elf64-sparc.c revision 107492
150476Speter/* SPARC-specific support for 64-bit ELF
222787Swosch   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
374856Sru   Free Software Foundation, Inc.
422787Swosch
522787SwoschThis file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "opcode/sparc.h"
26
27/* This is defined if one wants to build upward compatible binaries
28   with the original sparc64-elf toolchain.  The support is kept in for
29   now but is turned off by default.  dje 970930  */
30/*#define SPARC64_OLD_RELOCS*/
31
32#include "elf/sparc.h"
33
34/* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
35#define MINUS_ONE (~ (bfd_vma) 0)
36
37static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38  PARAMS ((bfd *));
39static bfd_reloc_status_type init_insn_reloc
40  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41	   bfd *, bfd_vma *, bfd_vma *));
42static reloc_howto_type *sparc64_elf_reloc_type_lookup
43  PARAMS ((bfd *, bfd_reloc_code_real_type));
44static void sparc64_elf_info_to_howto
45  PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47static void sparc64_elf_build_plt
48  PARAMS ((bfd *, unsigned char *, int));
49static bfd_vma sparc64_elf_plt_entry_offset
50  PARAMS ((bfd_vma));
51static bfd_vma sparc64_elf_plt_ptr_offset
52  PARAMS ((bfd_vma, bfd_vma));
53
54static boolean sparc64_elf_check_relocs
55  PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56	   const Elf_Internal_Rela *));
57static boolean sparc64_elf_adjust_dynamic_symbol
58  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59static boolean sparc64_elf_size_dynamic_sections
60  PARAMS ((bfd *, struct bfd_link_info *));
61static int sparc64_elf_get_symbol_type
62  PARAMS (( Elf_Internal_Sym *, int));
63static boolean sparc64_elf_add_symbol_hook
64  PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65	   const char **, flagword *, asection **, bfd_vma *));
66static boolean sparc64_elf_output_arch_syms
67  PARAMS ((bfd *, struct bfd_link_info *, PTR,
68	   boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69static void sparc64_elf_symbol_processing
70  PARAMS ((bfd *, asymbol *));
71
72static boolean sparc64_elf_merge_private_bfd_data
73  PARAMS ((bfd *, bfd *));
74
75static boolean sparc64_elf_fake_sections
76  PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
77
78static const char *sparc64_elf_print_symbol_all
79  PARAMS ((bfd *, PTR, asymbol *));
80static boolean sparc64_elf_relax_section
81  PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
82static boolean sparc64_elf_relocate_section
83  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
84	   Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
85static boolean sparc64_elf_finish_dynamic_symbol
86  PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
87	   Elf_Internal_Sym *));
88static boolean sparc64_elf_finish_dynamic_sections
89  PARAMS ((bfd *, struct bfd_link_info *));
90static boolean sparc64_elf_object_p PARAMS ((bfd *));
91static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
92static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
93static boolean sparc64_elf_slurp_one_reloc_table
94  PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
95static boolean sparc64_elf_slurp_reloc_table
96  PARAMS ((bfd *, asection *, asymbol **, boolean));
97static long sparc64_elf_canonicalize_dynamic_reloc
98  PARAMS ((bfd *, arelent **, asymbol **));
99static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
100static enum elf_reloc_type_class sparc64_elf_reloc_type_class
101  PARAMS ((const Elf_Internal_Rela *));
102
103/* The relocation "howto" table.  */
104
105static bfd_reloc_status_type sparc_elf_notsup_reloc
106  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
107static bfd_reloc_status_type sparc_elf_wdisp16_reloc
108  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
109static bfd_reloc_status_type sparc_elf_hix22_reloc
110  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
111static bfd_reloc_status_type sparc_elf_lox10_reloc
112  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
113
114static reloc_howto_type sparc64_elf_howto_table[] =
115{
116  HOWTO(R_SPARC_NONE,      0,0, 0,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_NONE",    false,0,0x00000000,true),
117  HOWTO(R_SPARC_8,         0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_8",       false,0,0x000000ff,true),
118  HOWTO(R_SPARC_16,        0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_16",      false,0,0x0000ffff,true),
119  HOWTO(R_SPARC_32,        0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_32",      false,0,0xffffffff,true),
120  HOWTO(R_SPARC_DISP8,     0,0, 8,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP8",   false,0,0x000000ff,true),
121  HOWTO(R_SPARC_DISP16,    0,1,16,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP16",  false,0,0x0000ffff,true),
122  HOWTO(R_SPARC_DISP32,    0,2,32,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP32",  false,0,0xffffffff,true),
123  HOWTO(R_SPARC_WDISP30,   2,2,30,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP30", false,0,0x3fffffff,true),
124  HOWTO(R_SPARC_WDISP22,   2,2,22,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP22", false,0,0x003fffff,true),
125  HOWTO(R_SPARC_HI22,     10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HI22",    false,0,0x003fffff,true),
126  HOWTO(R_SPARC_22,        0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_22",      false,0,0x003fffff,true),
127  HOWTO(R_SPARC_13,        0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_13",      false,0,0x00001fff,true),
128  HOWTO(R_SPARC_LO10,      0,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LO10",    false,0,0x000003ff,true),
129  HOWTO(R_SPARC_GOT10,     0,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT10",   false,0,0x000003ff,true),
130  HOWTO(R_SPARC_GOT13,     0,2,13,false,0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_GOT13",   false,0,0x00001fff,true),
131  HOWTO(R_SPARC_GOT22,    10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT22",   false,0,0x003fffff,true),
132  HOWTO(R_SPARC_PC10,      0,2,10,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC10",    false,0,0x000003ff,true),
133  HOWTO(R_SPARC_PC22,     10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PC22",    false,0,0x003fffff,true),
134  HOWTO(R_SPARC_WPLT30,    2,2,30,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WPLT30",  false,0,0x3fffffff,true),
135  HOWTO(R_SPARC_COPY,      0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_COPY",    false,0,0x00000000,true),
136  HOWTO(R_SPARC_GLOB_DAT,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
137  HOWTO(R_SPARC_JMP_SLOT,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
138  HOWTO(R_SPARC_RELATIVE,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_RELATIVE",false,0,0x00000000,true),
139  HOWTO(R_SPARC_UA32,      0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA32",    false,0,0xffffffff,true),
140#ifndef SPARC64_OLD_RELOCS
141  HOWTO(R_SPARC_PLT32,     0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT32",   false,0,0xffffffff,true),
142  /* These aren't implemented yet.  */
143  HOWTO(R_SPARC_HIPLT22,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_HIPLT22",  false,0,0x00000000,true),
144  HOWTO(R_SPARC_LOPLT10,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_LOPLT10",  false,0,0x00000000,true),
145  HOWTO(R_SPARC_PCPLT32,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT32",  false,0,0x00000000,true),
146  HOWTO(R_SPARC_PCPLT22,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT22",  false,0,0x00000000,true),
147  HOWTO(R_SPARC_PCPLT10,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT10",  false,0,0x00000000,true),
148#endif
149  HOWTO(R_SPARC_10,        0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_10",      false,0,0x000003ff,true),
150  HOWTO(R_SPARC_11,        0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_11",      false,0,0x000007ff,true),
151  HOWTO(R_SPARC_64,        0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_64",      false,0,MINUS_ONE, true),
152  HOWTO(R_SPARC_OLO10,     0,2,13,false,0,complain_overflow_signed,  sparc_elf_notsup_reloc, "R_SPARC_OLO10",   false,0,0x00001fff,true),
153  HOWTO(R_SPARC_HH22,     42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_HH22",    false,0,0x003fffff,true),
154  HOWTO(R_SPARC_HM10,     32,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HM10",    false,0,0x000003ff,true),
155  HOWTO(R_SPARC_LM22,     10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LM22",    false,0,0x003fffff,true),
156  HOWTO(R_SPARC_PC_HH22,  42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_PC_HH22",    false,0,0x003fffff,true),
157  HOWTO(R_SPARC_PC_HM10,  32,2,10,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_HM10",    false,0,0x000003ff,true),
158  HOWTO(R_SPARC_PC_LM22,  10,2,22,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_LM22",    false,0,0x003fffff,true),
159  HOWTO(R_SPARC_WDISP16,   2,2,16,true, 0,complain_overflow_signed,  sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
160  HOWTO(R_SPARC_WDISP19,   2,2,19,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP19", false,0,0x0007ffff,true),
161  HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_UNUSED_42",false,0,0x00000000,true),
162  HOWTO(R_SPARC_7,         0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_7",       false,0,0x0000007f,true),
163  HOWTO(R_SPARC_5,         0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_5",       false,0,0x0000001f,true),
164  HOWTO(R_SPARC_6,         0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_6",       false,0,0x0000003f,true),
165  HOWTO(R_SPARC_DISP64,    0,4,64,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP64",  false,0,MINUS_ONE, true),
166  HOWTO(R_SPARC_PLT64,     0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT64",   false,0,MINUS_ONE, true),
167  HOWTO(R_SPARC_HIX22,     0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,  "R_SPARC_HIX22",   false,0,MINUS_ONE, false),
168  HOWTO(R_SPARC_LOX10,     0,4, 0,false,0,complain_overflow_dont,    sparc_elf_lox10_reloc,  "R_SPARC_LOX10",   false,0,MINUS_ONE, false),
169  HOWTO(R_SPARC_H44,      22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_H44",     false,0,0x003fffff,false),
170  HOWTO(R_SPARC_M44,      12,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_M44",     false,0,0x000003ff,false),
171  HOWTO(R_SPARC_L44,       0,2,13,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_L44",     false,0,0x00000fff,false),
172  HOWTO(R_SPARC_REGISTER,  0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
173  HOWTO(R_SPARC_UA64,        0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA64",      false,0,MINUS_ONE, true),
174  HOWTO(R_SPARC_UA16,        0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA16",      false,0,0x0000ffff,true)
175};
176
177struct elf_reloc_map {
178  bfd_reloc_code_real_type bfd_reloc_val;
179  unsigned char elf_reloc_val;
180};
181
182static const struct elf_reloc_map sparc_reloc_map[] =
183{
184  { BFD_RELOC_NONE, R_SPARC_NONE, },
185  { BFD_RELOC_16, R_SPARC_16, },
186  { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
187  { BFD_RELOC_8, R_SPARC_8 },
188  { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
189  { BFD_RELOC_CTOR, R_SPARC_64 },
190  { BFD_RELOC_32, R_SPARC_32 },
191  { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
192  { BFD_RELOC_HI22, R_SPARC_HI22 },
193  { BFD_RELOC_LO10, R_SPARC_LO10, },
194  { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
195  { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
196  { BFD_RELOC_SPARC22, R_SPARC_22 },
197  { BFD_RELOC_SPARC13, R_SPARC_13 },
198  { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
199  { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
200  { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
201  { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
202  { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
203  { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
204  { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
205  { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
206  { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
207  { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
208  { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
209  { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
210  { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
211  { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
212  { BFD_RELOC_SPARC_10, R_SPARC_10 },
213  { BFD_RELOC_SPARC_11, R_SPARC_11 },
214  { BFD_RELOC_SPARC_64, R_SPARC_64 },
215  { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
216  { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
217  { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
218  { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
219  { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
220  { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
221  { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
222  { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
223  { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
224  { BFD_RELOC_SPARC_7, R_SPARC_7 },
225  { BFD_RELOC_SPARC_5, R_SPARC_5 },
226  { BFD_RELOC_SPARC_6, R_SPARC_6 },
227  { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
228#ifndef SPARC64_OLD_RELOCS
229  { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
230#endif
231  { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
232  { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
233  { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
234  { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
235  { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
236  { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
237  { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
238};
239
240static reloc_howto_type *
241sparc64_elf_reloc_type_lookup (abfd, code)
242     bfd *abfd ATTRIBUTE_UNUSED;
243     bfd_reloc_code_real_type code;
244{
245  unsigned int i;
246  for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
247    {
248      if (sparc_reloc_map[i].bfd_reloc_val == code)
249	return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
250    }
251  return 0;
252}
253
254static void
255sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
256     bfd *abfd ATTRIBUTE_UNUSED;
257     arelent *cache_ptr;
258     Elf64_Internal_Rela *dst;
259{
260  BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
261  cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
262}
263
264/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
265   section can represent up to two relocs, we must tell the user to allocate
266   more space.  */
267
268static long
269sparc64_elf_get_reloc_upper_bound (abfd, sec)
270     bfd *abfd ATTRIBUTE_UNUSED;
271     asection *sec;
272{
273  return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
274}
275
276static long
277sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
278     bfd *abfd;
279{
280  return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
281}
282
283/* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
284   them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
285   has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
286   for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
287
288static boolean
289sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
290     bfd *abfd;
291     asection *asect;
292     Elf_Internal_Shdr *rel_hdr;
293     asymbol **symbols;
294     boolean dynamic;
295{
296  PTR allocated = NULL;
297  bfd_byte *native_relocs;
298  arelent *relent;
299  unsigned int i;
300  int entsize;
301  bfd_size_type count;
302  arelent *relents;
303
304  allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
305  if (allocated == NULL)
306    goto error_return;
307
308  if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
309      || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
310    goto error_return;
311
312  native_relocs = (bfd_byte *) allocated;
313
314  relents = asect->relocation + asect->reloc_count;
315
316  entsize = rel_hdr->sh_entsize;
317  BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
318
319  count = rel_hdr->sh_size / entsize;
320
321  for (i = 0, relent = relents; i < count;
322       i++, relent++, native_relocs += entsize)
323    {
324      Elf_Internal_Rela rela;
325
326      bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
327
328      /* The address of an ELF reloc is section relative for an object
329	 file, and absolute for an executable file or shared library.
330	 The address of a normal BFD reloc is always section relative,
331	 and the address of a dynamic reloc is absolute..  */
332      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
333	relent->address = rela.r_offset;
334      else
335	relent->address = rela.r_offset - asect->vma;
336
337      if (ELF64_R_SYM (rela.r_info) == 0)
338	relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
339      else
340	{
341	  asymbol **ps, *s;
342
343	  ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
344	  s = *ps;
345
346	  /* Canonicalize ELF section symbols.  FIXME: Why?  */
347	  if ((s->flags & BSF_SECTION_SYM) == 0)
348	    relent->sym_ptr_ptr = ps;
349	  else
350	    relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
351	}
352
353      relent->addend = rela.r_addend;
354
355      BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
356      if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
357	{
358	  relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
359	  relent[1].address = relent->address;
360	  relent++;
361	  relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
362	  relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
363	  relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
364	}
365      else
366	relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
367    }
368
369  asect->reloc_count += relent - relents;
370
371  if (allocated != NULL)
372    free (allocated);
373
374  return true;
375
376 error_return:
377  if (allocated != NULL)
378    free (allocated);
379  return false;
380}
381
382/* Read in and swap the external relocs.  */
383
384static boolean
385sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
386     bfd *abfd;
387     asection *asect;
388     asymbol **symbols;
389     boolean dynamic;
390{
391  struct bfd_elf_section_data * const d = elf_section_data (asect);
392  Elf_Internal_Shdr *rel_hdr;
393  Elf_Internal_Shdr *rel_hdr2;
394  bfd_size_type amt;
395
396  if (asect->relocation != NULL)
397    return true;
398
399  if (! dynamic)
400    {
401      if ((asect->flags & SEC_RELOC) == 0
402	  || asect->reloc_count == 0)
403	return true;
404
405      rel_hdr = &d->rel_hdr;
406      rel_hdr2 = d->rel_hdr2;
407
408      BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
409		  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
410    }
411  else
412    {
413      /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
414	 case because relocations against this section may use the
415	 dynamic symbol table, and in that case bfd_section_from_shdr
416	 in elf.c does not update the RELOC_COUNT.  */
417      if (asect->_raw_size == 0)
418	return true;
419
420      rel_hdr = &d->this_hdr;
421      asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
422      rel_hdr2 = NULL;
423    }
424
425  amt = asect->reloc_count;
426  amt *= 2 * sizeof (arelent);
427  asect->relocation = (arelent *) bfd_alloc (abfd, amt);
428  if (asect->relocation == NULL)
429    return false;
430
431  /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count.  */
432  asect->reloc_count = 0;
433
434  if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
435					  dynamic))
436    return false;
437
438  if (rel_hdr2
439      && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
440					     dynamic))
441    return false;
442
443  return true;
444}
445
446/* Canonicalize the dynamic relocation entries.  Note that we return
447   the dynamic relocations as a single block, although they are
448   actually associated with particular sections; the interface, which
449   was designed for SunOS style shared libraries, expects that there
450   is only one set of dynamic relocs.  Any section that was actually
451   installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
452   the dynamic symbol table, is considered to be a dynamic reloc
453   section.  */
454
455static long
456sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
457     bfd *abfd;
458     arelent **storage;
459     asymbol **syms;
460{
461  asection *s;
462  long ret;
463
464  if (elf_dynsymtab (abfd) == 0)
465    {
466      bfd_set_error (bfd_error_invalid_operation);
467      return -1;
468    }
469
470  ret = 0;
471  for (s = abfd->sections; s != NULL; s = s->next)
472    {
473      if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
474	  && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
475	{
476	  arelent *p;
477	  long count, i;
478
479	  if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
480	    return -1;
481	  count = s->reloc_count;
482	  p = s->relocation;
483	  for (i = 0; i < count; i++)
484	    *storage++ = p++;
485	  ret += count;
486	}
487    }
488
489  *storage = NULL;
490
491  return ret;
492}
493
494/* Write out the relocs.  */
495
496static void
497sparc64_elf_write_relocs (abfd, sec, data)
498     bfd *abfd;
499     asection *sec;
500     PTR data;
501{
502  boolean *failedp = (boolean *) data;
503  Elf_Internal_Shdr *rela_hdr;
504  Elf64_External_Rela *outbound_relocas, *src_rela;
505  unsigned int idx, count;
506  asymbol *last_sym = 0;
507  int last_sym_idx = 0;
508
509  /* If we have already failed, don't do anything.  */
510  if (*failedp)
511    return;
512
513  if ((sec->flags & SEC_RELOC) == 0)
514    return;
515
516  /* The linker backend writes the relocs out itself, and sets the
517     reloc_count field to zero to inhibit writing them here.  Also,
518     sometimes the SEC_RELOC flag gets set even when there aren't any
519     relocs.  */
520  if (sec->reloc_count == 0)
521    return;
522
523  /* We can combine two relocs that refer to the same address
524     into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
525     latter is R_SPARC_13 with no associated symbol.  */
526  count = 0;
527  for (idx = 0; idx < sec->reloc_count; idx++)
528    {
529      bfd_vma addr;
530
531      ++count;
532
533      addr = sec->orelocation[idx]->address;
534      if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
535	  && idx < sec->reloc_count - 1)
536	{
537	  arelent *r = sec->orelocation[idx + 1];
538
539	  if (r->howto->type == R_SPARC_13
540	      && r->address == addr
541	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
542	      && (*r->sym_ptr_ptr)->value == 0)
543	    ++idx;
544	}
545    }
546
547  rela_hdr = &elf_section_data (sec)->rel_hdr;
548
549  rela_hdr->sh_size = rela_hdr->sh_entsize * count;
550  rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
551  if (rela_hdr->contents == NULL)
552    {
553      *failedp = true;
554      return;
555    }
556
557  /* Figure out whether the relocations are RELA or REL relocations.  */
558  if (rela_hdr->sh_type != SHT_RELA)
559    abort ();
560
561  /* orelocation has the data, reloc_count has the count...  */
562  outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
563  src_rela = outbound_relocas;
564
565  for (idx = 0; idx < sec->reloc_count; idx++)
566    {
567      Elf_Internal_Rela dst_rela;
568      arelent *ptr;
569      asymbol *sym;
570      int n;
571
572      ptr = sec->orelocation[idx];
573
574      /* The address of an ELF reloc is section relative for an object
575	 file, and absolute for an executable file or shared library.
576	 The address of a BFD reloc is always section relative.  */
577      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
578	dst_rela.r_offset = ptr->address;
579      else
580	dst_rela.r_offset = ptr->address + sec->vma;
581
582      sym = *ptr->sym_ptr_ptr;
583      if (sym == last_sym)
584	n = last_sym_idx;
585      else if (bfd_is_abs_section (sym->section) && sym->value == 0)
586	n = STN_UNDEF;
587      else
588	{
589	  last_sym = sym;
590	  n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
591	  if (n < 0)
592	    {
593	      *failedp = true;
594	      return;
595	    }
596	  last_sym_idx = n;
597	}
598
599      if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
600	  && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
601	  && ! _bfd_elf_validate_reloc (abfd, ptr))
602	{
603	  *failedp = true;
604	  return;
605	}
606
607      if (ptr->howto->type == R_SPARC_LO10
608	  && idx < sec->reloc_count - 1)
609	{
610	  arelent *r = sec->orelocation[idx + 1];
611
612	  if (r->howto->type == R_SPARC_13
613	      && r->address == ptr->address
614	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
615	      && (*r->sym_ptr_ptr)->value == 0)
616	    {
617	      idx++;
618	      dst_rela.r_info
619		= ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
620						      R_SPARC_OLO10));
621	    }
622	  else
623	    dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
624	}
625      else
626	dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
627
628      dst_rela.r_addend = ptr->addend;
629      bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
630      ++src_rela;
631    }
632}
633
634/* Sparc64 ELF linker hash table.  */
635
636struct sparc64_elf_app_reg
637{
638  unsigned char bind;
639  unsigned short shndx;
640  bfd *abfd;
641  char *name;
642};
643
644struct sparc64_elf_link_hash_table
645{
646  struct elf_link_hash_table root;
647
648  struct sparc64_elf_app_reg app_regs [4];
649};
650
651/* Get the Sparc64 ELF linker hash table from a link_info structure.  */
652
653#define sparc64_elf_hash_table(p) \
654  ((struct sparc64_elf_link_hash_table *) ((p)->hash))
655
656/* Create a Sparc64 ELF linker hash table.  */
657
658static struct bfd_link_hash_table *
659sparc64_elf_bfd_link_hash_table_create (abfd)
660     bfd *abfd;
661{
662  struct sparc64_elf_link_hash_table *ret;
663  bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
664
665  ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
666  if (ret == (struct sparc64_elf_link_hash_table *) NULL)
667    return NULL;
668
669  if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
670				       _bfd_elf_link_hash_newfunc))
671    {
672      free (ret);
673      return NULL;
674    }
675
676  return &ret->root.root;
677}
678
679/* Utility for performing the standard initial work of an instruction
680   relocation.
681   *PRELOCATION will contain the relocated item.
682   *PINSN will contain the instruction from the input stream.
683   If the result is `bfd_reloc_other' the caller can continue with
684   performing the relocation.  Otherwise it must stop and return the
685   value to its caller.  */
686
687static bfd_reloc_status_type
688init_insn_reloc (abfd,
689		 reloc_entry,
690		 symbol,
691		 data,
692		 input_section,
693		 output_bfd,
694		 prelocation,
695		 pinsn)
696     bfd *abfd;
697     arelent *reloc_entry;
698     asymbol *symbol;
699     PTR data;
700     asection *input_section;
701     bfd *output_bfd;
702     bfd_vma *prelocation;
703     bfd_vma *pinsn;
704{
705  bfd_vma relocation;
706  reloc_howto_type *howto = reloc_entry->howto;
707
708  if (output_bfd != (bfd *) NULL
709      && (symbol->flags & BSF_SECTION_SYM) == 0
710      && (! howto->partial_inplace
711	  || reloc_entry->addend == 0))
712    {
713      reloc_entry->address += input_section->output_offset;
714      return bfd_reloc_ok;
715    }
716
717  /* This works because partial_inplace is false.  */
718  if (output_bfd != NULL)
719    return bfd_reloc_continue;
720
721  if (reloc_entry->address > input_section->_cooked_size)
722    return bfd_reloc_outofrange;
723
724  relocation = (symbol->value
725		+ symbol->section->output_section->vma
726		+ symbol->section->output_offset);
727  relocation += reloc_entry->addend;
728  if (howto->pc_relative)
729    {
730      relocation -= (input_section->output_section->vma
731		     + input_section->output_offset);
732      relocation -= reloc_entry->address;
733    }
734
735  *prelocation = relocation;
736  *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
737  return bfd_reloc_other;
738}
739
740/* For unsupported relocs.  */
741
742static bfd_reloc_status_type
743sparc_elf_notsup_reloc (abfd,
744			reloc_entry,
745			symbol,
746			data,
747			input_section,
748			output_bfd,
749			error_message)
750     bfd *abfd ATTRIBUTE_UNUSED;
751     arelent *reloc_entry ATTRIBUTE_UNUSED;
752     asymbol *symbol ATTRIBUTE_UNUSED;
753     PTR data ATTRIBUTE_UNUSED;
754     asection *input_section ATTRIBUTE_UNUSED;
755     bfd *output_bfd ATTRIBUTE_UNUSED;
756     char **error_message ATTRIBUTE_UNUSED;
757{
758  return bfd_reloc_notsupported;
759}
760
761/* Handle the WDISP16 reloc.  */
762
763static bfd_reloc_status_type
764sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
765			 output_bfd, error_message)
766     bfd *abfd;
767     arelent *reloc_entry;
768     asymbol *symbol;
769     PTR data;
770     asection *input_section;
771     bfd *output_bfd;
772     char **error_message ATTRIBUTE_UNUSED;
773{
774  bfd_vma relocation;
775  bfd_vma insn;
776  bfd_reloc_status_type status;
777
778  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
779			    input_section, output_bfd, &relocation, &insn);
780  if (status != bfd_reloc_other)
781    return status;
782
783  insn &= ~ (bfd_vma) 0x303fff;
784  insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
785  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
786
787  if ((bfd_signed_vma) relocation < - 0x40000
788      || (bfd_signed_vma) relocation > 0x3ffff)
789    return bfd_reloc_overflow;
790  else
791    return bfd_reloc_ok;
792}
793
794/* Handle the HIX22 reloc.  */
795
796static bfd_reloc_status_type
797sparc_elf_hix22_reloc (abfd,
798		       reloc_entry,
799		       symbol,
800		       data,
801		       input_section,
802		       output_bfd,
803		       error_message)
804     bfd *abfd;
805     arelent *reloc_entry;
806     asymbol *symbol;
807     PTR data;
808     asection *input_section;
809     bfd *output_bfd;
810     char **error_message ATTRIBUTE_UNUSED;
811{
812  bfd_vma relocation;
813  bfd_vma insn;
814  bfd_reloc_status_type status;
815
816  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
817			    input_section, output_bfd, &relocation, &insn);
818  if (status != bfd_reloc_other)
819    return status;
820
821  relocation ^= MINUS_ONE;
822  insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
823  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
824
825  if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
826    return bfd_reloc_overflow;
827  else
828    return bfd_reloc_ok;
829}
830
831/* Handle the LOX10 reloc.  */
832
833static bfd_reloc_status_type
834sparc_elf_lox10_reloc (abfd,
835		       reloc_entry,
836		       symbol,
837		       data,
838		       input_section,
839		       output_bfd,
840		       error_message)
841     bfd *abfd;
842     arelent *reloc_entry;
843     asymbol *symbol;
844     PTR data;
845     asection *input_section;
846     bfd *output_bfd;
847     char **error_message ATTRIBUTE_UNUSED;
848{
849  bfd_vma relocation;
850  bfd_vma insn;
851  bfd_reloc_status_type status;
852
853  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
854			    input_section, output_bfd, &relocation, &insn);
855  if (status != bfd_reloc_other)
856    return status;
857
858  insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
859  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
860
861  return bfd_reloc_ok;
862}
863
864/* PLT/GOT stuff */
865
866/* Both the headers and the entries are icache aligned.  */
867#define PLT_ENTRY_SIZE		32
868#define PLT_HEADER_SIZE		(4 * PLT_ENTRY_SIZE)
869#define LARGE_PLT_THRESHOLD	32768
870#define GOT_RESERVED_ENTRIES	1
871
872#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
873
874/* Fill in the .plt section.  */
875
876static void
877sparc64_elf_build_plt (output_bfd, contents, nentries)
878     bfd *output_bfd;
879     unsigned char *contents;
880     int nentries;
881{
882  const unsigned int nop = 0x01000000;
883  int i, j;
884
885  /* The first four entries are reserved, and are initially undefined.
886     We fill them with `illtrap 0' to force ld.so to do something.  */
887
888  for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
889    bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
890
891  /* The first 32768 entries are close enough to plt1 to get there via
892     a straight branch.  */
893
894  for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
895    {
896      unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
897      unsigned int sethi, ba;
898
899      /* sethi (. - plt0), %g1 */
900      sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
901
902      /* ba,a,pt %xcc, plt1 */
903      ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
904
905      bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
906      bfd_put_32 (output_bfd, (bfd_vma) ba,    entry + 4);
907      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 8);
908      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 12);
909      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 16);
910      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 20);
911      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 24);
912      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 28);
913    }
914
915  /* Now the tricky bit.  Entries 32768 and higher are grouped in blocks of
916     160: 160 entries and 160 pointers.  This is to separate code from data,
917     which is much friendlier on the cache.  */
918
919  for (; i < nentries; i += 160)
920    {
921      int block = (i + 160 <= nentries ? 160 : nentries - i);
922      for (j = 0; j < block; ++j)
923	{
924	  unsigned char *entry, *ptr;
925	  unsigned int ldx;
926
927	  entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
928	  ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
929
930	  /* ldx [%o7 + ptr - (entry+4)], %g1 */
931	  ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
932
933	  /* mov %o7,%g5
934	     call .+8
935	     nop
936	     ldx [%o7+P],%g1
937	     jmpl %o7+%g1,%g1
938	     mov %g5,%o7  */
939	  bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
940	  bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
941	  bfd_put_32 (output_bfd, (bfd_vma) nop,        entry + 8);
942	  bfd_put_32 (output_bfd, (bfd_vma) ldx,        entry + 12);
943	  bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
944	  bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
945
946	  bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
947	}
948    }
949}
950
951/* Return the offset of a particular plt entry within the .plt section.  */
952
953static bfd_vma
954sparc64_elf_plt_entry_offset (index)
955     bfd_vma index;
956{
957  bfd_vma block, ofs;
958
959  if (index < LARGE_PLT_THRESHOLD)
960    return index * PLT_ENTRY_SIZE;
961
962  /* See above for details.  */
963
964  block = (index - LARGE_PLT_THRESHOLD) / 160;
965  ofs = (index - LARGE_PLT_THRESHOLD) % 160;
966
967  return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
968}
969
970static bfd_vma
971sparc64_elf_plt_ptr_offset (index, max)
972     bfd_vma index;
973     bfd_vma max;
974{
975  bfd_vma block, ofs, last;
976
977  BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
978
979  /* See above for details.  */
980
981  block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
982  ofs = index - block;
983  if (block + 160 > max)
984    last = (max - LARGE_PLT_THRESHOLD) % 160;
985  else
986    last = 160;
987
988  return (block * PLT_ENTRY_SIZE
989	  + last * 6*4
990	  + ofs * 8);
991}
992
993/* Look through the relocs for a section during the first phase, and
994   allocate space in the global offset table or procedure linkage
995   table.  */
996
997static boolean
998sparc64_elf_check_relocs (abfd, info, sec, relocs)
999     bfd *abfd;
1000     struct bfd_link_info *info;
1001     asection *sec;
1002     const Elf_Internal_Rela *relocs;
1003{
1004  bfd *dynobj;
1005  Elf_Internal_Shdr *symtab_hdr;
1006  struct elf_link_hash_entry **sym_hashes;
1007  bfd_vma *local_got_offsets;
1008  const Elf_Internal_Rela *rel;
1009  const Elf_Internal_Rela *rel_end;
1010  asection *sgot;
1011  asection *srelgot;
1012  asection *sreloc;
1013
1014  if (info->relocateable || !(sec->flags & SEC_ALLOC))
1015    return true;
1016
1017  dynobj = elf_hash_table (info)->dynobj;
1018  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1019  sym_hashes = elf_sym_hashes (abfd);
1020  local_got_offsets = elf_local_got_offsets (abfd);
1021
1022  sgot = NULL;
1023  srelgot = NULL;
1024  sreloc = NULL;
1025
1026  rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1027  for (rel = relocs; rel < rel_end; rel++)
1028    {
1029      unsigned long r_symndx;
1030      struct elf_link_hash_entry *h;
1031
1032      r_symndx = ELF64_R_SYM (rel->r_info);
1033      if (r_symndx < symtab_hdr->sh_info)
1034	h = NULL;
1035      else
1036	h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037
1038      switch (ELF64_R_TYPE_ID (rel->r_info))
1039	{
1040	case R_SPARC_GOT10:
1041	case R_SPARC_GOT13:
1042	case R_SPARC_GOT22:
1043	  /* This symbol requires a global offset table entry.  */
1044
1045	  if (dynobj == NULL)
1046	    {
1047	      /* Create the .got section.  */
1048	      elf_hash_table (info)->dynobj = dynobj = abfd;
1049	      if (! _bfd_elf_create_got_section (dynobj, info))
1050		return false;
1051	    }
1052
1053	  if (sgot == NULL)
1054	    {
1055	      sgot = bfd_get_section_by_name (dynobj, ".got");
1056	      BFD_ASSERT (sgot != NULL);
1057	    }
1058
1059	  if (srelgot == NULL && (h != NULL || info->shared))
1060	    {
1061	      srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1062	      if (srelgot == NULL)
1063		{
1064		  srelgot = bfd_make_section (dynobj, ".rela.got");
1065		  if (srelgot == NULL
1066		      || ! bfd_set_section_flags (dynobj, srelgot,
1067						  (SEC_ALLOC
1068						   | SEC_LOAD
1069						   | SEC_HAS_CONTENTS
1070						   | SEC_IN_MEMORY
1071						   | SEC_LINKER_CREATED
1072						   | SEC_READONLY))
1073		      || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1074		    return false;
1075		}
1076	    }
1077
1078	  if (h != NULL)
1079	    {
1080	      if (h->got.offset != (bfd_vma) -1)
1081		{
1082		  /* We have already allocated space in the .got.  */
1083		  break;
1084		}
1085	      h->got.offset = sgot->_raw_size;
1086
1087	      /* Make sure this symbol is output as a dynamic symbol.  */
1088	      if (h->dynindx == -1)
1089		{
1090		  if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1091		    return false;
1092		}
1093
1094	      srelgot->_raw_size += sizeof (Elf64_External_Rela);
1095	    }
1096	  else
1097	    {
1098	      /* This is a global offset table entry for a local
1099                 symbol.  */
1100	      if (local_got_offsets == NULL)
1101		{
1102		  bfd_size_type size;
1103		  register unsigned int i;
1104
1105		  size = symtab_hdr->sh_info;
1106		  size *= sizeof (bfd_vma);
1107		  local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1108		  if (local_got_offsets == NULL)
1109		    return false;
1110		  elf_local_got_offsets (abfd) = local_got_offsets;
1111		  for (i = 0; i < symtab_hdr->sh_info; i++)
1112		    local_got_offsets[i] = (bfd_vma) -1;
1113		}
1114	      if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1115		{
1116		  /* We have already allocated space in the .got.  */
1117		  break;
1118		}
1119	      local_got_offsets[r_symndx] = sgot->_raw_size;
1120
1121	      if (info->shared)
1122		{
1123		  /* If we are generating a shared object, we need to
1124                     output a R_SPARC_RELATIVE reloc so that the
1125                     dynamic linker can adjust this GOT entry.  */
1126		  srelgot->_raw_size += sizeof (Elf64_External_Rela);
1127		}
1128	    }
1129
1130	  sgot->_raw_size += 8;
1131
1132#if 0
1133	  /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1134	     unsigned numbers.  If we permit ourselves to modify
1135	     code so we get sethi/xor, this could work.
1136	     Question: do we consider conditionally re-enabling
1137             this for -fpic, once we know about object code models?  */
1138	  /* If the .got section is more than 0x1000 bytes, we add
1139	     0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1140	     bit relocations have a greater chance of working.  */
1141	  if (sgot->_raw_size >= 0x1000
1142	      && elf_hash_table (info)->hgot->root.u.def.value == 0)
1143	    elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1144#endif
1145
1146	  break;
1147
1148	case R_SPARC_WPLT30:
1149	case R_SPARC_PLT32:
1150	case R_SPARC_HIPLT22:
1151	case R_SPARC_LOPLT10:
1152	case R_SPARC_PCPLT32:
1153	case R_SPARC_PCPLT22:
1154	case R_SPARC_PCPLT10:
1155	case R_SPARC_PLT64:
1156	  /* This symbol requires a procedure linkage table entry.  We
1157             actually build the entry in adjust_dynamic_symbol,
1158             because this might be a case of linking PIC code without
1159             linking in any dynamic objects, in which case we don't
1160             need to generate a procedure linkage table after all.  */
1161
1162	  if (h == NULL)
1163	    {
1164	      /* It does not make sense to have a procedure linkage
1165                 table entry for a local symbol.  */
1166	      bfd_set_error (bfd_error_bad_value);
1167	      return false;
1168	    }
1169
1170	  /* Make sure this symbol is output as a dynamic symbol.  */
1171	  if (h->dynindx == -1)
1172	    {
1173	      if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1174		return false;
1175	    }
1176
1177	  h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1178	  if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1179	      && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1180	    break;
1181	  /* Fall through.  */
1182	case R_SPARC_PC10:
1183	case R_SPARC_PC22:
1184	case R_SPARC_PC_HH22:
1185	case R_SPARC_PC_HM10:
1186	case R_SPARC_PC_LM22:
1187	  if (h != NULL
1188	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1189	    break;
1190	  /* Fall through.  */
1191	case R_SPARC_DISP8:
1192	case R_SPARC_DISP16:
1193	case R_SPARC_DISP32:
1194	case R_SPARC_DISP64:
1195	case R_SPARC_WDISP30:
1196	case R_SPARC_WDISP22:
1197	case R_SPARC_WDISP19:
1198	case R_SPARC_WDISP16:
1199	  if (h == NULL)
1200	    break;
1201	  /* Fall through.  */
1202	case R_SPARC_8:
1203	case R_SPARC_16:
1204	case R_SPARC_32:
1205	case R_SPARC_HI22:
1206	case R_SPARC_22:
1207	case R_SPARC_13:
1208	case R_SPARC_LO10:
1209	case R_SPARC_UA32:
1210	case R_SPARC_10:
1211	case R_SPARC_11:
1212	case R_SPARC_64:
1213	case R_SPARC_OLO10:
1214	case R_SPARC_HH22:
1215	case R_SPARC_HM10:
1216	case R_SPARC_LM22:
1217	case R_SPARC_7:
1218	case R_SPARC_5:
1219	case R_SPARC_6:
1220	case R_SPARC_HIX22:
1221	case R_SPARC_LOX10:
1222	case R_SPARC_H44:
1223	case R_SPARC_M44:
1224	case R_SPARC_L44:
1225	case R_SPARC_UA64:
1226	case R_SPARC_UA16:
1227	  /* When creating a shared object, we must copy these relocs
1228	     into the output file.  We create a reloc section in
1229	     dynobj and make room for the reloc.
1230
1231	     But don't do this for debugging sections -- this shows up
1232	     with DWARF2 -- first because they are not loaded, and
1233	     second because DWARF sez the debug info is not to be
1234	     biased by the load address.  */
1235	  if (info->shared && (sec->flags & SEC_ALLOC))
1236	    {
1237	      if (sreloc == NULL)
1238		{
1239		  const char *name;
1240
1241		  name = (bfd_elf_string_from_elf_section
1242			  (abfd,
1243			   elf_elfheader (abfd)->e_shstrndx,
1244			   elf_section_data (sec)->rel_hdr.sh_name));
1245		  if (name == NULL)
1246		    return false;
1247
1248		  BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1249			      && strcmp (bfd_get_section_name (abfd, sec),
1250					 name + 5) == 0);
1251
1252		  sreloc = bfd_get_section_by_name (dynobj, name);
1253		  if (sreloc == NULL)
1254		    {
1255		      flagword flags;
1256
1257		      sreloc = bfd_make_section (dynobj, name);
1258		      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1259			       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1260		      if ((sec->flags & SEC_ALLOC) != 0)
1261			flags |= SEC_ALLOC | SEC_LOAD;
1262		      if (sreloc == NULL
1263			  || ! bfd_set_section_flags (dynobj, sreloc, flags)
1264			  || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1265			return false;
1266		    }
1267		  if (sec->flags & SEC_READONLY)
1268		    info->flags |= DF_TEXTREL;
1269		}
1270
1271	      sreloc->_raw_size += sizeof (Elf64_External_Rela);
1272	    }
1273	  break;
1274
1275	case R_SPARC_REGISTER:
1276	  /* Nothing to do.  */
1277	  break;
1278
1279	default:
1280	  (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1281				bfd_archive_filename (abfd),
1282				ELF64_R_TYPE_ID (rel->r_info));
1283	  return false;
1284	}
1285    }
1286
1287  return true;
1288}
1289
1290/* Hook called by the linker routine which adds symbols from an object
1291   file.  We use it for STT_REGISTER symbols.  */
1292
1293static boolean
1294sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1295     bfd *abfd;
1296     struct bfd_link_info *info;
1297     const Elf_Internal_Sym *sym;
1298     const char **namep;
1299     flagword *flagsp ATTRIBUTE_UNUSED;
1300     asection **secp ATTRIBUTE_UNUSED;
1301     bfd_vma *valp ATTRIBUTE_UNUSED;
1302{
1303  static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1304
1305  if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1306    {
1307      int reg;
1308      struct sparc64_elf_app_reg *p;
1309
1310      reg = (int)sym->st_value;
1311      switch (reg & ~1)
1312	{
1313	case 2: reg -= 2; break;
1314	case 6: reg -= 4; break;
1315	default:
1316          (*_bfd_error_handler)
1317            (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1318             bfd_archive_filename (abfd));
1319	  return false;
1320	}
1321
1322      if (info->hash->creator != abfd->xvec
1323	  || (abfd->flags & DYNAMIC) != 0)
1324        {
1325	  /* STT_REGISTER only works when linking an elf64_sparc object.
1326	     If STT_REGISTER comes from a dynamic object, don't put it into
1327	     the output bfd.  The dynamic linker will recheck it.  */
1328	  *namep = NULL;
1329	  return true;
1330        }
1331
1332      p = sparc64_elf_hash_table(info)->app_regs + reg;
1333
1334      if (p->name != NULL && strcmp (p->name, *namep))
1335	{
1336          (*_bfd_error_handler)
1337            (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1338             (int) sym->st_value,
1339             **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1340             *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1341	  return false;
1342	}
1343
1344      if (p->name == NULL)
1345	{
1346	  if (**namep)
1347	    {
1348	      struct elf_link_hash_entry *h;
1349
1350	      h = (struct elf_link_hash_entry *)
1351		bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1352
1353	      if (h != NULL)
1354		{
1355		  unsigned char type = h->type;
1356
1357		  if (type > STT_FUNC)
1358		    type = 0;
1359		  (*_bfd_error_handler)
1360		    (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1361		     *namep, bfd_archive_filename (abfd),
1362		     stt_types[type], bfd_archive_filename (p->abfd));
1363		  return false;
1364		}
1365
1366	      p->name = bfd_hash_allocate (&info->hash->table,
1367					   strlen (*namep) + 1);
1368	      if (!p->name)
1369		return false;
1370
1371	      strcpy (p->name, *namep);
1372	    }
1373	  else
1374	    p->name = "";
1375	  p->bind = ELF_ST_BIND (sym->st_info);
1376	  p->abfd = abfd;
1377	  p->shndx = sym->st_shndx;
1378	}
1379      else
1380	{
1381	  if (p->bind == STB_WEAK
1382	      && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1383	    {
1384	      p->bind = STB_GLOBAL;
1385	      p->abfd = abfd;
1386	    }
1387	}
1388      *namep = NULL;
1389      return true;
1390    }
1391  else if (*namep && **namep
1392	   && info->hash->creator == abfd->xvec)
1393    {
1394      int i;
1395      struct sparc64_elf_app_reg *p;
1396
1397      p = sparc64_elf_hash_table(info)->app_regs;
1398      for (i = 0; i < 4; i++, p++)
1399	if (p->name != NULL && ! strcmp (p->name, *namep))
1400	  {
1401	    unsigned char type = ELF_ST_TYPE (sym->st_info);
1402
1403	    if (type > STT_FUNC)
1404	      type = 0;
1405	    (*_bfd_error_handler)
1406	      (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1407	       *namep, stt_types[type], bfd_archive_filename (abfd),
1408	       bfd_archive_filename (p->abfd));
1409	    return false;
1410	  }
1411    }
1412  return true;
1413}
1414
1415/* This function takes care of emiting STT_REGISTER symbols
1416   which we cannot easily keep in the symbol hash table.  */
1417
1418static boolean
1419sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1420     bfd *output_bfd ATTRIBUTE_UNUSED;
1421     struct bfd_link_info *info;
1422     PTR finfo;
1423     boolean (*func) PARAMS ((PTR, const char *,
1424			      Elf_Internal_Sym *, asection *));
1425{
1426  int reg;
1427  struct sparc64_elf_app_reg *app_regs =
1428    sparc64_elf_hash_table(info)->app_regs;
1429  Elf_Internal_Sym sym;
1430
1431  /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1432     at the end of the dynlocal list, so they came at the end of the local
1433     symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
1434     to back up symtab->sh_info.  */
1435  if (elf_hash_table (info)->dynlocal)
1436    {
1437      bfd * dynobj = elf_hash_table (info)->dynobj;
1438      asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1439      struct elf_link_local_dynamic_entry *e;
1440
1441      for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1442	if (e->input_indx == -1)
1443	  break;
1444      if (e)
1445	{
1446	  elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1447	    = e->dynindx;
1448	}
1449    }
1450
1451  if (info->strip == strip_all)
1452    return true;
1453
1454  for (reg = 0; reg < 4; reg++)
1455    if (app_regs [reg].name != NULL)
1456      {
1457	if (info->strip == strip_some
1458	    && bfd_hash_lookup (info->keep_hash,
1459				app_regs [reg].name,
1460				false, false) == NULL)
1461	  continue;
1462
1463	sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1464	sym.st_size = 0;
1465	sym.st_other = 0;
1466	sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1467	sym.st_shndx = app_regs [reg].shndx;
1468	if (! (*func) (finfo, app_regs [reg].name, &sym,
1469		       sym.st_shndx == SHN_ABS
1470			 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1471	  return false;
1472      }
1473
1474  return true;
1475}
1476
1477static int
1478sparc64_elf_get_symbol_type (elf_sym, type)
1479     Elf_Internal_Sym * elf_sym;
1480     int type;
1481{
1482  if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1483    return STT_REGISTER;
1484  else
1485    return type;
1486}
1487
1488/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1489   even in SHN_UNDEF section.  */
1490
1491static void
1492sparc64_elf_symbol_processing (abfd, asym)
1493     bfd *abfd ATTRIBUTE_UNUSED;
1494     asymbol *asym;
1495{
1496  elf_symbol_type *elfsym;
1497
1498  elfsym = (elf_symbol_type *) asym;
1499  if (elfsym->internal_elf_sym.st_info
1500      == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1501    {
1502      asym->flags |= BSF_GLOBAL;
1503    }
1504}
1505
1506/* Adjust a symbol defined by a dynamic object and referenced by a
1507   regular object.  The current definition is in some section of the
1508   dynamic object, but we're not including those sections.  We have to
1509   change the definition to something the rest of the link can
1510   understand.  */
1511
1512static boolean
1513sparc64_elf_adjust_dynamic_symbol (info, h)
1514     struct bfd_link_info *info;
1515     struct elf_link_hash_entry *h;
1516{
1517  bfd *dynobj;
1518  asection *s;
1519  unsigned int power_of_two;
1520
1521  dynobj = elf_hash_table (info)->dynobj;
1522
1523  /* Make sure we know what is going on here.  */
1524  BFD_ASSERT (dynobj != NULL
1525	      && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1526		  || h->weakdef != NULL
1527		  || ((h->elf_link_hash_flags
1528		       & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1529		      && (h->elf_link_hash_flags
1530			  & ELF_LINK_HASH_REF_REGULAR) != 0
1531		      && (h->elf_link_hash_flags
1532			  & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1533
1534  /* If this is a function, put it in the procedure linkage table.  We
1535     will fill in the contents of the procedure linkage table later
1536     (although we could actually do it here).  The STT_NOTYPE
1537     condition is a hack specifically for the Oracle libraries
1538     delivered for Solaris; for some inexplicable reason, they define
1539     some of their functions as STT_NOTYPE when they really should be
1540     STT_FUNC.  */
1541  if (h->type == STT_FUNC
1542      || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1543      || (h->type == STT_NOTYPE
1544	  && (h->root.type == bfd_link_hash_defined
1545	      || h->root.type == bfd_link_hash_defweak)
1546	  && (h->root.u.def.section->flags & SEC_CODE) != 0))
1547    {
1548      if (! elf_hash_table (info)->dynamic_sections_created)
1549	{
1550	  /* This case can occur if we saw a WPLT30 reloc in an input
1551             file, but none of the input files were dynamic objects.
1552             In such a case, we don't actually need to build a
1553             procedure linkage table, and we can just do a WDISP30
1554             reloc instead.  */
1555	  BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1556	  return true;
1557	}
1558
1559      s = bfd_get_section_by_name (dynobj, ".plt");
1560      BFD_ASSERT (s != NULL);
1561
1562      /* The first four bit in .plt is reserved.  */
1563      if (s->_raw_size == 0)
1564	s->_raw_size = PLT_HEADER_SIZE;
1565
1566      /* To simplify matters later, just store the plt index here.  */
1567      h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1568
1569      /* If this symbol is not defined in a regular file, and we are
1570	 not generating a shared library, then set the symbol to this
1571	 location in the .plt.  This is required to make function
1572	 pointers compare as equal between the normal executable and
1573	 the shared library.  */
1574      if (! info->shared
1575	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1576	{
1577	  h->root.u.def.section = s;
1578	  h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1579	}
1580
1581      /* Make room for this entry.  */
1582      s->_raw_size += PLT_ENTRY_SIZE;
1583
1584      /* We also need to make an entry in the .rela.plt section.  */
1585
1586      s = bfd_get_section_by_name (dynobj, ".rela.plt");
1587      BFD_ASSERT (s != NULL);
1588
1589      s->_raw_size += sizeof (Elf64_External_Rela);
1590
1591      /* The procedure linkage table size is bounded by the magnitude
1592	 of the offset we can describe in the entry.  */
1593      if (s->_raw_size >= (bfd_vma)1 << 32)
1594	{
1595	  bfd_set_error (bfd_error_bad_value);
1596	  return false;
1597	}
1598
1599      return true;
1600    }
1601
1602  /* If this is a weak symbol, and there is a real definition, the
1603     processor independent code will have arranged for us to see the
1604     real definition first, and we can just use the same value.  */
1605  if (h->weakdef != NULL)
1606    {
1607      BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1608		  || h->weakdef->root.type == bfd_link_hash_defweak);
1609      h->root.u.def.section = h->weakdef->root.u.def.section;
1610      h->root.u.def.value = h->weakdef->root.u.def.value;
1611      return true;
1612    }
1613
1614  /* This is a reference to a symbol defined by a dynamic object which
1615     is not a function.  */
1616
1617  /* If we are creating a shared library, we must presume that the
1618     only references to the symbol are via the global offset table.
1619     For such cases we need not do anything here; the relocations will
1620     be handled correctly by relocate_section.  */
1621  if (info->shared)
1622    return true;
1623
1624  /* We must allocate the symbol in our .dynbss section, which will
1625     become part of the .bss section of the executable.  There will be
1626     an entry for this symbol in the .dynsym section.  The dynamic
1627     object will contain position independent code, so all references
1628     from the dynamic object to this symbol will go through the global
1629     offset table.  The dynamic linker will use the .dynsym entry to
1630     determine the address it must put in the global offset table, so
1631     both the dynamic object and the regular object will refer to the
1632     same memory location for the variable.  */
1633
1634  s = bfd_get_section_by_name (dynobj, ".dynbss");
1635  BFD_ASSERT (s != NULL);
1636
1637  /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1638     to copy the initial value out of the dynamic object and into the
1639     runtime process image.  We need to remember the offset into the
1640     .rel.bss section we are going to use.  */
1641  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1642    {
1643      asection *srel;
1644
1645      srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1646      BFD_ASSERT (srel != NULL);
1647      srel->_raw_size += sizeof (Elf64_External_Rela);
1648      h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1649    }
1650
1651  /* We need to figure out the alignment required for this symbol.  I
1652     have no idea how ELF linkers handle this.  16-bytes is the size
1653     of the largest type that requires hard alignment -- long double.  */
1654  power_of_two = bfd_log2 (h->size);
1655  if (power_of_two > 4)
1656    power_of_two = 4;
1657
1658  /* Apply the required alignment.  */
1659  s->_raw_size = BFD_ALIGN (s->_raw_size,
1660			    (bfd_size_type) (1 << power_of_two));
1661  if (power_of_two > bfd_get_section_alignment (dynobj, s))
1662    {
1663      if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1664	return false;
1665    }
1666
1667  /* Define the symbol as being at this point in the section.  */
1668  h->root.u.def.section = s;
1669  h->root.u.def.value = s->_raw_size;
1670
1671  /* Increment the section size to make room for the symbol.  */
1672  s->_raw_size += h->size;
1673
1674  return true;
1675}
1676
1677/* Set the sizes of the dynamic sections.  */
1678
1679static boolean
1680sparc64_elf_size_dynamic_sections (output_bfd, info)
1681     bfd *output_bfd;
1682     struct bfd_link_info *info;
1683{
1684  bfd *dynobj;
1685  asection *s;
1686  boolean relplt;
1687
1688  dynobj = elf_hash_table (info)->dynobj;
1689  BFD_ASSERT (dynobj != NULL);
1690
1691  if (elf_hash_table (info)->dynamic_sections_created)
1692    {
1693      /* Set the contents of the .interp section to the interpreter.  */
1694      if (! info->shared)
1695	{
1696	  s = bfd_get_section_by_name (dynobj, ".interp");
1697	  BFD_ASSERT (s != NULL);
1698	  s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1699	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1700	}
1701    }
1702  else
1703    {
1704      /* We may have created entries in the .rela.got section.
1705         However, if we are not creating the dynamic sections, we will
1706         not actually use these entries.  Reset the size of .rela.got,
1707         which will cause it to get stripped from the output file
1708         below.  */
1709      s = bfd_get_section_by_name (dynobj, ".rela.got");
1710      if (s != NULL)
1711	s->_raw_size = 0;
1712    }
1713
1714  /* The check_relocs and adjust_dynamic_symbol entry points have
1715     determined the sizes of the various dynamic sections.  Allocate
1716     memory for them.  */
1717  relplt = false;
1718  for (s = dynobj->sections; s != NULL; s = s->next)
1719    {
1720      const char *name;
1721      boolean strip;
1722
1723      if ((s->flags & SEC_LINKER_CREATED) == 0)
1724	continue;
1725
1726      /* It's OK to base decisions on the section name, because none
1727	 of the dynobj section names depend upon the input files.  */
1728      name = bfd_get_section_name (dynobj, s);
1729
1730      strip = false;
1731
1732      if (strncmp (name, ".rela", 5) == 0)
1733	{
1734	  if (s->_raw_size == 0)
1735	    {
1736	      /* If we don't need this section, strip it from the
1737		 output file.  This is to handle .rela.bss and
1738		 .rel.plt.  We must create it in
1739		 create_dynamic_sections, because it must be created
1740		 before the linker maps input sections to output
1741		 sections.  The linker does that before
1742		 adjust_dynamic_symbol is called, and it is that
1743		 function which decides whether anything needs to go
1744		 into these sections.  */
1745	      strip = true;
1746	    }
1747	  else
1748	    {
1749	      if (strcmp (name, ".rela.plt") == 0)
1750		relplt = true;
1751
1752	      /* We use the reloc_count field as a counter if we need
1753		 to copy relocs into the output file.  */
1754	      s->reloc_count = 0;
1755	    }
1756	}
1757      else if (strcmp (name, ".plt") != 0
1758	       && strncmp (name, ".got", 4) != 0)
1759	{
1760	  /* It's not one of our sections, so don't allocate space.  */
1761	  continue;
1762	}
1763
1764      if (strip)
1765	{
1766	  _bfd_strip_section_from_output (info, s);
1767	  continue;
1768	}
1769
1770      /* Allocate memory for the section contents.  Zero the memory
1771	 for the benefit of .rela.plt, which has 4 unused entries
1772	 at the beginning, and we don't want garbage.  */
1773      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1774      if (s->contents == NULL && s->_raw_size != 0)
1775	return false;
1776    }
1777
1778  if (elf_hash_table (info)->dynamic_sections_created)
1779    {
1780      /* Add some entries to the .dynamic section.  We fill in the
1781	 values later, in sparc64_elf_finish_dynamic_sections, but we
1782	 must add the entries now so that we get the correct size for
1783	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1784	 dynamic linker and used by the debugger.  */
1785#define add_dynamic_entry(TAG, VAL) \
1786  bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1787
1788      int reg;
1789      struct sparc64_elf_app_reg * app_regs;
1790      struct elf_strtab_hash *dynstr;
1791      struct elf_link_hash_table *eht = elf_hash_table (info);
1792
1793      if (!info->shared)
1794	{
1795	  if (!add_dynamic_entry (DT_DEBUG, 0))
1796	    return false;
1797	}
1798
1799      if (relplt)
1800	{
1801	  if (!add_dynamic_entry (DT_PLTGOT, 0)
1802	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
1803	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1804	      || !add_dynamic_entry (DT_JMPREL, 0))
1805	    return false;
1806	}
1807
1808      if (!add_dynamic_entry (DT_RELA, 0)
1809	  || !add_dynamic_entry (DT_RELASZ, 0)
1810	  || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1811	return false;
1812
1813      if (info->flags & DF_TEXTREL)
1814	{
1815	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1816	    return false;
1817	}
1818
1819      /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1820	 entries if needed.  */
1821      app_regs = sparc64_elf_hash_table (info)->app_regs;
1822      dynstr = eht->dynstr;
1823
1824      for (reg = 0; reg < 4; reg++)
1825	if (app_regs [reg].name != NULL)
1826	  {
1827	    struct elf_link_local_dynamic_entry *entry, *e;
1828
1829	    if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1830	      return false;
1831
1832	    entry = (struct elf_link_local_dynamic_entry *)
1833	      bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1834	    if (entry == NULL)
1835	      return false;
1836
1837	    /* We cheat here a little bit: the symbol will not be local, so we
1838	       put it at the end of the dynlocal linked list.  We will fix it
1839	       later on, as we have to fix other fields anyway.  */
1840	    entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1841	    entry->isym.st_size = 0;
1842	    if (*app_regs [reg].name != '\0')
1843	      entry->isym.st_name
1844		= _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
1845	    else
1846	      entry->isym.st_name = 0;
1847	    entry->isym.st_other = 0;
1848	    entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1849					       STT_REGISTER);
1850	    entry->isym.st_shndx = app_regs [reg].shndx;
1851	    entry->next = NULL;
1852	    entry->input_bfd = output_bfd;
1853	    entry->input_indx = -1;
1854
1855	    if (eht->dynlocal == NULL)
1856	      eht->dynlocal = entry;
1857	    else
1858	      {
1859		for (e = eht->dynlocal; e->next; e = e->next)
1860		  ;
1861		e->next = entry;
1862	      }
1863	    eht->dynsymcount++;
1864	  }
1865    }
1866#undef add_dynamic_entry
1867
1868  return true;
1869}
1870
1871#define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1872#define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1873
1874static boolean
1875sparc64_elf_relax_section (abfd, section, link_info, again)
1876     bfd *abfd ATTRIBUTE_UNUSED;
1877     asection *section ATTRIBUTE_UNUSED;
1878     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1879     boolean *again;
1880{
1881  *again = false;
1882  SET_SEC_DO_RELAX (section);
1883  return true;
1884}
1885
1886/* This is the condition under which finish_dynamic_symbol will be called
1887   from elflink.h.  If elflink.h doesn't call our finish_dynamic_symbol
1888   routine, we'll need to do something about initializing any .plt and
1889   .got entries in relocate_section.  */
1890#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H)			\
1891  ((DYN)								\
1892   && ((INFO)->shared							\
1893       || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)	\
1894   && ((H)->dynindx != -1						\
1895       || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1896
1897/* Relocate a SPARC64 ELF section.  */
1898
1899static boolean
1900sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1901			      contents, relocs, local_syms, local_sections)
1902     bfd *output_bfd;
1903     struct bfd_link_info *info;
1904     bfd *input_bfd;
1905     asection *input_section;
1906     bfd_byte *contents;
1907     Elf_Internal_Rela *relocs;
1908     Elf_Internal_Sym *local_syms;
1909     asection **local_sections;
1910{
1911  bfd *dynobj;
1912  Elf_Internal_Shdr *symtab_hdr;
1913  struct elf_link_hash_entry **sym_hashes;
1914  bfd_vma *local_got_offsets;
1915  bfd_vma got_base;
1916  asection *sgot;
1917  asection *splt;
1918  asection *sreloc;
1919  Elf_Internal_Rela *rel;
1920  Elf_Internal_Rela *relend;
1921
1922  dynobj = elf_hash_table (info)->dynobj;
1923  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1924  sym_hashes = elf_sym_hashes (input_bfd);
1925  local_got_offsets = elf_local_got_offsets (input_bfd);
1926
1927  if (elf_hash_table(info)->hgot == NULL)
1928    got_base = 0;
1929  else
1930    got_base = elf_hash_table (info)->hgot->root.u.def.value;
1931
1932  sgot = splt = sreloc = NULL;
1933
1934  rel = relocs;
1935  relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1936  for (; rel < relend; rel++)
1937    {
1938      int r_type;
1939      reloc_howto_type *howto;
1940      unsigned long r_symndx;
1941      struct elf_link_hash_entry *h;
1942      Elf_Internal_Sym *sym;
1943      asection *sec;
1944      bfd_vma relocation, off;
1945      bfd_reloc_status_type r;
1946      boolean is_plt = false;
1947      boolean unresolved_reloc;
1948
1949      r_type = ELF64_R_TYPE_ID (rel->r_info);
1950      if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1951	{
1952	  bfd_set_error (bfd_error_bad_value);
1953	  return false;
1954	}
1955      howto = sparc64_elf_howto_table + r_type;
1956
1957      r_symndx = ELF64_R_SYM (rel->r_info);
1958
1959      if (info->relocateable)
1960	{
1961	  /* This is a relocateable link.  We don't have to change
1962	     anything, unless the reloc is against a section symbol,
1963	     in which case we have to adjust according to where the
1964	     section symbol winds up in the output section.  */
1965	  if (r_symndx < symtab_hdr->sh_info)
1966	    {
1967	      sym = local_syms + r_symndx;
1968	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1969		{
1970		  sec = local_sections[r_symndx];
1971		  rel->r_addend += sec->output_offset + sym->st_value;
1972		}
1973	    }
1974
1975	  continue;
1976	}
1977
1978      /* This is a final link.  */
1979      h = NULL;
1980      sym = NULL;
1981      sec = NULL;
1982      unresolved_reloc = false;
1983      if (r_symndx < symtab_hdr->sh_info)
1984	{
1985	  sym = local_syms + r_symndx;
1986	  sec = local_sections[r_symndx];
1987	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1988	}
1989      else
1990	{
1991	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1992	  while (h->root.type == bfd_link_hash_indirect
1993		 || h->root.type == bfd_link_hash_warning)
1994	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1995
1996	  relocation = 0;
1997	  if (h->root.type == bfd_link_hash_defined
1998	      || h->root.type == bfd_link_hash_defweak)
1999	    {
2000	      sec = h->root.u.def.section;
2001	      if (sec->output_section == NULL)
2002		/* Set a flag that will be cleared later if we find a
2003		   relocation value for this symbol.  output_section
2004		   is typically NULL for symbols satisfied by a shared
2005		   library.  */
2006		unresolved_reloc = true;
2007	      else
2008		relocation = (h->root.u.def.value
2009			      + sec->output_section->vma
2010			      + sec->output_offset);
2011	    }
2012	  else if (h->root.type == bfd_link_hash_undefweak)
2013	    ;
2014	  else if (info->shared
2015		   && (!info->symbolic || info->allow_shlib_undefined)
2016		   && !info->no_undefined
2017		   && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2018	    ;
2019	  else
2020	    {
2021	      if (! ((*info->callbacks->undefined_symbol)
2022		     (info, h->root.root.string, input_bfd,
2023		      input_section, rel->r_offset,
2024		      (!info->shared || info->no_undefined
2025		       || ELF_ST_VISIBILITY (h->other)))))
2026		return false;
2027
2028	      /* To avoid generating warning messages about truncated
2029		 relocations, set the relocation's address to be the same as
2030		 the start of this section.  */
2031
2032	      if (input_section->output_section != NULL)
2033		relocation = input_section->output_section->vma;
2034	      else
2035		relocation = 0;
2036	    }
2037	}
2038
2039 do_dynreloc:
2040      /* When generating a shared object, these relocations are copied
2041	 into the output file to be resolved at run time.  */
2042      if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2043	{
2044	  switch (r_type)
2045	    {
2046	    case R_SPARC_PC10:
2047	    case R_SPARC_PC22:
2048	    case R_SPARC_PC_HH22:
2049	    case R_SPARC_PC_HM10:
2050	    case R_SPARC_PC_LM22:
2051	      if (h != NULL
2052		  && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2053		break;
2054	      /* Fall through.  */
2055	    case R_SPARC_DISP8:
2056	    case R_SPARC_DISP16:
2057	    case R_SPARC_DISP32:
2058	    case R_SPARC_DISP64:
2059	    case R_SPARC_WDISP30:
2060	    case R_SPARC_WDISP22:
2061	    case R_SPARC_WDISP19:
2062	    case R_SPARC_WDISP16:
2063	      if (h == NULL)
2064		break;
2065	      /* Fall through.  */
2066	    case R_SPARC_8:
2067	    case R_SPARC_16:
2068	    case R_SPARC_32:
2069	    case R_SPARC_HI22:
2070	    case R_SPARC_22:
2071	    case R_SPARC_13:
2072	    case R_SPARC_LO10:
2073	    case R_SPARC_UA32:
2074	    case R_SPARC_10:
2075	    case R_SPARC_11:
2076	    case R_SPARC_64:
2077	    case R_SPARC_OLO10:
2078	    case R_SPARC_HH22:
2079	    case R_SPARC_HM10:
2080	    case R_SPARC_LM22:
2081	    case R_SPARC_7:
2082	    case R_SPARC_5:
2083	    case R_SPARC_6:
2084	    case R_SPARC_HIX22:
2085	    case R_SPARC_LOX10:
2086	    case R_SPARC_H44:
2087	    case R_SPARC_M44:
2088	    case R_SPARC_L44:
2089	    case R_SPARC_UA64:
2090	    case R_SPARC_UA16:
2091	      {
2092		Elf_Internal_Rela outrel;
2093		boolean skip, relocate;
2094
2095		if (sreloc == NULL)
2096		  {
2097		    const char *name =
2098		      (bfd_elf_string_from_elf_section
2099		       (input_bfd,
2100			elf_elfheader (input_bfd)->e_shstrndx,
2101			elf_section_data (input_section)->rel_hdr.sh_name));
2102
2103		    if (name == NULL)
2104		      return false;
2105
2106		    BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2107				&& strcmp (bfd_get_section_name(input_bfd,
2108								input_section),
2109					   name + 5) == 0);
2110
2111		    sreloc = bfd_get_section_by_name (dynobj, name);
2112		    BFD_ASSERT (sreloc != NULL);
2113		  }
2114
2115		skip = false;
2116		relocate = false;
2117
2118		outrel.r_offset =
2119		  _bfd_elf_section_offset (output_bfd, info, input_section,
2120					   rel->r_offset);
2121		if (outrel.r_offset == (bfd_vma) -1)
2122		  skip = true;
2123		else if (outrel.r_offset == (bfd_vma) -2)
2124		  skip = true, relocate = true;
2125
2126		outrel.r_offset += (input_section->output_section->vma
2127				    + input_section->output_offset);
2128
2129		/* Optimize unaligned reloc usage now that we know where
2130		   it finally resides.  */
2131		switch (r_type)
2132		  {
2133		  case R_SPARC_16:
2134		    if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2135		    break;
2136		  case R_SPARC_UA16:
2137		    if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2138		    break;
2139		  case R_SPARC_32:
2140		    if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2141		    break;
2142		  case R_SPARC_UA32:
2143		    if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2144		    break;
2145		  case R_SPARC_64:
2146		    if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2147		    break;
2148		  case R_SPARC_UA64:
2149		    if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2150		    break;
2151		  case R_SPARC_DISP8:
2152		  case R_SPARC_DISP16:
2153		  case R_SPARC_DISP32:
2154		  case R_SPARC_DISP64:
2155		    /* If the symbol is not dynamic, we should not keep
2156		       a dynamic relocation.  But an .rela.* slot has been
2157		       allocated for it, output R_SPARC_NONE.
2158		       FIXME: Add code tracking needed dynamic relocs as
2159		       e.g. i386 has.  */
2160		    if (h->dynindx == -1)
2161		      skip = true, relocate = true;
2162		    break;
2163		  }
2164
2165		if (skip)
2166		  memset (&outrel, 0, sizeof outrel);
2167		/* h->dynindx may be -1 if the symbol was marked to
2168		   become local.  */
2169		else if (h != NULL && ! is_plt
2170			 && ((! info->symbolic && h->dynindx != -1)
2171			     || (h->elf_link_hash_flags
2172				 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2173		  {
2174		    BFD_ASSERT (h->dynindx != -1);
2175		    outrel.r_info
2176		      = ELF64_R_INFO (h->dynindx,
2177				      ELF64_R_TYPE_INFO (
2178					ELF64_R_TYPE_DATA (rel->r_info),
2179							   r_type));
2180		    outrel.r_addend = rel->r_addend;
2181		  }
2182		else
2183		  {
2184		    outrel.r_addend = relocation + rel->r_addend;
2185		    if (r_type == R_SPARC_64)
2186		      outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2187		    else
2188		      {
2189			long indx;
2190
2191			if (is_plt)
2192			  sec = splt;
2193			else if (h == NULL)
2194			  sec = local_sections[r_symndx];
2195			else
2196			  {
2197			    BFD_ASSERT (h->root.type == bfd_link_hash_defined
2198					|| (h->root.type
2199					    == bfd_link_hash_defweak));
2200			    sec = h->root.u.def.section;
2201			  }
2202			if (sec != NULL && bfd_is_abs_section (sec))
2203			  indx = 0;
2204			else if (sec == NULL || sec->owner == NULL)
2205			  {
2206			    bfd_set_error (bfd_error_bad_value);
2207			    return false;
2208			  }
2209			else
2210			  {
2211			    asection *osec;
2212
2213			    osec = sec->output_section;
2214			    indx = elf_section_data (osec)->dynindx;
2215
2216			    /* We are turning this relocation into one
2217			       against a section symbol, so subtract out
2218			       the output section's address but not the
2219			       offset of the input section in the output
2220			       section.  */
2221			    outrel.r_addend -= osec->vma;
2222
2223			    /* FIXME: we really should be able to link non-pic
2224			       shared libraries.  */
2225			    if (indx == 0)
2226			      {
2227				BFD_FAIL ();
2228				(*_bfd_error_handler)
2229				  (_("%s: probably compiled without -fPIC?"),
2230				   bfd_archive_filename (input_bfd));
2231				bfd_set_error (bfd_error_bad_value);
2232				return false;
2233			      }
2234			  }
2235
2236			outrel.r_info
2237			  = ELF64_R_INFO (indx,
2238					  ELF64_R_TYPE_INFO (
2239					    ELF64_R_TYPE_DATA (rel->r_info),
2240							       r_type));
2241		      }
2242		  }
2243
2244		bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2245					   (((Elf64_External_Rela *)
2246					     sreloc->contents)
2247					    + sreloc->reloc_count));
2248		++sreloc->reloc_count;
2249
2250		/* This reloc will be computed at runtime, so there's no
2251		   need to do anything now.  */
2252		if (! relocate)
2253		  continue;
2254	      }
2255	    break;
2256	    }
2257	}
2258
2259      switch (r_type)
2260	{
2261	case R_SPARC_GOT10:
2262	case R_SPARC_GOT13:
2263	case R_SPARC_GOT22:
2264	  /* Relocation is to the entry for this symbol in the global
2265	     offset table.  */
2266	  if (sgot == NULL)
2267	    {
2268	      sgot = bfd_get_section_by_name (dynobj, ".got");
2269	      BFD_ASSERT (sgot != NULL);
2270	    }
2271
2272	  if (h != NULL)
2273	    {
2274	      boolean dyn;
2275
2276	      off = h->got.offset;
2277	      BFD_ASSERT (off != (bfd_vma) -1);
2278	      dyn = elf_hash_table (info)->dynamic_sections_created;
2279
2280	      if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
2281		  || (info->shared
2282		      && (info->symbolic
2283			  || h->dynindx == -1
2284			  || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2285		      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2286		{
2287		  /* This is actually a static link, or it is a -Bsymbolic
2288		     link and the symbol is defined locally, or the symbol
2289		     was forced to be local because of a version file.  We
2290		     must initialize this entry in the global offset table.
2291		     Since the offset must always be a multiple of 8, we
2292		     use the least significant bit to record whether we
2293		     have initialized it already.
2294
2295		     When doing a dynamic link, we create a .rela.got
2296		     relocation entry to initialize the value.  This is
2297		     done in the finish_dynamic_symbol routine.  */
2298
2299		  if ((off & 1) != 0)
2300		    off &= ~1;
2301		  else
2302		    {
2303		      bfd_put_64 (output_bfd, relocation,
2304				  sgot->contents + off);
2305		      h->got.offset |= 1;
2306		    }
2307		}
2308	      else
2309		unresolved_reloc = false;
2310	    }
2311	  else
2312	    {
2313	      BFD_ASSERT (local_got_offsets != NULL);
2314	      off = local_got_offsets[r_symndx];
2315	      BFD_ASSERT (off != (bfd_vma) -1);
2316
2317	      /* The offset must always be a multiple of 8.  We use
2318		 the least significant bit to record whether we have
2319		 already processed this entry.  */
2320	      if ((off & 1) != 0)
2321		off &= ~1;
2322	      else
2323		{
2324		  local_got_offsets[r_symndx] |= 1;
2325
2326		  if (info->shared)
2327		    {
2328		      asection *srelgot;
2329		      Elf_Internal_Rela outrel;
2330
2331		      /* The Solaris 2.7 64-bit linker adds the contents
2332			 of the location to the value of the reloc.
2333			 Note this is different behaviour to the
2334			 32-bit linker, which both adds the contents
2335			 and ignores the addend.  So clear the location.  */
2336		      bfd_put_64 (output_bfd, (bfd_vma) 0,
2337				  sgot->contents + off);
2338
2339		      /* We need to generate a R_SPARC_RELATIVE reloc
2340			 for the dynamic linker.  */
2341		      srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2342		      BFD_ASSERT (srelgot != NULL);
2343
2344		      outrel.r_offset = (sgot->output_section->vma
2345					 + sgot->output_offset
2346					 + off);
2347		      outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2348		      outrel.r_addend = relocation;
2349		      bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2350						 (((Elf64_External_Rela *)
2351						   srelgot->contents)
2352						  + srelgot->reloc_count));
2353		      ++srelgot->reloc_count;
2354		    }
2355		  else
2356		    bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2357		}
2358	    }
2359	  relocation = sgot->output_offset + off - got_base;
2360	  goto do_default;
2361
2362	case R_SPARC_WPLT30:
2363	case R_SPARC_PLT32:
2364	case R_SPARC_HIPLT22:
2365	case R_SPARC_LOPLT10:
2366	case R_SPARC_PCPLT32:
2367	case R_SPARC_PCPLT22:
2368	case R_SPARC_PCPLT10:
2369	case R_SPARC_PLT64:
2370	  /* Relocation is to the entry for this symbol in the
2371             procedure linkage table.  */
2372	  BFD_ASSERT (h != NULL);
2373
2374	  if (h->plt.offset == (bfd_vma) -1)
2375	    {
2376	      /* We didn't make a PLT entry for this symbol.  This
2377		 happens when statically linking PIC code, or when
2378		 using -Bsymbolic.  */
2379	      goto do_default;
2380	    }
2381
2382	  if (splt == NULL)
2383	    {
2384	      splt = bfd_get_section_by_name (dynobj, ".plt");
2385	      BFD_ASSERT (splt != NULL);
2386	    }
2387
2388	  relocation = (splt->output_section->vma
2389			+ splt->output_offset
2390			+ sparc64_elf_plt_entry_offset (h->plt.offset));
2391	  unresolved_reloc = false;
2392	  if (r_type == R_SPARC_WPLT30)
2393	    goto do_wplt30;
2394	  if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2395	    {
2396	      r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2397	      is_plt = true;
2398	      goto do_dynreloc;
2399	    }
2400	  goto do_default;
2401
2402	case R_SPARC_OLO10:
2403	  {
2404	    bfd_vma x;
2405
2406	    relocation += rel->r_addend;
2407	    relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2408
2409	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2410	    x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2411	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2412
2413	    r = bfd_check_overflow (howto->complain_on_overflow,
2414				    howto->bitsize, howto->rightshift,
2415				    bfd_arch_bits_per_address (input_bfd),
2416				    relocation);
2417	  }
2418	  break;
2419
2420	case R_SPARC_WDISP16:
2421	  {
2422	    bfd_vma x;
2423
2424	    relocation += rel->r_addend;
2425	    /* Adjust for pc-relative-ness.  */
2426	    relocation -= (input_section->output_section->vma
2427			   + input_section->output_offset);
2428	    relocation -= rel->r_offset;
2429
2430	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2431	    x &= ~(bfd_vma) 0x303fff;
2432	    x |= ((((relocation >> 2) & 0xc000) << 6)
2433		  | ((relocation >> 2) & 0x3fff));
2434	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2435
2436	    r = bfd_check_overflow (howto->complain_on_overflow,
2437				    howto->bitsize, howto->rightshift,
2438				    bfd_arch_bits_per_address (input_bfd),
2439				    relocation);
2440	  }
2441	  break;
2442
2443	case R_SPARC_HIX22:
2444	  {
2445	    bfd_vma x;
2446
2447	    relocation += rel->r_addend;
2448	    relocation = relocation ^ MINUS_ONE;
2449
2450	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2451	    x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2452	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2453
2454	    r = bfd_check_overflow (howto->complain_on_overflow,
2455				    howto->bitsize, howto->rightshift,
2456				    bfd_arch_bits_per_address (input_bfd),
2457				    relocation);
2458	  }
2459	  break;
2460
2461	case R_SPARC_LOX10:
2462	  {
2463	    bfd_vma x;
2464
2465	    relocation += rel->r_addend;
2466	    relocation = (relocation & 0x3ff) | 0x1c00;
2467
2468	    x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2469	    x = (x & ~(bfd_vma) 0x1fff) | relocation;
2470	    bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2471
2472	    r = bfd_reloc_ok;
2473	  }
2474	  break;
2475
2476	case R_SPARC_WDISP30:
2477	do_wplt30:
2478	  if (SEC_DO_RELAX (input_section)
2479	      && rel->r_offset + 4 < input_section->_raw_size)
2480	    {
2481#define G0		0
2482#define O7		15
2483#define XCC		(2 << 20)
2484#define COND(x)		(((x)&0xf)<<25)
2485#define CONDA		COND(0x8)
2486#define INSN_BPA	(F2(0,1) | CONDA | BPRED | XCC)
2487#define INSN_BA		(F2(0,2) | CONDA)
2488#define INSN_OR		F3(2, 0x2, 0)
2489#define INSN_NOP	F2(0,4)
2490
2491	      bfd_vma x, y;
2492
2493	      /* If the instruction is a call with either:
2494		 restore
2495		 arithmetic instruction with rd == %o7
2496		 where rs1 != %o7 and rs2 if it is register != %o7
2497		 then we can optimize if the call destination is near
2498		 by changing the call into a branch always.  */
2499	      x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2500	      y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2501	      if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2502		{
2503		  if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2504		       || ((y & OP3(0x28)) == 0 /* arithmetic */
2505			   && (y & RD(~0)) == RD(O7)))
2506		      && (y & RS1(~0)) != RS1(O7)
2507		      && ((y & F3I(~0))
2508			  || (y & RS2(~0)) != RS2(O7)))
2509		    {
2510		      bfd_vma reloc;
2511
2512		      reloc = relocation + rel->r_addend - rel->r_offset;
2513		      reloc -= (input_section->output_section->vma
2514				+ input_section->output_offset);
2515		      if (reloc & 3)
2516			goto do_default;
2517
2518		      /* Ensure the branch fits into simm22.  */
2519		      if ((reloc & ~(bfd_vma)0x7fffff)
2520			   && ((reloc | 0x7fffff) != MINUS_ONE))
2521			goto do_default;
2522		      reloc >>= 2;
2523
2524		      /* Check whether it fits into simm19.  */
2525		      if ((reloc & 0x3c0000) == 0
2526			  || (reloc & 0x3c0000) == 0x3c0000)
2527			x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2528		      else
2529			x = INSN_BA | (reloc & 0x3fffff); /* ba */
2530		      bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2531		      r = bfd_reloc_ok;
2532		      if (rel->r_offset >= 4
2533			  && (y & (0xffffffff ^ RS1(~0)))
2534			     == (INSN_OR | RD(O7) | RS2(G0)))
2535			{
2536			  bfd_vma z;
2537			  unsigned int reg;
2538
2539			  z = bfd_get_32 (input_bfd,
2540					  contents + rel->r_offset - 4);
2541			  if ((z & (0xffffffff ^ RD(~0)))
2542			      != (INSN_OR | RS1(O7) | RS2(G0)))
2543			    break;
2544
2545			  /* The sequence was
2546			     or %o7, %g0, %rN
2547			     call foo
2548			     or %rN, %g0, %o7
2549
2550			     If call foo was replaced with ba, replace
2551			     or %rN, %g0, %o7 with nop.  */
2552
2553			  reg = (y & RS1(~0)) >> 14;
2554			  if (reg != ((z & RD(~0)) >> 25)
2555			      || reg == G0 || reg == O7)
2556			    break;
2557
2558			  bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2559				      contents + rel->r_offset + 4);
2560			}
2561		      break;
2562		    }
2563		}
2564	    }
2565	  /* FALLTHROUGH */
2566
2567	default:
2568	do_default:
2569	  r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2570					contents, rel->r_offset,
2571					relocation, rel->r_addend);
2572	  break;
2573	}
2574
2575      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2576	 because such sections are not SEC_ALLOC and thus ld.so will
2577	 not process them.  */
2578      if (unresolved_reloc
2579	  && !((input_section->flags & SEC_DEBUGGING) != 0
2580	       && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2581	(*_bfd_error_handler)
2582	  (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2583	   bfd_archive_filename (input_bfd),
2584	   bfd_get_section_name (input_bfd, input_section),
2585	   (long) rel->r_offset,
2586	   h->root.root.string);
2587
2588      switch (r)
2589	{
2590	case bfd_reloc_ok:
2591	  break;
2592
2593	default:
2594	case bfd_reloc_outofrange:
2595	  abort ();
2596
2597	case bfd_reloc_overflow:
2598	  {
2599	    const char *name;
2600
2601	    /* The Solaris native linker silently disregards
2602	       overflows.  We don't, but this breaks stabs debugging
2603	       info, whose relocations are only 32-bits wide.  Ignore
2604	       overflows in this case.  */
2605	    if (r_type == R_SPARC_32
2606		&& (input_section->flags & SEC_DEBUGGING) != 0
2607		&& strcmp (bfd_section_name (input_bfd, input_section),
2608			   ".stab") == 0)
2609	      break;
2610
2611	    if (h != NULL)
2612	      {
2613		if (h->root.type == bfd_link_hash_undefweak
2614		    && howto->pc_relative)
2615		  {
2616		    /* Assume this is a call protected by other code that
2617		       detect the symbol is undefined.  If this is the case,
2618		       we can safely ignore the overflow.  If not, the
2619		       program is hosed anyway, and a little warning isn't
2620		       going to help.  */
2621		    break;
2622		  }
2623
2624	        name = h->root.root.string;
2625	      }
2626	    else
2627	      {
2628		name = (bfd_elf_string_from_elf_section
2629			(input_bfd,
2630			 symtab_hdr->sh_link,
2631			 sym->st_name));
2632		if (name == NULL)
2633		  return false;
2634		if (*name == '\0')
2635		  name = bfd_section_name (input_bfd, sec);
2636	      }
2637	    if (! ((*info->callbacks->reloc_overflow)
2638		   (info, name, howto->name, (bfd_vma) 0,
2639		    input_bfd, input_section, rel->r_offset)))
2640	      return false;
2641	  }
2642	break;
2643	}
2644    }
2645
2646  return true;
2647}
2648
2649/* Finish up dynamic symbol handling.  We set the contents of various
2650   dynamic sections here.  */
2651
2652static boolean
2653sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2654     bfd *output_bfd;
2655     struct bfd_link_info *info;
2656     struct elf_link_hash_entry *h;
2657     Elf_Internal_Sym *sym;
2658{
2659  bfd *dynobj;
2660
2661  dynobj = elf_hash_table (info)->dynobj;
2662
2663  if (h->plt.offset != (bfd_vma) -1)
2664    {
2665      asection *splt;
2666      asection *srela;
2667      Elf_Internal_Rela rela;
2668
2669      /* This symbol has an entry in the PLT.  Set it up.  */
2670
2671      BFD_ASSERT (h->dynindx != -1);
2672
2673      splt = bfd_get_section_by_name (dynobj, ".plt");
2674      srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2675      BFD_ASSERT (splt != NULL && srela != NULL);
2676
2677      /* Fill in the entry in the .rela.plt section.  */
2678
2679      if (h->plt.offset < LARGE_PLT_THRESHOLD)
2680	{
2681	  rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2682	  rela.r_addend = 0;
2683	}
2684      else
2685	{
2686	  bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2687	  rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2688	  rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2689			  -(splt->output_section->vma + splt->output_offset);
2690	}
2691      rela.r_offset += (splt->output_section->vma + splt->output_offset);
2692      rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2693
2694      /* Adjust for the first 4 reserved elements in the .plt section
2695	 when setting the offset in the .rela.plt section.
2696	 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2697	 thus .plt[4] has corresponding .rela.plt[0] and so on.  */
2698
2699      bfd_elf64_swap_reloca_out (output_bfd, &rela,
2700				 ((Elf64_External_Rela *) srela->contents
2701				  + (h->plt.offset - 4)));
2702
2703      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2704	{
2705	  /* Mark the symbol as undefined, rather than as defined in
2706	     the .plt section.  Leave the value alone.  */
2707	  sym->st_shndx = SHN_UNDEF;
2708	  /* If the symbol is weak, we do need to clear the value.
2709	     Otherwise, the PLT entry would provide a definition for
2710	     the symbol even if the symbol wasn't defined anywhere,
2711	     and so the symbol would never be NULL.  */
2712	  if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2713	      == 0)
2714	    sym->st_value = 0;
2715	}
2716    }
2717
2718  if (h->got.offset != (bfd_vma) -1)
2719    {
2720      asection *sgot;
2721      asection *srela;
2722      Elf_Internal_Rela rela;
2723
2724      /* This symbol has an entry in the GOT.  Set it up.  */
2725
2726      sgot = bfd_get_section_by_name (dynobj, ".got");
2727      srela = bfd_get_section_by_name (dynobj, ".rela.got");
2728      BFD_ASSERT (sgot != NULL && srela != NULL);
2729
2730      rela.r_offset = (sgot->output_section->vma
2731		       + sgot->output_offset
2732		       + (h->got.offset &~ (bfd_vma) 1));
2733
2734      /* If this is a -Bsymbolic link, and the symbol is defined
2735	 locally, we just want to emit a RELATIVE reloc.  Likewise if
2736	 the symbol was forced to be local because of a version file.
2737	 The entry in the global offset table will already have been
2738	 initialized in the relocate_section function.  */
2739      if (info->shared
2740	  && (info->symbolic || h->dynindx == -1)
2741	  && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2742	{
2743	  asection *sec = h->root.u.def.section;
2744	  rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2745	  rela.r_addend = (h->root.u.def.value
2746			   + sec->output_section->vma
2747			   + sec->output_offset);
2748	}
2749      else
2750	{
2751	  bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2752	  rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2753	  rela.r_addend = 0;
2754	}
2755
2756      bfd_elf64_swap_reloca_out (output_bfd, &rela,
2757				 ((Elf64_External_Rela *) srela->contents
2758				  + srela->reloc_count));
2759      ++srela->reloc_count;
2760    }
2761
2762  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2763    {
2764      asection *s;
2765      Elf_Internal_Rela rela;
2766
2767      /* This symbols needs a copy reloc.  Set it up.  */
2768
2769      BFD_ASSERT (h->dynindx != -1);
2770
2771      s = bfd_get_section_by_name (h->root.u.def.section->owner,
2772				   ".rela.bss");
2773      BFD_ASSERT (s != NULL);
2774
2775      rela.r_offset = (h->root.u.def.value
2776		       + h->root.u.def.section->output_section->vma
2777		       + h->root.u.def.section->output_offset);
2778      rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2779      rela.r_addend = 0;
2780      bfd_elf64_swap_reloca_out (output_bfd, &rela,
2781				 ((Elf64_External_Rela *) s->contents
2782				  + s->reloc_count));
2783      ++s->reloc_count;
2784    }
2785
2786  /* Mark some specially defined symbols as absolute.  */
2787  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2788      || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2789      || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2790    sym->st_shndx = SHN_ABS;
2791
2792  return true;
2793}
2794
2795/* Finish up the dynamic sections.  */
2796
2797static boolean
2798sparc64_elf_finish_dynamic_sections (output_bfd, info)
2799     bfd *output_bfd;
2800     struct bfd_link_info *info;
2801{
2802  bfd *dynobj;
2803  int stt_regidx = -1;
2804  asection *sdyn;
2805  asection *sgot;
2806
2807  dynobj = elf_hash_table (info)->dynobj;
2808
2809  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2810
2811  if (elf_hash_table (info)->dynamic_sections_created)
2812    {
2813      asection *splt;
2814      Elf64_External_Dyn *dyncon, *dynconend;
2815
2816      splt = bfd_get_section_by_name (dynobj, ".plt");
2817      BFD_ASSERT (splt != NULL && sdyn != NULL);
2818
2819      dyncon = (Elf64_External_Dyn *) sdyn->contents;
2820      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2821      for (; dyncon < dynconend; dyncon++)
2822	{
2823	  Elf_Internal_Dyn dyn;
2824	  const char *name;
2825	  boolean size;
2826
2827	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2828
2829	  switch (dyn.d_tag)
2830	    {
2831	    case DT_PLTGOT:   name = ".plt"; size = false; break;
2832	    case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2833	    case DT_JMPREL:   name = ".rela.plt"; size = false; break;
2834	    case DT_SPARC_REGISTER:
2835	      if (stt_regidx == -1)
2836		{
2837		  stt_regidx =
2838		    _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2839		  if (stt_regidx == -1)
2840		    return false;
2841		}
2842	      dyn.d_un.d_val = stt_regidx++;
2843	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2844	      /* fallthrough */
2845	    default:	      name = NULL; size = false; break;
2846	    }
2847
2848	  if (name != NULL)
2849	    {
2850	      asection *s;
2851
2852	      s = bfd_get_section_by_name (output_bfd, name);
2853	      if (s == NULL)
2854		dyn.d_un.d_val = 0;
2855	      else
2856		{
2857		  if (! size)
2858		    dyn.d_un.d_ptr = s->vma;
2859		  else
2860		    {
2861		      if (s->_cooked_size != 0)
2862			dyn.d_un.d_val = s->_cooked_size;
2863		      else
2864			dyn.d_un.d_val = s->_raw_size;
2865		    }
2866		}
2867	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2868	    }
2869	}
2870
2871      /* Initialize the contents of the .plt section.  */
2872      if (splt->_raw_size > 0)
2873	{
2874	  sparc64_elf_build_plt (output_bfd, splt->contents,
2875				 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2876	}
2877
2878      elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2879	PLT_ENTRY_SIZE;
2880    }
2881
2882  /* Set the first entry in the global offset table to the address of
2883     the dynamic section.  */
2884  sgot = bfd_get_section_by_name (dynobj, ".got");
2885  BFD_ASSERT (sgot != NULL);
2886  if (sgot->_raw_size > 0)
2887    {
2888      if (sdyn == NULL)
2889	bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2890      else
2891	bfd_put_64 (output_bfd,
2892		    sdyn->output_section->vma + sdyn->output_offset,
2893		    sgot->contents);
2894    }
2895
2896  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2897
2898  return true;
2899}
2900
2901static enum elf_reloc_type_class
2902sparc64_elf_reloc_type_class (rela)
2903     const Elf_Internal_Rela *rela;
2904{
2905  switch ((int) ELF64_R_TYPE (rela->r_info))
2906    {
2907    case R_SPARC_RELATIVE:
2908      return reloc_class_relative;
2909    case R_SPARC_JMP_SLOT:
2910      return reloc_class_plt;
2911    case R_SPARC_COPY:
2912      return reloc_class_copy;
2913    default:
2914      return reloc_class_normal;
2915    }
2916}
2917
2918/* Functions for dealing with the e_flags field.  */
2919
2920/* Merge backend specific data from an object file to the output
2921   object file when linking.  */
2922
2923static boolean
2924sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2925     bfd *ibfd;
2926     bfd *obfd;
2927{
2928  boolean error;
2929  flagword new_flags, old_flags;
2930  int new_mm, old_mm;
2931
2932  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2933      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2934    return true;
2935
2936  new_flags = elf_elfheader (ibfd)->e_flags;
2937  old_flags = elf_elfheader (obfd)->e_flags;
2938
2939  if (!elf_flags_init (obfd))   /* First call, no flags set */
2940    {
2941      elf_flags_init (obfd) = true;
2942      elf_elfheader (obfd)->e_flags = new_flags;
2943    }
2944
2945  else if (new_flags == old_flags)      /* Compatible flags are ok */
2946    ;
2947
2948  else                                  /* Incompatible flags */
2949    {
2950      error = false;
2951
2952#define EF_SPARC_ISA_EXTENSIONS \
2953  (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2954
2955      if ((ibfd->flags & DYNAMIC) != 0)
2956	{
2957	  /* We don't want dynamic objects memory ordering and
2958	     architecture to have any role. That's what dynamic linker
2959	     should do.  */
2960	  new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2961	  new_flags |= (old_flags
2962			& (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2963	}
2964      else
2965	{
2966	  /* Choose the highest architecture requirements.  */
2967	  old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2968	  new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2969	  if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2970	      && (old_flags & EF_SPARC_HAL_R1))
2971	    {
2972	      error = true;
2973	      (*_bfd_error_handler)
2974		(_("%s: linking UltraSPARC specific with HAL specific code"),
2975		 bfd_archive_filename (ibfd));
2976	    }
2977	  /* Choose the most restrictive memory ordering.  */
2978	  old_mm = (old_flags & EF_SPARCV9_MM);
2979	  new_mm = (new_flags & EF_SPARCV9_MM);
2980	  old_flags &= ~EF_SPARCV9_MM;
2981	  new_flags &= ~EF_SPARCV9_MM;
2982	  if (new_mm < old_mm)
2983	    old_mm = new_mm;
2984	  old_flags |= old_mm;
2985	  new_flags |= old_mm;
2986	}
2987
2988      /* Warn about any other mismatches */
2989      if (new_flags != old_flags)
2990        {
2991          error = true;
2992          (*_bfd_error_handler)
2993            (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2994             bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
2995        }
2996
2997      elf_elfheader (obfd)->e_flags = old_flags;
2998
2999      if (error)
3000        {
3001          bfd_set_error (bfd_error_bad_value);
3002          return false;
3003        }
3004    }
3005  return true;
3006}
3007
3008/* MARCO: Set the correct entry size for the .stab section.  */
3009
3010static boolean
3011sparc64_elf_fake_sections (abfd, hdr, sec)
3012     bfd *abfd ATTRIBUTE_UNUSED;
3013     Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3014     asection *sec;
3015{
3016  const char *name;
3017
3018  name = bfd_get_section_name (abfd, sec);
3019
3020  if (strcmp (name, ".stab") == 0)
3021    {
3022      /* Even in the 64bit case the stab entries are only 12 bytes long.  */
3023      elf_section_data (sec)->this_hdr.sh_entsize = 12;
3024    }
3025
3026  return true;
3027}
3028
3029/* Print a STT_REGISTER symbol to file FILE.  */
3030
3031static const char *
3032sparc64_elf_print_symbol_all (abfd, filep, symbol)
3033     bfd *abfd ATTRIBUTE_UNUSED;
3034     PTR filep;
3035     asymbol *symbol;
3036{
3037  FILE *file = (FILE *) filep;
3038  int reg, type;
3039
3040  if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3041      != STT_REGISTER)
3042    return NULL;
3043
3044  reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3045  type = symbol->flags;
3046  fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3047		 ((type & BSF_LOCAL)
3048		  ? (type & BSF_GLOBAL) ? '!' : 'l'
3049	          : (type & BSF_GLOBAL) ? 'g' : ' '),
3050	         (type & BSF_WEAK) ? 'w' : ' ');
3051  if (symbol->name == NULL || symbol->name [0] == '\0')
3052    return "#scratch";
3053  else
3054    return symbol->name;
3055}
3056
3057/* Set the right machine number for a SPARC64 ELF file.  */
3058
3059static boolean
3060sparc64_elf_object_p (abfd)
3061     bfd *abfd;
3062{
3063  unsigned long mach = bfd_mach_sparc_v9;
3064
3065  if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3066    mach = bfd_mach_sparc_v9b;
3067  else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3068    mach = bfd_mach_sparc_v9a;
3069  return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3070}
3071
3072/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3073   standard ELF, because R_SPARC_OLO10 has secondary addend in
3074   ELF64_R_TYPE_DATA field.  This structure is used to redirect the
3075   relocation handling routines.  */
3076
3077const struct elf_size_info sparc64_elf_size_info =
3078{
3079  sizeof (Elf64_External_Ehdr),
3080  sizeof (Elf64_External_Phdr),
3081  sizeof (Elf64_External_Shdr),
3082  sizeof (Elf64_External_Rel),
3083  sizeof (Elf64_External_Rela),
3084  sizeof (Elf64_External_Sym),
3085  sizeof (Elf64_External_Dyn),
3086  sizeof (Elf_External_Note),
3087  4,		/* hash-table entry size */
3088  /* internal relocations per external relocations.
3089     For link purposes we use just 1 internal per
3090     1 external, for assembly and slurp symbol table
3091     we use 2.  */
3092  1,
3093  64,		/* arch_size */
3094  8,		/* file_align */
3095  ELFCLASS64,
3096  EV_CURRENT,
3097  bfd_elf64_write_out_phdrs,
3098  bfd_elf64_write_shdrs_and_ehdr,
3099  sparc64_elf_write_relocs,
3100  bfd_elf64_swap_symbol_in,
3101  bfd_elf64_swap_symbol_out,
3102  sparc64_elf_slurp_reloc_table,
3103  bfd_elf64_slurp_symbol_table,
3104  bfd_elf64_swap_dyn_in,
3105  bfd_elf64_swap_dyn_out,
3106  NULL,
3107  NULL,
3108  NULL,
3109  NULL
3110};
3111
3112#define TARGET_BIG_SYM	bfd_elf64_sparc_vec
3113#define TARGET_BIG_NAME	"elf64-sparc"
3114#define ELF_ARCH	bfd_arch_sparc
3115#define ELF_MAXPAGESIZE 0x100000
3116
3117/* This is the official ABI value.  */
3118#define ELF_MACHINE_CODE EM_SPARCV9
3119
3120/* This is the value that we used before the ABI was released.  */
3121#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3122
3123#define bfd_elf64_bfd_link_hash_table_create \
3124  sparc64_elf_bfd_link_hash_table_create
3125
3126#define elf_info_to_howto \
3127  sparc64_elf_info_to_howto
3128#define bfd_elf64_get_reloc_upper_bound \
3129  sparc64_elf_get_reloc_upper_bound
3130#define bfd_elf64_get_dynamic_reloc_upper_bound \
3131  sparc64_elf_get_dynamic_reloc_upper_bound
3132#define bfd_elf64_canonicalize_dynamic_reloc \
3133  sparc64_elf_canonicalize_dynamic_reloc
3134#define bfd_elf64_bfd_reloc_type_lookup \
3135  sparc64_elf_reloc_type_lookup
3136#define bfd_elf64_bfd_relax_section \
3137  sparc64_elf_relax_section
3138
3139#define elf_backend_create_dynamic_sections \
3140  _bfd_elf_create_dynamic_sections
3141#define elf_backend_add_symbol_hook \
3142  sparc64_elf_add_symbol_hook
3143#define elf_backend_get_symbol_type \
3144  sparc64_elf_get_symbol_type
3145#define elf_backend_symbol_processing \
3146  sparc64_elf_symbol_processing
3147#define elf_backend_check_relocs \
3148  sparc64_elf_check_relocs
3149#define elf_backend_adjust_dynamic_symbol \
3150  sparc64_elf_adjust_dynamic_symbol
3151#define elf_backend_size_dynamic_sections \
3152  sparc64_elf_size_dynamic_sections
3153#define elf_backend_relocate_section \
3154  sparc64_elf_relocate_section
3155#define elf_backend_finish_dynamic_symbol \
3156  sparc64_elf_finish_dynamic_symbol
3157#define elf_backend_finish_dynamic_sections \
3158  sparc64_elf_finish_dynamic_sections
3159#define elf_backend_print_symbol_all \
3160  sparc64_elf_print_symbol_all
3161#define elf_backend_output_arch_syms \
3162  sparc64_elf_output_arch_syms
3163#define bfd_elf64_bfd_merge_private_bfd_data \
3164  sparc64_elf_merge_private_bfd_data
3165#define elf_backend_fake_sections \
3166  sparc64_elf_fake_sections
3167
3168#define elf_backend_size_info \
3169  sparc64_elf_size_info
3170#define elf_backend_object_p \
3171  sparc64_elf_object_p
3172#define elf_backend_reloc_type_class \
3173  sparc64_elf_reloc_type_class
3174
3175#define elf_backend_want_got_plt 0
3176#define elf_backend_plt_readonly 0
3177#define elf_backend_want_plt_sym 1
3178
3179/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
3180#define elf_backend_plt_alignment 8
3181
3182#define elf_backend_got_header_size 8
3183#define elf_backend_plt_header_size PLT_HEADER_SIZE
3184
3185#include "elf64-target.h"
3186