in6.c revision 164033
1/*	$FreeBSD: head/sys/netinet6/in6.c 164033 2006-11-06 13:42:10Z rwatson $	*/
2/*	$KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*-
34 * Copyright (c) 1982, 1986, 1991, 1993
35 *	The Regents of the University of California.  All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 4. Neither the name of the University nor the names of its contributors
46 *    may be used to endorse or promote products derived from this software
47 *    without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 *	@(#)in.c	8.2 (Berkeley) 11/15/93
62 */
63
64#include "opt_inet.h"
65#include "opt_inet6.h"
66
67#include <sys/param.h>
68#include <sys/errno.h>
69#include <sys/malloc.h>
70#include <sys/socket.h>
71#include <sys/socketvar.h>
72#include <sys/sockio.h>
73#include <sys/systm.h>
74#include <sys/priv.h>
75#include <sys/proc.h>
76#include <sys/time.h>
77#include <sys/kernel.h>
78#include <sys/syslog.h>
79
80#include <net/if.h>
81#include <net/if_types.h>
82#include <net/route.h>
83#include <net/if_dl.h>
84
85#include <netinet/in.h>
86#include <netinet/in_var.h>
87#include <netinet/if_ether.h>
88#include <netinet/in_systm.h>
89#include <netinet/ip.h>
90#include <netinet/in_pcb.h>
91
92#include <netinet/ip6.h>
93#include <netinet6/ip6_var.h>
94#include <netinet6/nd6.h>
95#include <netinet6/mld6_var.h>
96#include <netinet6/ip6_mroute.h>
97#include <netinet6/in6_ifattach.h>
98#include <netinet6/scope6_var.h>
99#include <netinet6/in6_pcb.h>
100
101MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address");
102
103/*
104 * Definitions of some costant IP6 addresses.
105 */
106const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
107const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
108const struct in6_addr in6addr_nodelocal_allnodes =
109	IN6ADDR_NODELOCAL_ALLNODES_INIT;
110const struct in6_addr in6addr_linklocal_allnodes =
111	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
112const struct in6_addr in6addr_linklocal_allrouters =
113	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
114
115const struct in6_addr in6mask0 = IN6MASK0;
116const struct in6_addr in6mask32 = IN6MASK32;
117const struct in6_addr in6mask64 = IN6MASK64;
118const struct in6_addr in6mask96 = IN6MASK96;
119const struct in6_addr in6mask128 = IN6MASK128;
120
121const struct sockaddr_in6 sa6_any =
122	{ sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 };
123
124static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
125	struct ifnet *, struct thread *));
126static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
127	struct sockaddr_in6 *, int));
128static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
129
130struct in6_multihead in6_multihead;	/* XXX BSS initialization */
131int	(*faithprefix_p)(struct in6_addr *);
132
133/*
134 * Subroutine for in6_ifaddloop() and in6_ifremloop().
135 * This routine does actual work.
136 */
137static void
138in6_ifloop_request(int cmd, struct ifaddr *ifa)
139{
140	struct sockaddr_in6 all1_sa;
141	struct rtentry *nrt = NULL;
142	int e;
143
144	bzero(&all1_sa, sizeof(all1_sa));
145	all1_sa.sin6_family = AF_INET6;
146	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
147	all1_sa.sin6_addr = in6mask128;
148
149	/*
150	 * We specify the address itself as the gateway, and set the
151	 * RTF_LLINFO flag, so that the corresponding host route would have
152	 * the flag, and thus applications that assume traditional behavior
153	 * would be happy.  Note that we assume the caller of the function
154	 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
155	 * which changes the outgoing interface to the loopback interface.
156	 */
157	e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
158	    (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
159	if (e != 0) {
160		/* XXX need more descriptive message */
161		log(LOG_ERR, "in6_ifloop_request: "
162		    "%s operation failed for %s (errno=%d)\n",
163		    cmd == RTM_ADD ? "ADD" : "DELETE",
164		    ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
165		    e);
166	}
167
168	/*
169	 * Report the addition/removal of the address to the routing socket.
170	 * XXX: since we called rtinit for a p2p interface with a destination,
171	 *      we end up reporting twice in such a case.  Should we rather
172	 *      omit the second report?
173	 */
174	if (nrt) {
175		RT_LOCK(nrt);
176		/*
177		 * Make sure rt_ifa be equal to IFA, the second argument of
178		 * the function.  We need this because when we refer to
179		 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa
180		 * points to the address instead of the loopback address.
181		 */
182		if (cmd == RTM_ADD && ifa != nrt->rt_ifa) {
183			IFAFREE(nrt->rt_ifa);
184			IFAREF(ifa);
185			nrt->rt_ifa = ifa;
186		}
187
188		rt_newaddrmsg(cmd, ifa, e, nrt);
189		if (cmd == RTM_DELETE) {
190			rtfree(nrt);
191		} else {
192			/* the cmd must be RTM_ADD here */
193			RT_REMREF(nrt);
194			RT_UNLOCK(nrt);
195		}
196	}
197}
198
199/*
200 * Add ownaddr as loopback rtentry.  We previously add the route only if
201 * necessary (ex. on a p2p link).  However, since we now manage addresses
202 * separately from prefixes, we should always add the route.  We can't
203 * rely on the cloning mechanism from the corresponding interface route
204 * any more.
205 */
206void
207in6_ifaddloop(struct ifaddr *ifa)
208{
209	struct rtentry *rt;
210	int need_loop;
211
212	/* If there is no loopback entry, allocate one. */
213	rt = rtalloc1(ifa->ifa_addr, 0, 0);
214	need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
215	    (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0);
216	if (rt)
217		rtfree(rt);
218	if (need_loop)
219		in6_ifloop_request(RTM_ADD, ifa);
220}
221
222/*
223 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
224 * if it exists.
225 */
226void
227in6_ifremloop(struct ifaddr *ifa)
228{
229	struct in6_ifaddr *ia;
230	struct rtentry *rt;
231	int ia_count = 0;
232
233	/*
234	 * Some of BSD variants do not remove cloned routes
235	 * from an interface direct route, when removing the direct route
236	 * (see comments in net/net_osdep.h).  Even for variants that do remove
237	 * cloned routes, they could fail to remove the cloned routes when
238	 * we handle multple addresses that share a common prefix.
239	 * So, we should remove the route corresponding to the deleted address.
240	 */
241
242	/*
243	 * Delete the entry only if exact one ifa exists.  More than one ifa
244	 * can exist if we assign a same single address to multiple
245	 * (probably p2p) interfaces.
246	 * XXX: we should avoid such a configuration in IPv6...
247	 */
248	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
249		if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
250			ia_count++;
251			if (ia_count > 1)
252				break;
253		}
254	}
255
256	if (ia_count == 1) {
257		/*
258		 * Before deleting, check if a corresponding loopbacked host
259		 * route surely exists.  With this check, we can avoid to
260		 * delete an interface direct route whose destination is same
261		 * as the address being removed.  This can happen when removing
262		 * a subnet-router anycast address on an interface attahced
263		 * to a shared medium.
264		 */
265		rt = rtalloc1(ifa->ifa_addr, 0, 0);
266		if (rt != NULL) {
267			if ((rt->rt_flags & RTF_HOST) != 0 &&
268			    (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
269				rtfree(rt);
270				in6_ifloop_request(RTM_DELETE, ifa);
271			} else
272				RT_UNLOCK(rt);
273		}
274	}
275}
276
277int
278in6_mask2len(mask, lim0)
279	struct in6_addr *mask;
280	u_char *lim0;
281{
282	int x = 0, y;
283	u_char *lim = lim0, *p;
284
285	/* ignore the scope_id part */
286	if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
287		lim = (u_char *)mask + sizeof(*mask);
288	for (p = (u_char *)mask; p < lim; x++, p++) {
289		if (*p != 0xff)
290			break;
291	}
292	y = 0;
293	if (p < lim) {
294		for (y = 0; y < 8; y++) {
295			if ((*p & (0x80 >> y)) == 0)
296				break;
297		}
298	}
299
300	/*
301	 * when the limit pointer is given, do a stricter check on the
302	 * remaining bits.
303	 */
304	if (p < lim) {
305		if (y != 0 && (*p & (0x00ff >> y)) != 0)
306			return (-1);
307		for (p = p + 1; p < lim; p++)
308			if (*p != 0)
309				return (-1);
310	}
311
312	return x * 8 + y;
313}
314
315#define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
316#define ia62ifa(ia6)	(&((ia6)->ia_ifa))
317
318int
319in6_control(so, cmd, data, ifp, td)
320	struct	socket *so;
321	u_long cmd;
322	caddr_t	data;
323	struct ifnet *ifp;
324	struct thread *td;
325{
326	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
327	struct	in6_ifaddr *ia = NULL;
328	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
329	struct sockaddr_in6 *sa6;
330	int error;
331
332	switch (cmd) {
333	case SIOCGETSGCNT_IN6:
334	case SIOCGETMIFCNT_IN6:
335		return (mrt6_ioctl(cmd, data));
336	}
337
338	switch(cmd) {
339	case SIOCAADDRCTL_POLICY:
340	case SIOCDADDRCTL_POLICY:
341		if (td != NULL) {
342			error = priv_check(td, PRIV_NETINET_ADDRCTRL6);
343			if (error)
344				return (error);
345		}
346		return (in6_src_ioctl(cmd, data));
347	}
348
349	if (ifp == NULL)
350		return (EOPNOTSUPP);
351
352	switch (cmd) {
353	case SIOCSNDFLUSH_IN6:
354	case SIOCSPFXFLUSH_IN6:
355	case SIOCSRTRFLUSH_IN6:
356	case SIOCSDEFIFACE_IN6:
357	case SIOCSIFINFO_FLAGS:
358		if (td != NULL) {
359			error = priv_check(td, PRIV_NETINET_ND6);
360			if (error)
361				return (error);
362		}
363		/* FALLTHROUGH */
364	case OSIOCGIFINFO_IN6:
365	case SIOCGIFINFO_IN6:
366	case SIOCSIFINFO_IN6:
367	case SIOCGDRLST_IN6:
368	case SIOCGPRLST_IN6:
369	case SIOCGNBRINFO_IN6:
370	case SIOCGDEFIFACE_IN6:
371		return (nd6_ioctl(cmd, data, ifp));
372	}
373
374	switch (cmd) {
375	case SIOCSIFPREFIX_IN6:
376	case SIOCDIFPREFIX_IN6:
377	case SIOCAIFPREFIX_IN6:
378	case SIOCCIFPREFIX_IN6:
379	case SIOCSGIFPREFIX_IN6:
380	case SIOCGIFPREFIX_IN6:
381		log(LOG_NOTICE,
382		    "prefix ioctls are now invalidated. "
383		    "please use ifconfig.\n");
384		return (EOPNOTSUPP);
385	}
386
387	switch (cmd) {
388	case SIOCSSCOPE6:
389		if (td != NULL) {
390			error = priv_check(td, PRIV_NETINET_SCOPE6);
391			if (error)
392				return (error);
393		}
394		return (scope6_set(ifp,
395		    (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
396	case SIOCGSCOPE6:
397		return (scope6_get(ifp,
398		    (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
399	case SIOCGSCOPE6DEF:
400		return (scope6_get_default((struct scope6_id *)
401		    ifr->ifr_ifru.ifru_scope_id));
402	}
403
404	switch (cmd) {
405	case SIOCALIFADDR:
406	case SIOCDLIFADDR:
407		/*
408		 * XXXRW: Is this checked at another layer?  What priv to use
409		 * here?
410		 */
411		if (td != NULL) {
412			error = suser(td);
413			if (error)
414				return (error);
415		}
416		/* FALLTHROUGH */
417	case SIOCGLIFADDR:
418		return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
419	}
420
421	/*
422	 * Find address for this interface, if it exists.
423	 *
424	 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
425	 * only, and used the first interface address as the target of other
426	 * operations (without checking ifra_addr).  This was because netinet
427	 * code/API assumed at most 1 interface address per interface.
428	 * Since IPv6 allows a node to assign multiple addresses
429	 * on a single interface, we almost always look and check the
430	 * presence of ifra_addr, and reject invalid ones here.
431	 * It also decreases duplicated code among SIOC*_IN6 operations.
432	 */
433	switch (cmd) {
434	case SIOCAIFADDR_IN6:
435	case SIOCSIFPHYADDR_IN6:
436		sa6 = &ifra->ifra_addr;
437		break;
438	case SIOCSIFADDR_IN6:
439	case SIOCGIFADDR_IN6:
440	case SIOCSIFDSTADDR_IN6:
441	case SIOCSIFNETMASK_IN6:
442	case SIOCGIFDSTADDR_IN6:
443	case SIOCGIFNETMASK_IN6:
444	case SIOCDIFADDR_IN6:
445	case SIOCGIFPSRCADDR_IN6:
446	case SIOCGIFPDSTADDR_IN6:
447	case SIOCGIFAFLAG_IN6:
448	case SIOCSNDFLUSH_IN6:
449	case SIOCSPFXFLUSH_IN6:
450	case SIOCSRTRFLUSH_IN6:
451	case SIOCGIFALIFETIME_IN6:
452	case SIOCSIFALIFETIME_IN6:
453	case SIOCGIFSTAT_IN6:
454	case SIOCGIFSTAT_ICMP6:
455		sa6 = &ifr->ifr_addr;
456		break;
457	default:
458		sa6 = NULL;
459		break;
460	}
461	if (sa6 && sa6->sin6_family == AF_INET6) {
462		int error = 0;
463
464		if (sa6->sin6_scope_id != 0)
465			error = sa6_embedscope(sa6, 0);
466		else
467			error = in6_setscope(&sa6->sin6_addr, ifp, NULL);
468		if (error != 0)
469			return (error);
470		ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
471	} else
472		ia = NULL;
473
474	switch (cmd) {
475	case SIOCSIFADDR_IN6:
476	case SIOCSIFDSTADDR_IN6:
477	case SIOCSIFNETMASK_IN6:
478		/*
479		 * Since IPv6 allows a node to assign multiple addresses
480		 * on a single interface, SIOCSIFxxx ioctls are deprecated.
481		 */
482		/* we decided to obsolete this command (20000704) */
483		return (EINVAL);
484
485	case SIOCDIFADDR_IN6:
486		/*
487		 * for IPv4, we look for existing in_ifaddr here to allow
488		 * "ifconfig if0 delete" to remove the first IPv4 address on
489		 * the interface.  For IPv6, as the spec allows multiple
490		 * interface address from the day one, we consider "remove the
491		 * first one" semantics to be not preferable.
492		 */
493		if (ia == NULL)
494			return (EADDRNOTAVAIL);
495		/* FALLTHROUGH */
496	case SIOCAIFADDR_IN6:
497		/*
498		 * We always require users to specify a valid IPv6 address for
499		 * the corresponding operation.
500		 */
501		if (ifra->ifra_addr.sin6_family != AF_INET6 ||
502		    ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
503			return (EAFNOSUPPORT);
504
505		/*
506		 * XXXRW: Is this checked at another layer?  What priv to use
507		 * here?
508		 */
509		if (td != NULL) {
510			error = suser(td);
511			if (error)
512				return (error);
513		}
514
515		break;
516
517	case SIOCGIFADDR_IN6:
518		/* This interface is basically deprecated. use SIOCGIFCONF. */
519		/* FALLTHROUGH */
520	case SIOCGIFAFLAG_IN6:
521	case SIOCGIFNETMASK_IN6:
522	case SIOCGIFDSTADDR_IN6:
523	case SIOCGIFALIFETIME_IN6:
524		/* must think again about its semantics */
525		if (ia == NULL)
526			return (EADDRNOTAVAIL);
527		break;
528	case SIOCSIFALIFETIME_IN6:
529	    {
530		struct in6_addrlifetime *lt;
531
532		if (td != NULL) {
533			error = priv_check(td, PRIV_NETINET_ALIFETIME6);
534			if (error)
535				return (error);
536		}
537		if (ia == NULL)
538			return (EADDRNOTAVAIL);
539		/* sanity for overflow - beware unsigned */
540		lt = &ifr->ifr_ifru.ifru_lifetime;
541		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME &&
542		    lt->ia6t_vltime + time_second < time_second) {
543			return EINVAL;
544		}
545		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME &&
546		    lt->ia6t_pltime + time_second < time_second) {
547			return EINVAL;
548		}
549		break;
550	    }
551	}
552
553	switch (cmd) {
554
555	case SIOCGIFADDR_IN6:
556		ifr->ifr_addr = ia->ia_addr;
557		if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0)
558			return (error);
559		break;
560
561	case SIOCGIFDSTADDR_IN6:
562		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
563			return (EINVAL);
564		/*
565		 * XXX: should we check if ifa_dstaddr is NULL and return
566		 * an error?
567		 */
568		ifr->ifr_dstaddr = ia->ia_dstaddr;
569		if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0)
570			return (error);
571		break;
572
573	case SIOCGIFNETMASK_IN6:
574		ifr->ifr_addr = ia->ia_prefixmask;
575		break;
576
577	case SIOCGIFAFLAG_IN6:
578		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
579		break;
580
581	case SIOCGIFSTAT_IN6:
582		if (ifp == NULL)
583			return EINVAL;
584		bzero(&ifr->ifr_ifru.ifru_stat,
585		    sizeof(ifr->ifr_ifru.ifru_stat));
586		ifr->ifr_ifru.ifru_stat =
587		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
588		break;
589
590	case SIOCGIFSTAT_ICMP6:
591		if (ifp == NULL)
592			return EINVAL;
593		bzero(&ifr->ifr_ifru.ifru_icmp6stat,
594		    sizeof(ifr->ifr_ifru.ifru_icmp6stat));
595		ifr->ifr_ifru.ifru_icmp6stat =
596		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
597		break;
598
599	case SIOCGIFALIFETIME_IN6:
600		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
601		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
602			time_t maxexpire;
603			struct in6_addrlifetime *retlt =
604			    &ifr->ifr_ifru.ifru_lifetime;
605
606			/*
607			 * XXX: adjust expiration time assuming time_t is
608			 * signed.
609			 */
610			maxexpire = (-1) &
611			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
612			if (ia->ia6_lifetime.ia6t_vltime <
613			    maxexpire - ia->ia6_updatetime) {
614				retlt->ia6t_expire = ia->ia6_updatetime +
615				    ia->ia6_lifetime.ia6t_vltime;
616			} else
617				retlt->ia6t_expire = maxexpire;
618		}
619		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
620			time_t maxexpire;
621			struct in6_addrlifetime *retlt =
622			    &ifr->ifr_ifru.ifru_lifetime;
623
624			/*
625			 * XXX: adjust expiration time assuming time_t is
626			 * signed.
627			 */
628			maxexpire = (-1) &
629			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
630			if (ia->ia6_lifetime.ia6t_pltime <
631			    maxexpire - ia->ia6_updatetime) {
632				retlt->ia6t_preferred = ia->ia6_updatetime +
633				    ia->ia6_lifetime.ia6t_pltime;
634			} else
635				retlt->ia6t_preferred = maxexpire;
636		}
637		break;
638
639	case SIOCSIFALIFETIME_IN6:
640		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
641		/* for sanity */
642		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
643			ia->ia6_lifetime.ia6t_expire =
644				time_second + ia->ia6_lifetime.ia6t_vltime;
645		} else
646			ia->ia6_lifetime.ia6t_expire = 0;
647		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
648			ia->ia6_lifetime.ia6t_preferred =
649				time_second + ia->ia6_lifetime.ia6t_pltime;
650		} else
651			ia->ia6_lifetime.ia6t_preferred = 0;
652		break;
653
654	case SIOCAIFADDR_IN6:
655	{
656		int i, error = 0;
657		struct nd_prefixctl pr0;
658		struct nd_prefix *pr;
659
660		/*
661		 * first, make or update the interface address structure,
662		 * and link it to the list.
663		 */
664		if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0)
665			return (error);
666		if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
667		    == NULL) {
668		    	/*
669			 * this can happen when the user specify the 0 valid
670			 * lifetime.
671			 */
672			break;
673		}
674
675		/*
676		 * then, make the prefix on-link on the interface.
677		 * XXX: we'd rather create the prefix before the address, but
678		 * we need at least one address to install the corresponding
679		 * interface route, so we configure the address first.
680		 */
681
682		/*
683		 * convert mask to prefix length (prefixmask has already
684		 * been validated in in6_update_ifa().
685		 */
686		bzero(&pr0, sizeof(pr0));
687		pr0.ndpr_ifp = ifp;
688		pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
689		    NULL);
690		if (pr0.ndpr_plen == 128) {
691			break;	/* we don't need to install a host route. */
692		}
693		pr0.ndpr_prefix = ifra->ifra_addr;
694		/* apply the mask for safety. */
695		for (i = 0; i < 4; i++) {
696			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
697			    ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
698		}
699		/*
700		 * XXX: since we don't have an API to set prefix (not address)
701		 * lifetimes, we just use the same lifetimes as addresses.
702		 * The (temporarily) installed lifetimes can be overridden by
703		 * later advertised RAs (when accept_rtadv is non 0), which is
704		 * an intended behavior.
705		 */
706		pr0.ndpr_raf_onlink = 1; /* should be configurable? */
707		pr0.ndpr_raf_auto =
708		    ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
709		pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
710		pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
711
712		/* add the prefix if not yet. */
713		if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
714			/*
715			 * nd6_prelist_add will install the corresponding
716			 * interface route.
717			 */
718			if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
719				return (error);
720			if (pr == NULL) {
721				log(LOG_ERR, "nd6_prelist_add succeeded but "
722				    "no prefix\n");
723				return (EINVAL); /* XXX panic here? */
724			}
725		}
726
727		/* relate the address to the prefix */
728		if (ia->ia6_ndpr == NULL) {
729			ia->ia6_ndpr = pr;
730			pr->ndpr_refcnt++;
731
732			/*
733			 * If this is the first autoconf address from the
734			 * prefix, create a temporary address as well
735			 * (when required).
736			 */
737			if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
738			    ip6_use_tempaddr && pr->ndpr_refcnt == 1) {
739				int e;
740				if ((e = in6_tmpifadd(ia, 1, 0)) != 0) {
741					log(LOG_NOTICE, "in6_control: failed "
742					    "to create a temporary address, "
743					    "errno=%d\n", e);
744				}
745			}
746		}
747
748		/*
749		 * this might affect the status of autoconfigured addresses,
750		 * that is, this address might make other addresses detached.
751		 */
752		pfxlist_onlink_check();
753		if (error == 0 && ia)
754			EVENTHANDLER_INVOKE(ifaddr_event, ifp);
755		break;
756	}
757
758	case SIOCDIFADDR_IN6:
759	{
760		struct nd_prefix *pr;
761
762		/*
763		 * If the address being deleted is the only one that owns
764		 * the corresponding prefix, expire the prefix as well.
765		 * XXX: theoretically, we don't have to worry about such
766		 * relationship, since we separate the address management
767		 * and the prefix management.  We do this, however, to provide
768		 * as much backward compatibility as possible in terms of
769		 * the ioctl operation.
770		 * Note that in6_purgeaddr() will decrement ndpr_refcnt.
771		 */
772		pr = ia->ia6_ndpr;
773		in6_purgeaddr(&ia->ia_ifa);
774		if (pr && pr->ndpr_refcnt == 0)
775			prelist_remove(pr);
776		EVENTHANDLER_INVOKE(ifaddr_event, ifp);
777		break;
778	}
779
780	default:
781		if (ifp == NULL || ifp->if_ioctl == 0)
782			return (EOPNOTSUPP);
783		return ((*ifp->if_ioctl)(ifp, cmd, data));
784	}
785
786	return (0);
787}
788
789/*
790 * Update parameters of an IPv6 interface address.
791 * If necessary, a new entry is created and linked into address chains.
792 * This function is separated from in6_control().
793 * XXX: should this be performed under splnet()?
794 */
795int
796in6_update_ifa(ifp, ifra, ia, flags)
797	struct ifnet *ifp;
798	struct in6_aliasreq *ifra;
799	struct in6_ifaddr *ia;
800	int flags;
801{
802	int error = 0, hostIsNew = 0, plen = -1;
803	struct in6_ifaddr *oia;
804	struct sockaddr_in6 dst6;
805	struct in6_addrlifetime *lt;
806	struct in6_multi_mship *imm;
807	struct in6_multi *in6m_sol;
808	struct rtentry *rt;
809	int delay;
810
811	/* Validate parameters */
812	if (ifp == NULL || ifra == NULL) /* this maybe redundant */
813		return (EINVAL);
814
815	/*
816	 * The destination address for a p2p link must have a family
817	 * of AF_UNSPEC or AF_INET6.
818	 */
819	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
820	    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
821	    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
822		return (EAFNOSUPPORT);
823	/*
824	 * validate ifra_prefixmask.  don't check sin6_family, netmask
825	 * does not carry fields other than sin6_len.
826	 */
827	if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
828		return (EINVAL);
829	/*
830	 * Because the IPv6 address architecture is classless, we require
831	 * users to specify a (non 0) prefix length (mask) for a new address.
832	 * We also require the prefix (when specified) mask is valid, and thus
833	 * reject a non-consecutive mask.
834	 */
835	if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
836		return (EINVAL);
837	if (ifra->ifra_prefixmask.sin6_len != 0) {
838		plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
839		    (u_char *)&ifra->ifra_prefixmask +
840		    ifra->ifra_prefixmask.sin6_len);
841		if (plen <= 0)
842			return (EINVAL);
843	} else {
844		/*
845		 * In this case, ia must not be NULL.  We just use its prefix
846		 * length.
847		 */
848		plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
849	}
850	/*
851	 * If the destination address on a p2p interface is specified,
852	 * and the address is a scoped one, validate/set the scope
853	 * zone identifier.
854	 */
855	dst6 = ifra->ifra_dstaddr;
856	if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
857	    (dst6.sin6_family == AF_INET6)) {
858		struct in6_addr in6_tmp;
859		u_int32_t zoneid;
860
861		in6_tmp = dst6.sin6_addr;
862		if (in6_setscope(&in6_tmp, ifp, &zoneid))
863			return (EINVAL); /* XXX: should be impossible */
864
865		if (dst6.sin6_scope_id != 0) {
866			if (dst6.sin6_scope_id != zoneid)
867				return (EINVAL);
868		} else		/* user omit to specify the ID. */
869			dst6.sin6_scope_id = zoneid;
870
871		/* convert into the internal form */
872		if (sa6_embedscope(&dst6, 0))
873			return (EINVAL); /* XXX: should be impossible */
874	}
875	/*
876	 * The destination address can be specified only for a p2p or a
877	 * loopback interface.  If specified, the corresponding prefix length
878	 * must be 128.
879	 */
880	if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
881		if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
882			/* XXX: noisy message */
883			nd6log((LOG_INFO, "in6_update_ifa: a destination can "
884			    "be specified for a p2p or a loopback IF only\n"));
885			return (EINVAL);
886		}
887		if (plen != 128) {
888			nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
889			    "be 128 when dstaddr is specified\n"));
890			return (EINVAL);
891		}
892	}
893	/* lifetime consistency check */
894	lt = &ifra->ifra_lifetime;
895	if (lt->ia6t_pltime > lt->ia6t_vltime)
896		return (EINVAL);
897	if (lt->ia6t_vltime == 0) {
898		/*
899		 * the following log might be noisy, but this is a typical
900		 * configuration mistake or a tool's bug.
901		 */
902		nd6log((LOG_INFO,
903		    "in6_update_ifa: valid lifetime is 0 for %s\n",
904		    ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
905
906		if (ia == NULL)
907			return (0); /* there's nothing to do */
908	}
909
910	/*
911	 * If this is a new address, allocate a new ifaddr and link it
912	 * into chains.
913	 */
914	if (ia == NULL) {
915		hostIsNew = 1;
916		/*
917		 * When in6_update_ifa() is called in a process of a received
918		 * RA, it is called under an interrupt context.  So, we should
919		 * call malloc with M_NOWAIT.
920		 */
921		ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
922		    M_NOWAIT);
923		if (ia == NULL)
924			return (ENOBUFS);
925		bzero((caddr_t)ia, sizeof(*ia));
926		/* Initialize the address and masks, and put time stamp */
927		IFA_LOCK_INIT(&ia->ia_ifa);
928		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
929		ia->ia_addr.sin6_family = AF_INET6;
930		ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
931		ia->ia6_createtime = time_second;
932		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
933			/*
934			 * XXX: some functions expect that ifa_dstaddr is not
935			 * NULL for p2p interfaces.
936			 */
937			ia->ia_ifa.ifa_dstaddr =
938			    (struct sockaddr *)&ia->ia_dstaddr;
939		} else {
940			ia->ia_ifa.ifa_dstaddr = NULL;
941		}
942		ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask;
943
944		ia->ia_ifp = ifp;
945		if ((oia = in6_ifaddr) != NULL) {
946			for ( ; oia->ia_next; oia = oia->ia_next)
947				continue;
948			oia->ia_next = ia;
949		} else
950			in6_ifaddr = ia;
951
952		ia->ia_ifa.ifa_refcnt = 1;
953		TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
954	}
955
956	/* update timestamp */
957	ia->ia6_updatetime = time_second;
958
959	/* set prefix mask */
960	if (ifra->ifra_prefixmask.sin6_len) {
961		/*
962		 * We prohibit changing the prefix length of an existing
963		 * address, because
964		 * + such an operation should be rare in IPv6, and
965		 * + the operation would confuse prefix management.
966		 */
967		if (ia->ia_prefixmask.sin6_len &&
968		    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
969			nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
970			    " existing (%s) address should not be changed\n",
971			    ip6_sprintf(&ia->ia_addr.sin6_addr)));
972			error = EINVAL;
973			goto unlink;
974		}
975		ia->ia_prefixmask = ifra->ifra_prefixmask;
976	}
977
978	/*
979	 * If a new destination address is specified, scrub the old one and
980	 * install the new destination.  Note that the interface must be
981	 * p2p or loopback (see the check above.)
982	 */
983	if (dst6.sin6_family == AF_INET6 &&
984	    !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
985		int e;
986
987		if ((ia->ia_flags & IFA_ROUTE) != 0 &&
988		    (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) {
989			nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
990			    "a route to the old destination: %s\n",
991			    ip6_sprintf(&ia->ia_addr.sin6_addr)));
992			/* proceed anyway... */
993		} else
994			ia->ia_flags &= ~IFA_ROUTE;
995		ia->ia_dstaddr = dst6;
996	}
997
998	/*
999	 * Set lifetimes.  We do not refer to ia6t_expire and ia6t_preferred
1000	 * to see if the address is deprecated or invalidated, but initialize
1001	 * these members for applications.
1002	 */
1003	ia->ia6_lifetime = ifra->ifra_lifetime;
1004	if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1005		ia->ia6_lifetime.ia6t_expire =
1006		    time_second + ia->ia6_lifetime.ia6t_vltime;
1007	} else
1008		ia->ia6_lifetime.ia6t_expire = 0;
1009	if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1010		ia->ia6_lifetime.ia6t_preferred =
1011		    time_second + ia->ia6_lifetime.ia6t_pltime;
1012	} else
1013		ia->ia6_lifetime.ia6t_preferred = 0;
1014
1015	/* reset the interface and routing table appropriately. */
1016	if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1017		goto unlink;
1018
1019	/*
1020	 * configure address flags.
1021	 */
1022	ia->ia6_flags = ifra->ifra_flags;
1023	/*
1024	 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
1025	 * userland, make it deprecated.
1026	 */
1027	if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
1028		ia->ia6_lifetime.ia6t_pltime = 0;
1029		ia->ia6_lifetime.ia6t_preferred = time_second;
1030	}
1031	/*
1032	 * Make the address tentative before joining multicast addresses,
1033	 * so that corresponding MLD responses would not have a tentative
1034	 * source address.
1035	 */
1036	ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/* safety */
1037	if (hostIsNew && in6if_do_dad(ifp))
1038		ia->ia6_flags |= IN6_IFF_TENTATIVE;
1039
1040	/*
1041	 * We are done if we have simply modified an existing address.
1042	 */
1043	if (!hostIsNew)
1044		return (error);
1045
1046	/*
1047	 * Beyond this point, we should call in6_purgeaddr upon an error,
1048	 * not just go to unlink.
1049	 */
1050
1051	/* Join necessary multicast groups */
1052	in6m_sol = NULL;
1053	if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1054		struct sockaddr_in6 mltaddr, mltmask;
1055		struct in6_addr llsol;
1056
1057		/* join solicited multicast addr for new host id */
1058		bzero(&llsol, sizeof(struct in6_addr));
1059		llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1060		llsol.s6_addr32[1] = 0;
1061		llsol.s6_addr32[2] = htonl(1);
1062		llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3];
1063		llsol.s6_addr8[12] = 0xff;
1064		if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
1065			/* XXX: should not happen */
1066			log(LOG_ERR, "in6_update_ifa: "
1067			    "in6_setscope failed\n");
1068			goto cleanup;
1069		}
1070		delay = 0;
1071		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1072			/*
1073			 * We need a random delay for DAD on the address
1074			 * being configured.  It also means delaying
1075			 * transmission of the corresponding MLD report to
1076			 * avoid report collision.
1077			 * [draft-ietf-ipv6-rfc2462bis-02.txt]
1078			 */
1079			delay = arc4random() %
1080			    (MAX_RTR_SOLICITATION_DELAY * hz);
1081		}
1082		imm = in6_joingroup(ifp, &llsol, &error, delay);
1083		if (error != 0) {
1084			nd6log((LOG_WARNING,
1085			    "in6_update_ifa: addmulti failed for "
1086			    "%s on %s (errno=%d)\n",
1087			    ip6_sprintf(&llsol), if_name(ifp),
1088			    error));
1089			in6_purgeaddr((struct ifaddr *)ia);
1090			return (error);
1091		}
1092		in6m_sol = imm->i6mm_maddr;
1093
1094		bzero(&mltmask, sizeof(mltmask));
1095		mltmask.sin6_len = sizeof(struct sockaddr_in6);
1096		mltmask.sin6_family = AF_INET6;
1097		mltmask.sin6_addr = in6mask32;
1098#define	MLTMASK_LEN  4	/* mltmask's masklen (=32bit=4octet) */
1099
1100		/*
1101		 * join link-local all-nodes address
1102		 */
1103		bzero(&mltaddr, sizeof(mltaddr));
1104		mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1105		mltaddr.sin6_family = AF_INET6;
1106		mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1107		if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) !=
1108		    0)
1109			goto cleanup; /* XXX: should not fail */
1110
1111		/*
1112		 * XXX: do we really need this automatic routes?
1113		 * We should probably reconsider this stuff.  Most applications
1114		 * actually do not need the routes, since they usually specify
1115		 * the outgoing interface.
1116		 */
1117		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1118		if (rt) {
1119			if (memcmp(&mltaddr.sin6_addr,
1120			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1121			    MLTMASK_LEN)) {
1122				RTFREE_LOCKED(rt);
1123				rt = NULL;
1124			}
1125		}
1126		if (!rt) {
1127			/* XXX: we need RTF_CLONING to fake nd6_rtrequest */
1128			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1129			    (struct sockaddr *)&ia->ia_addr,
1130			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1131			    (struct rtentry **)0);
1132			if (error)
1133				goto cleanup;
1134		} else
1135			RTFREE_LOCKED(rt);
1136
1137		/*
1138		 * XXX: do we really need this automatic routes?
1139		 * We should probably reconsider this stuff.  Most applications
1140		 * actually do not need the routes, since they usually specify
1141		 * the outgoing interface.
1142		 */
1143		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1144		if (rt) {
1145			/* XXX: only works in !SCOPEDROUTING case. */
1146			if (memcmp(&mltaddr.sin6_addr,
1147			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1148			    MLTMASK_LEN)) {
1149				RTFREE_LOCKED(rt);
1150				rt = NULL;
1151			}
1152		}
1153		if (!rt) {
1154			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1155			    (struct sockaddr *)&ia->ia_addr,
1156			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1157			    (struct rtentry **)0);
1158			if (error)
1159				goto cleanup;
1160		} else {
1161			RTFREE_LOCKED(rt);
1162		}
1163
1164		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1165		if (!imm) {
1166			nd6log((LOG_WARNING,
1167			    "in6_update_ifa: addmulti failed for "
1168			    "%s on %s (errno=%d)\n",
1169			    ip6_sprintf(&mltaddr.sin6_addr),
1170			    if_name(ifp), error));
1171			goto cleanup;
1172		}
1173
1174		/*
1175		 * join node information group address
1176		 */
1177#define hostnamelen	strlen(hostname)
1178		delay = 0;
1179		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1180			/*
1181			 * The spec doesn't say anything about delay for this
1182			 * group, but the same logic should apply.
1183			 */
1184			delay = arc4random() %
1185			    (MAX_RTR_SOLICITATION_DELAY * hz);
1186		}
1187		if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1188		    == 0) {
1189			imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
1190			    delay); /* XXX jinmei */
1191			if (!imm) {
1192				nd6log((LOG_WARNING, "in6_update_ifa: "
1193				    "addmulti failed for %s on %s "
1194				    "(errno=%d)\n",
1195				    ip6_sprintf(&mltaddr.sin6_addr),
1196				    if_name(ifp), error));
1197				/* XXX not very fatal, go on... */
1198			}
1199		}
1200#undef hostnamelen
1201
1202		/*
1203		 * join interface-local all-nodes address.
1204		 * (ff01::1%ifN, and ff01::%ifN/32)
1205		 */
1206		mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1207		if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL))
1208		    != 0)
1209			goto cleanup; /* XXX: should not fail */
1210		/* XXX: again, do we really need the route? */
1211		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1212		if (rt) {
1213			if (memcmp(&mltaddr.sin6_addr,
1214			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1215			    MLTMASK_LEN)) {
1216				RTFREE_LOCKED(rt);
1217				rt = NULL;
1218			}
1219		}
1220		if (!rt) {
1221			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1222			    (struct sockaddr *)&ia->ia_addr,
1223			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1224			    (struct rtentry **)0);
1225			if (error)
1226				goto cleanup;
1227		} else
1228			RTFREE_LOCKED(rt);
1229
1230		/* XXX: again, do we really need the route? */
1231		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1232		if (rt) {
1233			if (memcmp(&mltaddr.sin6_addr,
1234			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1235			    MLTMASK_LEN)) {
1236				RTFREE_LOCKED(rt);
1237				rt = NULL;
1238			}
1239		}
1240		if (!rt) {
1241			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1242			    (struct sockaddr *)&ia->ia_addr,
1243			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1244			    (struct rtentry **)0);
1245			if (error)
1246				goto cleanup;
1247		} else {
1248			RTFREE_LOCKED(rt);
1249		}
1250
1251		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1252		if (!imm) {
1253			nd6log((LOG_WARNING, "in6_update_ifa: "
1254			    "addmulti failed for %s on %s "
1255			    "(errno=%d)\n",
1256			    ip6_sprintf(&mltaddr.sin6_addr),
1257			    if_name(ifp), error));
1258			goto cleanup;
1259		}
1260#undef	MLTMASK_LEN
1261	}
1262
1263	/*
1264	 * Perform DAD, if needed.
1265	 * XXX It may be of use, if we can administratively
1266	 * disable DAD.
1267	 */
1268	if (hostIsNew && in6if_do_dad(ifp) &&
1269	    ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) &&
1270	    (ia->ia6_flags & IN6_IFF_TENTATIVE))
1271	{
1272		int mindelay, maxdelay;
1273
1274		delay = 0;
1275		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1276			/*
1277			 * We need to impose a delay before sending an NS
1278			 * for DAD.  Check if we also needed a delay for the
1279			 * corresponding MLD message.  If we did, the delay
1280			 * should be larger than the MLD delay (this could be
1281			 * relaxed a bit, but this simple logic is at least
1282			 * safe).
1283			 */
1284			mindelay = 0;
1285			if (in6m_sol != NULL &&
1286			    in6m_sol->in6m_state == MLD_REPORTPENDING) {
1287				mindelay = in6m_sol->in6m_timer;
1288			}
1289			maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
1290			if (maxdelay - mindelay == 0)
1291				delay = 0;
1292			else {
1293				delay =
1294				    (arc4random() % (maxdelay - mindelay)) +
1295				    mindelay;
1296			}
1297		}
1298		nd6_dad_start((struct ifaddr *)ia, delay);
1299	}
1300
1301	return (error);
1302
1303  unlink:
1304	/*
1305	 * XXX: if a change of an existing address failed, keep the entry
1306	 * anyway.
1307	 */
1308	if (hostIsNew)
1309		in6_unlink_ifa(ia, ifp);
1310	return (error);
1311
1312  cleanup:
1313	in6_purgeaddr(&ia->ia_ifa);
1314	return error;
1315}
1316
1317void
1318in6_purgeaddr(ifa)
1319	struct ifaddr *ifa;
1320{
1321	struct ifnet *ifp = ifa->ifa_ifp;
1322	struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1323
1324	/* stop DAD processing */
1325	nd6_dad_stop(ifa);
1326
1327	/*
1328	 * delete route to the destination of the address being purged.
1329	 * The interface must be p2p or loopback in this case.
1330	 */
1331	if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1332		int e;
1333
1334		if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1335		    != 0) {
1336			log(LOG_ERR, "in6_purgeaddr: failed to remove "
1337			    "a route to the p2p destination: %s on %s, "
1338			    "errno=%d\n",
1339			    ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1340			    e);
1341			/* proceed anyway... */
1342		} else
1343			ia->ia_flags &= ~IFA_ROUTE;
1344	}
1345
1346	/* Remove ownaddr's loopback rtentry, if it exists. */
1347	in6_ifremloop(&(ia->ia_ifa));
1348
1349	if (ifp->if_flags & IFF_MULTICAST) {
1350		/*
1351		 * delete solicited multicast addr for deleting host id
1352		 */
1353		struct in6_multi *in6m;
1354		struct in6_addr llsol;
1355		bzero(&llsol, sizeof(struct in6_addr));
1356		llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1357		llsol.s6_addr32[1] = 0;
1358		llsol.s6_addr32[2] = htonl(1);
1359		llsol.s6_addr32[3] =
1360			ia->ia_addr.sin6_addr.s6_addr32[3];
1361		llsol.s6_addr8[12] = 0xff;
1362		(void)in6_setscope(&llsol, ifp, NULL); /* XXX proceed anyway */
1363
1364		IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1365		if (in6m)
1366			in6_delmulti(in6m);
1367	}
1368
1369	in6_unlink_ifa(ia, ifp);
1370}
1371
1372static void
1373in6_unlink_ifa(ia, ifp)
1374	struct in6_ifaddr *ia;
1375	struct ifnet *ifp;
1376{
1377	struct in6_ifaddr *oia;
1378	int	s = splnet();
1379
1380	TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1381
1382	oia = ia;
1383	if (oia == (ia = in6_ifaddr))
1384		in6_ifaddr = ia->ia_next;
1385	else {
1386		while (ia->ia_next && (ia->ia_next != oia))
1387			ia = ia->ia_next;
1388		if (ia->ia_next)
1389			ia->ia_next = oia->ia_next;
1390		else {
1391			/* search failed */
1392			printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1393		}
1394	}
1395
1396	/*
1397	 * Release the reference to the base prefix.  There should be a
1398	 * positive reference.
1399	 */
1400	if (oia->ia6_ndpr == NULL) {
1401		nd6log((LOG_NOTICE,
1402		    "in6_unlink_ifa: autoconf'ed address "
1403		    "%p has no prefix\n", oia));
1404	} else {
1405		oia->ia6_ndpr->ndpr_refcnt--;
1406		oia->ia6_ndpr = NULL;
1407	}
1408
1409	/*
1410	 * Also, if the address being removed is autoconf'ed, call
1411	 * pfxlist_onlink_check() since the release might affect the status of
1412	 * other (detached) addresses.
1413	 */
1414	if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) {
1415		pfxlist_onlink_check();
1416	}
1417
1418	/*
1419	 * release another refcnt for the link from in6_ifaddr.
1420	 * Note that we should decrement the refcnt at least once for all *BSD.
1421	 */
1422	IFAFREE(&oia->ia_ifa);
1423
1424	splx(s);
1425}
1426
1427void
1428in6_purgeif(ifp)
1429	struct ifnet *ifp;
1430{
1431	struct ifaddr *ifa, *nifa;
1432
1433	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
1434		nifa = TAILQ_NEXT(ifa, ifa_list);
1435		if (ifa->ifa_addr->sa_family != AF_INET6)
1436			continue;
1437		in6_purgeaddr(ifa);
1438	}
1439
1440	in6_ifdetach(ifp);
1441}
1442
1443/*
1444 * SIOC[GAD]LIFADDR.
1445 *	SIOCGLIFADDR: get first address. (?)
1446 *	SIOCGLIFADDR with IFLR_PREFIX:
1447 *		get first address that matches the specified prefix.
1448 *	SIOCALIFADDR: add the specified address.
1449 *	SIOCALIFADDR with IFLR_PREFIX:
1450 *		add the specified prefix, filling hostid part from
1451 *		the first link-local address.  prefixlen must be <= 64.
1452 *	SIOCDLIFADDR: delete the specified address.
1453 *	SIOCDLIFADDR with IFLR_PREFIX:
1454 *		delete the first address that matches the specified prefix.
1455 * return values:
1456 *	EINVAL on invalid parameters
1457 *	EADDRNOTAVAIL on prefix match failed/specified address not found
1458 *	other values may be returned from in6_ioctl()
1459 *
1460 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1461 * this is to accomodate address naming scheme other than RFC2374,
1462 * in the future.
1463 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1464 * address encoding scheme. (see figure on page 8)
1465 */
1466static int
1467in6_lifaddr_ioctl(so, cmd, data, ifp, td)
1468	struct socket *so;
1469	u_long cmd;
1470	caddr_t	data;
1471	struct ifnet *ifp;
1472	struct thread *td;
1473{
1474	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1475	struct ifaddr *ifa;
1476	struct sockaddr *sa;
1477
1478	/* sanity checks */
1479	if (!data || !ifp) {
1480		panic("invalid argument to in6_lifaddr_ioctl");
1481		/* NOTREACHED */
1482	}
1483
1484	switch (cmd) {
1485	case SIOCGLIFADDR:
1486		/* address must be specified on GET with IFLR_PREFIX */
1487		if ((iflr->flags & IFLR_PREFIX) == 0)
1488			break;
1489		/* FALLTHROUGH */
1490	case SIOCALIFADDR:
1491	case SIOCDLIFADDR:
1492		/* address must be specified on ADD and DELETE */
1493		sa = (struct sockaddr *)&iflr->addr;
1494		if (sa->sa_family != AF_INET6)
1495			return EINVAL;
1496		if (sa->sa_len != sizeof(struct sockaddr_in6))
1497			return EINVAL;
1498		/* XXX need improvement */
1499		sa = (struct sockaddr *)&iflr->dstaddr;
1500		if (sa->sa_family && sa->sa_family != AF_INET6)
1501			return EINVAL;
1502		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1503			return EINVAL;
1504		break;
1505	default: /* shouldn't happen */
1506#if 0
1507		panic("invalid cmd to in6_lifaddr_ioctl");
1508		/* NOTREACHED */
1509#else
1510		return EOPNOTSUPP;
1511#endif
1512	}
1513	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1514		return EINVAL;
1515
1516	switch (cmd) {
1517	case SIOCALIFADDR:
1518	    {
1519		struct in6_aliasreq ifra;
1520		struct in6_addr *hostid = NULL;
1521		int prefixlen;
1522
1523		if ((iflr->flags & IFLR_PREFIX) != 0) {
1524			struct sockaddr_in6 *sin6;
1525
1526			/*
1527			 * hostid is to fill in the hostid part of the
1528			 * address.  hostid points to the first link-local
1529			 * address attached to the interface.
1530			 */
1531			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1532			if (!ifa)
1533				return EADDRNOTAVAIL;
1534			hostid = IFA_IN6(ifa);
1535
1536		 	/* prefixlen must be <= 64. */
1537			if (64 < iflr->prefixlen)
1538				return EINVAL;
1539			prefixlen = iflr->prefixlen;
1540
1541			/* hostid part must be zero. */
1542			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1543			if (sin6->sin6_addr.s6_addr32[2] != 0 ||
1544			    sin6->sin6_addr.s6_addr32[3] != 0) {
1545				return EINVAL;
1546			}
1547		} else
1548			prefixlen = iflr->prefixlen;
1549
1550		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1551		bzero(&ifra, sizeof(ifra));
1552		bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
1553
1554		bcopy(&iflr->addr, &ifra.ifra_addr,
1555		    ((struct sockaddr *)&iflr->addr)->sa_len);
1556		if (hostid) {
1557			/* fill in hostid part */
1558			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1559			    hostid->s6_addr32[2];
1560			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1561			    hostid->s6_addr32[3];
1562		}
1563
1564		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1565			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1566			    ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1567			if (hostid) {
1568				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1569				    hostid->s6_addr32[2];
1570				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1571				    hostid->s6_addr32[3];
1572			}
1573		}
1574
1575		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1576		in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1577
1578		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1579		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td);
1580	    }
1581	case SIOCGLIFADDR:
1582	case SIOCDLIFADDR:
1583	    {
1584		struct in6_ifaddr *ia;
1585		struct in6_addr mask, candidate, match;
1586		struct sockaddr_in6 *sin6;
1587		int cmp;
1588
1589		bzero(&mask, sizeof(mask));
1590		if (iflr->flags & IFLR_PREFIX) {
1591			/* lookup a prefix rather than address. */
1592			in6_prefixlen2mask(&mask, iflr->prefixlen);
1593
1594			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1595			bcopy(&sin6->sin6_addr, &match, sizeof(match));
1596			match.s6_addr32[0] &= mask.s6_addr32[0];
1597			match.s6_addr32[1] &= mask.s6_addr32[1];
1598			match.s6_addr32[2] &= mask.s6_addr32[2];
1599			match.s6_addr32[3] &= mask.s6_addr32[3];
1600
1601			/* if you set extra bits, that's wrong */
1602			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1603				return EINVAL;
1604
1605			cmp = 1;
1606		} else {
1607			if (cmd == SIOCGLIFADDR) {
1608				/* on getting an address, take the 1st match */
1609				cmp = 0;	/* XXX */
1610			} else {
1611				/* on deleting an address, do exact match */
1612				in6_prefixlen2mask(&mask, 128);
1613				sin6 = (struct sockaddr_in6 *)&iflr->addr;
1614				bcopy(&sin6->sin6_addr, &match, sizeof(match));
1615
1616				cmp = 1;
1617			}
1618		}
1619
1620		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1621			if (ifa->ifa_addr->sa_family != AF_INET6)
1622				continue;
1623			if (!cmp)
1624				break;
1625
1626			/*
1627			 * XXX: this is adhoc, but is necessary to allow
1628			 * a user to specify fe80::/64 (not /10) for a
1629			 * link-local address.
1630			 */
1631			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1632			in6_clearscope(&candidate);
1633			candidate.s6_addr32[0] &= mask.s6_addr32[0];
1634			candidate.s6_addr32[1] &= mask.s6_addr32[1];
1635			candidate.s6_addr32[2] &= mask.s6_addr32[2];
1636			candidate.s6_addr32[3] &= mask.s6_addr32[3];
1637			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1638				break;
1639		}
1640		if (!ifa)
1641			return EADDRNOTAVAIL;
1642		ia = ifa2ia6(ifa);
1643
1644		if (cmd == SIOCGLIFADDR) {
1645			int error;
1646
1647			/* fill in the if_laddrreq structure */
1648			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1649			error = sa6_recoverscope(
1650			    (struct sockaddr_in6 *)&iflr->addr);
1651			if (error != 0)
1652				return (error);
1653
1654			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1655				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1656				    ia->ia_dstaddr.sin6_len);
1657				error = sa6_recoverscope(
1658				    (struct sockaddr_in6 *)&iflr->dstaddr);
1659				if (error != 0)
1660					return (error);
1661			} else
1662				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1663
1664			iflr->prefixlen =
1665			    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1666
1667			iflr->flags = ia->ia6_flags;	/* XXX */
1668
1669			return 0;
1670		} else {
1671			struct in6_aliasreq ifra;
1672
1673			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1674			bzero(&ifra, sizeof(ifra));
1675			bcopy(iflr->iflr_name, ifra.ifra_name,
1676			    sizeof(ifra.ifra_name));
1677
1678			bcopy(&ia->ia_addr, &ifra.ifra_addr,
1679			    ia->ia_addr.sin6_len);
1680			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1681				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1682				    ia->ia_dstaddr.sin6_len);
1683			} else {
1684				bzero(&ifra.ifra_dstaddr,
1685				    sizeof(ifra.ifra_dstaddr));
1686			}
1687			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1688			    ia->ia_prefixmask.sin6_len);
1689
1690			ifra.ifra_flags = ia->ia6_flags;
1691			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1692			    ifp, td);
1693		}
1694	    }
1695	}
1696
1697	return EOPNOTSUPP;	/* just for safety */
1698}
1699
1700/*
1701 * Initialize an interface's intetnet6 address
1702 * and routing table entry.
1703 */
1704static int
1705in6_ifinit(ifp, ia, sin6, newhost)
1706	struct ifnet *ifp;
1707	struct in6_ifaddr *ia;
1708	struct sockaddr_in6 *sin6;
1709	int newhost;
1710{
1711	int	error = 0, plen, ifacount = 0;
1712	int	s = splimp();
1713	struct ifaddr *ifa;
1714
1715	/*
1716	 * Give the interface a chance to initialize
1717	 * if this is its first address,
1718	 * and to validate the address if necessary.
1719	 */
1720	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1721		if (ifa->ifa_addr->sa_family != AF_INET6)
1722			continue;
1723		ifacount++;
1724	}
1725
1726	ia->ia_addr = *sin6;
1727
1728	if (ifacount <= 1 && ifp->if_ioctl) {
1729		IFF_LOCKGIANT(ifp);
1730		error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia);
1731		IFF_UNLOCKGIANT(ifp);
1732		if (error) {
1733			splx(s);
1734			return (error);
1735		}
1736	}
1737	splx(s);
1738
1739	ia->ia_ifa.ifa_metric = ifp->if_metric;
1740
1741	/* we could do in(6)_socktrim here, but just omit it at this moment. */
1742
1743	if (newhost) {
1744		/*
1745		 * set the rtrequest function to create llinfo.  It also
1746		 * adjust outgoing interface of the route for the local
1747		 * address when called via in6_ifaddloop() below.
1748		 */
1749		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1750	}
1751
1752	/*
1753	 * Special case:
1754	 * If a new destination address is specified for a point-to-point
1755	 * interface, install a route to the destination as an interface
1756	 * direct route.  In addition, if the link is expected to have neighbor
1757	 * cache entries, specify RTF_LLINFO so that a cache entry for the
1758	 * destination address will be created.
1759	 * created
1760	 * XXX: the logic below rejects assigning multiple addresses on a p2p
1761	 * interface that share the same destination.
1762	 */
1763	plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1764	if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 &&
1765	    ia->ia_dstaddr.sin6_family == AF_INET6) {
1766		int rtflags = RTF_UP | RTF_HOST;
1767		struct rtentry *rt = NULL, **rtp = NULL;
1768
1769		if (nd6_need_cache(ifp) != 0) {
1770			rtflags |= RTF_LLINFO;
1771			rtp = &rt;
1772		}
1773
1774		error = rtrequest(RTM_ADD, (struct sockaddr *)&ia->ia_dstaddr,
1775		    (struct sockaddr *)&ia->ia_addr,
1776		    (struct sockaddr *)&ia->ia_prefixmask,
1777		    ia->ia_flags | rtflags, rtp);
1778		if (error != 0)
1779			return (error);
1780		if (rt != NULL) {
1781			struct llinfo_nd6 *ln;
1782
1783			RT_LOCK(rt);
1784			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1785			if (ln != NULL) {
1786				/*
1787				 * Set the state to STALE because we don't
1788				 * have to perform address resolution on this
1789				 * link.
1790				 */
1791				ln->ln_state = ND6_LLINFO_STALE;
1792			}
1793			RT_REMREF(rt);
1794			RT_UNLOCK(rt);
1795		}
1796		ia->ia_flags |= IFA_ROUTE;
1797	}
1798	if (plen < 128) {
1799		/*
1800		 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
1801		 */
1802		ia->ia_ifa.ifa_flags |= RTF_CLONING;
1803	}
1804
1805	/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1806	if (newhost)
1807		in6_ifaddloop(&(ia->ia_ifa));
1808
1809	return (error);
1810}
1811
1812struct in6_multi_mship *
1813in6_joingroup(ifp, addr, errorp, delay)
1814	struct ifnet *ifp;
1815	struct in6_addr *addr;
1816	int *errorp;
1817	int delay;
1818{
1819	struct in6_multi_mship *imm;
1820
1821	imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
1822	if (!imm) {
1823		*errorp = ENOBUFS;
1824		return NULL;
1825	}
1826	imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay);
1827	if (!imm->i6mm_maddr) {
1828		/* *errorp is alrady set */
1829		free(imm, M_IP6MADDR);
1830		return NULL;
1831	}
1832	return imm;
1833}
1834
1835int
1836in6_leavegroup(imm)
1837	struct in6_multi_mship *imm;
1838{
1839
1840	if (imm->i6mm_maddr)
1841		in6_delmulti(imm->i6mm_maddr);
1842	free(imm,  M_IP6MADDR);
1843	return 0;
1844}
1845
1846/*
1847 * Find an IPv6 interface link-local address specific to an interface.
1848 */
1849struct in6_ifaddr *
1850in6ifa_ifpforlinklocal(ifp, ignoreflags)
1851	struct ifnet *ifp;
1852	int ignoreflags;
1853{
1854	struct ifaddr *ifa;
1855
1856	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1857		if (ifa->ifa_addr->sa_family != AF_INET6)
1858			continue;
1859		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1860			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1861			     ignoreflags) != 0)
1862				continue;
1863			break;
1864		}
1865	}
1866
1867	return ((struct in6_ifaddr *)ifa);
1868}
1869
1870
1871/*
1872 * find the internet address corresponding to a given interface and address.
1873 */
1874struct in6_ifaddr *
1875in6ifa_ifpwithaddr(ifp, addr)
1876	struct ifnet *ifp;
1877	struct in6_addr *addr;
1878{
1879	struct ifaddr *ifa;
1880
1881	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1882		if (ifa->ifa_addr->sa_family != AF_INET6)
1883			continue;
1884		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1885			break;
1886	}
1887
1888	return ((struct in6_ifaddr *)ifa);
1889}
1890
1891/*
1892 * Convert IP6 address to printable (loggable) representation.
1893 */
1894static char digits[] = "0123456789abcdef";
1895static int ip6round = 0;
1896char *
1897ip6_sprintf(addr)
1898	const struct in6_addr *addr;
1899{
1900	static char ip6buf[8][48];
1901	int i;
1902	char *cp;
1903	const u_int16_t *a = (const u_int16_t *)addr;
1904	const u_int8_t *d;
1905	int dcolon = 0;
1906
1907	ip6round = (ip6round + 1) & 7;
1908	cp = ip6buf[ip6round];
1909
1910	for (i = 0; i < 8; i++) {
1911		if (dcolon == 1) {
1912			if (*a == 0) {
1913				if (i == 7)
1914					*cp++ = ':';
1915				a++;
1916				continue;
1917			} else
1918				dcolon = 2;
1919		}
1920		if (*a == 0) {
1921			if (dcolon == 0 && *(a + 1) == 0) {
1922				if (i == 0)
1923					*cp++ = ':';
1924				*cp++ = ':';
1925				dcolon = 1;
1926			} else {
1927				*cp++ = '0';
1928				*cp++ = ':';
1929			}
1930			a++;
1931			continue;
1932		}
1933		d = (const u_char *)a;
1934		*cp++ = digits[*d >> 4];
1935		*cp++ = digits[*d++ & 0xf];
1936		*cp++ = digits[*d >> 4];
1937		*cp++ = digits[*d & 0xf];
1938		*cp++ = ':';
1939		a++;
1940	}
1941	*--cp = 0;
1942	return (ip6buf[ip6round]);
1943}
1944
1945int
1946in6_localaddr(in6)
1947	struct in6_addr *in6;
1948{
1949	struct in6_ifaddr *ia;
1950
1951	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1952		return 1;
1953
1954	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1955		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1956		    &ia->ia_prefixmask.sin6_addr)) {
1957			return 1;
1958		}
1959	}
1960
1961	return (0);
1962}
1963
1964int
1965in6_is_addr_deprecated(sa6)
1966	struct sockaddr_in6 *sa6;
1967{
1968	struct in6_ifaddr *ia;
1969
1970	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1971		if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1972				       &sa6->sin6_addr) &&
1973		    (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
1974			return (1); /* true */
1975
1976		/* XXX: do we still have to go thru the rest of the list? */
1977	}
1978
1979	return (0);		/* false */
1980}
1981
1982/*
1983 * return length of part which dst and src are equal
1984 * hard coding...
1985 */
1986int
1987in6_matchlen(src, dst)
1988struct in6_addr *src, *dst;
1989{
1990	int match = 0;
1991	u_char *s = (u_char *)src, *d = (u_char *)dst;
1992	u_char *lim = s + 16, r;
1993
1994	while (s < lim)
1995		if ((r = (*d++ ^ *s++)) != 0) {
1996			while (r < 128) {
1997				match++;
1998				r <<= 1;
1999			}
2000			break;
2001		} else
2002			match += 8;
2003	return match;
2004}
2005
2006/* XXX: to be scope conscious */
2007int
2008in6_are_prefix_equal(p1, p2, len)
2009	struct in6_addr *p1, *p2;
2010	int len;
2011{
2012	int bytelen, bitlen;
2013
2014	/* sanity check */
2015	if (0 > len || len > 128) {
2016		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
2017		    len);
2018		return (0);
2019	}
2020
2021	bytelen = len / 8;
2022	bitlen = len % 8;
2023
2024	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2025		return (0);
2026	if (bitlen != 0 &&
2027	    p1->s6_addr[bytelen] >> (8 - bitlen) !=
2028	    p2->s6_addr[bytelen] >> (8 - bitlen))
2029		return (0);
2030
2031	return (1);
2032}
2033
2034void
2035in6_prefixlen2mask(maskp, len)
2036	struct in6_addr *maskp;
2037	int len;
2038{
2039	u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2040	int bytelen, bitlen, i;
2041
2042	/* sanity check */
2043	if (0 > len || len > 128) {
2044		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2045		    len);
2046		return;
2047	}
2048
2049	bzero(maskp, sizeof(*maskp));
2050	bytelen = len / 8;
2051	bitlen = len % 8;
2052	for (i = 0; i < bytelen; i++)
2053		maskp->s6_addr[i] = 0xff;
2054	if (bitlen)
2055		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2056}
2057
2058/*
2059 * return the best address out of the same scope. if no address was
2060 * found, return the first valid address from designated IF.
2061 */
2062struct in6_ifaddr *
2063in6_ifawithifp(ifp, dst)
2064	struct ifnet *ifp;
2065	struct in6_addr *dst;
2066{
2067	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
2068	struct ifaddr *ifa;
2069	struct in6_ifaddr *besta = 0;
2070	struct in6_ifaddr *dep[2];	/* last-resort: deprecated */
2071
2072	dep[0] = dep[1] = NULL;
2073
2074	/*
2075	 * We first look for addresses in the same scope.
2076	 * If there is one, return it.
2077	 * If two or more, return one which matches the dst longest.
2078	 * If none, return one of global addresses assigned other ifs.
2079	 */
2080	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2081		if (ifa->ifa_addr->sa_family != AF_INET6)
2082			continue;
2083		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2084			continue; /* XXX: is there any case to allow anycast? */
2085		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2086			continue; /* don't use this interface */
2087		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2088			continue;
2089		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2090			if (ip6_use_deprecated)
2091				dep[0] = (struct in6_ifaddr *)ifa;
2092			continue;
2093		}
2094
2095		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2096			/*
2097			 * call in6_matchlen() as few as possible
2098			 */
2099			if (besta) {
2100				if (blen == -1)
2101					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2102				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2103				if (tlen > blen) {
2104					blen = tlen;
2105					besta = (struct in6_ifaddr *)ifa;
2106				}
2107			} else
2108				besta = (struct in6_ifaddr *)ifa;
2109		}
2110	}
2111	if (besta)
2112		return (besta);
2113
2114	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2115		if (ifa->ifa_addr->sa_family != AF_INET6)
2116			continue;
2117		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2118			continue; /* XXX: is there any case to allow anycast? */
2119		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2120			continue; /* don't use this interface */
2121		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2122			continue;
2123		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2124			if (ip6_use_deprecated)
2125				dep[1] = (struct in6_ifaddr *)ifa;
2126			continue;
2127		}
2128
2129		return (struct in6_ifaddr *)ifa;
2130	}
2131
2132	/* use the last-resort values, that are, deprecated addresses */
2133	if (dep[0])
2134		return dep[0];
2135	if (dep[1])
2136		return dep[1];
2137
2138	return NULL;
2139}
2140
2141/*
2142 * perform DAD when interface becomes IFF_UP.
2143 */
2144void
2145in6_if_up(ifp)
2146	struct ifnet *ifp;
2147{
2148	struct ifaddr *ifa;
2149	struct in6_ifaddr *ia;
2150
2151	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2152		if (ifa->ifa_addr->sa_family != AF_INET6)
2153			continue;
2154		ia = (struct in6_ifaddr *)ifa;
2155		if (ia->ia6_flags & IN6_IFF_TENTATIVE) {
2156			/*
2157			 * The TENTATIVE flag was likely set by hand
2158			 * beforehand, implicitly indicating the need for DAD.
2159			 * We may be able to skip the random delay in this
2160			 * case, but we impose delays just in case.
2161			 */
2162			nd6_dad_start(ifa,
2163			    arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz));
2164		}
2165	}
2166
2167	/*
2168	 * special cases, like 6to4, are handled in in6_ifattach
2169	 */
2170	in6_ifattach(ifp, NULL);
2171}
2172
2173int
2174in6if_do_dad(ifp)
2175	struct ifnet *ifp;
2176{
2177	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2178		return (0);
2179
2180	switch (ifp->if_type) {
2181#ifdef IFT_DUMMY
2182	case IFT_DUMMY:
2183#endif
2184	case IFT_FAITH:
2185		/*
2186		 * These interfaces do not have the IFF_LOOPBACK flag,
2187		 * but loop packets back.  We do not have to do DAD on such
2188		 * interfaces.  We should even omit it, because loop-backed
2189		 * NS would confuse the DAD procedure.
2190		 */
2191		return (0);
2192	default:
2193		/*
2194		 * Our DAD routine requires the interface up and running.
2195		 * However, some interfaces can be up before the RUNNING
2196		 * status.  Additionaly, users may try to assign addresses
2197		 * before the interface becomes up (or running).
2198		 * We simply skip DAD in such a case as a work around.
2199		 * XXX: we should rather mark "tentative" on such addresses,
2200		 * and do DAD after the interface becomes ready.
2201		 */
2202		if (!((ifp->if_flags & IFF_UP) &&
2203		    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
2204			return (0);
2205
2206		return (1);
2207	}
2208}
2209
2210/*
2211 * Calculate max IPv6 MTU through all the interfaces and store it
2212 * to in6_maxmtu.
2213 */
2214void
2215in6_setmaxmtu()
2216{
2217	unsigned long maxmtu = 0;
2218	struct ifnet *ifp;
2219
2220	IFNET_RLOCK();
2221	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
2222		/* this function can be called during ifnet initialization */
2223		if (!ifp->if_afdata[AF_INET6])
2224			continue;
2225		if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2226		    IN6_LINKMTU(ifp) > maxmtu)
2227			maxmtu = IN6_LINKMTU(ifp);
2228	}
2229	IFNET_RUNLOCK();
2230	if (maxmtu)	     /* update only when maxmtu is positive */
2231		in6_maxmtu = maxmtu;
2232}
2233
2234/*
2235 * Provide the length of interface identifiers to be used for the link attached
2236 * to the given interface.  The length should be defined in "IPv6 over
2237 * xxx-link" document.  Note that address architecture might also define
2238 * the length for a particular set of address prefixes, regardless of the
2239 * link type.  As clarified in rfc2462bis, those two definitions should be
2240 * consistent, and those really are as of August 2004.
2241 */
2242int
2243in6_if2idlen(ifp)
2244	struct ifnet *ifp;
2245{
2246	switch (ifp->if_type) {
2247	case IFT_ETHER:		/* RFC2464 */
2248#ifdef IFT_PROPVIRTUAL
2249	case IFT_PROPVIRTUAL:	/* XXX: no RFC. treat it as ether */
2250#endif
2251#ifdef IFT_L2VLAN
2252	case IFT_L2VLAN:	/* ditto */
2253#endif
2254#ifdef IFT_IEEE80211
2255	case IFT_IEEE80211:	/* ditto */
2256#endif
2257#ifdef IFT_MIP
2258	case IFT_MIP:	/* ditto */
2259#endif
2260		return (64);
2261	case IFT_FDDI:		/* RFC2467 */
2262		return (64);
2263	case IFT_ISO88025:	/* RFC2470 (IPv6 over Token Ring) */
2264		return (64);
2265	case IFT_PPP:		/* RFC2472 */
2266		return (64);
2267	case IFT_ARCNET:	/* RFC2497 */
2268		return (64);
2269	case IFT_FRELAY:	/* RFC2590 */
2270		return (64);
2271	case IFT_IEEE1394:	/* RFC3146 */
2272		return (64);
2273	case IFT_GIF:
2274		return (64);	/* draft-ietf-v6ops-mech-v2-07 */
2275	case IFT_LOOP:
2276		return (64);	/* XXX: is this really correct? */
2277	default:
2278		/*
2279		 * Unknown link type:
2280		 * It might be controversial to use the today's common constant
2281		 * of 64 for these cases unconditionally.  For full compliance,
2282		 * we should return an error in this case.  On the other hand,
2283		 * if we simply miss the standard for the link type or a new
2284		 * standard is defined for a new link type, the IFID length
2285		 * is very likely to be the common constant.  As a compromise,
2286		 * we always use the constant, but make an explicit notice
2287		 * indicating the "unknown" case.
2288		 */
2289		printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type);
2290		return (64);
2291	}
2292}
2293
2294void *
2295in6_domifattach(ifp)
2296	struct ifnet *ifp;
2297{
2298	struct in6_ifextra *ext;
2299
2300	ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2301	bzero(ext, sizeof(*ext));
2302
2303	ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
2304	    M_IFADDR, M_WAITOK);
2305	bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2306
2307	ext->icmp6_ifstat =
2308	    (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
2309	    M_IFADDR, M_WAITOK);
2310	bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2311
2312	ext->nd_ifinfo = nd6_ifattach(ifp);
2313	ext->scope6_id = scope6_ifattach(ifp);
2314	return ext;
2315}
2316
2317void
2318in6_domifdetach(ifp, aux)
2319	struct ifnet *ifp;
2320	void *aux;
2321{
2322	struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2323
2324	scope6_ifdetach(ext->scope6_id);
2325	nd6_ifdetach(ext->nd_ifinfo);
2326	free(ext->in6_ifstat, M_IFADDR);
2327	free(ext->icmp6_ifstat, M_IFADDR);
2328	free(ext, M_IFADDR);
2329}
2330
2331/*
2332 * Convert sockaddr_in6 to sockaddr_in.  Original sockaddr_in6 must be
2333 * v4 mapped addr or v4 compat addr
2334 */
2335void
2336in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2337{
2338	bzero(sin, sizeof(*sin));
2339	sin->sin_len = sizeof(struct sockaddr_in);
2340	sin->sin_family = AF_INET;
2341	sin->sin_port = sin6->sin6_port;
2342	sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2343}
2344
2345/* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2346void
2347in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2348{
2349	bzero(sin6, sizeof(*sin6));
2350	sin6->sin6_len = sizeof(struct sockaddr_in6);
2351	sin6->sin6_family = AF_INET6;
2352	sin6->sin6_port = sin->sin_port;
2353	sin6->sin6_addr.s6_addr32[0] = 0;
2354	sin6->sin6_addr.s6_addr32[1] = 0;
2355	sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2356	sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2357}
2358
2359/* Convert sockaddr_in6 into sockaddr_in. */
2360void
2361in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2362{
2363	struct sockaddr_in *sin_p;
2364	struct sockaddr_in6 sin6;
2365
2366	/*
2367	 * Save original sockaddr_in6 addr and convert it
2368	 * to sockaddr_in.
2369	 */
2370	sin6 = *(struct sockaddr_in6 *)nam;
2371	sin_p = (struct sockaddr_in *)nam;
2372	in6_sin6_2_sin(sin_p, &sin6);
2373}
2374
2375/* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2376void
2377in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2378{
2379	struct sockaddr_in *sin_p;
2380	struct sockaddr_in6 *sin6_p;
2381
2382	MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
2383	       M_WAITOK);
2384	sin_p = (struct sockaddr_in *)*nam;
2385	in6_sin_2_v4mapsin6(sin_p, sin6_p);
2386	FREE(*nam, M_SONAME);
2387	*nam = (struct sockaddr *)sin6_p;
2388}
2389