elf64-sparc.c revision 91041
1/* SPARC-specific support for 64-bit ELF
2   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3   Free Software Foundation, Inc.
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "opcode/sparc.h"
26
27/* This is defined if one wants to build upward compatible binaries
28   with the original sparc64-elf toolchain.  The support is kept in for
29   now but is turned off by default.  dje 970930  */
30/*#define SPARC64_OLD_RELOCS*/
31
32#include "elf/sparc.h"
33
34/* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
35#define MINUS_ONE (~ (bfd_vma) 0)
36
37static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38  PARAMS ((bfd *));
39static bfd_reloc_status_type init_insn_reloc
40  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41	   bfd *, bfd_vma *, bfd_vma *));
42static reloc_howto_type *sparc64_elf_reloc_type_lookup
43  PARAMS ((bfd *, bfd_reloc_code_real_type));
44static void sparc64_elf_info_to_howto
45  PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47static void sparc64_elf_build_plt
48  PARAMS ((bfd *, unsigned char *, int));
49static bfd_vma sparc64_elf_plt_entry_offset
50  PARAMS ((bfd_vma));
51static bfd_vma sparc64_elf_plt_ptr_offset
52  PARAMS ((bfd_vma, bfd_vma));
53
54static boolean sparc64_elf_check_relocs
55  PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56	   const Elf_Internal_Rela *));
57static boolean sparc64_elf_adjust_dynamic_symbol
58  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59static boolean sparc64_elf_size_dynamic_sections
60  PARAMS ((bfd *, struct bfd_link_info *));
61static int sparc64_elf_get_symbol_type
62  PARAMS (( Elf_Internal_Sym *, int));
63static boolean sparc64_elf_add_symbol_hook
64  PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65	   const char **, flagword *, asection **, bfd_vma *));
66static boolean sparc64_elf_output_arch_syms
67  PARAMS ((bfd *, struct bfd_link_info *, PTR,
68	   boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69static void sparc64_elf_symbol_processing
70  PARAMS ((bfd *, asymbol *));
71
72static boolean sparc64_elf_merge_private_bfd_data
73  PARAMS ((bfd *, bfd *));
74
75static const char *sparc64_elf_print_symbol_all
76  PARAMS ((bfd *, PTR, asymbol *));
77static boolean sparc64_elf_relax_section
78  PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
79static boolean sparc64_elf_relocate_section
80  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
81	   Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
82static boolean sparc64_elf_finish_dynamic_symbol
83  PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
84	   Elf_Internal_Sym *));
85static boolean sparc64_elf_finish_dynamic_sections
86  PARAMS ((bfd *, struct bfd_link_info *));
87static boolean sparc64_elf_object_p PARAMS ((bfd *));
88static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
89static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
90static boolean sparc64_elf_slurp_one_reloc_table
91  PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
92static boolean sparc64_elf_slurp_reloc_table
93  PARAMS ((bfd *, asection *, asymbol **, boolean));
94static long sparc64_elf_canonicalize_dynamic_reloc
95  PARAMS ((bfd *, arelent **, asymbol **));
96static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
97static enum elf_reloc_type_class sparc64_elf_reloc_type_class
98  PARAMS ((const Elf_Internal_Rela *));
99
100/* The relocation "howto" table.  */
101
102static bfd_reloc_status_type sparc_elf_notsup_reloc
103  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
104static bfd_reloc_status_type sparc_elf_wdisp16_reloc
105  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
106static bfd_reloc_status_type sparc_elf_hix22_reloc
107  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108static bfd_reloc_status_type sparc_elf_lox10_reloc
109  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
110
111static reloc_howto_type sparc64_elf_howto_table[] =
112{
113  HOWTO(R_SPARC_NONE,      0,0, 0,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_NONE",    false,0,0x00000000,true),
114  HOWTO(R_SPARC_8,         0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_8",       false,0,0x000000ff,true),
115  HOWTO(R_SPARC_16,        0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_16",      false,0,0x0000ffff,true),
116  HOWTO(R_SPARC_32,        0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_32",      false,0,0xffffffff,true),
117  HOWTO(R_SPARC_DISP8,     0,0, 8,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP8",   false,0,0x000000ff,true),
118  HOWTO(R_SPARC_DISP16,    0,1,16,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP16",  false,0,0x0000ffff,true),
119  HOWTO(R_SPARC_DISP32,    0,2,32,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP32",  false,0,0xffffffff,true),
120  HOWTO(R_SPARC_WDISP30,   2,2,30,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP30", false,0,0x3fffffff,true),
121  HOWTO(R_SPARC_WDISP22,   2,2,22,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP22", false,0,0x003fffff,true),
122  HOWTO(R_SPARC_HI22,     10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HI22",    false,0,0x003fffff,true),
123  HOWTO(R_SPARC_22,        0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_22",      false,0,0x003fffff,true),
124  HOWTO(R_SPARC_13,        0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_13",      false,0,0x00001fff,true),
125  HOWTO(R_SPARC_LO10,      0,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LO10",    false,0,0x000003ff,true),
126  HOWTO(R_SPARC_GOT10,     0,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT10",   false,0,0x000003ff,true),
127  HOWTO(R_SPARC_GOT13,     0,2,13,false,0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_GOT13",   false,0,0x00001fff,true),
128  HOWTO(R_SPARC_GOT22,    10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT22",   false,0,0x003fffff,true),
129  HOWTO(R_SPARC_PC10,      0,2,10,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC10",    false,0,0x000003ff,true),
130  HOWTO(R_SPARC_PC22,     10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PC22",    false,0,0x003fffff,true),
131  HOWTO(R_SPARC_WPLT30,    2,2,30,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WPLT30",  false,0,0x3fffffff,true),
132  HOWTO(R_SPARC_COPY,      0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_COPY",    false,0,0x00000000,true),
133  HOWTO(R_SPARC_GLOB_DAT,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
134  HOWTO(R_SPARC_JMP_SLOT,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
135  HOWTO(R_SPARC_RELATIVE,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_RELATIVE",false,0,0x00000000,true),
136  HOWTO(R_SPARC_UA32,      0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA32",    false,0,0xffffffff,true),
137#ifndef SPARC64_OLD_RELOCS
138  HOWTO(R_SPARC_PLT32,     0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT32",   false,0,0xffffffff,true),
139  /* These aren't implemented yet.  */
140  HOWTO(R_SPARC_HIPLT22,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_HIPLT22",  false,0,0x00000000,true),
141  HOWTO(R_SPARC_LOPLT10,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_LOPLT10",  false,0,0x00000000,true),
142  HOWTO(R_SPARC_PCPLT32,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT32",  false,0,0x00000000,true),
143  HOWTO(R_SPARC_PCPLT22,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT22",  false,0,0x00000000,true),
144  HOWTO(R_SPARC_PCPLT10,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT10",  false,0,0x00000000,true),
145#endif
146  HOWTO(R_SPARC_10,        0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_10",      false,0,0x000003ff,true),
147  HOWTO(R_SPARC_11,        0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_11",      false,0,0x000007ff,true),
148  HOWTO(R_SPARC_64,        0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_64",      false,0,MINUS_ONE, true),
149  HOWTO(R_SPARC_OLO10,     0,2,13,false,0,complain_overflow_signed,  sparc_elf_notsup_reloc, "R_SPARC_OLO10",   false,0,0x00001fff,true),
150  HOWTO(R_SPARC_HH22,     42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_HH22",    false,0,0x003fffff,true),
151  HOWTO(R_SPARC_HM10,     32,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HM10",    false,0,0x000003ff,true),
152  HOWTO(R_SPARC_LM22,     10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LM22",    false,0,0x003fffff,true),
153  HOWTO(R_SPARC_PC_HH22,  42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_PC_HH22",    false,0,0x003fffff,true),
154  HOWTO(R_SPARC_PC_HM10,  32,2,10,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_HM10",    false,0,0x000003ff,true),
155  HOWTO(R_SPARC_PC_LM22,  10,2,22,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_LM22",    false,0,0x003fffff,true),
156  HOWTO(R_SPARC_WDISP16,   2,2,16,true, 0,complain_overflow_signed,  sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
157  HOWTO(R_SPARC_WDISP19,   2,2,19,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP19", false,0,0x0007ffff,true),
158  HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_UNUSED_42",false,0,0x00000000,true),
159  HOWTO(R_SPARC_7,         0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_7",       false,0,0x0000007f,true),
160  HOWTO(R_SPARC_5,         0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_5",       false,0,0x0000001f,true),
161  HOWTO(R_SPARC_6,         0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_6",       false,0,0x0000003f,true),
162  HOWTO(R_SPARC_DISP64,    0,4,64,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP64",  false,0,MINUS_ONE, true),
163  HOWTO(R_SPARC_PLT64,     0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT64",   false,0,MINUS_ONE, true),
164  HOWTO(R_SPARC_HIX22,     0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,  "R_SPARC_HIX22",   false,0,MINUS_ONE, false),
165  HOWTO(R_SPARC_LOX10,     0,4, 0,false,0,complain_overflow_dont,    sparc_elf_lox10_reloc,  "R_SPARC_LOX10",   false,0,MINUS_ONE, false),
166  HOWTO(R_SPARC_H44,      22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_H44",     false,0,0x003fffff,false),
167  HOWTO(R_SPARC_M44,      12,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_M44",     false,0,0x000003ff,false),
168  HOWTO(R_SPARC_L44,       0,2,13,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_L44",     false,0,0x00000fff,false),
169  HOWTO(R_SPARC_REGISTER,  0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
170  HOWTO(R_SPARC_UA64,        0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA64",      false,0,MINUS_ONE, true),
171  HOWTO(R_SPARC_UA16,        0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA16",      false,0,0x0000ffff,true)
172};
173
174struct elf_reloc_map {
175  bfd_reloc_code_real_type bfd_reloc_val;
176  unsigned char elf_reloc_val;
177};
178
179static const struct elf_reloc_map sparc_reloc_map[] =
180{
181  { BFD_RELOC_NONE, R_SPARC_NONE, },
182  { BFD_RELOC_16, R_SPARC_16, },
183  { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
184  { BFD_RELOC_8, R_SPARC_8 },
185  { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
186  { BFD_RELOC_CTOR, R_SPARC_64 },
187  { BFD_RELOC_32, R_SPARC_32 },
188  { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
189  { BFD_RELOC_HI22, R_SPARC_HI22 },
190  { BFD_RELOC_LO10, R_SPARC_LO10, },
191  { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
192  { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
193  { BFD_RELOC_SPARC22, R_SPARC_22 },
194  { BFD_RELOC_SPARC13, R_SPARC_13 },
195  { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
196  { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
197  { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
198  { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
199  { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
200  { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
201  { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
202  { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
203  { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
204  { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
205  { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
206  { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
207  { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
208  { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
209  { BFD_RELOC_SPARC_10, R_SPARC_10 },
210  { BFD_RELOC_SPARC_11, R_SPARC_11 },
211  { BFD_RELOC_SPARC_64, R_SPARC_64 },
212  { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
213  { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
214  { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
215  { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
216  { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
217  { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
218  { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
219  { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
220  { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
221  { BFD_RELOC_SPARC_7, R_SPARC_7 },
222  { BFD_RELOC_SPARC_5, R_SPARC_5 },
223  { BFD_RELOC_SPARC_6, R_SPARC_6 },
224  { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
225#ifndef SPARC64_OLD_RELOCS
226  { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
227#endif
228  { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
229  { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
230  { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
231  { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
232  { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
233  { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
234  { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
235};
236
237static reloc_howto_type *
238sparc64_elf_reloc_type_lookup (abfd, code)
239     bfd *abfd ATTRIBUTE_UNUSED;
240     bfd_reloc_code_real_type code;
241{
242  unsigned int i;
243  for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
244    {
245      if (sparc_reloc_map[i].bfd_reloc_val == code)
246	return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
247    }
248  return 0;
249}
250
251static void
252sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
253     bfd *abfd ATTRIBUTE_UNUSED;
254     arelent *cache_ptr;
255     Elf64_Internal_Rela *dst;
256{
257  BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
258  cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
259}
260
261/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
262   section can represent up to two relocs, we must tell the user to allocate
263   more space.  */
264
265static long
266sparc64_elf_get_reloc_upper_bound (abfd, sec)
267     bfd *abfd ATTRIBUTE_UNUSED;
268     asection *sec;
269{
270  return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
271}
272
273static long
274sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
275     bfd *abfd;
276{
277  return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
278}
279
280/* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
281   them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
282   has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
283   for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
284
285static boolean
286sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
287     bfd *abfd;
288     asection *asect;
289     Elf_Internal_Shdr *rel_hdr;
290     asymbol **symbols;
291     boolean dynamic;
292{
293  PTR allocated = NULL;
294  bfd_byte *native_relocs;
295  arelent *relent;
296  unsigned int i;
297  int entsize;
298  bfd_size_type count;
299  arelent *relents;
300
301  allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
302  if (allocated == NULL)
303    goto error_return;
304
305  if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
306      || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
307    goto error_return;
308
309  native_relocs = (bfd_byte *) allocated;
310
311  relents = asect->relocation + asect->reloc_count;
312
313  entsize = rel_hdr->sh_entsize;
314  BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
315
316  count = rel_hdr->sh_size / entsize;
317
318  for (i = 0, relent = relents; i < count;
319       i++, relent++, native_relocs += entsize)
320    {
321      Elf_Internal_Rela rela;
322
323      bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
324
325      /* The address of an ELF reloc is section relative for an object
326	 file, and absolute for an executable file or shared library.
327	 The address of a normal BFD reloc is always section relative,
328	 and the address of a dynamic reloc is absolute..  */
329      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
330	relent->address = rela.r_offset;
331      else
332	relent->address = rela.r_offset - asect->vma;
333
334      if (ELF64_R_SYM (rela.r_info) == 0)
335	relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
336      else
337	{
338	  asymbol **ps, *s;
339
340	  ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
341	  s = *ps;
342
343	  /* Canonicalize ELF section symbols.  FIXME: Why?  */
344	  if ((s->flags & BSF_SECTION_SYM) == 0)
345	    relent->sym_ptr_ptr = ps;
346	  else
347	    relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
348	}
349
350      relent->addend = rela.r_addend;
351
352      BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
353      if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
354	{
355	  relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
356	  relent[1].address = relent->address;
357	  relent++;
358	  relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
359	  relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
360	  relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
361	}
362      else
363	relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
364    }
365
366  asect->reloc_count += relent - relents;
367
368  if (allocated != NULL)
369    free (allocated);
370
371  return true;
372
373 error_return:
374  if (allocated != NULL)
375    free (allocated);
376  return false;
377}
378
379/* Read in and swap the external relocs.  */
380
381static boolean
382sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
383     bfd *abfd;
384     asection *asect;
385     asymbol **symbols;
386     boolean dynamic;
387{
388  struct bfd_elf_section_data * const d = elf_section_data (asect);
389  Elf_Internal_Shdr *rel_hdr;
390  Elf_Internal_Shdr *rel_hdr2;
391  bfd_size_type amt;
392
393  if (asect->relocation != NULL)
394    return true;
395
396  if (! dynamic)
397    {
398      if ((asect->flags & SEC_RELOC) == 0
399	  || asect->reloc_count == 0)
400	return true;
401
402      rel_hdr = &d->rel_hdr;
403      rel_hdr2 = d->rel_hdr2;
404
405      BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
406		  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
407    }
408  else
409    {
410      /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
411	 case because relocations against this section may use the
412	 dynamic symbol table, and in that case bfd_section_from_shdr
413	 in elf.c does not update the RELOC_COUNT.  */
414      if (asect->_raw_size == 0)
415	return true;
416
417      rel_hdr = &d->this_hdr;
418      asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
419      rel_hdr2 = NULL;
420    }
421
422  amt = asect->reloc_count;
423  amt *= 2 * sizeof (arelent);
424  asect->relocation = (arelent *) bfd_alloc (abfd, amt);
425  if (asect->relocation == NULL)
426    return false;
427
428  /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count.  */
429  asect->reloc_count = 0;
430
431  if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
432					  dynamic))
433    return false;
434
435  if (rel_hdr2
436      && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
437					     dynamic))
438    return false;
439
440  return true;
441}
442
443/* Canonicalize the dynamic relocation entries.  Note that we return
444   the dynamic relocations as a single block, although they are
445   actually associated with particular sections; the interface, which
446   was designed for SunOS style shared libraries, expects that there
447   is only one set of dynamic relocs.  Any section that was actually
448   installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
449   the dynamic symbol table, is considered to be a dynamic reloc
450   section.  */
451
452static long
453sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
454     bfd *abfd;
455     arelent **storage;
456     asymbol **syms;
457{
458  asection *s;
459  long ret;
460
461  if (elf_dynsymtab (abfd) == 0)
462    {
463      bfd_set_error (bfd_error_invalid_operation);
464      return -1;
465    }
466
467  ret = 0;
468  for (s = abfd->sections; s != NULL; s = s->next)
469    {
470      if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
471	  && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
472	{
473	  arelent *p;
474	  long count, i;
475
476	  if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
477	    return -1;
478	  count = s->reloc_count;
479	  p = s->relocation;
480	  for (i = 0; i < count; i++)
481	    *storage++ = p++;
482	  ret += count;
483	}
484    }
485
486  *storage = NULL;
487
488  return ret;
489}
490
491/* Write out the relocs.  */
492
493static void
494sparc64_elf_write_relocs (abfd, sec, data)
495     bfd *abfd;
496     asection *sec;
497     PTR data;
498{
499  boolean *failedp = (boolean *) data;
500  Elf_Internal_Shdr *rela_hdr;
501  Elf64_External_Rela *outbound_relocas, *src_rela;
502  unsigned int idx, count;
503  asymbol *last_sym = 0;
504  int last_sym_idx = 0;
505
506  /* If we have already failed, don't do anything.  */
507  if (*failedp)
508    return;
509
510  if ((sec->flags & SEC_RELOC) == 0)
511    return;
512
513  /* The linker backend writes the relocs out itself, and sets the
514     reloc_count field to zero to inhibit writing them here.  Also,
515     sometimes the SEC_RELOC flag gets set even when there aren't any
516     relocs.  */
517  if (sec->reloc_count == 0)
518    return;
519
520  /* We can combine two relocs that refer to the same address
521     into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
522     latter is R_SPARC_13 with no associated symbol.  */
523  count = 0;
524  for (idx = 0; idx < sec->reloc_count; idx++)
525    {
526      bfd_vma addr;
527
528      ++count;
529
530      addr = sec->orelocation[idx]->address;
531      if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
532	  && idx < sec->reloc_count - 1)
533	{
534	  arelent *r = sec->orelocation[idx + 1];
535
536	  if (r->howto->type == R_SPARC_13
537	      && r->address == addr
538	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
539	      && (*r->sym_ptr_ptr)->value == 0)
540	    ++idx;
541	}
542    }
543
544  rela_hdr = &elf_section_data (sec)->rel_hdr;
545
546  rela_hdr->sh_size = rela_hdr->sh_entsize * count;
547  rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
548  if (rela_hdr->contents == NULL)
549    {
550      *failedp = true;
551      return;
552    }
553
554  /* Figure out whether the relocations are RELA or REL relocations.  */
555  if (rela_hdr->sh_type != SHT_RELA)
556    abort ();
557
558  /* orelocation has the data, reloc_count has the count...  */
559  outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
560  src_rela = outbound_relocas;
561
562  for (idx = 0; idx < sec->reloc_count; idx++)
563    {
564      Elf_Internal_Rela dst_rela;
565      arelent *ptr;
566      asymbol *sym;
567      int n;
568
569      ptr = sec->orelocation[idx];
570
571      /* The address of an ELF reloc is section relative for an object
572	 file, and absolute for an executable file or shared library.
573	 The address of a BFD reloc is always section relative.  */
574      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
575	dst_rela.r_offset = ptr->address;
576      else
577	dst_rela.r_offset = ptr->address + sec->vma;
578
579      sym = *ptr->sym_ptr_ptr;
580      if (sym == last_sym)
581	n = last_sym_idx;
582      else if (bfd_is_abs_section (sym->section) && sym->value == 0)
583	n = STN_UNDEF;
584      else
585	{
586	  last_sym = sym;
587	  n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
588	  if (n < 0)
589	    {
590	      *failedp = true;
591	      return;
592	    }
593	  last_sym_idx = n;
594	}
595
596      if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
597	  && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
598	  && ! _bfd_elf_validate_reloc (abfd, ptr))
599	{
600	  *failedp = true;
601	  return;
602	}
603
604      if (ptr->howto->type == R_SPARC_LO10
605	  && idx < sec->reloc_count - 1)
606	{
607	  arelent *r = sec->orelocation[idx + 1];
608
609	  if (r->howto->type == R_SPARC_13
610	      && r->address == ptr->address
611	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
612	      && (*r->sym_ptr_ptr)->value == 0)
613	    {
614	      idx++;
615	      dst_rela.r_info
616		= ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
617						      R_SPARC_OLO10));
618	    }
619	  else
620	    dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
621	}
622      else
623	dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
624
625      dst_rela.r_addend = ptr->addend;
626      bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
627      ++src_rela;
628    }
629}
630
631/* Sparc64 ELF linker hash table.  */
632
633struct sparc64_elf_app_reg
634{
635  unsigned char bind;
636  unsigned short shndx;
637  bfd *abfd;
638  char *name;
639};
640
641struct sparc64_elf_link_hash_table
642{
643  struct elf_link_hash_table root;
644
645  struct sparc64_elf_app_reg app_regs [4];
646};
647
648/* Get the Sparc64 ELF linker hash table from a link_info structure.  */
649
650#define sparc64_elf_hash_table(p) \
651  ((struct sparc64_elf_link_hash_table *) ((p)->hash))
652
653/* Create a Sparc64 ELF linker hash table.  */
654
655static struct bfd_link_hash_table *
656sparc64_elf_bfd_link_hash_table_create (abfd)
657     bfd *abfd;
658{
659  struct sparc64_elf_link_hash_table *ret;
660  bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
661
662  ret = (struct sparc64_elf_link_hash_table *) bfd_zalloc (abfd, amt);
663  if (ret == (struct sparc64_elf_link_hash_table *) NULL)
664    return NULL;
665
666  if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
667				       _bfd_elf_link_hash_newfunc))
668    {
669      bfd_release (abfd, ret);
670      return NULL;
671    }
672
673  return &ret->root.root;
674}
675
676/* Utility for performing the standard initial work of an instruction
677   relocation.
678   *PRELOCATION will contain the relocated item.
679   *PINSN will contain the instruction from the input stream.
680   If the result is `bfd_reloc_other' the caller can continue with
681   performing the relocation.  Otherwise it must stop and return the
682   value to its caller.  */
683
684static bfd_reloc_status_type
685init_insn_reloc (abfd,
686		 reloc_entry,
687		 symbol,
688		 data,
689		 input_section,
690		 output_bfd,
691		 prelocation,
692		 pinsn)
693     bfd *abfd;
694     arelent *reloc_entry;
695     asymbol *symbol;
696     PTR data;
697     asection *input_section;
698     bfd *output_bfd;
699     bfd_vma *prelocation;
700     bfd_vma *pinsn;
701{
702  bfd_vma relocation;
703  reloc_howto_type *howto = reloc_entry->howto;
704
705  if (output_bfd != (bfd *) NULL
706      && (symbol->flags & BSF_SECTION_SYM) == 0
707      && (! howto->partial_inplace
708	  || reloc_entry->addend == 0))
709    {
710      reloc_entry->address += input_section->output_offset;
711      return bfd_reloc_ok;
712    }
713
714  /* This works because partial_inplace == false.  */
715  if (output_bfd != NULL)
716    return bfd_reloc_continue;
717
718  if (reloc_entry->address > input_section->_cooked_size)
719    return bfd_reloc_outofrange;
720
721  relocation = (symbol->value
722		+ symbol->section->output_section->vma
723		+ symbol->section->output_offset);
724  relocation += reloc_entry->addend;
725  if (howto->pc_relative)
726    {
727      relocation -= (input_section->output_section->vma
728		     + input_section->output_offset);
729      relocation -= reloc_entry->address;
730    }
731
732  *prelocation = relocation;
733  *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
734  return bfd_reloc_other;
735}
736
737/* For unsupported relocs.  */
738
739static bfd_reloc_status_type
740sparc_elf_notsup_reloc (abfd,
741			reloc_entry,
742			symbol,
743			data,
744			input_section,
745			output_bfd,
746			error_message)
747     bfd *abfd ATTRIBUTE_UNUSED;
748     arelent *reloc_entry ATTRIBUTE_UNUSED;
749     asymbol *symbol ATTRIBUTE_UNUSED;
750     PTR data ATTRIBUTE_UNUSED;
751     asection *input_section ATTRIBUTE_UNUSED;
752     bfd *output_bfd ATTRIBUTE_UNUSED;
753     char **error_message ATTRIBUTE_UNUSED;
754{
755  return bfd_reloc_notsupported;
756}
757
758/* Handle the WDISP16 reloc.  */
759
760static bfd_reloc_status_type
761sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
762			 output_bfd, error_message)
763     bfd *abfd;
764     arelent *reloc_entry;
765     asymbol *symbol;
766     PTR data;
767     asection *input_section;
768     bfd *output_bfd;
769     char **error_message ATTRIBUTE_UNUSED;
770{
771  bfd_vma relocation;
772  bfd_vma insn;
773  bfd_reloc_status_type status;
774
775  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
776			    input_section, output_bfd, &relocation, &insn);
777  if (status != bfd_reloc_other)
778    return status;
779
780  insn &= ~ (bfd_vma) 0x303fff;
781  insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
782  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
783
784  if ((bfd_signed_vma) relocation < - 0x40000
785      || (bfd_signed_vma) relocation > 0x3ffff)
786    return bfd_reloc_overflow;
787  else
788    return bfd_reloc_ok;
789}
790
791/* Handle the HIX22 reloc.  */
792
793static bfd_reloc_status_type
794sparc_elf_hix22_reloc (abfd,
795		       reloc_entry,
796		       symbol,
797		       data,
798		       input_section,
799		       output_bfd,
800		       error_message)
801     bfd *abfd;
802     arelent *reloc_entry;
803     asymbol *symbol;
804     PTR data;
805     asection *input_section;
806     bfd *output_bfd;
807     char **error_message ATTRIBUTE_UNUSED;
808{
809  bfd_vma relocation;
810  bfd_vma insn;
811  bfd_reloc_status_type status;
812
813  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
814			    input_section, output_bfd, &relocation, &insn);
815  if (status != bfd_reloc_other)
816    return status;
817
818  relocation ^= MINUS_ONE;
819  insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
820  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
821
822  if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
823    return bfd_reloc_overflow;
824  else
825    return bfd_reloc_ok;
826}
827
828/* Handle the LOX10 reloc.  */
829
830static bfd_reloc_status_type
831sparc_elf_lox10_reloc (abfd,
832		       reloc_entry,
833		       symbol,
834		       data,
835		       input_section,
836		       output_bfd,
837		       error_message)
838     bfd *abfd;
839     arelent *reloc_entry;
840     asymbol *symbol;
841     PTR data;
842     asection *input_section;
843     bfd *output_bfd;
844     char **error_message ATTRIBUTE_UNUSED;
845{
846  bfd_vma relocation;
847  bfd_vma insn;
848  bfd_reloc_status_type status;
849
850  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
851			    input_section, output_bfd, &relocation, &insn);
852  if (status != bfd_reloc_other)
853    return status;
854
855  insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
856  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
857
858  return bfd_reloc_ok;
859}
860
861/* PLT/GOT stuff */
862
863/* Both the headers and the entries are icache aligned.  */
864#define PLT_ENTRY_SIZE		32
865#define PLT_HEADER_SIZE		(4 * PLT_ENTRY_SIZE)
866#define LARGE_PLT_THRESHOLD	32768
867#define GOT_RESERVED_ENTRIES	1
868
869#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
870
871/* Fill in the .plt section.  */
872
873static void
874sparc64_elf_build_plt (output_bfd, contents, nentries)
875     bfd *output_bfd;
876     unsigned char *contents;
877     int nentries;
878{
879  const unsigned int nop = 0x01000000;
880  int i, j;
881
882  /* The first four entries are reserved, and are initially undefined.
883     We fill them with `illtrap 0' to force ld.so to do something.  */
884
885  for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
886    bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
887
888  /* The first 32768 entries are close enough to plt1 to get there via
889     a straight branch.  */
890
891  for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
892    {
893      unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
894      unsigned int sethi, ba;
895
896      /* sethi (. - plt0), %g1 */
897      sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
898
899      /* ba,a,pt %xcc, plt1 */
900      ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
901
902      bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
903      bfd_put_32 (output_bfd, (bfd_vma) ba,    entry + 4);
904      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 8);
905      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 12);
906      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 16);
907      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 20);
908      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 24);
909      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 28);
910    }
911
912  /* Now the tricky bit.  Entries 32768 and higher are grouped in blocks of
913     160: 160 entries and 160 pointers.  This is to separate code from data,
914     which is much friendlier on the cache.  */
915
916  for (; i < nentries; i += 160)
917    {
918      int block = (i + 160 <= nentries ? 160 : nentries - i);
919      for (j = 0; j < block; ++j)
920	{
921	  unsigned char *entry, *ptr;
922	  unsigned int ldx;
923
924	  entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
925	  ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
926
927	  /* ldx [%o7 + ptr - (entry+4)], %g1 */
928	  ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
929
930	  /* mov %o7,%g5
931	     call .+8
932	     nop
933	     ldx [%o7+P],%g1
934	     jmpl %o7+%g1,%g1
935	     mov %g5,%o7  */
936	  bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
937	  bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
938	  bfd_put_32 (output_bfd, (bfd_vma) nop,        entry + 8);
939	  bfd_put_32 (output_bfd, (bfd_vma) ldx,        entry + 12);
940	  bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
941	  bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
942
943	  bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
944	}
945    }
946}
947
948/* Return the offset of a particular plt entry within the .plt section.  */
949
950static bfd_vma
951sparc64_elf_plt_entry_offset (index)
952     bfd_vma index;
953{
954  bfd_vma block, ofs;
955
956  if (index < LARGE_PLT_THRESHOLD)
957    return index * PLT_ENTRY_SIZE;
958
959  /* See above for details.  */
960
961  block = (index - LARGE_PLT_THRESHOLD) / 160;
962  ofs = (index - LARGE_PLT_THRESHOLD) % 160;
963
964  return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
965}
966
967static bfd_vma
968sparc64_elf_plt_ptr_offset (index, max)
969     bfd_vma index;
970     bfd_vma max;
971{
972  bfd_vma block, ofs, last;
973
974  BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
975
976  /* See above for details.  */
977
978  block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
979  ofs = index - block;
980  if (block + 160 > max)
981    last = (max - LARGE_PLT_THRESHOLD) % 160;
982  else
983    last = 160;
984
985  return (block * PLT_ENTRY_SIZE
986	  + last * 6*4
987	  + ofs * 8);
988}
989
990/* Look through the relocs for a section during the first phase, and
991   allocate space in the global offset table or procedure linkage
992   table.  */
993
994static boolean
995sparc64_elf_check_relocs (abfd, info, sec, relocs)
996     bfd *abfd;
997     struct bfd_link_info *info;
998     asection *sec;
999     const Elf_Internal_Rela *relocs;
1000{
1001  bfd *dynobj;
1002  Elf_Internal_Shdr *symtab_hdr;
1003  struct elf_link_hash_entry **sym_hashes;
1004  bfd_vma *local_got_offsets;
1005  const Elf_Internal_Rela *rel;
1006  const Elf_Internal_Rela *rel_end;
1007  asection *sgot;
1008  asection *srelgot;
1009  asection *sreloc;
1010
1011  if (info->relocateable || !(sec->flags & SEC_ALLOC))
1012    return true;
1013
1014  dynobj = elf_hash_table (info)->dynobj;
1015  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1016  sym_hashes = elf_sym_hashes (abfd);
1017  local_got_offsets = elf_local_got_offsets (abfd);
1018
1019  sgot = NULL;
1020  srelgot = NULL;
1021  sreloc = NULL;
1022
1023  rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1024  for (rel = relocs; rel < rel_end; rel++)
1025    {
1026      unsigned long r_symndx;
1027      struct elf_link_hash_entry *h;
1028
1029      r_symndx = ELF64_R_SYM (rel->r_info);
1030      if (r_symndx < symtab_hdr->sh_info)
1031	h = NULL;
1032      else
1033	h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1034
1035      switch (ELF64_R_TYPE_ID (rel->r_info))
1036	{
1037	case R_SPARC_GOT10:
1038	case R_SPARC_GOT13:
1039	case R_SPARC_GOT22:
1040	  /* This symbol requires a global offset table entry.  */
1041
1042	  if (dynobj == NULL)
1043	    {
1044	      /* Create the .got section.  */
1045	      elf_hash_table (info)->dynobj = dynobj = abfd;
1046	      if (! _bfd_elf_create_got_section (dynobj, info))
1047		return false;
1048	    }
1049
1050	  if (sgot == NULL)
1051	    {
1052	      sgot = bfd_get_section_by_name (dynobj, ".got");
1053	      BFD_ASSERT (sgot != NULL);
1054	    }
1055
1056	  if (srelgot == NULL && (h != NULL || info->shared))
1057	    {
1058	      srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1059	      if (srelgot == NULL)
1060		{
1061		  srelgot = bfd_make_section (dynobj, ".rela.got");
1062		  if (srelgot == NULL
1063		      || ! bfd_set_section_flags (dynobj, srelgot,
1064						  (SEC_ALLOC
1065						   | SEC_LOAD
1066						   | SEC_HAS_CONTENTS
1067						   | SEC_IN_MEMORY
1068						   | SEC_LINKER_CREATED
1069						   | SEC_READONLY))
1070		      || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1071		    return false;
1072		}
1073	    }
1074
1075	  if (h != NULL)
1076	    {
1077	      if (h->got.offset != (bfd_vma) -1)
1078		{
1079		  /* We have already allocated space in the .got.  */
1080		  break;
1081		}
1082	      h->got.offset = sgot->_raw_size;
1083
1084	      /* Make sure this symbol is output as a dynamic symbol.  */
1085	      if (h->dynindx == -1)
1086		{
1087		  if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1088		    return false;
1089		}
1090
1091	      srelgot->_raw_size += sizeof (Elf64_External_Rela);
1092	    }
1093	  else
1094	    {
1095	      /* This is a global offset table entry for a local
1096                 symbol.  */
1097	      if (local_got_offsets == NULL)
1098		{
1099		  bfd_size_type size;
1100		  register unsigned int i;
1101
1102		  size = symtab_hdr->sh_info;
1103		  size *= sizeof (bfd_vma);
1104		  local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1105		  if (local_got_offsets == NULL)
1106		    return false;
1107		  elf_local_got_offsets (abfd) = local_got_offsets;
1108		  for (i = 0; i < symtab_hdr->sh_info; i++)
1109		    local_got_offsets[i] = (bfd_vma) -1;
1110		}
1111	      if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1112		{
1113		  /* We have already allocated space in the .got.  */
1114		  break;
1115		}
1116	      local_got_offsets[r_symndx] = sgot->_raw_size;
1117
1118	      if (info->shared)
1119		{
1120		  /* If we are generating a shared object, we need to
1121                     output a R_SPARC_RELATIVE reloc so that the
1122                     dynamic linker can adjust this GOT entry.  */
1123		  srelgot->_raw_size += sizeof (Elf64_External_Rela);
1124		}
1125	    }
1126
1127	  sgot->_raw_size += 8;
1128
1129#if 0
1130	  /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1131	     unsigned numbers.  If we permit ourselves to modify
1132	     code so we get sethi/xor, this could work.
1133	     Question: do we consider conditionally re-enabling
1134             this for -fpic, once we know about object code models?  */
1135	  /* If the .got section is more than 0x1000 bytes, we add
1136	     0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1137	     bit relocations have a greater chance of working.  */
1138	  if (sgot->_raw_size >= 0x1000
1139	      && elf_hash_table (info)->hgot->root.u.def.value == 0)
1140	    elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1141#endif
1142
1143	  break;
1144
1145	case R_SPARC_WPLT30:
1146	case R_SPARC_PLT32:
1147	case R_SPARC_HIPLT22:
1148	case R_SPARC_LOPLT10:
1149	case R_SPARC_PCPLT32:
1150	case R_SPARC_PCPLT22:
1151	case R_SPARC_PCPLT10:
1152	case R_SPARC_PLT64:
1153	  /* This symbol requires a procedure linkage table entry.  We
1154             actually build the entry in adjust_dynamic_symbol,
1155             because this might be a case of linking PIC code without
1156             linking in any dynamic objects, in which case we don't
1157             need to generate a procedure linkage table after all.  */
1158
1159	  if (h == NULL)
1160	    {
1161	      /* It does not make sense to have a procedure linkage
1162                 table entry for a local symbol.  */
1163	      bfd_set_error (bfd_error_bad_value);
1164	      return false;
1165	    }
1166
1167	  /* Make sure this symbol is output as a dynamic symbol.  */
1168	  if (h->dynindx == -1)
1169	    {
1170	      if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1171		return false;
1172	    }
1173
1174	  h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1175	  if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1176	      && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1177	    break;
1178	  /* Fall through.  */
1179	case R_SPARC_PC10:
1180	case R_SPARC_PC22:
1181	case R_SPARC_PC_HH22:
1182	case R_SPARC_PC_HM10:
1183	case R_SPARC_PC_LM22:
1184	  if (h != NULL
1185	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1186	    break;
1187	  /* Fall through.  */
1188	case R_SPARC_DISP8:
1189	case R_SPARC_DISP16:
1190	case R_SPARC_DISP32:
1191	case R_SPARC_DISP64:
1192	case R_SPARC_WDISP30:
1193	case R_SPARC_WDISP22:
1194	case R_SPARC_WDISP19:
1195	case R_SPARC_WDISP16:
1196	  if (h == NULL)
1197	    break;
1198	  /* Fall through.  */
1199	case R_SPARC_8:
1200	case R_SPARC_16:
1201	case R_SPARC_32:
1202	case R_SPARC_HI22:
1203	case R_SPARC_22:
1204	case R_SPARC_13:
1205	case R_SPARC_LO10:
1206	case R_SPARC_UA32:
1207	case R_SPARC_10:
1208	case R_SPARC_11:
1209	case R_SPARC_64:
1210	case R_SPARC_OLO10:
1211	case R_SPARC_HH22:
1212	case R_SPARC_HM10:
1213	case R_SPARC_LM22:
1214	case R_SPARC_7:
1215	case R_SPARC_5:
1216	case R_SPARC_6:
1217	case R_SPARC_HIX22:
1218	case R_SPARC_LOX10:
1219	case R_SPARC_H44:
1220	case R_SPARC_M44:
1221	case R_SPARC_L44:
1222	case R_SPARC_UA64:
1223	case R_SPARC_UA16:
1224	  /* When creating a shared object, we must copy these relocs
1225	     into the output file.  We create a reloc section in
1226	     dynobj and make room for the reloc.
1227
1228	     But don't do this for debugging sections -- this shows up
1229	     with DWARF2 -- first because they are not loaded, and
1230	     second because DWARF sez the debug info is not to be
1231	     biased by the load address.  */
1232	  if (info->shared && (sec->flags & SEC_ALLOC))
1233	    {
1234	      if (sreloc == NULL)
1235		{
1236		  const char *name;
1237
1238		  name = (bfd_elf_string_from_elf_section
1239			  (abfd,
1240			   elf_elfheader (abfd)->e_shstrndx,
1241			   elf_section_data (sec)->rel_hdr.sh_name));
1242		  if (name == NULL)
1243		    return false;
1244
1245		  BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1246			      && strcmp (bfd_get_section_name (abfd, sec),
1247					 name + 5) == 0);
1248
1249		  sreloc = bfd_get_section_by_name (dynobj, name);
1250		  if (sreloc == NULL)
1251		    {
1252		      flagword flags;
1253
1254		      sreloc = bfd_make_section (dynobj, name);
1255		      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1256			       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1257		      if ((sec->flags & SEC_ALLOC) != 0)
1258			flags |= SEC_ALLOC | SEC_LOAD;
1259		      if (sreloc == NULL
1260			  || ! bfd_set_section_flags (dynobj, sreloc, flags)
1261			  || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1262			return false;
1263		    }
1264		  if (sec->flags & SEC_READONLY)
1265		    info->flags |= DF_TEXTREL;
1266		}
1267
1268	      sreloc->_raw_size += sizeof (Elf64_External_Rela);
1269	    }
1270	  break;
1271
1272	case R_SPARC_REGISTER:
1273	  /* Nothing to do.  */
1274	  break;
1275
1276	default:
1277	  (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1278				bfd_archive_filename (abfd),
1279				ELF64_R_TYPE_ID (rel->r_info));
1280	  return false;
1281	}
1282    }
1283
1284  return true;
1285}
1286
1287/* Hook called by the linker routine which adds symbols from an object
1288   file.  We use it for STT_REGISTER symbols.  */
1289
1290static boolean
1291sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1292     bfd *abfd;
1293     struct bfd_link_info *info;
1294     const Elf_Internal_Sym *sym;
1295     const char **namep;
1296     flagword *flagsp ATTRIBUTE_UNUSED;
1297     asection **secp ATTRIBUTE_UNUSED;
1298     bfd_vma *valp ATTRIBUTE_UNUSED;
1299{
1300  static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1301
1302  if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1303    {
1304      int reg;
1305      struct sparc64_elf_app_reg *p;
1306
1307      reg = (int)sym->st_value;
1308      switch (reg & ~1)
1309	{
1310	case 2: reg -= 2; break;
1311	case 6: reg -= 4; break;
1312	default:
1313          (*_bfd_error_handler)
1314            (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1315             bfd_archive_filename (abfd));
1316	  return false;
1317	}
1318
1319      if (info->hash->creator != abfd->xvec
1320	  || (abfd->flags & DYNAMIC) != 0)
1321        {
1322	  /* STT_REGISTER only works when linking an elf64_sparc object.
1323	     If STT_REGISTER comes from a dynamic object, don't put it into
1324	     the output bfd.  The dynamic linker will recheck it.  */
1325	  *namep = NULL;
1326	  return true;
1327        }
1328
1329      p = sparc64_elf_hash_table(info)->app_regs + reg;
1330
1331      if (p->name != NULL && strcmp (p->name, *namep))
1332	{
1333          (*_bfd_error_handler)
1334            (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1335             (int) sym->st_value,
1336             **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1337             *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1338	  return false;
1339	}
1340
1341      if (p->name == NULL)
1342	{
1343	  if (**namep)
1344	    {
1345	      struct elf_link_hash_entry *h;
1346
1347	      h = (struct elf_link_hash_entry *)
1348		bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1349
1350	      if (h != NULL)
1351		{
1352		  unsigned char type = h->type;
1353
1354		  if (type > STT_FUNC)
1355		    type = 0;
1356		  (*_bfd_error_handler)
1357		    (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1358		     *namep, bfd_archive_filename (abfd),
1359		     stt_types[type], bfd_archive_filename (p->abfd));
1360		  return false;
1361		}
1362
1363	      p->name = bfd_hash_allocate (&info->hash->table,
1364					   strlen (*namep) + 1);
1365	      if (!p->name)
1366		return false;
1367
1368	      strcpy (p->name, *namep);
1369	    }
1370	  else
1371	    p->name = "";
1372	  p->bind = ELF_ST_BIND (sym->st_info);
1373	  p->abfd = abfd;
1374	  p->shndx = sym->st_shndx;
1375	}
1376      else
1377	{
1378	  if (p->bind == STB_WEAK
1379	      && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1380	    {
1381	      p->bind = STB_GLOBAL;
1382	      p->abfd = abfd;
1383	    }
1384	}
1385      *namep = NULL;
1386      return true;
1387    }
1388  else if (! *namep || ! **namep)
1389    return true;
1390  else
1391    {
1392      int i;
1393      struct sparc64_elf_app_reg *p;
1394
1395      p = sparc64_elf_hash_table(info)->app_regs;
1396      for (i = 0; i < 4; i++, p++)
1397	if (p->name != NULL && ! strcmp (p->name, *namep))
1398	  {
1399	    unsigned char type = ELF_ST_TYPE (sym->st_info);
1400
1401	    if (type > STT_FUNC)
1402	      type = 0;
1403	    (*_bfd_error_handler)
1404	      (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1405	       *namep, stt_types[type], bfd_archive_filename (abfd),
1406	       bfd_archive_filename (p->abfd));
1407	    return false;
1408	  }
1409    }
1410  return true;
1411}
1412
1413/* This function takes care of emiting STT_REGISTER symbols
1414   which we cannot easily keep in the symbol hash table.  */
1415
1416static boolean
1417sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1418     bfd *output_bfd ATTRIBUTE_UNUSED;
1419     struct bfd_link_info *info;
1420     PTR finfo;
1421     boolean (*func) PARAMS ((PTR, const char *,
1422			      Elf_Internal_Sym *, asection *));
1423{
1424  int reg;
1425  struct sparc64_elf_app_reg *app_regs =
1426    sparc64_elf_hash_table(info)->app_regs;
1427  Elf_Internal_Sym sym;
1428
1429  /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1430     at the end of the dynlocal list, so they came at the end of the local
1431     symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
1432     to back up symtab->sh_info.  */
1433  if (elf_hash_table (info)->dynlocal)
1434    {
1435      bfd * dynobj = elf_hash_table (info)->dynobj;
1436      asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1437      struct elf_link_local_dynamic_entry *e;
1438
1439      for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1440	if (e->input_indx == -1)
1441	  break;
1442      if (e)
1443	{
1444	  elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1445	    = e->dynindx;
1446	}
1447    }
1448
1449  if (info->strip == strip_all)
1450    return true;
1451
1452  for (reg = 0; reg < 4; reg++)
1453    if (app_regs [reg].name != NULL)
1454      {
1455	if (info->strip == strip_some
1456	    && bfd_hash_lookup (info->keep_hash,
1457				app_regs [reg].name,
1458				false, false) == NULL)
1459	  continue;
1460
1461	sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1462	sym.st_size = 0;
1463	sym.st_other = 0;
1464	sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1465	sym.st_shndx = app_regs [reg].shndx;
1466	if (! (*func) (finfo, app_regs [reg].name, &sym,
1467		       sym.st_shndx == SHN_ABS
1468			 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1469	  return false;
1470      }
1471
1472  return true;
1473}
1474
1475static int
1476sparc64_elf_get_symbol_type (elf_sym, type)
1477     Elf_Internal_Sym * elf_sym;
1478     int type;
1479{
1480  if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1481    return STT_REGISTER;
1482  else
1483    return type;
1484}
1485
1486/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1487   even in SHN_UNDEF section.  */
1488
1489static void
1490sparc64_elf_symbol_processing (abfd, asym)
1491     bfd *abfd ATTRIBUTE_UNUSED;
1492     asymbol *asym;
1493{
1494  elf_symbol_type *elfsym;
1495
1496  elfsym = (elf_symbol_type *) asym;
1497  if (elfsym->internal_elf_sym.st_info
1498      == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1499    {
1500      asym->flags |= BSF_GLOBAL;
1501    }
1502}
1503
1504/* Adjust a symbol defined by a dynamic object and referenced by a
1505   regular object.  The current definition is in some section of the
1506   dynamic object, but we're not including those sections.  We have to
1507   change the definition to something the rest of the link can
1508   understand.  */
1509
1510static boolean
1511sparc64_elf_adjust_dynamic_symbol (info, h)
1512     struct bfd_link_info *info;
1513     struct elf_link_hash_entry *h;
1514{
1515  bfd *dynobj;
1516  asection *s;
1517  unsigned int power_of_two;
1518
1519  dynobj = elf_hash_table (info)->dynobj;
1520
1521  /* Make sure we know what is going on here.  */
1522  BFD_ASSERT (dynobj != NULL
1523	      && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1524		  || h->weakdef != NULL
1525		  || ((h->elf_link_hash_flags
1526		       & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1527		      && (h->elf_link_hash_flags
1528			  & ELF_LINK_HASH_REF_REGULAR) != 0
1529		      && (h->elf_link_hash_flags
1530			  & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1531
1532  /* If this is a function, put it in the procedure linkage table.  We
1533     will fill in the contents of the procedure linkage table later
1534     (although we could actually do it here).  The STT_NOTYPE
1535     condition is a hack specifically for the Oracle libraries
1536     delivered for Solaris; for some inexplicable reason, they define
1537     some of their functions as STT_NOTYPE when they really should be
1538     STT_FUNC.  */
1539  if (h->type == STT_FUNC
1540      || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1541      || (h->type == STT_NOTYPE
1542	  && (h->root.type == bfd_link_hash_defined
1543	      || h->root.type == bfd_link_hash_defweak)
1544	  && (h->root.u.def.section->flags & SEC_CODE) != 0))
1545    {
1546      if (! elf_hash_table (info)->dynamic_sections_created)
1547	{
1548	  /* This case can occur if we saw a WPLT30 reloc in an input
1549             file, but none of the input files were dynamic objects.
1550             In such a case, we don't actually need to build a
1551             procedure linkage table, and we can just do a WDISP30
1552             reloc instead.  */
1553	  BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1554	  return true;
1555	}
1556
1557      s = bfd_get_section_by_name (dynobj, ".plt");
1558      BFD_ASSERT (s != NULL);
1559
1560      /* The first four bit in .plt is reserved.  */
1561      if (s->_raw_size == 0)
1562	s->_raw_size = PLT_HEADER_SIZE;
1563
1564      /* If this symbol is not defined in a regular file, and we are
1565	 not generating a shared library, then set the symbol to this
1566	 location in the .plt.  This is required to make function
1567	 pointers compare as equal between the normal executable and
1568	 the shared library.  */
1569      if (! info->shared
1570	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1571	{
1572	  h->root.u.def.section = s;
1573	  h->root.u.def.value = s->_raw_size;
1574	}
1575
1576      /* To simplify matters later, just store the plt index here.  */
1577      h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1578
1579      /* Make room for this entry.  */
1580      s->_raw_size += PLT_ENTRY_SIZE;
1581
1582      /* We also need to make an entry in the .rela.plt section.  */
1583
1584      s = bfd_get_section_by_name (dynobj, ".rela.plt");
1585      BFD_ASSERT (s != NULL);
1586
1587      s->_raw_size += sizeof (Elf64_External_Rela);
1588
1589      /* The procedure linkage table size is bounded by the magnitude
1590	 of the offset we can describe in the entry.  */
1591      if (s->_raw_size >= (bfd_vma)1 << 32)
1592	{
1593	  bfd_set_error (bfd_error_bad_value);
1594	  return false;
1595	}
1596
1597      return true;
1598    }
1599
1600  /* If this is a weak symbol, and there is a real definition, the
1601     processor independent code will have arranged for us to see the
1602     real definition first, and we can just use the same value.  */
1603  if (h->weakdef != NULL)
1604    {
1605      BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1606		  || h->weakdef->root.type == bfd_link_hash_defweak);
1607      h->root.u.def.section = h->weakdef->root.u.def.section;
1608      h->root.u.def.value = h->weakdef->root.u.def.value;
1609      return true;
1610    }
1611
1612  /* This is a reference to a symbol defined by a dynamic object which
1613     is not a function.  */
1614
1615  /* If we are creating a shared library, we must presume that the
1616     only references to the symbol are via the global offset table.
1617     For such cases we need not do anything here; the relocations will
1618     be handled correctly by relocate_section.  */
1619  if (info->shared)
1620    return true;
1621
1622  /* We must allocate the symbol in our .dynbss section, which will
1623     become part of the .bss section of the executable.  There will be
1624     an entry for this symbol in the .dynsym section.  The dynamic
1625     object will contain position independent code, so all references
1626     from the dynamic object to this symbol will go through the global
1627     offset table.  The dynamic linker will use the .dynsym entry to
1628     determine the address it must put in the global offset table, so
1629     both the dynamic object and the regular object will refer to the
1630     same memory location for the variable.  */
1631
1632  s = bfd_get_section_by_name (dynobj, ".dynbss");
1633  BFD_ASSERT (s != NULL);
1634
1635  /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1636     to copy the initial value out of the dynamic object and into the
1637     runtime process image.  We need to remember the offset into the
1638     .rel.bss section we are going to use.  */
1639  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1640    {
1641      asection *srel;
1642
1643      srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1644      BFD_ASSERT (srel != NULL);
1645      srel->_raw_size += sizeof (Elf64_External_Rela);
1646      h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1647    }
1648
1649  /* We need to figure out the alignment required for this symbol.  I
1650     have no idea how ELF linkers handle this.  16-bytes is the size
1651     of the largest type that requires hard alignment -- long double.  */
1652  power_of_two = bfd_log2 (h->size);
1653  if (power_of_two > 4)
1654    power_of_two = 4;
1655
1656  /* Apply the required alignment.  */
1657  s->_raw_size = BFD_ALIGN (s->_raw_size,
1658			    (bfd_size_type) (1 << power_of_two));
1659  if (power_of_two > bfd_get_section_alignment (dynobj, s))
1660    {
1661      if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1662	return false;
1663    }
1664
1665  /* Define the symbol as being at this point in the section.  */
1666  h->root.u.def.section = s;
1667  h->root.u.def.value = s->_raw_size;
1668
1669  /* Increment the section size to make room for the symbol.  */
1670  s->_raw_size += h->size;
1671
1672  return true;
1673}
1674
1675/* Set the sizes of the dynamic sections.  */
1676
1677static boolean
1678sparc64_elf_size_dynamic_sections (output_bfd, info)
1679     bfd *output_bfd;
1680     struct bfd_link_info *info;
1681{
1682  bfd *dynobj;
1683  asection *s;
1684  boolean relplt;
1685
1686  dynobj = elf_hash_table (info)->dynobj;
1687  BFD_ASSERT (dynobj != NULL);
1688
1689  if (elf_hash_table (info)->dynamic_sections_created)
1690    {
1691      /* Set the contents of the .interp section to the interpreter.  */
1692      if (! info->shared)
1693	{
1694	  s = bfd_get_section_by_name (dynobj, ".interp");
1695	  BFD_ASSERT (s != NULL);
1696	  s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1697	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1698	}
1699    }
1700  else
1701    {
1702      /* We may have created entries in the .rela.got section.
1703         However, if we are not creating the dynamic sections, we will
1704         not actually use these entries.  Reset the size of .rela.got,
1705         which will cause it to get stripped from the output file
1706         below.  */
1707      s = bfd_get_section_by_name (dynobj, ".rela.got");
1708      if (s != NULL)
1709	s->_raw_size = 0;
1710    }
1711
1712  /* The check_relocs and adjust_dynamic_symbol entry points have
1713     determined the sizes of the various dynamic sections.  Allocate
1714     memory for them.  */
1715  relplt = false;
1716  for (s = dynobj->sections; s != NULL; s = s->next)
1717    {
1718      const char *name;
1719      boolean strip;
1720
1721      if ((s->flags & SEC_LINKER_CREATED) == 0)
1722	continue;
1723
1724      /* It's OK to base decisions on the section name, because none
1725	 of the dynobj section names depend upon the input files.  */
1726      name = bfd_get_section_name (dynobj, s);
1727
1728      strip = false;
1729
1730      if (strncmp (name, ".rela", 5) == 0)
1731	{
1732	  if (s->_raw_size == 0)
1733	    {
1734	      /* If we don't need this section, strip it from the
1735		 output file.  This is to handle .rela.bss and
1736		 .rel.plt.  We must create it in
1737		 create_dynamic_sections, because it must be created
1738		 before the linker maps input sections to output
1739		 sections.  The linker does that before
1740		 adjust_dynamic_symbol is called, and it is that
1741		 function which decides whether anything needs to go
1742		 into these sections.  */
1743	      strip = true;
1744	    }
1745	  else
1746	    {
1747	      if (strcmp (name, ".rela.plt") == 0)
1748		relplt = true;
1749
1750	      /* We use the reloc_count field as a counter if we need
1751		 to copy relocs into the output file.  */
1752	      s->reloc_count = 0;
1753	    }
1754	}
1755      else if (strcmp (name, ".plt") != 0
1756	       && strncmp (name, ".got", 4) != 0)
1757	{
1758	  /* It's not one of our sections, so don't allocate space.  */
1759	  continue;
1760	}
1761
1762      if (strip)
1763	{
1764	  _bfd_strip_section_from_output (info, s);
1765	  continue;
1766	}
1767
1768      /* Allocate memory for the section contents.  Zero the memory
1769	 for the benefit of .rela.plt, which has 4 unused entries
1770	 at the beginning, and we don't want garbage.  */
1771      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1772      if (s->contents == NULL && s->_raw_size != 0)
1773	return false;
1774    }
1775
1776  if (elf_hash_table (info)->dynamic_sections_created)
1777    {
1778      /* Add some entries to the .dynamic section.  We fill in the
1779	 values later, in sparc64_elf_finish_dynamic_sections, but we
1780	 must add the entries now so that we get the correct size for
1781	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1782	 dynamic linker and used by the debugger.  */
1783#define add_dynamic_entry(TAG, VAL) \
1784  bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1785
1786      int reg;
1787      struct sparc64_elf_app_reg * app_regs;
1788      struct elf_strtab_hash *dynstr;
1789      struct elf_link_hash_table *eht = elf_hash_table (info);
1790
1791      if (!info->shared)
1792	{
1793	  if (!add_dynamic_entry (DT_DEBUG, 0))
1794	    return false;
1795	}
1796
1797      if (relplt)
1798	{
1799	  if (!add_dynamic_entry (DT_PLTGOT, 0)
1800	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
1801	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1802	      || !add_dynamic_entry (DT_JMPREL, 0))
1803	    return false;
1804	}
1805
1806      if (!add_dynamic_entry (DT_RELA, 0)
1807	  || !add_dynamic_entry (DT_RELASZ, 0)
1808	  || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1809	return false;
1810
1811      if (info->flags & DF_TEXTREL)
1812	{
1813	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1814	    return false;
1815	}
1816
1817      /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1818	 entries if needed.  */
1819      app_regs = sparc64_elf_hash_table (info)->app_regs;
1820      dynstr = eht->dynstr;
1821
1822      for (reg = 0; reg < 4; reg++)
1823	if (app_regs [reg].name != NULL)
1824	  {
1825	    struct elf_link_local_dynamic_entry *entry, *e;
1826
1827	    if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1828	      return false;
1829
1830	    entry = (struct elf_link_local_dynamic_entry *)
1831	      bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1832	    if (entry == NULL)
1833	      return false;
1834
1835	    /* We cheat here a little bit: the symbol will not be local, so we
1836	       put it at the end of the dynlocal linked list.  We will fix it
1837	       later on, as we have to fix other fields anyway.  */
1838	    entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1839	    entry->isym.st_size = 0;
1840	    if (*app_regs [reg].name != '\0')
1841	      entry->isym.st_name
1842		= _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
1843	    else
1844	      entry->isym.st_name = 0;
1845	    entry->isym.st_other = 0;
1846	    entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1847					       STT_REGISTER);
1848	    entry->isym.st_shndx = app_regs [reg].shndx;
1849	    entry->next = NULL;
1850	    entry->input_bfd = output_bfd;
1851	    entry->input_indx = -1;
1852
1853	    if (eht->dynlocal == NULL)
1854	      eht->dynlocal = entry;
1855	    else
1856	      {
1857		for (e = eht->dynlocal; e->next; e = e->next)
1858		  ;
1859		e->next = entry;
1860	      }
1861	    eht->dynsymcount++;
1862	  }
1863    }
1864#undef add_dynamic_entry
1865
1866  return true;
1867}
1868
1869#define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1870#define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1871
1872static boolean
1873sparc64_elf_relax_section (abfd, section, link_info, again)
1874     bfd *abfd ATTRIBUTE_UNUSED;
1875     asection *section ATTRIBUTE_UNUSED;
1876     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1877     boolean *again;
1878{
1879  *again = false;
1880  SET_SEC_DO_RELAX (section);
1881  return true;
1882}
1883
1884/* Relocate a SPARC64 ELF section.  */
1885
1886static boolean
1887sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1888			      contents, relocs, local_syms, local_sections)
1889     bfd *output_bfd;
1890     struct bfd_link_info *info;
1891     bfd *input_bfd;
1892     asection *input_section;
1893     bfd_byte *contents;
1894     Elf_Internal_Rela *relocs;
1895     Elf_Internal_Sym *local_syms;
1896     asection **local_sections;
1897{
1898  bfd *dynobj;
1899  Elf_Internal_Shdr *symtab_hdr;
1900  struct elf_link_hash_entry **sym_hashes;
1901  bfd_vma *local_got_offsets;
1902  bfd_vma got_base;
1903  asection *sgot;
1904  asection *splt;
1905  asection *sreloc;
1906  Elf_Internal_Rela *rel;
1907  Elf_Internal_Rela *relend;
1908
1909  dynobj = elf_hash_table (info)->dynobj;
1910  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1911  sym_hashes = elf_sym_hashes (input_bfd);
1912  local_got_offsets = elf_local_got_offsets (input_bfd);
1913
1914  if (elf_hash_table(info)->hgot == NULL)
1915    got_base = 0;
1916  else
1917    got_base = elf_hash_table (info)->hgot->root.u.def.value;
1918
1919  sgot = splt = sreloc = NULL;
1920
1921  rel = relocs;
1922  relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1923  for (; rel < relend; rel++)
1924    {
1925      int r_type;
1926      reloc_howto_type *howto;
1927      unsigned long r_symndx;
1928      struct elf_link_hash_entry *h;
1929      Elf_Internal_Sym *sym;
1930      asection *sec;
1931      bfd_vma relocation;
1932      bfd_reloc_status_type r;
1933      boolean is_plt = false;
1934
1935      r_type = ELF64_R_TYPE_ID (rel->r_info);
1936      if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1937	{
1938	  bfd_set_error (bfd_error_bad_value);
1939	  return false;
1940	}
1941      howto = sparc64_elf_howto_table + r_type;
1942
1943      r_symndx = ELF64_R_SYM (rel->r_info);
1944
1945      if (info->relocateable)
1946	{
1947	  /* This is a relocateable link.  We don't have to change
1948	     anything, unless the reloc is against a section symbol,
1949	     in which case we have to adjust according to where the
1950	     section symbol winds up in the output section.  */
1951	  if (r_symndx < symtab_hdr->sh_info)
1952	    {
1953	      sym = local_syms + r_symndx;
1954	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1955		{
1956		  sec = local_sections[r_symndx];
1957		  rel->r_addend += sec->output_offset + sym->st_value;
1958		}
1959	    }
1960
1961	  continue;
1962	}
1963
1964      /* This is a final link.  */
1965      h = NULL;
1966      sym = NULL;
1967      sec = NULL;
1968      if (r_symndx < symtab_hdr->sh_info)
1969	{
1970	  sym = local_syms + r_symndx;
1971	  sec = local_sections[r_symndx];
1972	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1973	}
1974      else
1975	{
1976	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1977	  while (h->root.type == bfd_link_hash_indirect
1978		 || h->root.type == bfd_link_hash_warning)
1979	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1980	  if (h->root.type == bfd_link_hash_defined
1981	      || h->root.type == bfd_link_hash_defweak)
1982	    {
1983	      boolean skip_it = false;
1984	      sec = h->root.u.def.section;
1985
1986	      switch (r_type)
1987		{
1988		case R_SPARC_WPLT30:
1989		case R_SPARC_PLT32:
1990		case R_SPARC_HIPLT22:
1991		case R_SPARC_LOPLT10:
1992		case R_SPARC_PCPLT32:
1993		case R_SPARC_PCPLT22:
1994		case R_SPARC_PCPLT10:
1995		case R_SPARC_PLT64:
1996		  if (h->plt.offset != (bfd_vma) -1)
1997		    skip_it = true;
1998		  break;
1999
2000		case R_SPARC_GOT10:
2001		case R_SPARC_GOT13:
2002		case R_SPARC_GOT22:
2003		  if (elf_hash_table(info)->dynamic_sections_created
2004		      && (!info->shared
2005			  || (!info->symbolic && h->dynindx != -1)
2006			  || !(h->elf_link_hash_flags
2007			       & ELF_LINK_HASH_DEF_REGULAR)))
2008		    skip_it = true;
2009		  break;
2010
2011		case R_SPARC_PC10:
2012		case R_SPARC_PC22:
2013		case R_SPARC_PC_HH22:
2014		case R_SPARC_PC_HM10:
2015		case R_SPARC_PC_LM22:
2016		  if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2017		    break;
2018		  /* FALLTHRU */
2019
2020		case R_SPARC_8:
2021		case R_SPARC_16:
2022		case R_SPARC_32:
2023		case R_SPARC_DISP8:
2024		case R_SPARC_DISP16:
2025		case R_SPARC_DISP32:
2026		case R_SPARC_WDISP30:
2027		case R_SPARC_WDISP22:
2028		case R_SPARC_HI22:
2029		case R_SPARC_22:
2030		case R_SPARC_13:
2031		case R_SPARC_LO10:
2032		case R_SPARC_UA32:
2033		case R_SPARC_10:
2034		case R_SPARC_11:
2035		case R_SPARC_64:
2036		case R_SPARC_OLO10:
2037		case R_SPARC_HH22:
2038		case R_SPARC_HM10:
2039		case R_SPARC_LM22:
2040		case R_SPARC_WDISP19:
2041		case R_SPARC_WDISP16:
2042		case R_SPARC_7:
2043		case R_SPARC_5:
2044		case R_SPARC_6:
2045		case R_SPARC_DISP64:
2046		case R_SPARC_HIX22:
2047		case R_SPARC_LOX10:
2048		case R_SPARC_H44:
2049		case R_SPARC_M44:
2050		case R_SPARC_L44:
2051		case R_SPARC_UA64:
2052		case R_SPARC_UA16:
2053		  if (info->shared
2054		      && ((!info->symbolic && h->dynindx != -1)
2055			  || !(h->elf_link_hash_flags
2056			       & ELF_LINK_HASH_DEF_REGULAR))
2057		      && ((input_section->flags & SEC_ALLOC) != 0
2058			  /* DWARF will emit R_SPARC_{32,64} relocations in
2059			     its sections against symbols defined externally
2060			     in shared libraries.  We can't do anything
2061			     with them here.  */
2062			  || ((input_section->flags & SEC_DEBUGGING) != 0
2063			      && (h->elf_link_hash_flags
2064				  & ELF_LINK_HASH_DEF_DYNAMIC) != 0)))
2065		    skip_it = true;
2066		  break;
2067		}
2068
2069	      if (skip_it)
2070		{
2071		  /* In these cases, we don't need the relocation
2072                     value.  We check specially because in some
2073                     obscure cases sec->output_section will be NULL.  */
2074		  relocation = 0;
2075		}
2076	      else
2077		{
2078		  relocation = (h->root.u.def.value
2079				+ sec->output_section->vma
2080				+ sec->output_offset);
2081		}
2082	    }
2083	  else if (h->root.type == bfd_link_hash_undefweak)
2084	    relocation = 0;
2085	  else if (info->shared
2086		   && (!info->symbolic || info->allow_shlib_undefined)
2087		   && !info->no_undefined
2088		   && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2089	    relocation = 0;
2090	  else
2091	    {
2092	      if (! ((*info->callbacks->undefined_symbol)
2093		     (info, h->root.root.string, input_bfd,
2094		      input_section, rel->r_offset,
2095		      (!info->shared || info->no_undefined
2096		       || ELF_ST_VISIBILITY (h->other)))))
2097		return false;
2098
2099	      /* To avoid generating warning messages about truncated
2100		 relocations, set the relocation's address to be the same as
2101		 the start of this section.  */
2102
2103	      if (input_section->output_section != NULL)
2104		relocation = input_section->output_section->vma;
2105	      else
2106		relocation = 0;
2107	    }
2108	}
2109
2110do_dynreloc:
2111      /* When generating a shared object, these relocations are copied
2112	 into the output file to be resolved at run time.  */
2113      if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2114	{
2115	  switch (r_type)
2116	    {
2117	    case R_SPARC_PC10:
2118	    case R_SPARC_PC22:
2119	    case R_SPARC_PC_HH22:
2120	    case R_SPARC_PC_HM10:
2121	    case R_SPARC_PC_LM22:
2122	      if (h != NULL
2123		  && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2124		break;
2125	      /* Fall through.  */
2126	    case R_SPARC_DISP8:
2127	    case R_SPARC_DISP16:
2128	    case R_SPARC_DISP32:
2129	    case R_SPARC_WDISP30:
2130	    case R_SPARC_WDISP22:
2131	    case R_SPARC_WDISP19:
2132	    case R_SPARC_WDISP16:
2133	    case R_SPARC_DISP64:
2134	      if (h == NULL)
2135		break;
2136	      /* Fall through.  */
2137	    case R_SPARC_8:
2138	    case R_SPARC_16:
2139	    case R_SPARC_32:
2140	    case R_SPARC_HI22:
2141	    case R_SPARC_22:
2142	    case R_SPARC_13:
2143	    case R_SPARC_LO10:
2144	    case R_SPARC_UA32:
2145	    case R_SPARC_10:
2146	    case R_SPARC_11:
2147	    case R_SPARC_64:
2148	    case R_SPARC_OLO10:
2149	    case R_SPARC_HH22:
2150	    case R_SPARC_HM10:
2151	    case R_SPARC_LM22:
2152	    case R_SPARC_7:
2153	    case R_SPARC_5:
2154	    case R_SPARC_6:
2155	    case R_SPARC_HIX22:
2156	    case R_SPARC_LOX10:
2157	    case R_SPARC_H44:
2158	    case R_SPARC_M44:
2159	    case R_SPARC_L44:
2160	    case R_SPARC_UA64:
2161	    case R_SPARC_UA16:
2162	      {
2163		Elf_Internal_Rela outrel;
2164		boolean skip, relocate;
2165
2166		if (sreloc == NULL)
2167		  {
2168		    const char *name =
2169		      (bfd_elf_string_from_elf_section
2170		       (input_bfd,
2171			elf_elfheader (input_bfd)->e_shstrndx,
2172			elf_section_data (input_section)->rel_hdr.sh_name));
2173
2174		    if (name == NULL)
2175		      return false;
2176
2177		    BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2178				&& strcmp (bfd_get_section_name(input_bfd,
2179								input_section),
2180					   name + 5) == 0);
2181
2182		    sreloc = bfd_get_section_by_name (dynobj, name);
2183		    BFD_ASSERT (sreloc != NULL);
2184		  }
2185
2186		skip = false;
2187		relocate = false;
2188
2189		outrel.r_offset =
2190		  _bfd_elf_section_offset (output_bfd, info, input_section,
2191					   rel->r_offset);
2192		if (outrel.r_offset == (bfd_vma) -1)
2193		  skip = true;
2194		else if (outrel.r_offset == (bfd_vma) -2)
2195		  skip = true, relocate = true;
2196
2197		outrel.r_offset += (input_section->output_section->vma
2198				    + input_section->output_offset);
2199
2200		/* Optimize unaligned reloc usage now that we know where
2201		   it finally resides.  */
2202		switch (r_type)
2203		  {
2204		  case R_SPARC_16:
2205		    if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2206		    break;
2207		  case R_SPARC_UA16:
2208		    if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2209		    break;
2210		  case R_SPARC_32:
2211		    if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2212		    break;
2213		  case R_SPARC_UA32:
2214		    if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2215		    break;
2216		  case R_SPARC_64:
2217		    if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2218		    break;
2219		  case R_SPARC_UA64:
2220		    if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2221		    break;
2222		  }
2223
2224		if (skip)
2225		  memset (&outrel, 0, sizeof outrel);
2226		/* h->dynindx may be -1 if the symbol was marked to
2227		   become local.  */
2228		else if (h != NULL && ! is_plt
2229			 && ((! info->symbolic && h->dynindx != -1)
2230			     || (h->elf_link_hash_flags
2231				 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2232		  {
2233		    BFD_ASSERT (h->dynindx != -1);
2234		    outrel.r_info
2235		      = ELF64_R_INFO (h->dynindx,
2236				      ELF64_R_TYPE_INFO (
2237					ELF64_R_TYPE_DATA (rel->r_info),
2238							   r_type));
2239		    outrel.r_addend = rel->r_addend;
2240		  }
2241		else
2242		  {
2243		    if (r_type == R_SPARC_64)
2244		      {
2245			outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2246			outrel.r_addend = relocation + rel->r_addend;
2247		      }
2248		    else
2249		      {
2250			long indx;
2251
2252			if (is_plt)
2253			  sec = splt;
2254			else if (h == NULL)
2255			  sec = local_sections[r_symndx];
2256			else
2257			  {
2258			    BFD_ASSERT (h->root.type == bfd_link_hash_defined
2259					|| (h->root.type
2260					    == bfd_link_hash_defweak));
2261			    sec = h->root.u.def.section;
2262			  }
2263			if (sec != NULL && bfd_is_abs_section (sec))
2264			  indx = 0;
2265			else if (sec == NULL || sec->owner == NULL)
2266			  {
2267			    bfd_set_error (bfd_error_bad_value);
2268			    return false;
2269			  }
2270			else
2271			  {
2272			    asection *osec;
2273
2274			    osec = sec->output_section;
2275			    indx = elf_section_data (osec)->dynindx;
2276
2277			    /* FIXME: we really should be able to link non-pic
2278			       shared libraries.  */
2279			    if (indx == 0)
2280			      {
2281				BFD_FAIL ();
2282				(*_bfd_error_handler)
2283				  (_("%s: probably compiled without -fPIC?"),
2284				   bfd_archive_filename (input_bfd));
2285				bfd_set_error (bfd_error_bad_value);
2286				return false;
2287			      }
2288			  }
2289
2290			outrel.r_info
2291			  = ELF64_R_INFO (indx,
2292					  ELF64_R_TYPE_INFO (
2293					    ELF64_R_TYPE_DATA (rel->r_info),
2294							       r_type));
2295			outrel.r_addend = relocation + rel->r_addend;
2296		      }
2297		  }
2298
2299		bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2300					   (((Elf64_External_Rela *)
2301					     sreloc->contents)
2302					    + sreloc->reloc_count));
2303		++sreloc->reloc_count;
2304
2305		/* This reloc will be computed at runtime, so there's no
2306		   need to do anything now.  */
2307		if (! relocate)
2308		  continue;
2309	      }
2310	    break;
2311	    }
2312	}
2313
2314      switch (r_type)
2315	{
2316	case R_SPARC_GOT10:
2317	case R_SPARC_GOT13:
2318	case R_SPARC_GOT22:
2319	  /* Relocation is to the entry for this symbol in the global
2320	     offset table.  */
2321	  if (sgot == NULL)
2322	    {
2323	      sgot = bfd_get_section_by_name (dynobj, ".got");
2324	      BFD_ASSERT (sgot != NULL);
2325	    }
2326
2327	  if (h != NULL)
2328	    {
2329	      bfd_vma off = h->got.offset;
2330	      BFD_ASSERT (off != (bfd_vma) -1);
2331
2332	      if (! elf_hash_table (info)->dynamic_sections_created
2333		  || (info->shared
2334		      && (info->symbolic || h->dynindx == -1)
2335		      && (h->elf_link_hash_flags
2336			  & ELF_LINK_HASH_DEF_REGULAR)))
2337		{
2338		  /* This is actually a static link, or it is a -Bsymbolic
2339		     link and the symbol is defined locally, or the symbol
2340		     was forced to be local because of a version file.  We
2341		     must initialize this entry in the global offset table.
2342		     Since the offset must always be a multiple of 8, we
2343		     use the least significant bit to record whether we
2344		     have initialized it already.
2345
2346		     When doing a dynamic link, we create a .rela.got
2347		     relocation entry to initialize the value.  This is
2348		     done in the finish_dynamic_symbol routine.  */
2349
2350		  if ((off & 1) != 0)
2351		    off &= ~1;
2352		  else
2353		    {
2354		      bfd_put_64 (output_bfd, relocation,
2355				  sgot->contents + off);
2356		      h->got.offset |= 1;
2357		    }
2358		}
2359	      relocation = sgot->output_offset + off - got_base;
2360	    }
2361	  else
2362	    {
2363	      bfd_vma off;
2364
2365	      BFD_ASSERT (local_got_offsets != NULL);
2366	      off = local_got_offsets[r_symndx];
2367	      BFD_ASSERT (off != (bfd_vma) -1);
2368
2369	      /* The offset must always be a multiple of 8.  We use
2370		 the least significant bit to record whether we have
2371		 already processed this entry.  */
2372	      if ((off & 1) != 0)
2373		off &= ~1;
2374	      else
2375		{
2376		  local_got_offsets[r_symndx] |= 1;
2377
2378		  if (info->shared)
2379		    {
2380		      asection *srelgot;
2381		      Elf_Internal_Rela outrel;
2382
2383		      /* The Solaris 2.7 64-bit linker adds the contents
2384			 of the location to the value of the reloc.
2385			 Note this is different behaviour to the
2386			 32-bit linker, which both adds the contents
2387			 and ignores the addend.  So clear the location.  */
2388		      bfd_put_64 (output_bfd, (bfd_vma) 0,
2389				  sgot->contents + off);
2390
2391		      /* We need to generate a R_SPARC_RELATIVE reloc
2392			 for the dynamic linker.  */
2393		      srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2394		      BFD_ASSERT (srelgot != NULL);
2395
2396		      outrel.r_offset = (sgot->output_section->vma
2397					 + sgot->output_offset
2398					 + off);
2399		      outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2400		      outrel.r_addend = relocation;
2401		      bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2402						 (((Elf64_External_Rela *)
2403						   srelgot->contents)
2404						  + srelgot->reloc_count));
2405		      ++srelgot->reloc_count;
2406		    }
2407		  else
2408		    bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2409		}
2410	      relocation = sgot->output_offset + off - got_base;
2411	    }
2412	  goto do_default;
2413
2414	case R_SPARC_WPLT30:
2415	case R_SPARC_PLT32:
2416	case R_SPARC_HIPLT22:
2417	case R_SPARC_LOPLT10:
2418	case R_SPARC_PCPLT32:
2419	case R_SPARC_PCPLT22:
2420	case R_SPARC_PCPLT10:
2421	case R_SPARC_PLT64:
2422	  /* Relocation is to the entry for this symbol in the
2423             procedure linkage table.  */
2424	  BFD_ASSERT (h != NULL);
2425
2426	  if (h->plt.offset == (bfd_vma) -1)
2427	    {
2428	      /* We didn't make a PLT entry for this symbol.  This
2429		 happens when statically linking PIC code, or when
2430		 using -Bsymbolic.  */
2431	      goto do_default;
2432	    }
2433
2434	  if (splt == NULL)
2435	    {
2436	      splt = bfd_get_section_by_name (dynobj, ".plt");
2437	      BFD_ASSERT (splt != NULL);
2438	    }
2439
2440	  relocation = (splt->output_section->vma
2441			+ splt->output_offset
2442			+ sparc64_elf_plt_entry_offset (h->plt.offset));
2443	  if (r_type == R_SPARC_WPLT30)
2444	    goto do_wplt30;
2445	  if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2446	    {
2447	      r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2448	      is_plt = true;
2449	      goto do_dynreloc;
2450	    }
2451	  goto do_default;
2452
2453	case R_SPARC_OLO10:
2454	  {
2455	    bfd_vma x;
2456
2457	    relocation += rel->r_addend;
2458	    relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2459
2460	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2461	    x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2462	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2463
2464	    r = bfd_check_overflow (howto->complain_on_overflow,
2465				    howto->bitsize, howto->rightshift,
2466				    bfd_arch_bits_per_address (input_bfd),
2467				    relocation);
2468	  }
2469	  break;
2470
2471	case R_SPARC_WDISP16:
2472	  {
2473	    bfd_vma x;
2474
2475	    relocation += rel->r_addend;
2476	    /* Adjust for pc-relative-ness.  */
2477	    relocation -= (input_section->output_section->vma
2478			   + input_section->output_offset);
2479	    relocation -= rel->r_offset;
2480
2481	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2482	    x &= ~(bfd_vma) 0x303fff;
2483	    x |= ((((relocation >> 2) & 0xc000) << 6)
2484		  | ((relocation >> 2) & 0x3fff));
2485	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2486
2487	    r = bfd_check_overflow (howto->complain_on_overflow,
2488				    howto->bitsize, howto->rightshift,
2489				    bfd_arch_bits_per_address (input_bfd),
2490				    relocation);
2491	  }
2492	  break;
2493
2494	case R_SPARC_HIX22:
2495	  {
2496	    bfd_vma x;
2497
2498	    relocation += rel->r_addend;
2499	    relocation = relocation ^ MINUS_ONE;
2500
2501	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2502	    x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2503	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2504
2505	    r = bfd_check_overflow (howto->complain_on_overflow,
2506				    howto->bitsize, howto->rightshift,
2507				    bfd_arch_bits_per_address (input_bfd),
2508				    relocation);
2509	  }
2510	  break;
2511
2512	case R_SPARC_LOX10:
2513	  {
2514	    bfd_vma x;
2515
2516	    relocation += rel->r_addend;
2517	    relocation = (relocation & 0x3ff) | 0x1c00;
2518
2519	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2520	    x = (x & ~(bfd_vma) 0x1fff) | relocation;
2521	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2522
2523	    r = bfd_reloc_ok;
2524	  }
2525	  break;
2526
2527	case R_SPARC_WDISP30:
2528	do_wplt30:
2529	  if (SEC_DO_RELAX (input_section)
2530	      && rel->r_offset + 4 < input_section->_raw_size)
2531	    {
2532#define G0		0
2533#define O7		15
2534#define XCC		(2 << 20)
2535#define COND(x)		(((x)&0xf)<<25)
2536#define CONDA		COND(0x8)
2537#define INSN_BPA	(F2(0,1) | CONDA | BPRED | XCC)
2538#define INSN_BA		(F2(0,2) | CONDA)
2539#define INSN_OR		F3(2, 0x2, 0)
2540#define INSN_NOP	F2(0,4)
2541
2542	      bfd_vma x, y;
2543
2544	      /* If the instruction is a call with either:
2545		 restore
2546		 arithmetic instruction with rd == %o7
2547		 where rs1 != %o7 and rs2 if it is register != %o7
2548		 then we can optimize if the call destination is near
2549		 by changing the call into a branch always.  */
2550	      x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2551	      y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2552	      if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2553		{
2554		  if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2555		       || ((y & OP3(0x28)) == 0 /* arithmetic */
2556			   && (y & RD(~0)) == RD(O7)))
2557		      && (y & RS1(~0)) != RS1(O7)
2558		      && ((y & F3I(~0))
2559			  || (y & RS2(~0)) != RS2(O7)))
2560		    {
2561		      bfd_vma reloc;
2562
2563		      reloc = relocation + rel->r_addend - rel->r_offset;
2564		      reloc -= (input_section->output_section->vma
2565				+ input_section->output_offset);
2566		      if (reloc & 3)
2567			goto do_default;
2568
2569		      /* Ensure the branch fits into simm22.  */
2570		      if ((reloc & ~(bfd_vma)0x7fffff)
2571			   && ((reloc | 0x7fffff) != MINUS_ONE))
2572			goto do_default;
2573		      reloc >>= 2;
2574
2575		      /* Check whether it fits into simm19.  */
2576		      if ((reloc & 0x3c0000) == 0
2577			  || (reloc & 0x3c0000) == 0x3c0000)
2578			x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2579		      else
2580			x = INSN_BA | (reloc & 0x3fffff); /* ba */
2581		      bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2582		      r = bfd_reloc_ok;
2583		      if (rel->r_offset >= 4
2584			  && (y & (0xffffffff ^ RS1(~0)))
2585			     == (INSN_OR | RD(O7) | RS2(G0)))
2586			{
2587			  bfd_vma z;
2588			  unsigned int reg;
2589
2590			  z = bfd_get_32 (input_bfd,
2591					  contents + rel->r_offset - 4);
2592			  if ((z & (0xffffffff ^ RD(~0)))
2593			      != (INSN_OR | RS1(O7) | RS2(G0)))
2594			    break;
2595
2596			  /* The sequence was
2597			     or %o7, %g0, %rN
2598			     call foo
2599			     or %rN, %g0, %o7
2600
2601			     If call foo was replaced with ba, replace
2602			     or %rN, %g0, %o7 with nop.  */
2603
2604			  reg = (y & RS1(~0)) >> 14;
2605			  if (reg != ((z & RD(~0)) >> 25)
2606			      || reg == G0 || reg == O7)
2607			    break;
2608
2609			  bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2610				      contents + rel->r_offset + 4);
2611			}
2612		      break;
2613		    }
2614		}
2615	    }
2616	  /* FALLTHROUGH */
2617
2618	default:
2619	do_default:
2620	  r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2621					contents, rel->r_offset,
2622					relocation, rel->r_addend);
2623	  break;
2624	}
2625
2626      switch (r)
2627	{
2628	case bfd_reloc_ok:
2629	  break;
2630
2631	default:
2632	case bfd_reloc_outofrange:
2633	  abort ();
2634
2635	case bfd_reloc_overflow:
2636	  {
2637	    const char *name;
2638
2639	    /* The Solaris native linker silently disregards
2640	       overflows.  We don't, but this breaks stabs debugging
2641	       info, whose relocations are only 32-bits wide.  Ignore
2642	       overflows in this case.  */
2643	    if (r_type == R_SPARC_32
2644		&& (input_section->flags & SEC_DEBUGGING) != 0
2645		&& strcmp (bfd_section_name (input_bfd, input_section),
2646			   ".stab") == 0)
2647	      break;
2648
2649	    if (h != NULL)
2650	      {
2651		if (h->root.type == bfd_link_hash_undefweak
2652		    && howto->pc_relative)
2653		  {
2654		    /* Assume this is a call protected by other code that
2655		       detect the symbol is undefined.  If this is the case,
2656		       we can safely ignore the overflow.  If not, the
2657		       program is hosed anyway, and a little warning isn't
2658		       going to help.  */
2659		    break;
2660		  }
2661
2662	        name = h->root.root.string;
2663	      }
2664	    else
2665	      {
2666		name = (bfd_elf_string_from_elf_section
2667			(input_bfd,
2668			 symtab_hdr->sh_link,
2669			 sym->st_name));
2670		if (name == NULL)
2671		  return false;
2672		if (*name == '\0')
2673		  name = bfd_section_name (input_bfd, sec);
2674	      }
2675	    if (! ((*info->callbacks->reloc_overflow)
2676		   (info, name, howto->name, (bfd_vma) 0,
2677		    input_bfd, input_section, rel->r_offset)))
2678	      return false;
2679	  }
2680	break;
2681	}
2682    }
2683
2684  return true;
2685}
2686
2687/* Finish up dynamic symbol handling.  We set the contents of various
2688   dynamic sections here.  */
2689
2690static boolean
2691sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2692     bfd *output_bfd;
2693     struct bfd_link_info *info;
2694     struct elf_link_hash_entry *h;
2695     Elf_Internal_Sym *sym;
2696{
2697  bfd *dynobj;
2698
2699  dynobj = elf_hash_table (info)->dynobj;
2700
2701  if (h->plt.offset != (bfd_vma) -1)
2702    {
2703      asection *splt;
2704      asection *srela;
2705      Elf_Internal_Rela rela;
2706
2707      /* This symbol has an entry in the PLT.  Set it up.  */
2708
2709      BFD_ASSERT (h->dynindx != -1);
2710
2711      splt = bfd_get_section_by_name (dynobj, ".plt");
2712      srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2713      BFD_ASSERT (splt != NULL && srela != NULL);
2714
2715      /* Fill in the entry in the .rela.plt section.  */
2716
2717      if (h->plt.offset < LARGE_PLT_THRESHOLD)
2718	{
2719	  rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2720	  rela.r_addend = 0;
2721	}
2722      else
2723	{
2724	  bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2725	  rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2726	  rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2727			  -(splt->output_section->vma + splt->output_offset);
2728	}
2729      rela.r_offset += (splt->output_section->vma + splt->output_offset);
2730      rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2731
2732      /* Adjust for the first 4 reserved elements in the .plt section
2733	 when setting the offset in the .rela.plt section.
2734	 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2735	 thus .plt[4] has corresponding .rela.plt[0] and so on.  */
2736
2737      bfd_elf64_swap_reloca_out (output_bfd, &rela,
2738				 ((Elf64_External_Rela *) srela->contents
2739				  + (h->plt.offset - 4)));
2740
2741      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2742	{
2743	  /* Mark the symbol as undefined, rather than as defined in
2744	     the .plt section.  Leave the value alone.  */
2745	  sym->st_shndx = SHN_UNDEF;
2746	  /* If the symbol is weak, we do need to clear the value.
2747	     Otherwise, the PLT entry would provide a definition for
2748	     the symbol even if the symbol wasn't defined anywhere,
2749	     and so the symbol would never be NULL.  */
2750	  if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2751	      == 0)
2752	    sym->st_value = 0;
2753	}
2754    }
2755
2756  if (h->got.offset != (bfd_vma) -1)
2757    {
2758      asection *sgot;
2759      asection *srela;
2760      Elf_Internal_Rela rela;
2761
2762      /* This symbol has an entry in the GOT.  Set it up.  */
2763
2764      sgot = bfd_get_section_by_name (dynobj, ".got");
2765      srela = bfd_get_section_by_name (dynobj, ".rela.got");
2766      BFD_ASSERT (sgot != NULL && srela != NULL);
2767
2768      rela.r_offset = (sgot->output_section->vma
2769		       + sgot->output_offset
2770		       + (h->got.offset &~ (bfd_vma) 1));
2771
2772      /* If this is a -Bsymbolic link, and the symbol is defined
2773	 locally, we just want to emit a RELATIVE reloc.  Likewise if
2774	 the symbol was forced to be local because of a version file.
2775	 The entry in the global offset table will already have been
2776	 initialized in the relocate_section function.  */
2777      if (info->shared
2778	  && (info->symbolic || h->dynindx == -1)
2779	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2780	{
2781	  asection *sec = h->root.u.def.section;
2782	  rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2783	  rela.r_addend = (h->root.u.def.value
2784			   + sec->output_section->vma
2785			   + sec->output_offset);
2786	}
2787      else
2788	{
2789	  bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2790	  rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2791	  rela.r_addend = 0;
2792	}
2793
2794      bfd_elf64_swap_reloca_out (output_bfd, &rela,
2795				 ((Elf64_External_Rela *) srela->contents
2796				  + srela->reloc_count));
2797      ++srela->reloc_count;
2798    }
2799
2800  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2801    {
2802      asection *s;
2803      Elf_Internal_Rela rela;
2804
2805      /* This symbols needs a copy reloc.  Set it up.  */
2806
2807      BFD_ASSERT (h->dynindx != -1);
2808
2809      s = bfd_get_section_by_name (h->root.u.def.section->owner,
2810				   ".rela.bss");
2811      BFD_ASSERT (s != NULL);
2812
2813      rela.r_offset = (h->root.u.def.value
2814		       + h->root.u.def.section->output_section->vma
2815		       + h->root.u.def.section->output_offset);
2816      rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2817      rela.r_addend = 0;
2818      bfd_elf64_swap_reloca_out (output_bfd, &rela,
2819				 ((Elf64_External_Rela *) s->contents
2820				  + s->reloc_count));
2821      ++s->reloc_count;
2822    }
2823
2824  /* Mark some specially defined symbols as absolute.  */
2825  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2826      || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2827      || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2828    sym->st_shndx = SHN_ABS;
2829
2830  return true;
2831}
2832
2833/* Finish up the dynamic sections.  */
2834
2835static boolean
2836sparc64_elf_finish_dynamic_sections (output_bfd, info)
2837     bfd *output_bfd;
2838     struct bfd_link_info *info;
2839{
2840  bfd *dynobj;
2841  int stt_regidx = -1;
2842  asection *sdyn;
2843  asection *sgot;
2844
2845  dynobj = elf_hash_table (info)->dynobj;
2846
2847  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2848
2849  if (elf_hash_table (info)->dynamic_sections_created)
2850    {
2851      asection *splt;
2852      Elf64_External_Dyn *dyncon, *dynconend;
2853
2854      splt = bfd_get_section_by_name (dynobj, ".plt");
2855      BFD_ASSERT (splt != NULL && sdyn != NULL);
2856
2857      dyncon = (Elf64_External_Dyn *) sdyn->contents;
2858      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2859      for (; dyncon < dynconend; dyncon++)
2860	{
2861	  Elf_Internal_Dyn dyn;
2862	  const char *name;
2863	  boolean size;
2864
2865	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2866
2867	  switch (dyn.d_tag)
2868	    {
2869	    case DT_PLTGOT:   name = ".plt"; size = false; break;
2870	    case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2871	    case DT_JMPREL:   name = ".rela.plt"; size = false; break;
2872	    case DT_SPARC_REGISTER:
2873	      if (stt_regidx == -1)
2874		{
2875		  stt_regidx =
2876		    _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2877		  if (stt_regidx == -1)
2878		    return false;
2879		}
2880	      dyn.d_un.d_val = stt_regidx++;
2881	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2882	      /* fallthrough */
2883	    default:	      name = NULL; size = false; break;
2884	    }
2885
2886	  if (name != NULL)
2887	    {
2888	      asection *s;
2889
2890	      s = bfd_get_section_by_name (output_bfd, name);
2891	      if (s == NULL)
2892		dyn.d_un.d_val = 0;
2893	      else
2894		{
2895		  if (! size)
2896		    dyn.d_un.d_ptr = s->vma;
2897		  else
2898		    {
2899		      if (s->_cooked_size != 0)
2900			dyn.d_un.d_val = s->_cooked_size;
2901		      else
2902			dyn.d_un.d_val = s->_raw_size;
2903		    }
2904		}
2905	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2906	    }
2907	}
2908
2909      /* Initialize the contents of the .plt section.  */
2910      if (splt->_raw_size > 0)
2911	{
2912	  sparc64_elf_build_plt (output_bfd, splt->contents,
2913				 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2914	}
2915
2916      elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2917	PLT_ENTRY_SIZE;
2918    }
2919
2920  /* Set the first entry in the global offset table to the address of
2921     the dynamic section.  */
2922  sgot = bfd_get_section_by_name (dynobj, ".got");
2923  BFD_ASSERT (sgot != NULL);
2924  if (sgot->_raw_size > 0)
2925    {
2926      if (sdyn == NULL)
2927	bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2928      else
2929	bfd_put_64 (output_bfd,
2930		    sdyn->output_section->vma + sdyn->output_offset,
2931		    sgot->contents);
2932    }
2933
2934  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2935
2936  return true;
2937}
2938
2939static enum elf_reloc_type_class
2940sparc64_elf_reloc_type_class (rela)
2941     const Elf_Internal_Rela *rela;
2942{
2943  switch ((int) ELF64_R_TYPE (rela->r_info))
2944    {
2945    case R_SPARC_RELATIVE:
2946      return reloc_class_relative;
2947    case R_SPARC_JMP_SLOT:
2948      return reloc_class_plt;
2949    case R_SPARC_COPY:
2950      return reloc_class_copy;
2951    default:
2952      return reloc_class_normal;
2953    }
2954}
2955
2956/* Functions for dealing with the e_flags field.  */
2957
2958/* Merge backend specific data from an object file to the output
2959   object file when linking.  */
2960
2961static boolean
2962sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2963     bfd *ibfd;
2964     bfd *obfd;
2965{
2966  boolean error;
2967  flagword new_flags, old_flags;
2968  int new_mm, old_mm;
2969
2970  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2971      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2972    return true;
2973
2974  new_flags = elf_elfheader (ibfd)->e_flags;
2975  old_flags = elf_elfheader (obfd)->e_flags;
2976
2977  if (!elf_flags_init (obfd))   /* First call, no flags set */
2978    {
2979      elf_flags_init (obfd) = true;
2980      elf_elfheader (obfd)->e_flags = new_flags;
2981    }
2982
2983  else if (new_flags == old_flags)      /* Compatible flags are ok */
2984    ;
2985
2986  else                                  /* Incompatible flags */
2987    {
2988      error = false;
2989
2990#define EF_SPARC_ISA_EXTENSIONS \
2991  (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2992
2993      if ((ibfd->flags & DYNAMIC) != 0)
2994	{
2995	  /* We don't want dynamic objects memory ordering and
2996	     architecture to have any role. That's what dynamic linker
2997	     should do.  */
2998	  new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2999	  new_flags |= (old_flags
3000			& (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3001	}
3002      else
3003	{
3004	  /* Choose the highest architecture requirements.  */
3005	  old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3006	  new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3007	  if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3008	      && (old_flags & EF_SPARC_HAL_R1))
3009	    {
3010	      error = true;
3011	      (*_bfd_error_handler)
3012		(_("%s: linking UltraSPARC specific with HAL specific code"),
3013		 bfd_archive_filename (ibfd));
3014	    }
3015	  /* Choose the most restrictive memory ordering.  */
3016	  old_mm = (old_flags & EF_SPARCV9_MM);
3017	  new_mm = (new_flags & EF_SPARCV9_MM);
3018	  old_flags &= ~EF_SPARCV9_MM;
3019	  new_flags &= ~EF_SPARCV9_MM;
3020	  if (new_mm < old_mm)
3021	    old_mm = new_mm;
3022	  old_flags |= old_mm;
3023	  new_flags |= old_mm;
3024	}
3025
3026      /* Warn about any other mismatches */
3027      if (new_flags != old_flags)
3028        {
3029          error = true;
3030          (*_bfd_error_handler)
3031            (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3032             bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3033        }
3034
3035      elf_elfheader (obfd)->e_flags = old_flags;
3036
3037      if (error)
3038        {
3039          bfd_set_error (bfd_error_bad_value);
3040          return false;
3041        }
3042    }
3043  return true;
3044}
3045
3046/* Print a STT_REGISTER symbol to file FILE.  */
3047
3048static const char *
3049sparc64_elf_print_symbol_all (abfd, filep, symbol)
3050     bfd *abfd ATTRIBUTE_UNUSED;
3051     PTR filep;
3052     asymbol *symbol;
3053{
3054  FILE *file = (FILE *) filep;
3055  int reg, type;
3056
3057  if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3058      != STT_REGISTER)
3059    return NULL;
3060
3061  reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3062  type = symbol->flags;
3063  fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3064		 ((type & BSF_LOCAL)
3065		  ? (type & BSF_GLOBAL) ? '!' : 'l'
3066	          : (type & BSF_GLOBAL) ? 'g' : ' '),
3067	         (type & BSF_WEAK) ? 'w' : ' ');
3068  if (symbol->name == NULL || symbol->name [0] == '\0')
3069    return "#scratch";
3070  else
3071    return symbol->name;
3072}
3073
3074/* Set the right machine number for a SPARC64 ELF file.  */
3075
3076static boolean
3077sparc64_elf_object_p (abfd)
3078     bfd *abfd;
3079{
3080  unsigned long mach = bfd_mach_sparc_v9;
3081
3082  if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3083    mach = bfd_mach_sparc_v9b;
3084  else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3085    mach = bfd_mach_sparc_v9a;
3086  return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3087}
3088
3089/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3090   standard ELF, because R_SPARC_OLO10 has secondary addend in
3091   ELF64_R_TYPE_DATA field.  This structure is used to redirect the
3092   relocation handling routines.  */
3093
3094const struct elf_size_info sparc64_elf_size_info =
3095{
3096  sizeof (Elf64_External_Ehdr),
3097  sizeof (Elf64_External_Phdr),
3098  sizeof (Elf64_External_Shdr),
3099  sizeof (Elf64_External_Rel),
3100  sizeof (Elf64_External_Rela),
3101  sizeof (Elf64_External_Sym),
3102  sizeof (Elf64_External_Dyn),
3103  sizeof (Elf_External_Note),
3104  4,		/* hash-table entry size */
3105  /* internal relocations per external relocations.
3106     For link purposes we use just 1 internal per
3107     1 external, for assembly and slurp symbol table
3108     we use 2.  */
3109  1,
3110  64,		/* arch_size */
3111  8,		/* file_align */
3112  ELFCLASS64,
3113  EV_CURRENT,
3114  bfd_elf64_write_out_phdrs,
3115  bfd_elf64_write_shdrs_and_ehdr,
3116  sparc64_elf_write_relocs,
3117  bfd_elf64_swap_symbol_out,
3118  sparc64_elf_slurp_reloc_table,
3119  bfd_elf64_slurp_symbol_table,
3120  bfd_elf64_swap_dyn_in,
3121  bfd_elf64_swap_dyn_out,
3122  NULL,
3123  NULL,
3124  NULL,
3125  NULL
3126};
3127
3128#define TARGET_BIG_SYM	bfd_elf64_sparc_vec
3129#define TARGET_BIG_NAME	"elf64-sparc"
3130#define ELF_ARCH	bfd_arch_sparc
3131#define ELF_MAXPAGESIZE 0x100000
3132
3133/* This is the official ABI value.  */
3134#define ELF_MACHINE_CODE EM_SPARCV9
3135
3136/* This is the value that we used before the ABI was released.  */
3137#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3138
3139#define bfd_elf64_bfd_link_hash_table_create \
3140  sparc64_elf_bfd_link_hash_table_create
3141
3142#define elf_info_to_howto \
3143  sparc64_elf_info_to_howto
3144#define bfd_elf64_get_reloc_upper_bound \
3145  sparc64_elf_get_reloc_upper_bound
3146#define bfd_elf64_get_dynamic_reloc_upper_bound \
3147  sparc64_elf_get_dynamic_reloc_upper_bound
3148#define bfd_elf64_canonicalize_dynamic_reloc \
3149  sparc64_elf_canonicalize_dynamic_reloc
3150#define bfd_elf64_bfd_reloc_type_lookup \
3151  sparc64_elf_reloc_type_lookup
3152#define bfd_elf64_bfd_relax_section \
3153  sparc64_elf_relax_section
3154
3155#define elf_backend_create_dynamic_sections \
3156  _bfd_elf_create_dynamic_sections
3157#define elf_backend_add_symbol_hook \
3158  sparc64_elf_add_symbol_hook
3159#define elf_backend_get_symbol_type \
3160  sparc64_elf_get_symbol_type
3161#define elf_backend_symbol_processing \
3162  sparc64_elf_symbol_processing
3163#define elf_backend_check_relocs \
3164  sparc64_elf_check_relocs
3165#define elf_backend_adjust_dynamic_symbol \
3166  sparc64_elf_adjust_dynamic_symbol
3167#define elf_backend_size_dynamic_sections \
3168  sparc64_elf_size_dynamic_sections
3169#define elf_backend_relocate_section \
3170  sparc64_elf_relocate_section
3171#define elf_backend_finish_dynamic_symbol \
3172  sparc64_elf_finish_dynamic_symbol
3173#define elf_backend_finish_dynamic_sections \
3174  sparc64_elf_finish_dynamic_sections
3175#define elf_backend_print_symbol_all \
3176  sparc64_elf_print_symbol_all
3177#define elf_backend_output_arch_syms \
3178  sparc64_elf_output_arch_syms
3179#define bfd_elf64_bfd_merge_private_bfd_data \
3180  sparc64_elf_merge_private_bfd_data
3181
3182#define elf_backend_size_info \
3183  sparc64_elf_size_info
3184#define elf_backend_object_p \
3185  sparc64_elf_object_p
3186#define elf_backend_reloc_type_class \
3187  sparc64_elf_reloc_type_class
3188
3189#define elf_backend_want_got_plt 0
3190#define elf_backend_plt_readonly 0
3191#define elf_backend_want_plt_sym 1
3192
3193/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
3194#define elf_backend_plt_alignment 8
3195
3196#define elf_backend_got_header_size 8
3197#define elf_backend_plt_header_size PLT_HEADER_SIZE
3198
3199#include "elf64-target.h"
3200