adddf3.c revision 215125
1//===-- lib/adddf3.c - Double-precision addition and subtraction --*- C -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements double-precision soft-float addition and subtraction
11// with the IEEE-754 default rounding (to nearest, ties to even).
12//
13//===----------------------------------------------------------------------===//
14
15#define DOUBLE_PRECISION
16#include "fp_lib.h"
17
18fp_t __adddf3(fp_t a, fp_t b) {
19
20    rep_t aRep = toRep(a);
21    rep_t bRep = toRep(b);
22    const rep_t aAbs = aRep & absMask;
23    const rep_t bAbs = bRep & absMask;
24
25    // Detect if a or b is zero, infinity, or NaN.
26    if (aAbs - 1U >= infRep - 1U || bAbs - 1U >= infRep - 1U) {
27
28        // NaN + anything = qNaN
29        if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
30        // anything + NaN = qNaN
31        if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
32
33        if (aAbs == infRep) {
34            // +/-infinity + -/+infinity = qNaN
35            if ((toRep(a) ^ toRep(b)) == signBit) return fromRep(qnanRep);
36            // +/-infinity + anything remaining = +/- infinity
37            else return a;
38        }
39
40        // anything remaining + +/-infinity = +/-infinity
41        if (bAbs == infRep) return b;
42
43        // zero + anything = anything
44        if (!aAbs) {
45            // but we need to get the sign right for zero + zero
46            if (!bAbs) return fromRep(toRep(a) & toRep(b));
47            else return b;
48        }
49
50        // anything + zero = anything
51        if (!bAbs) return a;
52    }
53
54    // Swap a and b if necessary so that a has the larger absolute value.
55    if (bAbs > aAbs) {
56        const rep_t temp = aRep;
57        aRep = bRep;
58        bRep = temp;
59    }
60
61    // Extract the exponent and significand from the (possibly swapped) a and b.
62    int aExponent = aRep >> significandBits & maxExponent;
63    int bExponent = bRep >> significandBits & maxExponent;
64    rep_t aSignificand = aRep & significandMask;
65    rep_t bSignificand = bRep & significandMask;
66
67    // Normalize any denormals, and adjust the exponent accordingly.
68    if (aExponent == 0) aExponent = normalize(&aSignificand);
69    if (bExponent == 0) bExponent = normalize(&bSignificand);
70
71    // The sign of the result is the sign of the larger operand, a.  If they
72    // have opposite signs, we are performing a subtraction; otherwise addition.
73    const rep_t resultSign = aRep & signBit;
74    const bool subtraction = (aRep ^ bRep) & signBit;
75
76    // Shift the significands to give us round, guard and sticky, and or in the
77    // implicit significand bit.  (If we fell through from the denormal path it
78    // was already set by normalize( ), but setting it twice won't hurt
79    // anything.)
80    aSignificand = (aSignificand | implicitBit) << 3;
81    bSignificand = (bSignificand | implicitBit) << 3;
82
83    // Shift the significand of b by the difference in exponents, with a sticky
84    // bottom bit to get rounding correct.
85    const int align = aExponent - bExponent;
86    if (align) {
87        if (align < typeWidth) {
88            const bool sticky = bSignificand << (typeWidth - align);
89            bSignificand = bSignificand >> align | sticky;
90        } else {
91            bSignificand = 1; // sticky; b is known to be non-zero.
92        }
93    }
94
95    if (subtraction) {
96        aSignificand -= bSignificand;
97
98        // If a == -b, return +zero.
99        if (aSignificand == 0) return fromRep(0);
100
101        // If partial cancellation occured, we need to left-shift the result
102        // and adjust the exponent:
103        if (aSignificand < implicitBit << 3) {
104            const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
105            aSignificand <<= shift;
106            aExponent -= shift;
107        }
108    }
109
110    else /* addition */ {
111        aSignificand += bSignificand;
112
113        // If the addition carried up, we need to right-shift the result and
114        // adjust the exponent:
115        if (aSignificand & implicitBit << 4) {
116            const bool sticky = aSignificand & 1;
117            aSignificand = aSignificand >> 1 | sticky;
118            aExponent += 1;
119        }
120    }
121
122    // If we have overflowed the type, return +/- infinity:
123    if (aExponent >= maxExponent) return fromRep(infRep | resultSign);
124
125    if (aExponent <= 0) {
126        // Result is denormal before rounding; the exponent is zero and we
127        // need to shift the significand.
128        const int shift = 1 - aExponent;
129        const bool sticky = aSignificand << (typeWidth - shift);
130        aSignificand = aSignificand >> shift | sticky;
131        aExponent = 0;
132    }
133
134    // Low three bits are round, guard, and sticky.
135    const int roundGuardSticky = aSignificand & 0x7;
136
137    // Shift the significand into place, and mask off the implicit bit.
138    rep_t result = aSignificand >> 3 & significandMask;
139
140    // Insert the exponent and sign.
141    result |= (rep_t)aExponent << significandBits;
142    result |= resultSign;
143
144    // Final rounding.  The result may overflow to infinity, but that is the
145    // correct result in that case.
146    if (roundGuardSticky > 0x4) result++;
147    if (roundGuardSticky == 0x4) result += result & 1;
148    return fromRep(result);
149}
150
151// Subtraction; flip the sign bit of b and add.
152fp_t __subdf3(fp_t a, fp_t b) {
153    return __adddf3(a, fromRep(toRep(b) ^ signBit));
154}
155