splay-tree.c revision 104834
1/* A splay-tree datatype.
2   Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3   Contributed by Mark Mitchell (mark@markmitchell.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful, but
13WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING.  If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA.  */
21
22/* For an easily readable description of splay-trees, see:
23
24     Lewis, Harry R. and Denenberg, Larry.  Data Structures and Their
25     Algorithms.  Harper-Collins, Inc.  1991.  */
26
27#ifdef HAVE_CONFIG_H
28#include "config.h"
29#endif
30
31#ifdef HAVE_STDLIB_H
32#include <stdlib.h>
33#endif
34
35#include <stdio.h>
36
37#include "libiberty.h"
38#include "splay-tree.h"
39
40static void splay_tree_delete_helper    PARAMS((splay_tree,
41						splay_tree_node));
42static void splay_tree_splay            PARAMS((splay_tree,
43						splay_tree_key));
44static splay_tree_node splay_tree_splay_helper
45                                        PARAMS((splay_tree,
46						splay_tree_key,
47						splay_tree_node*,
48						splay_tree_node*,
49						splay_tree_node*));
50static int splay_tree_foreach_helper    PARAMS((splay_tree,
51					        splay_tree_node,
52						splay_tree_foreach_fn,
53						void*));
54
55/* Deallocate NODE (a member of SP), and all its sub-trees.  */
56
57static void
58splay_tree_delete_helper (sp, node)
59     splay_tree sp;
60     splay_tree_node node;
61{
62  if (!node)
63    return;
64
65  splay_tree_delete_helper (sp, node->left);
66  splay_tree_delete_helper (sp, node->right);
67
68  if (sp->delete_key)
69    (*sp->delete_key)(node->key);
70  if (sp->delete_value)
71    (*sp->delete_value)(node->value);
72
73  (*sp->deallocate) ((char*) node, sp->allocate_data);
74}
75
76/* Help splay SP around KEY.  PARENT and GRANDPARENT are the parent
77   and grandparent, respectively, of NODE.  */
78
79static splay_tree_node
80splay_tree_splay_helper (sp, key, node, parent, grandparent)
81     splay_tree sp;
82     splay_tree_key key;
83     splay_tree_node *node;
84     splay_tree_node *parent;
85     splay_tree_node *grandparent;
86{
87  splay_tree_node *next;
88  splay_tree_node n;
89  int comparison;
90
91  n = *node;
92
93  if (!n)
94    return *parent;
95
96  comparison = (*sp->comp) (key, n->key);
97
98  if (comparison == 0)
99    /* We've found the target.  */
100    next = 0;
101  else if (comparison < 0)
102    /* The target is to the left.  */
103    next = &n->left;
104  else
105    /* The target is to the right.  */
106    next = &n->right;
107
108  if (next)
109    {
110      /* Continue down the tree.  */
111      n = splay_tree_splay_helper (sp, key, next, node, parent);
112
113      /* The recursive call will change the place to which NODE
114	 points.  */
115      if (*node != n)
116	return n;
117    }
118
119  if (!parent)
120    /* NODE is the root.  We are done.  */
121    return n;
122
123  /* First, handle the case where there is no grandparent (i.e.,
124     *PARENT is the root of the tree.)  */
125  if (!grandparent)
126    {
127      if (n == (*parent)->left)
128	{
129	  *node = n->right;
130	  n->right = *parent;
131	}
132      else
133	{
134	  *node = n->left;
135	  n->left = *parent;
136	}
137      *parent = n;
138      return n;
139    }
140
141  /* Next handle the cases where both N and *PARENT are left children,
142     or where both are right children.  */
143  if (n == (*parent)->left && *parent == (*grandparent)->left)
144    {
145      splay_tree_node p = *parent;
146
147      (*grandparent)->left = p->right;
148      p->right = *grandparent;
149      p->left = n->right;
150      n->right = p;
151      *grandparent = n;
152      return n;
153    }
154  else if  (n == (*parent)->right && *parent == (*grandparent)->right)
155    {
156      splay_tree_node p = *parent;
157
158      (*grandparent)->right = p->left;
159      p->left = *grandparent;
160      p->right = n->left;
161      n->left = p;
162      *grandparent = n;
163      return n;
164    }
165
166  /* Finally, deal with the case where N is a left child, but *PARENT
167     is a right child, or vice versa.  */
168  if (n == (*parent)->left)
169    {
170      (*parent)->left = n->right;
171      n->right = *parent;
172      (*grandparent)->right = n->left;
173      n->left = *grandparent;
174      *grandparent = n;
175      return n;
176    }
177  else
178    {
179      (*parent)->right = n->left;
180      n->left = *parent;
181      (*grandparent)->left = n->right;
182      n->right = *grandparent;
183      *grandparent = n;
184      return n;
185    }
186}
187
188/* Splay SP around KEY.  */
189
190static void
191splay_tree_splay (sp, key)
192     splay_tree sp;
193     splay_tree_key key;
194{
195  if (sp->root == 0)
196    return;
197
198  splay_tree_splay_helper (sp, key, &sp->root,
199			   /*grandparent=*/0, /*parent=*/0);
200}
201
202/* Call FN, passing it the DATA, for every node below NODE, all of
203   which are from SP, following an in-order traversal.  If FN every
204   returns a non-zero value, the iteration ceases immediately, and the
205   value is returned.  Otherwise, this function returns 0.  */
206
207static int
208splay_tree_foreach_helper (sp, node, fn, data)
209     splay_tree sp;
210     splay_tree_node node;
211     splay_tree_foreach_fn fn;
212     void* data;
213{
214  int val;
215
216  if (!node)
217    return 0;
218
219  val = splay_tree_foreach_helper (sp, node->left, fn, data);
220  if (val)
221    return val;
222
223  val = (*fn)(node, data);
224  if (val)
225    return val;
226
227  return splay_tree_foreach_helper (sp, node->right, fn, data);
228}
229
230
231/* An allocator and deallocator based on xmalloc.  */
232static void *
233splay_tree_xmalloc_allocate (size, data)
234     int size;
235     void *data ATTRIBUTE_UNUSED;
236{
237  return xmalloc (size);
238}
239
240static void
241splay_tree_xmalloc_deallocate (object, data)
242     void *object;
243     void *data ATTRIBUTE_UNUSED;
244{
245  free (object);
246}
247
248
249/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
250   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
251   values.  Use xmalloc to allocate the splay tree structure, and any
252   nodes added.  */
253
254splay_tree
255splay_tree_new (compare_fn, delete_key_fn, delete_value_fn)
256     splay_tree_compare_fn compare_fn;
257     splay_tree_delete_key_fn delete_key_fn;
258     splay_tree_delete_value_fn delete_value_fn;
259{
260  return (splay_tree_new_with_allocator
261          (compare_fn, delete_key_fn, delete_value_fn,
262           splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
263}
264
265
266/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
267   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
268   values.  */
269
270splay_tree
271splay_tree_new_with_allocator (compare_fn, delete_key_fn, delete_value_fn,
272                               allocate_fn, deallocate_fn, allocate_data)
273     splay_tree_compare_fn compare_fn;
274     splay_tree_delete_key_fn delete_key_fn;
275     splay_tree_delete_value_fn delete_value_fn;
276     splay_tree_allocate_fn allocate_fn;
277     splay_tree_deallocate_fn deallocate_fn;
278     void *allocate_data;
279{
280  splay_tree sp = (splay_tree) (*allocate_fn) (sizeof (struct splay_tree_s),
281                                               allocate_data);
282  sp->root = 0;
283  sp->comp = compare_fn;
284  sp->delete_key = delete_key_fn;
285  sp->delete_value = delete_value_fn;
286  sp->allocate = allocate_fn;
287  sp->deallocate = deallocate_fn;
288  sp->allocate_data = allocate_data;
289
290  return sp;
291}
292
293/* Deallocate SP.  */
294
295void
296splay_tree_delete (sp)
297     splay_tree sp;
298{
299  splay_tree_delete_helper (sp, sp->root);
300  (*sp->deallocate) ((char*) sp, sp->allocate_data);
301}
302
303/* Insert a new node (associating KEY with DATA) into SP.  If a
304   previous node with the indicated KEY exists, its data is replaced
305   with the new value.  Returns the new node.  */
306
307splay_tree_node
308splay_tree_insert (sp, key, value)
309     splay_tree sp;
310     splay_tree_key key;
311     splay_tree_value value;
312{
313  int comparison = 0;
314
315  splay_tree_splay (sp, key);
316
317  if (sp->root)
318    comparison = (*sp->comp)(sp->root->key, key);
319
320  if (sp->root && comparison == 0)
321    {
322      /* If the root of the tree already has the indicated KEY, just
323	 replace the value with VALUE.  */
324      if (sp->delete_value)
325	(*sp->delete_value)(sp->root->value);
326      sp->root->value = value;
327    }
328  else
329    {
330      /* Create a new node, and insert it at the root.  */
331      splay_tree_node node;
332
333      node = ((splay_tree_node)
334              (*sp->allocate) (sizeof (struct splay_tree_node_s),
335                               sp->allocate_data));
336      node->key = key;
337      node->value = value;
338
339      if (!sp->root)
340	node->left = node->right = 0;
341      else if (comparison < 0)
342	{
343	  node->left = sp->root;
344	  node->right = node->left->right;
345	  node->left->right = 0;
346	}
347      else
348	{
349	  node->right = sp->root;
350	  node->left = node->right->left;
351	  node->right->left = 0;
352	}
353
354      sp->root = node;
355    }
356
357  return sp->root;
358}
359
360/* Remove KEY from SP.  It is not an error if it did not exist.  */
361
362void
363splay_tree_remove (sp, key)
364     splay_tree sp;
365     splay_tree_key key;
366{
367  splay_tree_splay (sp, key);
368
369  if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
370    {
371      splay_tree_node left, right;
372
373      left = sp->root->left;
374      right = sp->root->right;
375
376      /* Delete the root node itself.  */
377      if (sp->delete_value)
378	(*sp->delete_value) (sp->root->value);
379      (*sp->deallocate) (sp->root, sp->allocate_data);
380
381      /* One of the children is now the root.  Doesn't matter much
382	 which, so long as we preserve the properties of the tree.  */
383      if (left)
384	{
385	  sp->root = left;
386
387	  /* If there was a right child as well, hang it off the
388	     right-most leaf of the left child.  */
389	  if (right)
390	    {
391	      while (left->right)
392		left = left->right;
393	      left->right = right;
394	    }
395	}
396      else
397	sp->root = right;
398    }
399}
400
401/* Lookup KEY in SP, returning VALUE if present, and NULL
402   otherwise.  */
403
404splay_tree_node
405splay_tree_lookup (sp, key)
406     splay_tree sp;
407     splay_tree_key key;
408{
409  splay_tree_splay (sp, key);
410
411  if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
412    return sp->root;
413  else
414    return 0;
415}
416
417/* Return the node in SP with the greatest key.  */
418
419splay_tree_node
420splay_tree_max (sp)
421     splay_tree sp;
422{
423  splay_tree_node n = sp->root;
424
425  if (!n)
426    return NULL;
427
428  while (n->right)
429    n = n->right;
430
431  return n;
432}
433
434/* Return the node in SP with the smallest key.  */
435
436splay_tree_node
437splay_tree_min (sp)
438     splay_tree sp;
439{
440  splay_tree_node n = sp->root;
441
442  if (!n)
443    return NULL;
444
445  while (n->left)
446    n = n->left;
447
448  return n;
449}
450
451/* Return the immediate predecessor KEY, or NULL if there is no
452   predecessor.  KEY need not be present in the tree.  */
453
454splay_tree_node
455splay_tree_predecessor (sp, key)
456     splay_tree sp;
457     splay_tree_key key;
458{
459  int comparison;
460  splay_tree_node node;
461
462  /* If the tree is empty, there is certainly no predecessor.  */
463  if (!sp->root)
464    return NULL;
465
466  /* Splay the tree around KEY.  That will leave either the KEY
467     itself, its predecessor, or its successor at the root.  */
468  splay_tree_splay (sp, key);
469  comparison = (*sp->comp)(sp->root->key, key);
470
471  /* If the predecessor is at the root, just return it.  */
472  if (comparison < 0)
473    return sp->root;
474
475  /* Otherwise, find the leftmost element of the right subtree.  */
476  node = sp->root->left;
477  if (node)
478    while (node->right)
479      node = node->right;
480
481  return node;
482}
483
484/* Return the immediate successor KEY, or NULL if there is no
485   predecessor.  KEY need not be present in the tree.  */
486
487splay_tree_node
488splay_tree_successor (sp, key)
489     splay_tree sp;
490     splay_tree_key key;
491{
492  int comparison;
493  splay_tree_node node;
494
495  /* If the tree is empty, there is certainly no predecessor.  */
496  if (!sp->root)
497    return NULL;
498
499  /* Splay the tree around KEY.  That will leave either the KEY
500     itself, its predecessor, or its successor at the root.  */
501  splay_tree_splay (sp, key);
502  comparison = (*sp->comp)(sp->root->key, key);
503
504  /* If the successor is at the root, just return it.  */
505  if (comparison > 0)
506    return sp->root;
507
508  /* Otherwise, find the rightmost element of the left subtree.  */
509  node = sp->root->right;
510  if (node)
511    while (node->left)
512      node = node->left;
513
514  return node;
515}
516
517/* Call FN, passing it the DATA, for every node in SP, following an
518   in-order traversal.  If FN every returns a non-zero value, the
519   iteration ceases immediately, and the value is returned.
520   Otherwise, this function returns 0.  */
521
522int
523splay_tree_foreach (sp, fn, data)
524     splay_tree sp;
525     splay_tree_foreach_fn fn;
526     void *data;
527{
528  return splay_tree_foreach_helper (sp, sp->root, fn, data);
529}
530
531/* Splay-tree comparison function, treating the keys as ints.  */
532
533int
534splay_tree_compare_ints (k1, k2)
535     splay_tree_key k1;
536     splay_tree_key k2;
537{
538  if ((int) k1 < (int) k2)
539    return -1;
540  else if ((int) k1 > (int) k2)
541    return 1;
542  else
543    return 0;
544}
545
546/* Splay-tree comparison function, treating the keys as pointers.  */
547
548int
549splay_tree_compare_pointers (k1, k2)
550     splay_tree_key k1;
551     splay_tree_key k2;
552{
553  if ((char*) k1 < (char*) k2)
554    return -1;
555  else if ((char*) k1 > (char*) k2)
556    return 1;
557  else
558    return 0;
559}
560