109	    unMarkAll();
2110	    if (convert_code_r(root))
2111		break;
2112	    free(fp);
2113	}
2114
2115	return fp;
2116}
2117
2118/*
2119 * Make a copy of a BPF program and put it in the "fcode" member of
2120 * a "pcap_t".
2121 *
2122 * If we fail to allocate memory for the copy, fill in the "errbuf"
2123 * member of the "pcap_t" with an error message, and return -1;
2124 * otherwise, return 0.
2125 */
2126int
2127install_bpf_program(pcap_t *p, struct bpf_program *fp)
2128{
2129	size_t prog_size;
2130
2131	/*
2132	 * Free up any already installed program.
2133	 */
2134	pcap_freecode(&p->fcode);
2135
2136	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2137	p->fcode.bf_len = fp->bf_len;
2138	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2139	if (p->fcode.bf_insns == NULL) {
2140		snprintf(p->errbuf, sizeof(p->errbuf),
2141			 "malloc: %s", pcap_strerror(errno));
2142		return (-1);
2143	}
2144	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2145	return (0);
2146}
2147
2148#ifdef BDEBUG
2149static void
2150opt_dump(root)
2151	struct block *root;
2152{
2153	struct bpf_program f;
2154
2155	memset(bids, 0, sizeof bids);
2156	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2157	bpf_dump(&f, 1);
2158	putchar('\n');
2159	free((char *)f.bf_insns);
2160}
2161#endif
2162