optimize.c revision 241231
1191783Srmacklem/*
2191783Srmacklem * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3191783Srmacklem *	The Regents of the University of California.  All rights reserved.
4191783Srmacklem *
5191783Srmacklem * Redistribution and use in source and binary forms, with or without
6191783Srmacklem * modification, are permitted provided that: (1) source code distributions
7191783Srmacklem * retain the above copyright notice and this paragraph in its entirety, (2)
8191783Srmacklem * distributions including binary code include the above copyright notice and
9191783Srmacklem * this paragraph in its entirety in the documentation or other materials
10191783Srmacklem * provided with the distribution, and (3) all advertising materials mentioning
11191783Srmacklem * features or use of this software display the following acknowledgement:
12191783Srmacklem * ``This product includes software developed by the University of California,
13191783Srmacklem * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14191783Srmacklem * the University nor the names of its contributors may be used to endorse
15191783Srmacklem * or promote products derived from this software without specific prior
16191783Srmacklem * written permission.
17191783Srmacklem * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18191783Srmacklem * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19191783Srmacklem * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20191783Srmacklem *
21191783Srmacklem *  Optimization module for tcpdump intermediate representation.
22191783Srmacklem */
23191783Srmacklem#ifndef lint
24191783Srmacklemstatic const char rcsid[] _U_ =
25191783Srmacklem    "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.91 2008-01-02 04:16:46 guy Exp $ (LBL)";
26191783Srmacklem#endif
27191783Srmacklem
28191783Srmacklem#ifdef HAVE_CONFIG_H
29191783Srmacklem#include "config.h"
30191783Srmacklem#endif
31191783Srmacklem
32191783Srmacklem#ifdef WIN32
33191783Srmacklem#include <pcap-stdinc.h>
34191783Srmacklem#else /* WIN32 */
35191783Srmacklem#if HAVE_INTTYPES_H
36191783Srmacklem#include <inttypes.h>
37191783Srmacklem#elif HAVE_STDINT_H
38191783Srmacklem#include <stdint.h>
39191783Srmacklem#endif
40191783Srmacklem#ifdef HAVE_SYS_BITYPES_H
41191783Srmacklem#include <sys/bitypes.h>
42191783Srmacklem#endif
43191783Srmacklem#include <sys/types.h>
44191783Srmacklem#endif /* WIN32 */
45191783Srmacklem
46191783Srmacklem#include <stdio.h>
47191783Srmacklem#include <stdlib.h>
48191783Srmacklem#include <memory.h>
49191783Srmacklem#include <string.h>
50191783Srmacklem
51191783Srmacklem#include <errno.h>
52191783Srmacklem
53191783Srmacklem#include "pcap-int.h"
54191783Srmacklem
55191783Srmacklem#include "gencode.h"
56191783Srmacklem
57191783Srmacklem#ifdef HAVE_OS_PROTO_H
58191783Srmacklem#include "os-proto.h"
59191783Srmacklem#endif
60191783Srmacklem
61191783Srmacklem#ifdef BDEBUG
62191783Srmacklemextern int dflag;
63191783Srmacklem#endif
64191783Srmacklem
65191783Srmacklem#if defined(MSDOS) && !defined(__DJGPP__)
66191783Srmacklemextern int _w32_ffs (int mask);
67191783Srmacklem#define ffs _w32_ffs
68191783Srmacklem#endif
69191783Srmacklem
70191783Srmacklem#if defined(WIN32) && defined (_MSC_VER)
71191783Srmacklemint ffs(int mask);
72191783Srmacklem#endif
73191783Srmacklem
74191783Srmacklem/*
75191783Srmacklem * Represents a deleted instruction.
76191783Srmacklem */
77191783Srmacklem#define NOP -1
78191783Srmacklem
79191783Srmacklem/*
80191783Srmacklem * Register numbers for use-def values.
81191783Srmacklem * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
82191783Srmacklem * location.  A_ATOM is the accumulator and X_ATOM is the index
83191783Srmacklem * register.
84191783Srmacklem */
85191783Srmacklem#define A_ATOM BPF_MEMWORDS
86191783Srmacklem#define X_ATOM (BPF_MEMWORDS+1)
87191783Srmacklem
88191783Srmacklem/*
89191783Srmacklem * This define is used to represent *both* the accumulator and
90191783Srmacklem * x register in use-def computations.
91191783Srmacklem * Currently, the use-def code assumes only one definition per instruction.
92191783Srmacklem */
93191783Srmacklem#define AX_ATOM N_ATOMS
94191783Srmacklem
95191783Srmacklem/*
96191783Srmacklem * A flag to indicate that further optimization is needed.
97191783Srmacklem * Iterative passes are continued until a given pass yields no
98191783Srmacklem * branch movement.
99191783Srmacklem */
100191783Srmacklemstatic int done;
101191783Srmacklem
102191783Srmacklem/*
103191783Srmacklem * A block is marked if only if its mark equals the current mark.
104191783Srmacklem * Rather than traverse the code array, marking each item, 'cur_mark' is
105191783Srmacklem * incremented.  This automatically makes each element unmarked.
106191783Srmacklem */
107191783Srmacklemstatic int cur_mark;
108191783Srmacklem#define isMarked(p) ((p)->mark == cur_mark)
109191783Srmacklem#define unMarkAll() cur_mark += 1
110191783Srmacklem#define Mark(p) ((p)->mark = cur_mark)
111191783Srmacklem
112191783Srmacklemstatic void opt_init(struct block *);
113191783Srmacklemstatic void opt_cleanup(void);
114191783Srmacklem
115191783Srmacklemstatic void make_marks(struct block *);
116191783Srmacklemstatic void mark_code(struct block *);
117191783Srmacklem
118191783Srmacklemstatic void intern_blocks(struct block *);
119191783Srmacklem
120191783Srmacklemstatic int eq_slist(struct slist *, struct slist *);
121191783Srmacklem
122191783Srmacklemstatic void find_levels_r(struct block *);
123191783Srmacklem
124191783Srmacklemstatic void find_levels(struct block *);
125191783Srmacklemstatic void find_dom(struct block *);
126191783Srmacklemstatic void propedom(struct edge *);
127191783Srmacklemstatic void find_edom(struct block *);
128191783Srmacklemstatic void find_closure(struct block *);
129191783Srmacklemstatic int atomuse(struct stmt *);
130191783Srmacklemstatic int atomdef(struct stmt *);
131191783Srmacklemstatic void compute_local_ud(struct block *);
132191783Srmacklemstatic void find_ud(struct block *);
133191783Srmacklemstatic void init_val(void);
134191783Srmacklemstatic int F(int, int, int);
135191783Srmacklemstatic inline void vstore(struct stmt *, int *, int, int);
136191783Srmacklemstatic void opt_blk(struct block *, int);
137191783Srmacklemstatic int use_conflict(struct block *, struct block *);
138192145Srmacklemstatic void opt_j(struct edge *);
139192145Srmacklemstatic void or_pullup(struct block *);
140191783Srmacklemstatic void and_pullup(struct block *);
141191783Srmacklemstatic void opt_blks(struct block *, int);
142192145Srmacklemstatic inline void link_inedge(struct edge *, struct block *);
143191783Srmacklemstatic void find_inedges(struct block *);
144191783Srmacklemstatic void opt_root(struct block **);
145192145Srmacklemstatic void opt_loop(struct block *, int);
146192145Srmacklemstatic void fold_op(struct stmt *, int, int);
147191783Srmacklemstatic inline struct slist *this_op(struct slist *);
148191783Srmacklemstatic void opt_not(struct block *);
149191783Srmacklemstatic void opt_peep(struct block *);
150191783Srmacklemstatic void opt_stmt(struct stmt *, int[], int);
151191783Srmacklemstatic void deadstmt(struct stmt *, struct stmt *[]);
152191783Srmacklemstatic void opt_deadstores(struct block *);
153191783Srmacklemstatic struct block *fold_edge(struct block *, struct edge *);
154191783Srmacklemstatic inline int eq_blk(struct block *, struct block *);
155191783Srmacklemstatic u_int slength(struct slist *);
156191783Srmacklemstatic int count_blocks(struct block *);
157191783Srmacklemstatic void number_blks_r(struct block *);
158191783Srmacklemstatic u_int count_stmts(struct block *);
159191783Srmacklemstatic int convert_code_r(struct block *);
160191783Srmacklem#ifdef BDEBUG
161191783Srmacklemstatic void opt_dump(struct block *);
162191783Srmacklem#endif
163191783Srmacklem
164191783Srmacklemstatic int n_blocks;
165191783Srmacklemstruct block **blocks;
166191783Srmacklemstatic int n_edges;
167191783Srmacklemstruct edge **edges;
168191783Srmacklem
169191783Srmacklem/*
170191783Srmacklem * A bit vector set representation of the dominators.
171191783Srmacklem * We round up the set size to the next power of two.
172191783Srmacklem */
173191783Srmacklemstatic int nodewords;
174191783Srmacklemstatic int edgewords;
175191783Srmacklemstruct block **levels;
176191783Srmacklembpf_u_int32 *space;
177191783Srmacklem#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
178191783Srmacklem/*
179191783Srmacklem * True if a is in uset {p}
180191783Srmacklem */
181191783Srmacklem#define SET_MEMBER(p, a) \
182191783Srmacklem((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
183191783Srmacklem
184191783Srmacklem/*
185191783Srmacklem * Add 'a' to uset p.
186191783Srmacklem */
187191783Srmacklem#define SET_INSERT(p, a) \
188191783Srmacklem(p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
189191783Srmacklem
190191783Srmacklem/*
191191783Srmacklem * Delete 'a' from uset p.
192191783Srmacklem */
193191783Srmacklem#define SET_DELETE(p, a) \
194191783Srmacklem(p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
195191783Srmacklem
196191783Srmacklem/*
197191783Srmacklem * a := a intersect b
198191783Srmacklem */
199191783Srmacklem#define SET_INTERSECT(a, b, n)\
200191783Srmacklem{\
201191783Srmacklem	register bpf_u_int32 *_x = a, *_y = b;\
202191783Srmacklem	register int _n = n;\
203191783Srmacklem	while (--_n >= 0) *_x++ &= *_y++;\
204191783Srmacklem}
205191783Srmacklem
206191783Srmacklem/*
207191783Srmacklem * a := a - b
208191783Srmacklem */
209191783Srmacklem#define SET_SUBTRACT(a, b, n)\
210191783Srmacklem{\
211191783Srmacklem	register bpf_u_int32 *_x = a, *_y = b;\
212191783Srmacklem	register int _n = n;\
213191783Srmacklem	while (--_n >= 0) *_x++ &=~ *_y++;\
214191783Srmacklem}
215191783Srmacklem
216191783Srmacklem/*
217191783Srmacklem * a := a union b
218191783Srmacklem */
219191783Srmacklem#define SET_UNION(a, b, n)\
220191783Srmacklem{\
221191783Srmacklem	register bpf_u_int32 *_x = a, *_y = b;\
222191783Srmacklem	register int _n = n;\
223191783Srmacklem	while (--_n >= 0) *_x++ |= *_y++;\
224192145Srmacklem}
225191783Srmacklem
226192145Srmacklemstatic uset all_dom_sets;
227192145Srmacklemstatic uset all_closure_sets;
228192145Srmacklemstatic uset all_edge_sets;
229191783Srmacklem
230191783Srmacklem#ifndef MAX
231192145Srmacklem#define MAX(a,b) ((a)>(b)?(a):(b))
232192145Srmacklem#endif
233191783Srmacklem
234191783Srmacklemstatic void
235192145Srmacklemfind_levels_r(b)
236192145Srmacklem	struct block *b;
237191783Srmacklem{
238191783Srmacklem	int level;
239192145Srmacklem
240192145Srmacklem	if (isMarked(b))
241192145Srmacklem		return;
242191783Srmacklem
243191783Srmacklem	Mark(b);
244192145Srmacklem	b->link = 0;
245191783Srmacklem
246191783Srmacklem	if (JT(b)) {
247191783Srmacklem		find_levels_r(JT(b));
248191783Srmacklem		find_levels_r(JF(b));
249191783Srmacklem		level = MAX(JT(b)->level, JF(b)->level) + 1;
250191783Srmacklem	} else
251191783Srmacklem		level = 0;
252191990Sattilio	b->level = level;
253191783Srmacklem	b->link = levels[level];
254191783Srmacklem	levels[level] = b;
255191990Sattilio}
256191783Srmacklem
257191783Srmacklem/*
258191783Srmacklem * Level graph.  The levels go from 0 at the leaves to
259191783Srmacklem * N_LEVELS at the root.  The levels[] array points to the
260191783Srmacklem * first node of the level list, whose elements are linked
261191783Srmacklem * with the 'link' field of the struct block.
262191783Srmacklem */
263191990Sattiliostatic void
264191990Sattiliofind_levels(root)
265191783Srmacklem	struct block *root;
266191783Srmacklem{
267191783Srmacklem	memset((char *)levels, 0, n_blocks * sizeof(*levels));
268191783Srmacklem	unMarkAll();
269191783Srmacklem	find_levels_r(root);
270191783Srmacklem}
271191783Srmacklem
272191783Srmacklem/*
273191783Srmacklem * Find dominator relationships.
274191783Srmacklem * Assumes graph has been leveled.
275191783Srmacklem */
276191783Srmacklemstatic void
277191783Srmacklemfind_dom(root)
278191783Srmacklem	struct block *root;
279191783Srmacklem{
280191783Srmacklem	int i;
281191783Srmacklem	struct block *b;
282191783Srmacklem	bpf_u_int32 *x;
283191783Srmacklem
284191783Srmacklem	/*
285191783Srmacklem	 * Initialize sets to contain all nodes.
286191783Srmacklem	 */
287191783Srmacklem	x = all_dom_sets;
288191783Srmacklem	i = n_blocks * nodewords;
289191783Srmacklem	while (--i >= 0)
290191783Srmacklem		*x++ = ~0;
291191783Srmacklem	/* Root starts off empty. */
292191783Srmacklem	for (i = nodewords; --i >= 0;)
293191783Srmacklem		root->dom[i] = 0;
294191783Srmacklem
295191783Srmacklem	/* root->level is the highest level no found. */
296191783Srmacklem	for (i = root->level; i >= 0; --i) {
297191783Srmacklem		for (b = levels[i]; b; b = b->link) {
298191783Srmacklem			SET_INSERT(b->dom, b->id);
299191783Srmacklem			if (JT(b) == 0)
300191783Srmacklem				continue;
301191783Srmacklem			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
302191783Srmacklem			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
303191783Srmacklem		}
304191783Srmacklem	}
305191783Srmacklem}
306191783Srmacklem
307191783Srmacklemstatic void
308191783Srmacklempropedom(ep)
309191783Srmacklem	struct edge *ep;
310191783Srmacklem{
311191783Srmacklem	SET_INSERT(ep->edom, ep->id);
312191783Srmacklem	if (ep->succ) {
313191783Srmacklem		SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
314191783Srmacklem		SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
315191783Srmacklem	}
316191783Srmacklem}
317191783Srmacklem
318191783Srmacklem/*
319191783Srmacklem * Compute edge dominators.
320191783Srmacklem * Assumes graph has been leveled and predecessors established.
321191783Srmacklem */
322191783Srmacklemstatic void
323191783Srmacklemfind_edom(root)
324191783Srmacklem	struct block *root;
325191783Srmacklem{
326191783Srmacklem	int i;
327191783Srmacklem	uset x;
328191783Srmacklem	struct block *b;
329191783Srmacklem
330191783Srmacklem	x = all_edge_sets;
331191783Srmacklem	for (i = n_edges * edgewords; --i >= 0; )
332191783Srmacklem		x[i] = ~0;
333191783Srmacklem
334191783Srmacklem	/* root->level is the highest level no found. */
335191783Srmacklem	memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
336191783Srmacklem	memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
337191783Srmacklem	for (i = root->level; i >= 0; --i) {
338191783Srmacklem		for (b = levels[i]; b != 0; b = b->link) {
339191783Srmacklem			propedom(&b->et);
340191783Srmacklem			propedom(&b->ef);
341191783Srmacklem		}
342191783Srmacklem	}
343191783Srmacklem}
344191783Srmacklem
345191783Srmacklem/*
346191783Srmacklem * Find the backwards transitive closure of the flow graph.  These sets
347191783Srmacklem * are backwards in the sense that we find the set of nodes that reach
348191783Srmacklem * a given node, not the set of nodes that can be reached by a node.
349191783Srmacklem *
350191783Srmacklem * Assumes graph has been leveled.
351191783Srmacklem */
352191783Srmacklemstatic void
353191783Srmacklemfind_closure(root)
354191783Srmacklem	struct block *root;
355191783Srmacklem{
356191783Srmacklem	int i;
357191783Srmacklem	struct block *b;
358191783Srmacklem
359191783Srmacklem	/*
360191783Srmacklem	 * Initialize sets to contain no nodes.
361191783Srmacklem	 */
362191783Srmacklem	memset((char *)all_closure_sets, 0,
363192145Srmacklem	      n_blocks * nodewords * sizeof(*all_closure_sets));
364191783Srmacklem
365191783Srmacklem	/* root->level is the highest level no found. */
366191783Srmacklem	for (i = root->level; i >= 0; --i) {
367192145Srmacklem		for (b = levels[i]; b; b = b->link) {
368191783Srmacklem			SET_INSERT(b->closure, b->id);
369192145Srmacklem			if (JT(b) == 0)
370192145Srmacklem				continue;
371191783Srmacklem			SET_UNION(JT(b)->closure, b->closure, nodewords);
372191783Srmacklem			SET_UNION(JF(b)->closure, b->closure, nodewords);
373191783Srmacklem		}
374191783Srmacklem	}
375191783Srmacklem}
376191783Srmacklem
377191783Srmacklem/*
378191783Srmacklem * Return the register number that is used by s.  If A and X are both
379191783Srmacklem * used, return AX_ATOM.  If no register is used, return -1.
380191783Srmacklem *
381192145Srmacklem * The implementation should probably change to an array access.
382191783Srmacklem */
383191783Srmacklemstatic int
384191783Srmacklematomuse(s)
385191783Srmacklem	struct stmt *s;
386191783Srmacklem{
387191783Srmacklem	register int c = s->code;
388191783Srmacklem
389191783Srmacklem	if (c == NOP)
390191783Srmacklem		return -1;
391191783Srmacklem
392191783Srmacklem	switch (BPF_CLASS(c)) {
393191783Srmacklem
394191783Srmacklem	case BPF_RET:
395191783Srmacklem		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
396191783Srmacklem			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
397191783Srmacklem
398191783Srmacklem	case BPF_LD:
399191783Srmacklem	case BPF_LDX:
400191783Srmacklem		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
401191783Srmacklem			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
402191783Srmacklem
403192145Srmacklem	case BPF_ST:
404191783Srmacklem		return A_ATOM;
405191783Srmacklem
406191783Srmacklem	case BPF_STX:
407191783Srmacklem		return X_ATOM;
408191783Srmacklem
409191783Srmacklem	case BPF_JMP:
410191783Srmacklem	case BPF_ALU:
411191783Srmacklem		if (BPF_SRC(c) == BPF_X)
412191783Srmacklem			return AX_ATOM;
413191783Srmacklem		return A_ATOM;
414191783Srmacklem
415191783Srmacklem	case BPF_MISC:
416191783Srmacklem		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
417191783Srmacklem	}
418191783Srmacklem	abort();
419191783Srmacklem	/* NOTREACHED */
420191783Srmacklem}
421191783Srmacklem
422191783Srmacklem/*
423191783Srmacklem * Return the register number that is defined by 's'.  We assume that
424192145Srmacklem * a single stmt cannot define more than one register.  If no register
425191783Srmacklem * is defined, return -1.
426191783Srmacklem *
427191783Srmacklem * The implementation should probably change to an array access.
428191783Srmacklem */
429191783Srmacklemstatic int
430191783Srmacklematomdef(s)
431192145Srmacklem	struct stmt *s;
432191783Srmacklem{
433191783Srmacklem	if (s->code == NOP)
434191783Srmacklem		return -1;
435191783Srmacklem
436191783Srmacklem	switch (BPF_CLASS(s->code)) {
437191783Srmacklem
438191783Srmacklem	case BPF_LD:
439191783Srmacklem	case BPF_ALU:
440191783Srmacklem		return A_ATOM;
441191783Srmacklem
442191783Srmacklem	case BPF_LDX:
443191783Srmacklem		return X_ATOM;
444191783Srmacklem
445191783Srmacklem	case BPF_ST:
446191783Srmacklem	case BPF_STX:
447191783Srmacklem		return s->k;
448191783Srmacklem
449192145Srmacklem	case BPF_MISC:
450191783Srmacklem		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
451191783Srmacklem	}
452191783Srmacklem	return -1;
453191783Srmacklem}
454191783Srmacklem
455192145Srmacklem/*
456191783Srmacklem * Compute the sets of registers used, defined, and killed by 'b'.
457191783Srmacklem *
458191783Srmacklem * "Used" means that a statement in 'b' uses the register before any
459191783Srmacklem * statement in 'b' defines it, i.e. it uses the value left in
460191783Srmacklem * that register by a predecessor block of this block.
461191783Srmacklem * "Defined" means that a statement in 'b' defines it.
462191783Srmacklem * "Killed" means that a statement in 'b' defines it before any
463191783Srmacklem * statement in 'b' uses it, i.e. it kills the value left in that
464191783Srmacklem * register by a predecessor block of this block.
465191783Srmacklem */
466191783Srmacklemstatic void
467191783Srmacklemcompute_local_ud(b)
468192145Srmacklem	struct block *b;
469191783Srmacklem{
470191783Srmacklem	struct slist *s;
471191783Srmacklem	atomset def = 0, use = 0, kill = 0;
472191783Srmacklem	int atom;
473191783Srmacklem
474191783Srmacklem	for (s = b->stmts; s; s = s->next) {
475191783Srmacklem		if (s->s.code == NOP)
476191783Srmacklem			continue;
477191783Srmacklem		atom = atomuse(&s->s);
478191783Srmacklem		if (atom >= 0) {
479192145Srmacklem			if (atom == AX_ATOM) {
480192145Srmacklem				if (!ATOMELEM(def, X_ATOM))
481192145Srmacklem					use |= ATOMMASK(X_ATOM);
482191783Srmacklem				if (!ATOMELEM(def, A_ATOM))
483192145Srmacklem					use |= ATOMMASK(A_ATOM);
484191783Srmacklem			}
485192145Srmacklem			else if (atom < N_ATOMS) {
486191783Srmacklem				if (!ATOMELEM(def, atom))
487191783Srmacklem					use |= ATOMMASK(atom);
488191783Srmacklem			}
489191783Srmacklem			else
490191783Srmacklem				abort();
491191783Srmacklem		}
492191783Srmacklem		atom = atomdef(&s->s);
493191783Srmacklem		if (atom >= 0) {
494191783Srmacklem			if (!ATOMELEM(use, atom))
495191783Srmacklem				kill |= ATOMMASK(atom);
496191783Srmacklem			def |= ATOMMASK(atom);
497191783Srmacklem		}
498191783Srmacklem	}
499191783Srmacklem	if (BPF_CLASS(b->s.code) == BPF_JMP) {
500191783Srmacklem		/*
501191783Srmacklem		 * XXX - what about RET?
502191783Srmacklem		 */
503191783Srmacklem		atom = atomuse(&b->s);
504192145Srmacklem		if (atom >= 0) {
505191783Srmacklem			if (atom == AX_ATOM) {
506191783Srmacklem				if (!ATOMELEM(def, X_ATOM))
507191783Srmacklem					use |= ATOMMASK(X_ATOM);
508191783Srmacklem				if (!ATOMELEM(def, A_ATOM))
509191783Srmacklem					use |= ATOMMASK(A_ATOM);
510191783Srmacklem			}
511191783Srmacklem			else if (atom < N_ATOMS) {
512191783Srmacklem				if (!ATOMELEM(def, atom))
513191783Srmacklem					use |= ATOMMASK(atom);
514191783Srmacklem			}
515191783Srmacklem			else
516191783Srmacklem				abort();
517191783Srmacklem		}
518191783Srmacklem	}
519191783Srmacklem
520191783Srmacklem	b->def = def;
521191783Srmacklem	b->kill = kill;
522191783Srmacklem	b->in_use = use;
523191783Srmacklem}
524191783Srmacklem
525191783Srmacklem/*
526191783Srmacklem * Assume graph is already leveled.
527191783Srmacklem */
528191783Srmacklemstatic void
529191783Srmacklemfind_ud(root)
530191783Srmacklem	struct block *root;
531191783Srmacklem{
532191783Srmacklem	int i, maxlevel;
533191783Srmacklem	struct block *p;
534191783Srmacklem
535191783Srmacklem	/*
536191783Srmacklem	 * root->level is the highest level no found;
537191783Srmacklem	 * count down from there.
538191783Srmacklem	 */
539191783Srmacklem	maxlevel = root->level;
540191783Srmacklem	for (i = maxlevel; i >= 0; --i)
541191783Srmacklem		for (p = levels[i]; p; p = p->link) {
542191783Srmacklem			compute_local_ud(p);
543191783Srmacklem			p->out_use = 0;
544191783Srmacklem		}
545191783Srmacklem
546191783Srmacklem	for (i = 1; i <= maxlevel; ++i) {
547191783Srmacklem		for (p = levels[i]; p; p = p->link) {
548191783Srmacklem			p->out_use |= JT(p)->in_use | JF(p)->in_use;
549191783Srmacklem			p->in_use |= p->out_use &~ p->kill;
550191783Srmacklem		}
551191783Srmacklem	}
552191783Srmacklem}
553191783Srmacklem
554191783Srmacklem/*
555191783Srmacklem * These data structures are used in a Cocke and Shwarz style
556191783Srmacklem * value numbering scheme.  Since the flowgraph is acyclic,
557191783Srmacklem * exit values can be propagated from a node's predecessors
558191783Srmacklem * provided it is uniquely defined.
559191783Srmacklem */
560191783Srmacklemstruct valnode {
561191783Srmacklem	int code;
562191783Srmacklem	int v0, v1;
563191783Srmacklem	int val;
564191783Srmacklem	struct valnode *next;
565191783Srmacklem};
566191783Srmacklem
567191783Srmacklem#define MODULUS 213
568191783Srmacklemstatic struct valnode *hashtbl[MODULUS];
569191783Srmacklemstatic int curval;
570191783Srmacklemstatic int maxval;
571191783Srmacklem
572191783Srmacklem/* Integer constants mapped with the load immediate opcode. */
573191783Srmacklem#define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
574191783Srmacklem
575191783Srmacklemstruct vmapinfo {
576191783Srmacklem	int is_const;
577191783Srmacklem	bpf_int32 const_val;
578191783Srmacklem};
579191783Srmacklem
580191783Srmacklemstruct vmapinfo *vmap;
581191783Srmacklemstruct valnode *vnode_base;
582191783Srmacklemstruct valnode *next_vnode;
583191783Srmacklem
584191783Srmacklemstatic void
585191783Srmackleminit_val()
586191783Srmacklem{
587191783Srmacklem	curval = 0;
588191783Srmacklem	next_vnode = vnode_base;
589191783Srmacklem	memset((char *)vmap, 0, maxval * sizeof(*vmap));
590191783Srmacklem	memset((char *)hashtbl, 0, sizeof hashtbl);
591191783Srmacklem}
592191783Srmacklem
593191783Srmacklem/* Because we really don't have an IR, this stuff is a little messy. */
594191783Srmacklemstatic int
595191783SrmacklemF(code, v0, v1)
596191783Srmacklem	int code;
597191783Srmacklem	int v0, v1;
598191783Srmacklem{
599191783Srmacklem	u_int hash;
600191783Srmacklem	int val;
601191783Srmacklem	struct valnode *p;
602191783Srmacklem
603191783Srmacklem	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
604191783Srmacklem	hash %= MODULUS;
605191783Srmacklem
606191783Srmacklem	for (p = hashtbl[hash]; p; p = p->next)
607191783Srmacklem		if (p->code == code && p->v0 == v0 && p->v1 == v1)
608191783Srmacklem			return p->val;
609191783Srmacklem
610191783Srmacklem	val = ++curval;
611191783Srmacklem	if (BPF_MODE(code) == BPF_IMM &&
612191783Srmacklem	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
613191783Srmacklem		vmap[val].const_val = v0;
614191783Srmacklem		vmap[val].is_const = 1;
615191783Srmacklem	}
616191783Srmacklem	p = next_vnode++;
617191783Srmacklem	p->val = val;
618191783Srmacklem	p->code = code;
619191783Srmacklem	p->v0 = v0;
620191783Srmacklem	p->v1 = v1;
621191783Srmacklem	p->next = hashtbl[hash];
622191783Srmacklem	hashtbl[hash] = p;
623191783Srmacklem
624191783Srmacklem	return val;
625191783Srmacklem}
626191783Srmacklem
627191783Srmacklemstatic inline void
628191783Srmacklemvstore(s, valp, newval, alter)
629191783Srmacklem	struct stmt *s;
630191783Srmacklem	int *valp;
631191783Srmacklem	int newval;
632191783Srmacklem	int alter;
633191783Srmacklem{
634191783Srmacklem	if (alter && *valp == newval)
635191783Srmacklem		s->code = NOP;
636191783Srmacklem	else
637191783Srmacklem		*valp = newval;
638191783Srmacklem}
639191783Srmacklem
640191783Srmacklemstatic void
641191783Srmacklemfold_op(s, v0, v1)
642191783Srmacklem	struct stmt *s;
643191783Srmacklem	int v0, v1;
644191783Srmacklem{
645191783Srmacklem	bpf_u_int32 a, b;
646191783Srmacklem
647191783Srmacklem	a = vmap[v0].const_val;
648191783Srmacklem	b = vmap[v1].const_val;
649191783Srmacklem
650191783Srmacklem	switch (BPF_OP(s->code)) {
651191783Srmacklem	case BPF_ADD:
652191783Srmacklem		a += b;
653191783Srmacklem		break;
654191783Srmacklem
655191783Srmacklem	case BPF_SUB:
656191783Srmacklem		a -= b;
657191783Srmacklem		break;
658191783Srmacklem
659191783Srmacklem	case BPF_MUL:
660191783Srmacklem		a *= b;
661191783Srmacklem		break;
662191783Srmacklem
663191783Srmacklem	case BPF_DIV:
664191783Srmacklem		if (b == 0)
665191783Srmacklem			bpf_error("division by zero");
666191783Srmacklem		a /= b;
667191783Srmacklem		break;
668191783Srmacklem
669191783Srmacklem	case BPF_AND:
670191783Srmacklem		a &= b;
671191783Srmacklem		break;
672191783Srmacklem
673191783Srmacklem	case BPF_OR:
674191990Sattilio		a |= b;
675191783Srmacklem		break;
676191783Srmacklem
677191783Srmacklem	case BPF_LSH:
678191783Srmacklem		a <<= b;
679191783Srmacklem		break;
680191783Srmacklem
681191783Srmacklem	case BPF_RSH:
682191783Srmacklem		a >>= b;
683191783Srmacklem		break;
684191783Srmacklem
685191783Srmacklem	case BPF_NEG:
686191783Srmacklem		a = -a;
687191783Srmacklem		break;
688191783Srmacklem
689191783Srmacklem	default:
690191783Srmacklem		abort();
691191783Srmacklem	}
692191783Srmacklem	s->k = a;
693191783Srmacklem	s->code = BPF_LD|BPF_IMM;
694191783Srmacklem	done = 0;
695191783Srmacklem}
696191783Srmacklem
697191783Srmacklemstatic inline struct slist *
698191783Srmacklemthis_op(s)
699191783Srmacklem	struct slist *s;
700191783Srmacklem{
701191783Srmacklem	while (s != 0 && s->s.code == NOP)
702191783Srmacklem		s = s->next;
703191783Srmacklem	return s;
704191990Sattilio}
705191783Srmacklem
706191783Srmacklemstatic void
707191783Srmacklemopt_not(b)
708191783Srmacklem	struct block *b;
709191783Srmacklem{
710191783Srmacklem	struct block *tmp = JT(b);
711191783Srmacklem
712191783Srmacklem	JT(b) = JF(b);
713191783Srmacklem	JF(b) = tmp;
714191990Sattilio}
715191783Srmacklem
716192145Srmacklemstatic void
717191783Srmacklemopt_peep(b)
718191783Srmacklem	struct block *b;
719191783Srmacklem{
720191783Srmacklem	struct slist *s;
721191783Srmacklem	struct slist *next, *last;
722191783Srmacklem	int val;
723191783Srmacklem
724191783Srmacklem	s = b->stmts;
725191783Srmacklem	if (s == 0)
726191783Srmacklem		return;
727191783Srmacklem
728191783Srmacklem	last = s;
729191783Srmacklem	for (/*empty*/; /*empty*/; s = next) {
730191783Srmacklem		/*
731191783Srmacklem		 * Skip over nops.
732191783Srmacklem		 */
733191783Srmacklem		s = this_op(s);
734191783Srmacklem		if (s == 0)
735191783Srmacklem			break;	/* nothing left in the block */
736191783Srmacklem
737191783Srmacklem		/*
738191783Srmacklem		 * Find the next real instruction after that one
739191783Srmacklem		 * (skipping nops).
740191783Srmacklem		 */
741191783Srmacklem		next = this_op(s->next);
742191783Srmacklem		if (next == 0)
743191783Srmacklem			break;	/* no next instruction */
744191783Srmacklem		last = next;
745191783Srmacklem
746191783Srmacklem		/*
747191783Srmacklem		 * st  M[k]	-->	st  M[k]
748191783Srmacklem		 * ldx M[k]		tax
749191783Srmacklem		 */
750191783Srmacklem		if (s->s.code == BPF_ST &&
751191783Srmacklem		    next->s.code == (BPF_LDX|BPF_MEM) &&
752191783Srmacklem		    s->s.k == next->s.k) {
753191783Srmacklem			done = 0;
754191783Srmacklem			next->s.code = BPF_MISC|BPF_TAX;
755191783Srmacklem		}
756191783Srmacklem		/*
757191783Srmacklem		 * ld  #k	-->	ldx  #k
758191783Srmacklem		 * tax			txa
759191783Srmacklem		 */
760191783Srmacklem		if (s->s.code == (BPF_LD|BPF_IMM) &&
761191783Srmacklem		    next->s.code == (BPF_MISC|BPF_TAX)) {
762191783Srmacklem			s->s.code = BPF_LDX|BPF_IMM;
763191783Srmacklem			next->s.code = BPF_MISC|BPF_TXA;
764191783Srmacklem			done = 0;
765191783Srmacklem		}
766191783Srmacklem		/*
767191783Srmacklem		 * This is an ugly special case, but it happens
768191783Srmacklem		 * when you say tcp[k] or udp[k] where k is a constant.
769191783Srmacklem		 */
770191783Srmacklem		if (s->s.code == (BPF_LD|BPF_IMM)) {
771191783Srmacklem			struct slist *add, *tax, *ild;
772191783Srmacklem
773191783Srmacklem			/*
774191783Srmacklem			 * Check that X isn't used on exit from this
775191783Srmacklem			 * block (which the optimizer might cause).
776191783Srmacklem			 * We know the code generator won't generate
777191783Srmacklem			 * any local dependencies.
778191783Srmacklem			 */
779191783Srmacklem			if (ATOMELEM(b->out_use, X_ATOM))
780191783Srmacklem				continue;
781191783Srmacklem
782191783Srmacklem			/*
783191783Srmacklem			 * Check that the instruction following the ldi
784191783Srmacklem			 * is an addx, or it's an ldxms with an addx
785191783Srmacklem			 * following it (with 0 or more nops between the
786191783Srmacklem			 * ldxms and addx).
787191783Srmacklem			 */
788191783Srmacklem			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
789191783Srmacklem				add = next;
790191783Srmacklem			else
791191783Srmacklem				add = this_op(next->next);
792191783Srmacklem			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
793191783Srmacklem				continue;
794191783Srmacklem
795191783Srmacklem			/*
796191783Srmacklem			 * Check that a tax follows that (with 0 or more
797191783Srmacklem			 * nops between them).
798191783Srmacklem			 */
799191783Srmacklem			tax = this_op(add->next);
800191783Srmacklem			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
801191783Srmacklem				continue;
802191783Srmacklem
803191783Srmacklem			/*
804191783Srmacklem			 * Check that an ild follows that (with 0 or more
805191783Srmacklem			 * nops between them).
806191783Srmacklem			 */
807191783Srmacklem			ild = this_op(tax->next);
808191783Srmacklem			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
809191783Srmacklem			    BPF_MODE(ild->s.code) != BPF_IND)
810191783Srmacklem				continue;
811191783Srmacklem			/*
812191783Srmacklem			 * We want to turn this sequence:
813191783Srmacklem			 *
814191783Srmacklem			 * (004) ldi     #0x2		{s}
815191783Srmacklem			 * (005) ldxms   [14]		{next}  -- optional
816191783Srmacklem			 * (006) addx			{add}
817191783Srmacklem			 * (007) tax			{tax}
818191783Srmacklem			 * (008) ild     [x+0]		{ild}
819191783Srmacklem			 *
820191783Srmacklem			 * into this sequence:
821191783Srmacklem			 *
822191783Srmacklem			 * (004) nop
823191783Srmacklem			 * (005) ldxms   [14]
824191783Srmacklem			 * (006) nop
825191783Srmacklem			 * (007) nop
826191783Srmacklem			 * (008) ild     [x+2]
827191783Srmacklem			 *
828191783Srmacklem			 * XXX We need to check that X is not
829191783Srmacklem			 * subsequently used, because we want to change
830191783Srmacklem			 * what'll be in it after this sequence.
831191783Srmacklem			 *
832191783Srmacklem			 * We know we can eliminate the accumulator
833191783Srmacklem			 * modifications earlier in the sequence since
834191783Srmacklem			 * it is defined by the last stmt of this sequence
835191783Srmacklem			 * (i.e., the last statement of the sequence loads
836191783Srmacklem			 * a value into the accumulator, so we can eliminate
837191783Srmacklem			 * earlier operations on the accumulator).
838191783Srmacklem			 */
839191783Srmacklem			ild->s.k += s->s.k;
840191783Srmacklem			s->s.code = NOP;
841191783Srmacklem			add->s.code = NOP;
842191783Srmacklem			tax->s.code = NOP;
843191783Srmacklem			done = 0;
844191783Srmacklem		}
845191783Srmacklem	}
846191783Srmacklem	/*
847191783Srmacklem	 * If the comparison at the end of a block is an equality
848191783Srmacklem	 * comparison against a constant, and nobody uses the value
849191783Srmacklem	 * we leave in the A register at the end of a block, and
850191783Srmacklem	 * the operation preceding the comparison is an arithmetic
851191783Srmacklem	 * operation, we can sometime optimize it away.
852191990Sattilio	 */
853191783Srmacklem	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
854191783Srmacklem	    !ATOMELEM(b->out_use, A_ATOM)) {
855191783Srmacklem	    	/*
856191783Srmacklem	    	 * We can optimize away certain subtractions of the
857191783Srmacklem	    	 * X register.
858191783Srmacklem	    	 */
859191783Srmacklem		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
860191783Srmacklem			val = b->val[X_ATOM];
861191783Srmacklem			if (vmap[val].is_const) {
862191783Srmacklem				/*
863191783Srmacklem				 * If we have a subtract to do a comparison,
864191783Srmacklem				 * and the X register is a known constant,
865191783Srmacklem				 * we can merge this value into the
866191783Srmacklem				 * comparison:
867191783Srmacklem				 *
868191783Srmacklem				 * sub x  ->	nop
869191783Srmacklem				 * jeq #y	jeq #(x+y)
870191783Srmacklem				 */
871191783Srmacklem				b->s.k += vmap[val].const_val;
872191783Srmacklem				last->s.code = NOP;
873191783Srmacklem				done = 0;
874191783Srmacklem			} else if (b->s.k == 0) {
875191783Srmacklem				/*
876191783Srmacklem				 * If the X register isn't a constant,
877191783Srmacklem				 * and the comparison in the test is
878191783Srmacklem				 * against 0, we can compare with the
879191783Srmacklem				 * X register, instead:
880191783Srmacklem				 *
881191783Srmacklem				 * sub x  ->	nop
882191783Srmacklem				 * jeq #0	jeq x
883191783Srmacklem				 */
884191783Srmacklem				last->s.code = NOP;
885191783Srmacklem				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
886191783Srmacklem				done = 0;
887191783Srmacklem			}
888191783Srmacklem		}
889191783Srmacklem		/*
890191783Srmacklem		 * Likewise, a constant subtract can be simplified:
891191783Srmacklem		 *
892191783Srmacklem		 * sub #x ->	nop
893191783Srmacklem		 * jeq #y ->	jeq #(x+y)
894191783Srmacklem		 */
895191783Srmacklem		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
896191783Srmacklem			last->s.code = NOP;
897191783Srmacklem			b->s.k += last->s.k;
898191783Srmacklem			done = 0;
899191783Srmacklem		}
900191783Srmacklem		/*
901191783Srmacklem		 * And, similarly, a constant AND can be simplified
902191783Srmacklem		 * if we're testing against 0, i.e.:
903191783Srmacklem		 *
904191783Srmacklem		 * and #k	nop
905191783Srmacklem		 * jeq #0  ->	jset #k
906191783Srmacklem		 */
907191783Srmacklem		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
908191783Srmacklem		    b->s.k == 0) {
909191783Srmacklem			b->s.k = last->s.k;
910191783Srmacklem			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
911191783Srmacklem			last->s.code = NOP;
912191783Srmacklem			done = 0;
913191783Srmacklem			opt_not(b);
914191783Srmacklem		}
915191783Srmacklem	}
916191783Srmacklem	/*
917191783Srmacklem	 * jset #0        ->   never
918191783Srmacklem	 * jset #ffffffff ->   always
919191783Srmacklem	 */
920191783Srmacklem	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
921191783Srmacklem		if (b->s.k == 0)
922191783Srmacklem			JT(b) = JF(b);
923191783Srmacklem		if (b->s.k == 0xffffffff)
924191783Srmacklem			JF(b) = JT(b);
925191783Srmacklem	}
926191783Srmacklem	/*
927191783Srmacklem	 * If we're comparing against the index register, and the index
928191783Srmacklem	 * register is a known constant, we can just compare against that
929191783Srmacklem	 * constant.
930191783Srmacklem	 */
931191783Srmacklem	val = b->val[X_ATOM];
932191783Srmacklem	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
933191783Srmacklem		bpf_int32 v = vmap[val].const_val;
934191783Srmacklem		b->s.code &= ~BPF_X;
935191783Srmacklem		b->s.k = v;
936191783Srmacklem	}
937191783Srmacklem	/*
938191783Srmacklem	 * If the accumulator is a known constant, we can compute the
939191783Srmacklem	 * comparison result.
940191783Srmacklem	 */
941191783Srmacklem	val = b->val[A_ATOM];
942191783Srmacklem	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
943191783Srmacklem		bpf_int32 v = vmap[val].const_val;
944191783Srmacklem		switch (BPF_OP(b->s.code)) {
945191783Srmacklem
946191783Srmacklem		case BPF_JEQ:
947191783Srmacklem			v = v == b->s.k;
948191783Srmacklem			break;
949191783Srmacklem
950191783Srmacklem		case BPF_JGT:
951191783Srmacklem			v = (unsigned)v > b->s.k;
952191783Srmacklem			break;
953191783Srmacklem
954191783Srmacklem		case BPF_JGE:
955191783Srmacklem			v = (unsigned)v >= b->s.k;
956191783Srmacklem			break;
957191783Srmacklem
958191783Srmacklem		case BPF_JSET:
959191783Srmacklem			v &= b->s.k;
960191783Srmacklem			break;
961191783Srmacklem
962191783Srmacklem		default:
963191783Srmacklem			abort();
964191783Srmacklem		}
965191783Srmacklem		if (JF(b) != JT(b))
966191783Srmacklem			done = 0;
967191783Srmacklem		if (v)
968191783Srmacklem			JF(b) = JT(b);
969191783Srmacklem		else
970191783Srmacklem			JT(b) = JF(b);
971191783Srmacklem	}
972191783Srmacklem}
973191783Srmacklem
974191783Srmacklem/*
975191783Srmacklem * Compute the symbolic value of expression of 's', and update
976191783Srmacklem * anything it defines in the value table 'val'.  If 'alter' is true,
977191783Srmacklem * do various optimizations.  This code would be cleaner if symbolic
978191783Srmacklem * evaluation and code transformations weren't folded together.
979191783Srmacklem */
980191783Srmacklemstatic void
981191783Srmacklemopt_stmt(s, val, alter)
982191783Srmacklem	struct stmt *s;
983191783Srmacklem	int val[];
984191783Srmacklem	int alter;
985191783Srmacklem{
986191783Srmacklem	int op;
987191783Srmacklem	int v;
988191783Srmacklem
989191783Srmacklem	switch (s->code) {
990191783Srmacklem
991191783Srmacklem	case BPF_LD|BPF_ABS|BPF_W:
992191783Srmacklem	case BPF_LD|BPF_ABS|BPF_H:
993191783Srmacklem	case BPF_LD|BPF_ABS|BPF_B:
994191783Srmacklem		v = F(s->code, s->k, 0L);
995191783Srmacklem		vstore(s, &val[A_ATOM], v, alter);
996191783Srmacklem		break;
997191783Srmacklem
998191783Srmacklem	case BPF_LD|BPF_IND|BPF_W:
999191783Srmacklem	case BPF_LD|BPF_IND|BPF_H:
1000191783Srmacklem	case BPF_LD|BPF_IND|BPF_B:
1001191783Srmacklem		v = val[X_ATOM];
1002191783Srmacklem		if (alter && vmap[v].is_const) {
1003191783Srmacklem			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1004191783Srmacklem			s->k += vmap[v].const_val;
1005191783Srmacklem			v = F(s->code, s->k, 0L);
1006191783Srmacklem			done = 0;
1007191783Srmacklem		}
1008191783Srmacklem		else
1009191783Srmacklem			v = F(s->code, s->k, v);
1010191783Srmacklem		vstore(s, &val[A_ATOM], v, alter);
1011191783Srmacklem		break;
1012191783Srmacklem
1013191783Srmacklem	case BPF_LD|BPF_LEN:
1014191783Srmacklem		v = F(s->code, 0L, 0L);
1015191783Srmacklem		vstore(s, &val[A_ATOM], v, alter);
1016191783Srmacklem		break;
1017191783Srmacklem
1018191783Srmacklem	case BPF_LD|BPF_IMM:
1019191783Srmacklem		v = K(s->k);
1020191783Srmacklem		vstore(s, &val[A_ATOM], v, alter);
1021191783Srmacklem		break;
1022191783Srmacklem
1023191783Srmacklem	case BPF_LDX|BPF_IMM:
1024191783Srmacklem		v = K(s->k);
1025191783Srmacklem		vstore(s, &val[X_ATOM], v, alter);
1026191783Srmacklem		break;
1027191783Srmacklem
1028191783Srmacklem	case BPF_LDX|BPF_MSH|BPF_B:
1029191783Srmacklem		v = F(s->code, s->k, 0L);
1030191783Srmacklem		vstore(s, &val[X_ATOM], v, alter);
1031191783Srmacklem		break;
1032191783Srmacklem
1033191783Srmacklem	case BPF_ALU|BPF_NEG:
1034191783Srmacklem		if (alter && vmap[val[A_ATOM]].is_const) {
1035191783Srmacklem			s->code = BPF_LD|BPF_IMM;
1036191783Srmacklem			s->k = -vmap[val[A_ATOM]].const_val;
1037191783Srmacklem			val[A_ATOM] = K(s->k);
1038191783Srmacklem		}
1039191783Srmacklem		else
1040191783Srmacklem			val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
1041191783Srmacklem		break;
1042191783Srmacklem
1043191783Srmacklem	case BPF_ALU|BPF_ADD|BPF_K:
1044191783Srmacklem	case BPF_ALU|BPF_SUB|BPF_K:
1045191783Srmacklem	case BPF_ALU|BPF_MUL|BPF_K:
1046191783Srmacklem	case BPF_ALU|BPF_DIV|BPF_K:
1047191783Srmacklem	case BPF_ALU|BPF_AND|BPF_K:
1048191783Srmacklem	case BPF_ALU|BPF_OR|BPF_K:
1049191783Srmacklem	case BPF_ALU|BPF_LSH|BPF_K:
1050191783Srmacklem	case BPF_ALU|BPF_RSH|BPF_K:
1051191783Srmacklem		op = BPF_OP(s->code);
1052191783Srmacklem		if (alter) {
1053191783Srmacklem			if (s->k == 0) {
1054191783Srmacklem				/* don't optimize away "sub #0"
1055191783Srmacklem				 * as it may be needed later to
1056191783Srmacklem				 * fixup the generated math code */
1057191783Srmacklem				if (op == BPF_ADD ||
1058191783Srmacklem				    op == BPF_LSH || op == BPF_RSH ||
1059191783Srmacklem				    op == BPF_OR) {
1060191783Srmacklem					s->code = NOP;
1061191783Srmacklem					break;
1062191783Srmacklem				}
1063191783Srmacklem				if (op == BPF_MUL || op == BPF_AND) {
1064191783Srmacklem					s->code = BPF_LD|BPF_IMM;
1065191783Srmacklem					val[A_ATOM] = K(s->k);
1066191783Srmacklem					break;
1067191783Srmacklem				}
1068191783Srmacklem			}
1069191783Srmacklem			if (vmap[val[A_ATOM]].is_const) {
1070191783Srmacklem				fold_op(s, val[A_ATOM], K(s->k));
1071191783Srmacklem				val[A_ATOM] = K(s->k);
1072191783Srmacklem				break;
1073191783Srmacklem			}
1074191783Srmacklem		}
1075191783Srmacklem		val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
1076191783Srmacklem		break;
1077191783Srmacklem
1078191783Srmacklem	case BPF_ALU|BPF_ADD|BPF_X:
1079191783Srmacklem	case BPF_ALU|BPF_SUB|BPF_X:
1080191783Srmacklem	case BPF_ALU|BPF_MUL|BPF_X:
1081191783Srmacklem	case BPF_ALU|BPF_DIV|BPF_X:
1082191783Srmacklem	case BPF_ALU|BPF_AND|BPF_X:
1083191783Srmacklem	case BPF_ALU|BPF_OR|BPF_X:
1084191783Srmacklem	case BPF_ALU|BPF_LSH|BPF_X:
1085191783Srmacklem	case BPF_ALU|BPF_RSH|BPF_X:
1086191990Sattilio		op = BPF_OP(s->code);
1087191783Srmacklem		if (alter && vmap[val[X_ATOM]].is_const) {
1088191990Sattilio			if (vmap[val[A_ATOM]].is_const) {
1089191783Srmacklem				fold_op(s, val[A_ATOM], val[X_ATOM]);
1090191783Srmacklem				val[A_ATOM] = K(s->k);
1091191783Srmacklem			}
1092191990Sattilio			else {
1093191990Sattilio				s->code = BPF_ALU|BPF_K|op;
1094191783Srmacklem				s->k = vmap[val[X_ATOM]].const_val;
1095191783Srmacklem				done = 0;
1096191783Srmacklem				val[A_ATOM] =
1097191783Srmacklem					F(s->code, val[A_ATOM], K(s->k));
1098191783Srmacklem			}
1099191783Srmacklem			break;
1100191783Srmacklem		}
1101191783Srmacklem		/*
1102191783Srmacklem		 * Check if we're doing something to an accumulator
1103191783Srmacklem		 * that is 0, and simplify.  This may not seem like
1104191783Srmacklem		 * much of a simplification but it could open up further
1105191783Srmacklem		 * optimizations.
1106191783Srmacklem		 * XXX We could also check for mul by 1, etc.
1107191783Srmacklem		 */
1108191783Srmacklem		if (alter && vmap[val[A_ATOM]].is_const
1109191783Srmacklem		    && vmap[val[A_ATOM]].const_val == 0) {
1110191783Srmacklem			if (op == BPF_ADD || op == BPF_OR) {
1111191783Srmacklem				s->code = BPF_MISC|BPF_TXA;
1112191783Srmacklem				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1113191783Srmacklem				break;
1114191783Srmacklem			}
1115191783Srmacklem			else if (op == BPF_MUL || op == BPF_DIV ||
1116191783Srmacklem				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1117191783Srmacklem				s->code = BPF_LD|BPF_IMM;
1118191783Srmacklem				s->k = 0;
1119191783Srmacklem				vstore(s, &val[A_ATOM], K(s->k), alter);
1120191783Srmacklem				break;
1121191783Srmacklem			}
1122191783Srmacklem			else if (op == BPF_NEG) {
1123191783Srmacklem				s->code = NOP;
1124191783Srmacklem				break;
1125191783Srmacklem			}
1126191783Srmacklem		}
1127191783Srmacklem		val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1128191783Srmacklem		break;
1129191783Srmacklem
1130191783Srmacklem	case BPF_MISC|BPF_TXA:
1131191783Srmacklem		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1132191783Srmacklem		break;
1133191783Srmacklem
1134191783Srmacklem	case BPF_LD|BPF_MEM:
1135191783Srmacklem		v = val[s->k];
1136191783Srmacklem		if (alter && vmap[v].is_const) {
1137191783Srmacklem			s->code = BPF_LD|BPF_IMM;
1138191783Srmacklem			s->k = vmap[v].const_val;
1139191783Srmacklem			done = 0;
1140191990Sattilio		}
1141191783Srmacklem		vstore(s, &val[A_ATOM], v, alter);
1142191783Srmacklem		break;
1143191783Srmacklem
1144191783Srmacklem	case BPF_MISC|BPF_TAX:
1145191783Srmacklem		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1146191783Srmacklem		break;
1147191783Srmacklem
1148191783Srmacklem	case BPF_LDX|BPF_MEM:
1149191783Srmacklem		v = val[s->k];
1150191783Srmacklem		if (alter && vmap[v].is_const) {
1151191783Srmacklem			s->code = BPF_LDX|BPF_IMM;
1152191783Srmacklem			s->k = vmap[v].const_val;
1153191783Srmacklem			done = 0;
1154191783Srmacklem		}
1155191783Srmacklem		vstore(s, &val[X_ATOM], v, alter);
1156191783Srmacklem		break;
1157191783Srmacklem
1158191783Srmacklem	case BPF_ST:
1159191783Srmacklem		vstore(s, &val[s->k], val[A_ATOM], alter);
1160191783Srmacklem		break;
1161191783Srmacklem
1162191783Srmacklem	case BPF_STX:
1163191783Srmacklem		vstore(s, &val[s->k], val[X_ATOM], alter);
1164191783Srmacklem		break;
1165191783Srmacklem	}
1166191783Srmacklem}
1167191783Srmacklem
1168191783Srmacklemstatic void
1169191783Srmacklemdeadstmt(s, last)
1170191783Srmacklem	register struct stmt *s;
1171191783Srmacklem	register struct stmt *last[];
1172191783Srmacklem{
1173191990Sattilio	register int atom;
1174191783Srmacklem
1175191783Srmacklem	atom = atomuse(s);
1176191990Sattilio	if (atom >= 0) {
1177191783Srmacklem		if (atom == AX_ATOM) {
1178191783Srmacklem			last[X_ATOM] = 0;
1179191990Sattilio			last[A_ATOM] = 0;
1180191990Sattilio		}
1181191783Srmacklem		else
1182191783Srmacklem			last[atom] = 0;
1183191783Srmacklem	}
1184191783Srmacklem	atom = atomdef(s);
1185191783Srmacklem	if (atom >= 0) {
1186191783Srmacklem		if (last[atom]) {
1187191783Srmacklem			done = 0;
1188191783Srmacklem			last[atom]->code = NOP;
1189191783Srmacklem		}
1190191783Srmacklem		last[atom] = s;
1191191783Srmacklem	}
1192191783Srmacklem}
1193191783Srmacklem
1194191783Srmacklemstatic void
1195191783Srmacklemopt_deadstores(b)
1196191783Srmacklem	register struct block *b;
1197191783Srmacklem{
1198191783Srmacklem	register struct slist *s;
1199191783Srmacklem	register int atom;
1200191783Srmacklem	struct stmt *last[N_ATOMS];
1201191783Srmacklem
1202191783Srmacklem	memset((char *)last, 0, sizeof last);
1203191783Srmacklem
1204191783Srmacklem	for (s = b->stmts; s != 0; s = s->next)
1205191783Srmacklem		deadstmt(&s->s, last);
1206191783Srmacklem	deadstmt(&b->s, last);
1207191783Srmacklem
1208191783Srmacklem	for (atom = 0; atom < N_ATOMS; ++atom)
1209191783Srmacklem		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1210191783Srmacklem			last[atom]->code = NOP;
1211191783Srmacklem			done = 0;
1212191783Srmacklem		}
1213191783Srmacklem}
1214191783Srmacklem
1215191783Srmacklemstatic void
1216191783Srmacklemopt_blk(b, do_stmts)
1217191783Srmacklem	struct block *b;
1218191783Srmacklem	int do_stmts;
1219191783Srmacklem{
1220191783Srmacklem	struct slist *s;
1221191783Srmacklem	struct edge *p;
1222191783Srmacklem	int i;
1223191783Srmacklem	bpf_int32 aval, xval;
1224191783Srmacklem
1225191783Srmacklem#if 0
1226191783Srmacklem	for (s = b->stmts; s && s->next; s = s->next)
1227191783Srmacklem		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1228191783Srmacklem			do_stmts = 0;
1229191783Srmacklem			break;
1230191783Srmacklem		}
1231191783Srmacklem#endif
1232191783Srmacklem
1233191783Srmacklem	/*
1234191783Srmacklem	 * Initialize the atom values.
1235191783Srmacklem	 */
1236191783Srmacklem	p = b->in_edges;
1237191783Srmacklem	if (p == 0) {
1238191783Srmacklem		/*
1239191783Srmacklem		 * We have no predecessors, so everything is undefined
1240191783Srmacklem		 * upon entry to this block.
1241191783Srmacklem		 */
1242191783Srmacklem		memset((char *)b->val, 0, sizeof(b->val));
1243191783Srmacklem	} else {
1244191783Srmacklem		/*
1245191783Srmacklem		 * Inherit values from our predecessors.
1246191783Srmacklem		 *
1247191783Srmacklem		 * First, get the values from the predecessor along the
1248191783Srmacklem		 * first edge leading to this node.
1249191783Srmacklem		 */
1250191783Srmacklem		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1251191783Srmacklem		/*
1252191783Srmacklem		 * Now look at all the other nodes leading to this node.
1253191783Srmacklem		 * If, for the predecessor along that edge, a register
1254191783Srmacklem		 * has a different value from the one we have (i.e.,
1255191783Srmacklem		 * control paths are merging, and the merging paths
1256191783Srmacklem		 * assign different values to that register), give the
1257191783Srmacklem		 * register the undefined value of 0.
1258191783Srmacklem		 */
1259191783Srmacklem		while ((p = p->next) != NULL) {
1260191783Srmacklem			for (i = 0; i < N_ATOMS; ++i)
1261191783Srmacklem				if (b->val[i] != p->pred->val[i])
1262191783Srmacklem					b->val[i] = 0;
1263191783Srmacklem		}
1264191783Srmacklem	}
1265191783Srmacklem	aval = b->val[A_ATOM];
1266191783Srmacklem	xval = b->val[X_ATOM];
1267191783Srmacklem	for (s = b->stmts; s; s = s->next)
1268191783Srmacklem		opt_stmt(&s->s, b->val, do_stmts);
1269191783Srmacklem
1270191783Srmacklem	/*
1271191783Srmacklem	 * This is a special case: if we don't use anything from this
1272191783Srmacklem	 * block, and we load the accumulator or index register with a
1273191783Srmacklem	 * value that is already there, or if this block is a return,
1274191783Srmacklem	 * eliminate all the statements.
1275191783Srmacklem	 *
1276191783Srmacklem	 * XXX - what if it does a store?
1277191783Srmacklem	 *
1278	 * XXX - why does it matter whether we use anything from this
1279	 * block?  If the accumulator or index register doesn't change
1280	 * its value, isn't that OK even if we use that value?
1281	 *
1282	 * XXX - if we load the accumulator with a different value,
1283	 * and the block ends with a conditional branch, we obviously
1284	 * can't eliminate it, as the branch depends on that value.
1285	 * For the index register, the conditional branch only depends
1286	 * on the index register value if the test is against the index
1287	 * register value rather than a constant; if nothing uses the
1288	 * value we put into the index register, and we're not testing
1289	 * against the index register's value, and there aren't any
1290	 * other problems that would keep us from eliminating this
1291	 * block, can we eliminate it?
1292	 */
1293	if (do_stmts &&
1294	    ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1295	      xval != 0 && b->val[X_ATOM] == xval) ||
1296	     BPF_CLASS(b->s.code) == BPF_RET)) {
1297		if (b->stmts != 0) {
1298			b->stmts = 0;
1299			done = 0;
1300		}
1301	} else {
1302		opt_peep(b);
1303		opt_deadstores(b);
1304	}
1305	/*
1306	 * Set up values for branch optimizer.
1307	 */
1308	if (BPF_SRC(b->s.code) == BPF_K)
1309		b->oval = K(b->s.k);
1310	else
1311		b->oval = b->val[X_ATOM];
1312	b->et.code = b->s.code;
1313	b->ef.code = -b->s.code;
1314}
1315
1316/*
1317 * Return true if any register that is used on exit from 'succ', has
1318 * an exit value that is different from the corresponding exit value
1319 * from 'b'.
1320 */
1321static int
1322use_conflict(b, succ)
1323	struct block *b, *succ;
1324{
1325	int atom;
1326	atomset use = succ->out_use;
1327
1328	if (use == 0)
1329		return 0;
1330
1331	for (atom = 0; atom < N_ATOMS; ++atom)
1332		if (ATOMELEM(use, atom))
1333			if (b->val[atom] != succ->val[atom])
1334				return 1;
1335	return 0;
1336}
1337
1338static struct block *
1339fold_edge(child, ep)
1340	struct block *child;
1341	struct edge *ep;
1342{
1343	int sense;
1344	int aval0, aval1, oval0, oval1;
1345	int code = ep->code;
1346
1347	if (code < 0) {
1348		code = -code;
1349		sense = 0;
1350	} else
1351		sense = 1;
1352
1353	if (child->s.code != code)
1354		return 0;
1355
1356	aval0 = child->val[A_ATOM];
1357	oval0 = child->oval;
1358	aval1 = ep->pred->val[A_ATOM];
1359	oval1 = ep->pred->oval;
1360
1361	if (aval0 != aval1)
1362		return 0;
1363
1364	if (oval0 == oval1)
1365		/*
1366		 * The operands of the branch instructions are
1367		 * identical, so the result is true if a true
1368		 * branch was taken to get here, otherwise false.
1369		 */
1370		return sense ? JT(child) : JF(child);
1371
1372	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1373		/*
1374		 * At this point, we only know the comparison if we
1375		 * came down the true branch, and it was an equality
1376		 * comparison with a constant.
1377		 *
1378		 * I.e., if we came down the true branch, and the branch
1379		 * was an equality comparison with a constant, we know the
1380		 * accumulator contains that constant.  If we came down
1381		 * the false branch, or the comparison wasn't with a
1382		 * constant, we don't know what was in the accumulator.
1383		 *
1384		 * We rely on the fact that distinct constants have distinct
1385		 * value numbers.
1386		 */
1387		return JF(child);
1388
1389	return 0;
1390}
1391
1392static void
1393opt_j(ep)
1394	struct edge *ep;
1395{
1396	register int i, k;
1397	register struct block *target;
1398
1399	if (JT(ep->succ) == 0)
1400		return;
1401
1402	if (JT(ep->succ) == JF(ep->succ)) {
1403		/*
1404		 * Common branch targets can be eliminated, provided
1405		 * there is no data dependency.
1406		 */
1407		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1408			done = 0;
1409			ep->succ = JT(ep->succ);
1410		}
1411	}
1412	/*
1413	 * For each edge dominator that matches the successor of this
1414	 * edge, promote the edge successor to the its grandchild.
1415	 *
1416	 * XXX We violate the set abstraction here in favor a reasonably
1417	 * efficient loop.
1418	 */
1419 top:
1420	for (i = 0; i < edgewords; ++i) {
1421		register bpf_u_int32 x = ep->edom[i];
1422
1423		while (x != 0) {
1424			k = ffs(x) - 1;
1425			x &=~ (1 << k);
1426			k += i * BITS_PER_WORD;
1427
1428			target = fold_edge(ep->succ, edges[k]);
1429			/*
1430			 * Check that there is no data dependency between
1431			 * nodes that will be violated if we move the edge.
1432			 */
1433			if (target != 0 && !use_conflict(ep->pred, target)) {
1434				done = 0;
1435				ep->succ = target;
1436				if (JT(target) != 0)
1437					/*
1438					 * Start over unless we hit a leaf.
1439					 */
1440					goto top;
1441				return;
1442			}
1443		}
1444	}
1445}
1446
1447
1448static void
1449or_pullup(b)
1450	struct block *b;
1451{
1452	int val, at_top;
1453	struct block *pull;
1454	struct block **diffp, **samep;
1455	struct edge *ep;
1456
1457	ep = b->in_edges;
1458	if (ep == 0)
1459		return;
1460
1461	/*
1462	 * Make sure each predecessor loads the same value.
1463	 * XXX why?
1464	 */
1465	val = ep->pred->val[A_ATOM];
1466	for (ep = ep->next; ep != 0; ep = ep->next)
1467		if (val != ep->pred->val[A_ATOM])
1468			return;
1469
1470	if (JT(b->in_edges->pred) == b)
1471		diffp = &JT(b->in_edges->pred);
1472	else
1473		diffp = &JF(b->in_edges->pred);
1474
1475	at_top = 1;
1476	while (1) {
1477		if (*diffp == 0)
1478			return;
1479
1480		if (JT(*diffp) != JT(b))
1481			return;
1482
1483		if (!SET_MEMBER((*diffp)->dom, b->id))
1484			return;
1485
1486		if ((*diffp)->val[A_ATOM] != val)
1487			break;
1488
1489		diffp = &JF(*diffp);
1490		at_top = 0;
1491	}
1492	samep = &JF(*diffp);
1493	while (1) {
1494		if (*samep == 0)
1495			return;
1496
1497		if (JT(*samep) != JT(b))
1498			return;
1499
1500		if (!SET_MEMBER((*samep)->dom, b->id))
1501			return;
1502
1503		if ((*samep)->val[A_ATOM] == val)
1504			break;
1505
1506		/* XXX Need to check that there are no data dependencies
1507		   between dp0 and dp1.  Currently, the code generator
1508		   will not produce such dependencies. */
1509		samep = &JF(*samep);
1510	}
1511#ifdef notdef
1512	/* XXX This doesn't cover everything. */
1513	for (i = 0; i < N_ATOMS; ++i)
1514		if ((*samep)->val[i] != pred->val[i])
1515			return;
1516#endif
1517	/* Pull up the node. */
1518	pull = *samep;
1519	*samep = JF(pull);
1520	JF(pull) = *diffp;
1521
1522	/*
1523	 * At the top of the chain, each predecessor needs to point at the
1524	 * pulled up node.  Inside the chain, there is only one predecessor
1525	 * to worry about.
1526	 */
1527	if (at_top) {
1528		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1529			if (JT(ep->pred) == b)
1530				JT(ep->pred) = pull;
1531			else
1532				JF(ep->pred) = pull;
1533		}
1534	}
1535	else
1536		*diffp = pull;
1537
1538	done = 0;
1539}
1540
1541static void
1542and_pullup(b)
1543	struct block *b;
1544{
1545	int val, at_top;
1546	struct block *pull;
1547	struct block **diffp, **samep;
1548	struct edge *ep;
1549
1550	ep = b->in_edges;
1551	if (ep == 0)
1552		return;
1553
1554	/*
1555	 * Make sure each predecessor loads the same value.
1556	 */
1557	val = ep->pred->val[A_ATOM];
1558	for (ep = ep->next; ep != 0; ep = ep->next)
1559		if (val != ep->pred->val[A_ATOM])
1560			return;
1561
1562	if (JT(b->in_edges->pred) == b)
1563		diffp = &JT(b->in_edges->pred);
1564	else
1565		diffp = &JF(b->in_edges->pred);
1566
1567	at_top = 1;
1568	while (1) {
1569		if (*diffp == 0)
1570			return;
1571
1572		if (JF(*diffp) != JF(b))
1573			return;
1574
1575		if (!SET_MEMBER((*diffp)->dom, b->id))
1576			return;
1577
1578		if ((*diffp)->val[A_ATOM] != val)
1579			break;
1580
1581		diffp = &JT(*diffp);
1582		at_top = 0;
1583	}
1584	samep = &JT(*diffp);
1585	while (1) {
1586		if (*samep == 0)
1587			return;
1588
1589		if (JF(*samep) != JF(b))
1590			return;
1591
1592		if (!SET_MEMBER((*samep)->dom, b->id))
1593			return;
1594
1595		if ((*samep)->val[A_ATOM] == val)
1596			break;
1597
1598		/* XXX Need to check that there are no data dependencies
1599		   between diffp and samep.  Currently, the code generator
1600		   will not produce such dependencies. */
1601		samep = &JT(*samep);
1602	}
1603#ifdef notdef
1604	/* XXX This doesn't cover everything. */
1605	for (i = 0; i < N_ATOMS; ++i)
1606		if ((*samep)->val[i] != pred->val[i])
1607			return;
1608#endif
1609	/* Pull up the node. */
1610	pull = *samep;
1611	*samep = JT(pull);
1612	JT(pull) = *diffp;
1613
1614	/*
1615	 * At the top of the chain, each predecessor needs to point at the
1616	 * pulled up node.  Inside the chain, there is only one predecessor
1617	 * to worry about.
1618	 */
1619	if (at_top) {
1620		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1621			if (JT(ep->pred) == b)
1622				JT(ep->pred) = pull;
1623			else
1624				JF(ep->pred) = pull;
1625		}
1626	}
1627	else
1628		*diffp = pull;
1629
1630	done = 0;
1631}
1632
1633static void
1634opt_blks(root, do_stmts)
1635	struct block *root;
1636	int do_stmts;
1637{
1638	int i, maxlevel;
1639	struct block *p;
1640
1641	init_val();
1642	maxlevel = root->level;
1643
1644	find_inedges(root);
1645	for (i = maxlevel; i >= 0; --i)
1646		for (p = levels[i]; p; p = p->link)
1647			opt_blk(p, do_stmts);
1648
1649	if (do_stmts)
1650		/*
1651		 * No point trying to move branches; it can't possibly
1652		 * make a difference at this point.
1653		 */
1654		return;
1655
1656	for (i = 1; i <= maxlevel; ++i) {
1657		for (p = levels[i]; p; p = p->link) {
1658			opt_j(&p->et);
1659			opt_j(&p->ef);
1660		}
1661	}
1662
1663	find_inedges(root);
1664	for (i = 1; i <= maxlevel; ++i) {
1665		for (p = levels[i]; p; p = p->link) {
1666			or_pullup(p);
1667			and_pullup(p);
1668		}
1669	}
1670}
1671
1672static inline void
1673link_inedge(parent, child)
1674	struct edge *parent;
1675	struct block *child;
1676{
1677	parent->next = child->in_edges;
1678	child->in_edges = parent;
1679}
1680
1681static void
1682find_inedges(root)
1683	struct block *root;
1684{
1685	int i;
1686	struct block *b;
1687
1688	for (i = 0; i < n_blocks; ++i)
1689		blocks[i]->in_edges = 0;
1690
1691	/*
1692	 * Traverse the graph, adding each edge to the predecessor
1693	 * list of its successors.  Skip the leaves (i.e. level 0).
1694	 */
1695	for (i = root->level; i > 0; --i) {
1696		for (b = levels[i]; b != 0; b = b->link) {
1697			link_inedge(&b->et, JT(b));
1698			link_inedge(&b->ef, JF(b));
1699		}
1700	}
1701}
1702
1703static void
1704opt_root(b)
1705	struct block **b;
1706{
1707	struct slist *tmp, *s;
1708
1709	s = (*b)->stmts;
1710	(*b)->stmts = 0;
1711	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1712		*b = JT(*b);
1713
1714	tmp = (*b)->stmts;
1715	if (tmp != 0)
1716		sappend(s, tmp);
1717	(*b)->stmts = s;
1718
1719	/*
1720	 * If the root node is a return, then there is no
1721	 * point executing any statements (since the bpf machine
1722	 * has no side effects).
1723	 */
1724	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1725		(*b)->stmts = 0;
1726}
1727
1728static void
1729opt_loop(root, do_stmts)
1730	struct block *root;
1731	int do_stmts;
1732{
1733
1734#ifdef BDEBUG
1735	if (dflag > 1) {
1736		printf("opt_loop(root, %d) begin\n", do_stmts);
1737		opt_dump(root);
1738	}
1739#endif
1740	do {
1741		done = 1;
1742		find_levels(root);
1743		find_dom(root);
1744		find_closure(root);
1745		find_ud(root);
1746		find_edom(root);
1747		opt_blks(root, do_stmts);
1748#ifdef BDEBUG
1749		if (dflag > 1) {
1750			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1751			opt_dump(root);
1752		}
1753#endif
1754	} while (!done);
1755}
1756
1757/*
1758 * Optimize the filter code in its dag representation.
1759 */
1760void
1761bpf_optimize(rootp)
1762	struct block **rootp;
1763{
1764	struct block *root;
1765
1766	root = *rootp;
1767
1768	opt_init(root);
1769	opt_loop(root, 0);
1770	opt_loop(root, 1);
1771	intern_blocks(root);
1772#ifdef BDEBUG
1773	if (dflag > 1) {
1774		printf("after intern_blocks()\n");
1775		opt_dump(root);
1776	}
1777#endif
1778	opt_root(rootp);
1779#ifdef BDEBUG
1780	if (dflag > 1) {
1781		printf("after opt_root()\n");
1782		opt_dump(root);
1783	}
1784#endif
1785	opt_cleanup();
1786}
1787
1788static void
1789make_marks(p)
1790	struct block *p;
1791{
1792	if (!isMarked(p)) {
1793		Mark(p);
1794		if (BPF_CLASS(p->s.code) != BPF_RET) {
1795			make_marks(JT(p));
1796			make_marks(JF(p));
1797		}
1798	}
1799}
1800
1801/*
1802 * Mark code array such that isMarked(i) is true
1803 * only for nodes that are alive.
1804 */
1805static void
1806mark_code(p)
1807	struct block *p;
1808{
1809	cur_mark += 1;
1810	make_marks(p);
1811}
1812
1813/*
1814 * True iff the two stmt lists load the same value from the packet into
1815 * the accumulator.
1816 */
1817static int
1818eq_slist(x, y)
1819	struct slist *x, *y;
1820{
1821	while (1) {
1822		while (x && x->s.code == NOP)
1823			x = x->next;
1824		while (y && y->s.code == NOP)
1825			y = y->next;
1826		if (x == 0)
1827			return y == 0;
1828		if (y == 0)
1829			return x == 0;
1830		if (x->s.code != y->s.code || x->s.k != y->s.k)
1831			return 0;
1832		x = x->next;
1833		y = y->next;
1834	}
1835}
1836
1837static inline int
1838eq_blk(b0, b1)
1839	struct block *b0, *b1;
1840{
1841	if (b0->s.code == b1->s.code &&
1842	    b0->s.k == b1->s.k &&
1843	    b0->et.succ == b1->et.succ &&
1844	    b0->ef.succ == b1->ef.succ)
1845		return eq_slist(b0->stmts, b1->stmts);
1846	return 0;
1847}
1848
1849static void
1850intern_blocks(root)
1851	struct block *root;
1852{
1853	struct block *p;
1854	int i, j;
1855	int done1; /* don't shadow global */
1856 top:
1857	done1 = 1;
1858	for (i = 0; i < n_blocks; ++i)
1859		blocks[i]->link = 0;
1860
1861	mark_code(root);
1862
1863	for (i = n_blocks - 1; --i >= 0; ) {
1864		if (!isMarked(blocks[i]))
1865			continue;
1866		for (j = i + 1; j < n_blocks; ++j) {
1867			if (!isMarked(blocks[j]))
1868				continue;
1869			if (eq_blk(blocks[i], blocks[j])) {
1870				blocks[i]->link = blocks[j]->link ?
1871					blocks[j]->link : blocks[j];
1872				break;
1873			}
1874		}
1875	}
1876	for (i = 0; i < n_blocks; ++i) {
1877		p = blocks[i];
1878		if (JT(p) == 0)
1879			continue;
1880		if (JT(p)->link) {
1881			done1 = 0;
1882			JT(p) = JT(p)->link;
1883		}
1884		if (JF(p)->link) {
1885			done1 = 0;
1886			JF(p) = JF(p)->link;
1887		}
1888	}
1889	if (!done1)
1890		goto top;
1891}
1892
1893static void
1894opt_cleanup()
1895{
1896	free((void *)vnode_base);
1897	free((void *)vmap);
1898	free((void *)edges);
1899	free((void *)space);
1900	free((void *)levels);
1901	free((void *)blocks);
1902}
1903
1904/*
1905 * Return the number of stmts in 's'.
1906 */
1907static u_int
1908slength(s)
1909	struct slist *s;
1910{
1911	u_int n = 0;
1912
1913	for (; s; s = s->next)
1914		if (s->s.code != NOP)
1915			++n;
1916	return n;
1917}
1918
1919/*
1920 * Return the number of nodes reachable by 'p'.
1921 * All nodes should be initially unmarked.
1922 */
1923static int
1924count_blocks(p)
1925	struct block *p;
1926{
1927	if (p == 0 || isMarked(p))
1928		return 0;
1929	Mark(p);
1930	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1931}
1932
1933/*
1934 * Do a depth first search on the flow graph, numbering the
1935 * the basic blocks, and entering them into the 'blocks' array.`
1936 */
1937static void
1938number_blks_r(p)
1939	struct block *p;
1940{
1941	int n;
1942
1943	if (p == 0 || isMarked(p))
1944		return;
1945
1946	Mark(p);
1947	n = n_blocks++;
1948	p->id = n;
1949	blocks[n] = p;
1950
1951	number_blks_r(JT(p));
1952	number_blks_r(JF(p));
1953}
1954
1955/*
1956 * Return the number of stmts in the flowgraph reachable by 'p'.
1957 * The nodes should be unmarked before calling.
1958 *
1959 * Note that "stmts" means "instructions", and that this includes
1960 *
1961 *	side-effect statements in 'p' (slength(p->stmts));
1962 *
1963 *	statements in the true branch from 'p' (count_stmts(JT(p)));
1964 *
1965 *	statements in the false branch from 'p' (count_stmts(JF(p)));
1966 *
1967 *	the conditional jump itself (1);
1968 *
1969 *	an extra long jump if the true branch requires it (p->longjt);
1970 *
1971 *	an extra long jump if the false branch requires it (p->longjf).
1972 */
1973static u_int
1974count_stmts(p)
1975	struct block *p;
1976{
1977	u_int n;
1978
1979	if (p == 0 || isMarked(p))
1980		return 0;
1981	Mark(p);
1982	n = count_stmts(JT(p)) + count_stmts(JF(p));
1983	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1984}
1985
1986/*
1987 * Allocate memory.  All allocation is done before optimization
1988 * is begun.  A linear bound on the size of all data structures is computed
1989 * from the total number of blocks and/or statements.
1990 */
1991static void
1992opt_init(root)
1993	struct block *root;
1994{
1995	bpf_u_int32 *p;
1996	int i, n, max_stmts;
1997
1998	/*
1999	 * First, count the blocks, so we can malloc an array to map
2000	 * block number to block.  Then, put the blocks into the array.
2001	 */
2002	unMarkAll();
2003	n = count_blocks(root);
2004	blocks = (struct block **)calloc(n, sizeof(*blocks));
2005	if (blocks == NULL)
2006		bpf_error("malloc");
2007	unMarkAll();
2008	n_blocks = 0;
2009	number_blks_r(root);
2010
2011	n_edges = 2 * n_blocks;
2012	edges = (struct edge **)calloc(n_edges, sizeof(*edges));
2013	if (edges == NULL)
2014		bpf_error("malloc");
2015
2016	/*
2017	 * The number of levels is bounded by the number of nodes.
2018	 */
2019	levels = (struct block **)calloc(n_blocks, sizeof(*levels));
2020	if (levels == NULL)
2021		bpf_error("malloc");
2022
2023	edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
2024	nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
2025
2026	/* XXX */
2027	space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
2028				 + n_edges * edgewords * sizeof(*space));
2029	if (space == NULL)
2030		bpf_error("malloc");
2031	p = space;
2032	all_dom_sets = p;
2033	for (i = 0; i < n; ++i) {
2034		blocks[i]->dom = p;
2035		p += nodewords;
2036	}
2037	all_closure_sets = p;
2038	for (i = 0; i < n; ++i) {
2039		blocks[i]->closure = p;
2040		p += nodewords;
2041	}
2042	all_edge_sets = p;
2043	for (i = 0; i < n; ++i) {
2044		register struct block *b = blocks[i];
2045
2046		b->et.edom = p;
2047		p += edgewords;
2048		b->ef.edom = p;
2049		p += edgewords;
2050		b->et.id = i;
2051		edges[i] = &b->et;
2052		b->ef.id = n_blocks + i;
2053		edges[n_blocks + i] = &b->ef;
2054		b->et.pred = b;
2055		b->ef.pred = b;
2056	}
2057	max_stmts = 0;
2058	for (i = 0; i < n; ++i)
2059		max_stmts += slength(blocks[i]->stmts) + 1;
2060	/*
2061	 * We allocate at most 3 value numbers per statement,
2062	 * so this is an upper bound on the number of valnodes
2063	 * we'll need.
2064	 */
2065	maxval = 3 * max_stmts;
2066	vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap));
2067	vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base));
2068	if (vmap == NULL || vnode_base == NULL)
2069		bpf_error("malloc");
2070}
2071
2072/*
2073 * Some pointers used to convert the basic block form of the code,
2074 * into the array form that BPF requires.  'fstart' will point to
2075 * the malloc'd array while 'ftail' is used during the recursive traversal.
2076 */
2077static struct bpf_insn *fstart;
2078static struct bpf_insn *ftail;
2079
2080#ifdef BDEBUG
2081int bids[1000];
2082#endif
2083
2084/*
2085 * Returns true if successful.  Returns false if a branch has
2086 * an offset that is too large.  If so, we have marked that
2087 * branch so that on a subsequent iteration, it will be treated
2088 * properly.
2089 */
2090static int
2091convert_code_r(p)
2092	struct block *p;
2093{
2094	struct bpf_insn *dst;
2095	struct slist *src;
2096	int slen;
2097	u_int off;
2098	int extrajmps;		/* number of extra jumps inserted */
2099	struct slist **offset = NULL;
2100
2101	if (p == 0 || isMarked(p))
2102		return (1);
2103	Mark(p);
2104
2105	if (convert_code_r(JF(p)) == 0)
2106		return (0);
2107	if (convert_code_r(JT(p)) == 0)
2108		return (0);
2109
2110	slen = slength(p->stmts);
2111	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
2112		/* inflate length by any extra jumps */
2113
2114	p->offset = dst - fstart;
2115
2116	/* generate offset[] for convenience  */
2117	if (slen) {
2118		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2119		if (!offset) {
2120			bpf_error("not enough core");
2121			/*NOTREACHED*/
2122		}
2123	}
2124	src = p->stmts;
2125	for (off = 0; off < slen && src; off++) {
2126#if 0
2127		printf("off=%d src=%x\n", off, src);
2128#endif
2129		offset[off] = src;
2130		src = src->next;
2131	}
2132
2133	off = 0;
2134	for (src = p->stmts; src; src = src->next) {
2135		if (src->s.code == NOP)
2136			continue;
2137		dst->code = (u_short)src->s.code;
2138		dst->k = src->s.k;
2139
2140		/* fill block-local relative jump */
2141		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2142#if 0
2143			if (src->s.jt || src->s.jf) {
2144				bpf_error("illegal jmp destination");
2145				/*NOTREACHED*/
2146			}
2147#endif
2148			goto filled;
2149		}
2150		if (off == slen - 2)	/*???*/
2151			goto filled;
2152
2153	    {
2154		int i;
2155		int jt, jf;
2156		const char *ljerr = "%s for block-local relative jump: off=%d";
2157
2158#if 0
2159		printf("code=%x off=%d %x %x\n", src->s.code,
2160			off, src->s.jt, src->s.jf);
2161#endif
2162
2163		if (!src->s.jt || !src->s.jf) {
2164			bpf_error(ljerr, "no jmp destination", off);
2165			/*NOTREACHED*/
2166		}
2167
2168		jt = jf = 0;
2169		for (i = 0; i < slen; i++) {
2170			if (offset[i] == src->s.jt) {
2171				if (jt) {
2172					bpf_error(ljerr, "multiple matches", off);
2173					/*NOTREACHED*/
2174				}
2175
2176				dst->jt = i - off - 1;
2177				jt++;
2178			}
2179			if (offset[i] == src->s.jf) {
2180				if (jf) {
2181					bpf_error(ljerr, "multiple matches", off);
2182					/*NOTREACHED*/
2183				}
2184				dst->jf = i - off - 1;
2185				jf++;
2186			}
2187		}
2188		if (!jt || !jf) {
2189			bpf_error(ljerr, "no destination found", off);
2190			/*NOTREACHED*/
2191		}
2192	    }
2193filled:
2194		++dst;
2195		++off;
2196	}
2197	if (offset)
2198		free(offset);
2199
2200#ifdef BDEBUG
2201	bids[dst - fstart] = p->id + 1;
2202#endif
2203	dst->code = (u_short)p->s.code;
2204	dst->k = p->s.k;
2205	if (JT(p)) {
2206		extrajmps = 0;
2207		off = JT(p)->offset - (p->offset + slen) - 1;
2208		if (off >= 256) {
2209		    /* offset too large for branch, must add a jump */
2210		    if (p->longjt == 0) {
2211		    	/* mark this instruction and retry */
2212			p->longjt++;
2213			return(0);
2214		    }
2215		    /* branch if T to following jump */
2216		    dst->jt = extrajmps;
2217		    extrajmps++;
2218		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2219		    dst[extrajmps].k = off - extrajmps;
2220		}
2221		else
2222		    dst->jt = off;
2223		off = JF(p)->offset - (p->offset + slen) - 1;
2224		if (off >= 256) {
2225		    /* offset too large for branch, must add a jump */
2226		    if (p->longjf == 0) {
2227		    	/* mark this instruction and retry */
2228			p->longjf++;
2229			return(0);
2230		    }
2231		    /* branch if F to following jump */
2232		    /* if two jumps are inserted, F goes to second one */
2233		    dst->jf = extrajmps;
2234		    extrajmps++;
2235		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2236		    dst[extrajmps].k = off - extrajmps;
2237		}
2238		else
2239		    dst->jf = off;
2240	}
2241	return (1);
2242}
2243
2244
2245/*
2246 * Convert flowgraph intermediate representation to the
2247 * BPF array representation.  Set *lenp to the number of instructions.
2248 *
2249 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2250 * not* do free(fp) before returning fp; doing so would make no sense,
2251 * as the BPF array pointed to by the return value of icode_to_fcode()
2252 * must be valid - it's being returned for use in a bpf_program structure.
2253 *
2254 * If it appears that icode_to_fcode() is leaking, the problem is that
2255 * the program using pcap_compile() is failing to free the memory in
2256 * the BPF program when it's done - the leak is in the program, not in
2257 * the routine that happens to be allocating the memory.  (By analogy, if
2258 * a program calls fopen() without ever calling fclose() on the FILE *,
2259 * it will leak the FILE structure; the leak is not in fopen(), it's in
2260 * the program.)  Change the program to use pcap_freecode() when it's
2261 * done with the filter program.  See the pcap man page.
2262 */
2263struct bpf_insn *
2264icode_to_fcode(root, lenp)
2265	struct block *root;
2266	u_int *lenp;
2267{
2268	u_int n;
2269	struct bpf_insn *fp;
2270
2271	/*
2272	 * Loop doing convert_code_r() until no branches remain
2273	 * with too-large offsets.
2274	 */
2275	while (1) {
2276	    unMarkAll();
2277	    n = *lenp = count_stmts(root);
2278
2279	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2280	    if (fp == NULL)
2281		    bpf_error("malloc");
2282	    memset((char *)fp, 0, sizeof(*fp) * n);
2283	    fstart = fp;
2284	    ftail = fp + n;
2285
2286	    unMarkAll();
2287	    if (convert_code_r(root))
2288		break;
2289	    free(fp);
2290	}
2291
2292	return fp;
2293}
2294
2295/*
2296 * Make a copy of a BPF program and put it in the "fcode" member of
2297 * a "pcap_t".
2298 *
2299 * If we fail to allocate memory for the copy, fill in the "errbuf"
2300 * member of the "pcap_t" with an error message, and return -1;
2301 * otherwise, return 0.
2302 */
2303int
2304install_bpf_program(pcap_t *p, struct bpf_program *fp)
2305{
2306	size_t prog_size;
2307
2308	/*
2309	 * Validate the program.
2310	 */
2311	if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2312		snprintf(p->errbuf, sizeof(p->errbuf),
2313			"BPF program is not valid");
2314		return (-1);
2315	}
2316
2317	/*
2318	 * Free up any already installed program.
2319	 */
2320	pcap_freecode(&p->fcode);
2321
2322	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2323	p->fcode.bf_len = fp->bf_len;
2324	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2325	if (p->fcode.bf_insns == NULL) {
2326		snprintf(p->errbuf, sizeof(p->errbuf),
2327			 "malloc: %s", pcap_strerror(errno));
2328		return (-1);
2329	}
2330	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2331	return (0);
2332}
2333
2334#ifdef BDEBUG
2335static void
2336opt_dump(root)
2337	struct block *root;
2338{
2339	struct bpf_program f;
2340
2341	memset(bids, 0, sizeof bids);
2342	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2343	bpf_dump(&f, 1);
2344	putchar('\n');
2345	free((char *)f.bf_insns);
2346}
2347#endif
2348