divdf3.c revision 215125
1//===-- lib/divdf3.c - Double-precision division ------------------*- C -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements double-precision soft-float division
11// with the IEEE-754 default rounding (to nearest, ties to even).
12//
13// For simplicity, this implementation currently flushes denormals to zero.
14// It should be a fairly straightforward exercise to implement gradual
15// underflow with correct rounding.
16//
17//===----------------------------------------------------------------------===//
18
19#define DOUBLE_PRECISION
20#include "fp_lib.h"
21
22fp_t __divdf3(fp_t a, fp_t b) {
23
24    const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
25    const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
26    const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
27
28    rep_t aSignificand = toRep(a) & significandMask;
29    rep_t bSignificand = toRep(b) & significandMask;
30    int scale = 0;
31
32    // Detect if a or b is zero, denormal, infinity, or NaN.
33    if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
34
35        const rep_t aAbs = toRep(a) & absMask;
36        const rep_t bAbs = toRep(b) & absMask;
37
38        // NaN / anything = qNaN
39        if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
40        // anything / NaN = qNaN
41        if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
42
43        if (aAbs == infRep) {
44            // infinity / infinity = NaN
45            if (bAbs == infRep) return fromRep(qnanRep);
46            // infinity / anything else = +/- infinity
47            else return fromRep(aAbs | quotientSign);
48        }
49
50        // anything else / infinity = +/- 0
51        if (bAbs == infRep) return fromRep(quotientSign);
52
53        if (!aAbs) {
54            // zero / zero = NaN
55            if (!bAbs) return fromRep(qnanRep);
56            // zero / anything else = +/- zero
57            else return fromRep(quotientSign);
58        }
59        // anything else / zero = +/- infinity
60        if (!bAbs) return fromRep(infRep | quotientSign);
61
62        // one or both of a or b is denormal, the other (if applicable) is a
63        // normal number.  Renormalize one or both of a and b, and set scale to
64        // include the necessary exponent adjustment.
65        if (aAbs < implicitBit) scale += normalize(&aSignificand);
66        if (bAbs < implicitBit) scale -= normalize(&bSignificand);
67    }
68
69    // Or in the implicit significand bit.  (If we fell through from the
70    // denormal path it was already set by normalize( ), but setting it twice
71    // won't hurt anything.)
72    aSignificand |= implicitBit;
73    bSignificand |= implicitBit;
74    int quotientExponent = aExponent - bExponent + scale;
75
76    // Align the significand of b as a Q31 fixed-point number in the range
77    // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
78    // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
79    // is accurate to about 3.5 binary digits.
80    const uint32_t q31b = bSignificand >> 21;
81    uint32_t recip32 = UINT32_C(0x7504f333) - q31b;
82
83    // Now refine the reciprocal estimate using a Newton-Raphson iteration:
84    //
85    //     x1 = x0 * (2 - x0 * b)
86    //
87    // This doubles the number of correct binary digits in the approximation
88    // with each iteration, so after three iterations, we have about 28 binary
89    // digits of accuracy.
90    uint32_t correction32;
91    correction32 = -((uint64_t)recip32 * q31b >> 32);
92    recip32 = (uint64_t)recip32 * correction32 >> 31;
93    correction32 = -((uint64_t)recip32 * q31b >> 32);
94    recip32 = (uint64_t)recip32 * correction32 >> 31;
95    correction32 = -((uint64_t)recip32 * q31b >> 32);
96    recip32 = (uint64_t)recip32 * correction32 >> 31;
97
98    // recip32 might have overflowed to exactly zero in the preceeding
99    // computation if the high word of b is exactly 1.0.  This would sabotage
100    // the full-width final stage of the computation that follows, so we adjust
101    // recip32 downward by one bit.
102    recip32--;
103
104    // We need to perform one more iteration to get us to 56 binary digits;
105    // The last iteration needs to happen with extra precision.
106    const uint32_t q63blo = bSignificand << 11;
107    uint64_t correction, reciprocal;
108    correction = -((uint64_t)recip32*q31b + ((uint64_t)recip32*q63blo >> 32));
109    uint32_t cHi = correction >> 32;
110    uint32_t cLo = correction;
111    reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32);
112
113    // We already adjusted the 32-bit estimate, now we need to adjust the final
114    // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
115    // than the infinitely precise exact reciprocal.  Because the computation
116    // of the Newton-Raphson step is truncating at every step, this adjustment
117    // is small; most of the work is already done.
118    reciprocal -= 2;
119
120    // The numerical reciprocal is accurate to within 2^-56, lies in the
121    // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
122    // of b.  Multiplying a by this reciprocal thus gives a numerical q = a/b
123    // in Q53 with the following properties:
124    //
125    //    1. q < a/b
126    //    2. q is in the interval [0.5, 2.0)
127    //    3. the error in q is bounded away from 2^-53 (actually, we have a
128    //       couple of bits to spare, but this is all we need).
129
130    // We need a 64 x 64 multiply high to compute q, which isn't a basic
131    // operation in C, so we need to be a little bit fussy.
132    rep_t quotient, quotientLo;
133    wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
134
135    // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
136    // In either case, we are going to compute a residual of the form
137    //
138    //     r = a - q*b
139    //
140    // We know from the construction of q that r satisfies:
141    //
142    //     0 <= r < ulp(q)*b
143    //
144    // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
145    // already have the correct result.  The exact halfway case cannot occur.
146    // We also take this time to right shift quotient if it falls in the [1,2)
147    // range and adjust the exponent accordingly.
148    rep_t residual;
149    if (quotient < (implicitBit << 1)) {
150        residual = (aSignificand << 53) - quotient * bSignificand;
151        quotientExponent--;
152    } else {
153        quotient >>= 1;
154        residual = (aSignificand << 52) - quotient * bSignificand;
155    }
156
157    const int writtenExponent = quotientExponent + exponentBias;
158
159    if (writtenExponent >= maxExponent) {
160        // If we have overflowed the exponent, return infinity.
161        return fromRep(infRep | quotientSign);
162    }
163
164    else if (writtenExponent < 1) {
165        // Flush denormals to zero.  In the future, it would be nice to add
166        // code to round them correctly.
167        return fromRep(quotientSign);
168    }
169
170    else {
171        const bool round = (residual << 1) > bSignificand;
172        // Clear the implicit bit
173        rep_t absResult = quotient & significandMask;
174        // Insert the exponent
175        absResult |= (rep_t)writtenExponent << significandBits;
176        // Round
177        absResult += round;
178        // Insert the sign and return
179        const double result = fromRep(absResult | quotientSign);
180        return result;
181    }
182}
183