tcp_timewait.c revision 83742
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 83742 2001-09-20 21:45:31Z rwatson $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/vm_zone.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#define _IP_VHL
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#ifdef INET6
68#include <netinet/ip6.h>
69#endif
70#include <netinet/in_pcb.h>
71#ifdef INET6
72#include <netinet6/in6_pcb.h>
73#endif
74#include <netinet/in_var.h>
75#include <netinet/ip_var.h>
76#ifdef INET6
77#include <netinet6/ip6_var.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#include <machine/in_cksum.h>
101#include <sys/md5.h>
102
103int 	tcp_mssdflt = TCP_MSS;
104SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
105    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
106
107#ifdef INET6
108int	tcp_v6mssdflt = TCP6_MSS;
109SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
110	CTLFLAG_RW, &tcp_v6mssdflt , 0,
111	"Default TCP Maximum Segment Size for IPv6");
112#endif
113
114#if 0
115static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
116SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
117    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
118#endif
119
120static int	tcp_do_rfc1323 = 1;
121SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
122    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
123
124static int	tcp_do_rfc1644 = 0;
125SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
126    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
127
128static int	tcp_tcbhashsize = 0;
129SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
130     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
131
132static int	do_tcpdrain = 1;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
134     "Enable tcp_drain routine for extra help when low on mbufs");
135
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
137    &tcbinfo.ipi_count, 0, "Number of active PCBs");
138
139static int	icmp_may_rst = 1;
140SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
141    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
142
143static int	tcp_strict_rfc1948 = 0;
144SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW,
145    &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
146
147static int	tcp_isn_reseed_interval = 0;
148SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
149    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
150
151static void	tcp_cleartaocache __P((void));
152static void	tcp_notify __P((struct inpcb *, int));
153
154/*
155 * Target size of TCP PCB hash tables. Must be a power of two.
156 *
157 * Note that this can be overridden by the kernel environment
158 * variable net.inet.tcp.tcbhashsize
159 */
160#ifndef TCBHASHSIZE
161#define TCBHASHSIZE	512
162#endif
163
164/*
165 * This is the actual shape of what we allocate using the zone
166 * allocator.  Doing it this way allows us to protect both structures
167 * using the same generation count, and also eliminates the overhead
168 * of allocating tcpcbs separately.  By hiding the structure here,
169 * we avoid changing most of the rest of the code (although it needs
170 * to be changed, eventually, for greater efficiency).
171 */
172#define	ALIGNMENT	32
173#define	ALIGNM1		(ALIGNMENT - 1)
174struct	inp_tp {
175	union {
176		struct	inpcb inp;
177		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
178	} inp_tp_u;
179	struct	tcpcb tcb;
180	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
181	struct	callout inp_tp_delack;
182};
183#undef ALIGNMENT
184#undef ALIGNM1
185
186/*
187 * Tcp initialization
188 */
189void
190tcp_init()
191{
192	int hashsize = TCBHASHSIZE;
193
194	tcp_ccgen = 1;
195	tcp_cleartaocache();
196
197	tcp_delacktime = TCPTV_DELACK;
198	tcp_keepinit = TCPTV_KEEP_INIT;
199	tcp_keepidle = TCPTV_KEEP_IDLE;
200	tcp_keepintvl = TCPTV_KEEPINTVL;
201	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
202	tcp_msl = TCPTV_MSL;
203
204	LIST_INIT(&tcb);
205	tcbinfo.listhead = &tcb;
206	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
207	if (!powerof2(hashsize)) {
208		printf("WARNING: TCB hash size not a power of 2\n");
209		hashsize = 512; /* safe default */
210	}
211	tcp_tcbhashsize = hashsize;
212	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
213	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
214					&tcbinfo.porthashmask);
215	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
216				 ZONE_INTERRUPT, 0);
217#ifdef INET6
218#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
219#else /* INET6 */
220#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
221#endif /* INET6 */
222	if (max_protohdr < TCP_MINPROTOHDR)
223		max_protohdr = TCP_MINPROTOHDR;
224	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
225		panic("tcp_init");
226#undef TCP_MINPROTOHDR
227}
228
229/*
230 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
231 * tcp_template used to store this data in mbufs, but we now recopy it out
232 * of the tcpcb each time to conserve mbufs.
233 */
234void
235tcp_fillheaders(tp, ip_ptr, tcp_ptr)
236	struct tcpcb *tp;
237	void *ip_ptr;
238	void *tcp_ptr;
239{
240	struct inpcb *inp = tp->t_inpcb;
241	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
242
243#ifdef INET6
244	if ((inp->inp_vflag & INP_IPV6) != 0) {
245		struct ip6_hdr *ip6;
246
247		ip6 = (struct ip6_hdr *)ip_ptr;
248		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
249			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
250		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
251			(IPV6_VERSION & IPV6_VERSION_MASK);
252		ip6->ip6_nxt = IPPROTO_TCP;
253		ip6->ip6_plen = sizeof(struct tcphdr);
254		ip6->ip6_src = inp->in6p_laddr;
255		ip6->ip6_dst = inp->in6p_faddr;
256		tcp_hdr->th_sum = 0;
257	} else
258#endif
259	{
260	struct ip *ip = (struct ip *) ip_ptr;
261
262	ip->ip_vhl = IP_VHL_BORING;
263	ip->ip_tos = 0;
264	ip->ip_len = 0;
265	ip->ip_id = 0;
266	ip->ip_off = 0;
267	ip->ip_ttl = 0;
268	ip->ip_sum = 0;
269	ip->ip_p = IPPROTO_TCP;
270	ip->ip_src = inp->inp_laddr;
271	ip->ip_dst = inp->inp_faddr;
272	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
273		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
274	}
275
276	tcp_hdr->th_sport = inp->inp_lport;
277	tcp_hdr->th_dport = inp->inp_fport;
278	tcp_hdr->th_seq = 0;
279	tcp_hdr->th_ack = 0;
280	tcp_hdr->th_x2 = 0;
281	tcp_hdr->th_off = 5;
282	tcp_hdr->th_flags = 0;
283	tcp_hdr->th_win = 0;
284	tcp_hdr->th_urp = 0;
285}
286
287/*
288 * Create template to be used to send tcp packets on a connection.
289 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
290 * use for this function is in keepalives, which use tcp_respond.
291 */
292struct tcptemp *
293tcp_maketemplate(tp)
294	struct tcpcb *tp;
295{
296	struct mbuf *m;
297	struct tcptemp *n;
298
299	m = m_get(M_DONTWAIT, MT_HEADER);
300	if (m == NULL)
301		return (0);
302	m->m_len = sizeof(struct tcptemp);
303	n = mtod(m, struct tcptemp *);
304
305	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
306	return (n);
307}
308
309/*
310 * Send a single message to the TCP at address specified by
311 * the given TCP/IP header.  If m == 0, then we make a copy
312 * of the tcpiphdr at ti and send directly to the addressed host.
313 * This is used to force keep alive messages out using the TCP
314 * template for a connection.  If flags are given then we send
315 * a message back to the TCP which originated the * segment ti,
316 * and discard the mbuf containing it and any other attached mbufs.
317 *
318 * In any case the ack and sequence number of the transmitted
319 * segment are as specified by the parameters.
320 *
321 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
322 */
323void
324tcp_respond(tp, ipgen, th, m, ack, seq, flags)
325	struct tcpcb *tp;
326	void *ipgen;
327	register struct tcphdr *th;
328	register struct mbuf *m;
329	tcp_seq ack, seq;
330	int flags;
331{
332	register int tlen;
333	int win = 0;
334	struct route *ro = 0;
335	struct route sro;
336	struct ip *ip;
337	struct tcphdr *nth;
338#ifdef INET6
339	struct route_in6 *ro6 = 0;
340	struct route_in6 sro6;
341	struct ip6_hdr *ip6;
342	int isipv6;
343#endif /* INET6 */
344	int ipflags = 0;
345
346#ifdef INET6
347	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
348	ip6 = ipgen;
349#endif /* INET6 */
350	ip = ipgen;
351
352	if (tp) {
353		if (!(flags & TH_RST)) {
354			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
355			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
356				win = (long)TCP_MAXWIN << tp->rcv_scale;
357		}
358#ifdef INET6
359		if (isipv6)
360			ro6 = &tp->t_inpcb->in6p_route;
361		else
362#endif /* INET6 */
363		ro = &tp->t_inpcb->inp_route;
364	} else {
365#ifdef INET6
366		if (isipv6) {
367			ro6 = &sro6;
368			bzero(ro6, sizeof *ro6);
369		} else
370#endif /* INET6 */
371	      {
372		ro = &sro;
373		bzero(ro, sizeof *ro);
374	      }
375	}
376	if (m == 0) {
377		m = m_gethdr(M_DONTWAIT, MT_HEADER);
378		if (m == NULL)
379			return;
380		tlen = 0;
381		m->m_data += max_linkhdr;
382#ifdef INET6
383		if (isipv6) {
384			bcopy((caddr_t)ip6, mtod(m, caddr_t),
385			      sizeof(struct ip6_hdr));
386			ip6 = mtod(m, struct ip6_hdr *);
387			nth = (struct tcphdr *)(ip6 + 1);
388		} else
389#endif /* INET6 */
390	      {
391		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
392		ip = mtod(m, struct ip *);
393		nth = (struct tcphdr *)(ip + 1);
394	      }
395		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
396		flags = TH_ACK;
397	} else {
398		m_freem(m->m_next);
399		m->m_next = 0;
400		m->m_data = (caddr_t)ipgen;
401		/* m_len is set later */
402		tlen = 0;
403#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
404#ifdef INET6
405		if (isipv6) {
406			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
407			nth = (struct tcphdr *)(ip6 + 1);
408		} else
409#endif /* INET6 */
410	      {
411		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
412		nth = (struct tcphdr *)(ip + 1);
413	      }
414		if (th != nth) {
415			/*
416			 * this is usually a case when an extension header
417			 * exists between the IPv6 header and the
418			 * TCP header.
419			 */
420			nth->th_sport = th->th_sport;
421			nth->th_dport = th->th_dport;
422		}
423		xchg(nth->th_dport, nth->th_sport, n_short);
424#undef xchg
425	}
426#ifdef INET6
427	if (isipv6) {
428		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
429						tlen));
430		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
431	} else
432#endif
433      {
434	tlen += sizeof (struct tcpiphdr);
435	ip->ip_len = tlen;
436	ip->ip_ttl = ip_defttl;
437      }
438	m->m_len = tlen;
439	m->m_pkthdr.len = tlen;
440	m->m_pkthdr.rcvif = (struct ifnet *) 0;
441	nth->th_seq = htonl(seq);
442	nth->th_ack = htonl(ack);
443	nth->th_x2 = 0;
444	nth->th_off = sizeof (struct tcphdr) >> 2;
445	nth->th_flags = flags;
446	if (tp)
447		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
448	else
449		nth->th_win = htons((u_short)win);
450	nth->th_urp = 0;
451#ifdef INET6
452	if (isipv6) {
453		nth->th_sum = 0;
454		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
455					sizeof(struct ip6_hdr),
456					tlen - sizeof(struct ip6_hdr));
457		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
458					       ro6 && ro6->ro_rt ?
459					       ro6->ro_rt->rt_ifp :
460					       NULL);
461	} else
462#endif /* INET6 */
463      {
464        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
465	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
466        m->m_pkthdr.csum_flags = CSUM_TCP;
467        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
468      }
469#ifdef TCPDEBUG
470	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
471		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
472#endif
473#ifdef IPSEC
474	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
475		m_freem(m);
476		return;
477	}
478#endif
479#ifdef INET6
480	if (isipv6) {
481		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
482		if (ro6 == &sro6 && ro6->ro_rt) {
483			RTFREE(ro6->ro_rt);
484			ro6->ro_rt = NULL;
485		}
486	} else
487#endif /* INET6 */
488      {
489	(void) ip_output(m, NULL, ro, ipflags, NULL);
490	if (ro == &sro && ro->ro_rt) {
491		RTFREE(ro->ro_rt);
492		ro->ro_rt = NULL;
493	}
494      }
495}
496
497/*
498 * Create a new TCP control block, making an
499 * empty reassembly queue and hooking it to the argument
500 * protocol control block.  The `inp' parameter must have
501 * come from the zone allocator set up in tcp_init().
502 */
503struct tcpcb *
504tcp_newtcpcb(inp)
505	struct inpcb *inp;
506{
507	struct inp_tp *it;
508	register struct tcpcb *tp;
509#ifdef INET6
510	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
511#endif /* INET6 */
512
513	it = (struct inp_tp *)inp;
514	tp = &it->tcb;
515	bzero((char *) tp, sizeof(struct tcpcb));
516	LIST_INIT(&tp->t_segq);
517	tp->t_maxseg = tp->t_maxopd =
518#ifdef INET6
519		isipv6 ? tcp_v6mssdflt :
520#endif /* INET6 */
521		tcp_mssdflt;
522
523	/* Set up our timeouts. */
524	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
525	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
526	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
527	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
528	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
529
530	if (tcp_do_rfc1323)
531		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
532	if (tcp_do_rfc1644)
533		tp->t_flags |= TF_REQ_CC;
534	tp->t_inpcb = inp;	/* XXX */
535	/*
536	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
537	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
538	 * reasonable initial retransmit time.
539	 */
540	tp->t_srtt = TCPTV_SRTTBASE;
541	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
542	tp->t_rttmin = TCPTV_MIN;
543	tp->t_rxtcur = TCPTV_RTOBASE;
544	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
545	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
546	tp->t_rcvtime = ticks;
547        /*
548	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
549	 * because the socket may be bound to an IPv6 wildcard address,
550	 * which may match an IPv4-mapped IPv6 address.
551	 */
552	inp->inp_ip_ttl = ip_defttl;
553	inp->inp_ppcb = (caddr_t)tp;
554	return (tp);		/* XXX */
555}
556
557/*
558 * Drop a TCP connection, reporting
559 * the specified error.  If connection is synchronized,
560 * then send a RST to peer.
561 */
562struct tcpcb *
563tcp_drop(tp, errno)
564	register struct tcpcb *tp;
565	int errno;
566{
567	struct socket *so = tp->t_inpcb->inp_socket;
568
569	if (TCPS_HAVERCVDSYN(tp->t_state)) {
570		tp->t_state = TCPS_CLOSED;
571		(void) tcp_output(tp);
572		tcpstat.tcps_drops++;
573	} else
574		tcpstat.tcps_conndrops++;
575	if (errno == ETIMEDOUT && tp->t_softerror)
576		errno = tp->t_softerror;
577	so->so_error = errno;
578	return (tcp_close(tp));
579}
580
581/*
582 * Close a TCP control block:
583 *	discard all space held by the tcp
584 *	discard internet protocol block
585 *	wake up any sleepers
586 */
587struct tcpcb *
588tcp_close(tp)
589	register struct tcpcb *tp;
590{
591	register struct tseg_qent *q;
592	struct inpcb *inp = tp->t_inpcb;
593	struct socket *so = inp->inp_socket;
594#ifdef INET6
595	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
596#endif /* INET6 */
597	register struct rtentry *rt;
598	int dosavessthresh;
599
600	/*
601	 * Make sure that all of our timers are stopped before we
602	 * delete the PCB.
603	 */
604	callout_stop(tp->tt_rexmt);
605	callout_stop(tp->tt_persist);
606	callout_stop(tp->tt_keep);
607	callout_stop(tp->tt_2msl);
608	callout_stop(tp->tt_delack);
609
610	/*
611	 * If we got enough samples through the srtt filter,
612	 * save the rtt and rttvar in the routing entry.
613	 * 'Enough' is arbitrarily defined as the 16 samples.
614	 * 16 samples is enough for the srtt filter to converge
615	 * to within 5% of the correct value; fewer samples and
616	 * we could save a very bogus rtt.
617	 *
618	 * Don't update the default route's characteristics and don't
619	 * update anything that the user "locked".
620	 */
621	if (tp->t_rttupdated >= 16) {
622		register u_long i = 0;
623#ifdef INET6
624		if (isipv6) {
625			struct sockaddr_in6 *sin6;
626
627			if ((rt = inp->in6p_route.ro_rt) == NULL)
628				goto no_valid_rt;
629			sin6 = (struct sockaddr_in6 *)rt_key(rt);
630			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
631				goto no_valid_rt;
632		}
633		else
634#endif /* INET6 */
635		if ((rt = inp->inp_route.ro_rt) == NULL ||
636		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
637		    == INADDR_ANY)
638			goto no_valid_rt;
639
640		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
641			i = tp->t_srtt *
642			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
643			if (rt->rt_rmx.rmx_rtt && i)
644				/*
645				 * filter this update to half the old & half
646				 * the new values, converting scale.
647				 * See route.h and tcp_var.h for a
648				 * description of the scaling constants.
649				 */
650				rt->rt_rmx.rmx_rtt =
651				    (rt->rt_rmx.rmx_rtt + i) / 2;
652			else
653				rt->rt_rmx.rmx_rtt = i;
654			tcpstat.tcps_cachedrtt++;
655		}
656		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
657			i = tp->t_rttvar *
658			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
659			if (rt->rt_rmx.rmx_rttvar && i)
660				rt->rt_rmx.rmx_rttvar =
661				    (rt->rt_rmx.rmx_rttvar + i) / 2;
662			else
663				rt->rt_rmx.rmx_rttvar = i;
664			tcpstat.tcps_cachedrttvar++;
665		}
666		/*
667		 * The old comment here said:
668		 * update the pipelimit (ssthresh) if it has been updated
669		 * already or if a pipesize was specified & the threshhold
670		 * got below half the pipesize.  I.e., wait for bad news
671		 * before we start updating, then update on both good
672		 * and bad news.
673		 *
674		 * But we want to save the ssthresh even if no pipesize is
675		 * specified explicitly in the route, because such
676		 * connections still have an implicit pipesize specified
677		 * by the global tcp_sendspace.  In the absence of a reliable
678		 * way to calculate the pipesize, it will have to do.
679		 */
680		i = tp->snd_ssthresh;
681		if (rt->rt_rmx.rmx_sendpipe != 0)
682			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
683		else
684			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
685		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
686		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
687		    || dosavessthresh) {
688			/*
689			 * convert the limit from user data bytes to
690			 * packets then to packet data bytes.
691			 */
692			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
693			if (i < 2)
694				i = 2;
695			i *= (u_long)(tp->t_maxseg +
696#ifdef INET6
697				      (isipv6 ? sizeof (struct ip6_hdr) +
698					       sizeof (struct tcphdr) :
699#endif
700				       sizeof (struct tcpiphdr)
701#ifdef INET6
702				       )
703#endif
704				      );
705			if (rt->rt_rmx.rmx_ssthresh)
706				rt->rt_rmx.rmx_ssthresh =
707				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
708			else
709				rt->rt_rmx.rmx_ssthresh = i;
710			tcpstat.tcps_cachedssthresh++;
711		}
712	}
713	rt = inp->inp_route.ro_rt;
714	if (rt) {
715		/*
716		 * mark route for deletion if no information is
717		 * cached.
718		 */
719		if ((tp->t_flags & TF_LQ_OVERFLOW) &&
720		    ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){
721			if (rt->rt_rmx.rmx_rtt == 0)
722				rt->rt_flags |= RTF_DELCLONE;
723		}
724	}
725    no_valid_rt:
726	/* free the reassembly queue, if any */
727	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
728		LIST_REMOVE(q, tqe_q);
729		m_freem(q->tqe_m);
730		FREE(q, M_TSEGQ);
731	}
732	inp->inp_ppcb = NULL;
733	soisdisconnected(so);
734#ifdef INET6
735	if (INP_CHECK_SOCKAF(so, AF_INET6))
736		in6_pcbdetach(inp);
737	else
738#endif /* INET6 */
739	in_pcbdetach(inp);
740	tcpstat.tcps_closed++;
741	return ((struct tcpcb *)0);
742}
743
744void
745tcp_drain()
746{
747	if (do_tcpdrain)
748	{
749		struct inpcb *inpb;
750		struct tcpcb *tcpb;
751		struct tseg_qent *te;
752
753	/*
754	 * Walk the tcpbs, if existing, and flush the reassembly queue,
755	 * if there is one...
756	 * XXX: The "Net/3" implementation doesn't imply that the TCP
757	 *      reassembly queue should be flushed, but in a situation
758	 * 	where we're really low on mbufs, this is potentially
759	 *  	usefull.
760	 */
761		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
762			if ((tcpb = intotcpcb(inpb))) {
763				while ((te = LIST_FIRST(&tcpb->t_segq))
764			            != NULL) {
765					LIST_REMOVE(te, tqe_q);
766					m_freem(te->tqe_m);
767					FREE(te, M_TSEGQ);
768				}
769			}
770		}
771	}
772}
773
774/*
775 * Notify a tcp user of an asynchronous error;
776 * store error as soft error, but wake up user
777 * (for now, won't do anything until can select for soft error).
778 *
779 * Do not wake up user since there currently is no mechanism for
780 * reporting soft errors (yet - a kqueue filter may be added).
781 */
782static void
783tcp_notify(inp, error)
784	struct inpcb *inp;
785	int error;
786{
787	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
788
789	/*
790	 * Ignore some errors if we are hooked up.
791	 * If connection hasn't completed, has retransmitted several times,
792	 * and receives a second error, give up now.  This is better
793	 * than waiting a long time to establish a connection that
794	 * can never complete.
795	 */
796	if (tp->t_state == TCPS_ESTABLISHED &&
797	     (error == EHOSTUNREACH || error == ENETUNREACH ||
798	      error == EHOSTDOWN)) {
799		return;
800	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
801	    tp->t_softerror)
802		tcp_drop(tp, error);
803	else
804		tp->t_softerror = error;
805#if 0
806	wakeup((caddr_t) &so->so_timeo);
807	sorwakeup(so);
808	sowwakeup(so);
809#endif
810}
811
812static int
813tcp_pcblist(SYSCTL_HANDLER_ARGS)
814{
815	int error, i, n, s;
816	struct inpcb *inp, **inp_list;
817	inp_gen_t gencnt;
818	struct xinpgen xig;
819
820	/*
821	 * The process of preparing the TCB list is too time-consuming and
822	 * resource-intensive to repeat twice on every request.
823	 */
824	if (req->oldptr == 0) {
825		n = tcbinfo.ipi_count;
826		req->oldidx = 2 * (sizeof xig)
827			+ (n + n/8) * sizeof(struct xtcpcb);
828		return 0;
829	}
830
831	if (req->newptr != 0)
832		return EPERM;
833
834	/*
835	 * OK, now we're committed to doing something.
836	 */
837	s = splnet();
838	gencnt = tcbinfo.ipi_gencnt;
839	n = tcbinfo.ipi_count;
840	splx(s);
841
842	xig.xig_len = sizeof xig;
843	xig.xig_count = n;
844	xig.xig_gen = gencnt;
845	xig.xig_sogen = so_gencnt;
846	error = SYSCTL_OUT(req, &xig, sizeof xig);
847	if (error)
848		return error;
849
850	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
851	if (inp_list == 0)
852		return ENOMEM;
853
854	s = splnet();
855	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
856	     inp = LIST_NEXT(inp, inp_list)) {
857		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
858			inp_list[i++] = inp;
859	}
860	splx(s);
861	n = i;
862
863	error = 0;
864	for (i = 0; i < n; i++) {
865		inp = inp_list[i];
866		if (inp->inp_gencnt <= gencnt) {
867			struct xtcpcb xt;
868			caddr_t inp_ppcb;
869			xt.xt_len = sizeof xt;
870			/* XXX should avoid extra copy */
871			bcopy(inp, &xt.xt_inp, sizeof *inp);
872			inp_ppcb = inp->inp_ppcb;
873			if (inp_ppcb != NULL)
874				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
875			else
876				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
877			if (inp->inp_socket)
878				sotoxsocket(inp->inp_socket, &xt.xt_socket);
879			error = SYSCTL_OUT(req, &xt, sizeof xt);
880		}
881	}
882	if (!error) {
883		/*
884		 * Give the user an updated idea of our state.
885		 * If the generation differs from what we told
886		 * her before, she knows that something happened
887		 * while we were processing this request, and it
888		 * might be necessary to retry.
889		 */
890		s = splnet();
891		xig.xig_gen = tcbinfo.ipi_gencnt;
892		xig.xig_sogen = so_gencnt;
893		xig.xig_count = tcbinfo.ipi_count;
894		splx(s);
895		error = SYSCTL_OUT(req, &xig, sizeof xig);
896	}
897	free(inp_list, M_TEMP);
898	return error;
899}
900
901SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
902	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
903
904static int
905tcp_getcred(SYSCTL_HANDLER_ARGS)
906{
907	struct xucred xuc;
908	struct sockaddr_in addrs[2];
909	struct inpcb *inp;
910	int error, s;
911
912	error = suser_xxx(0, req->p, PRISON_ROOT);
913	if (error)
914		return (error);
915	error = SYSCTL_IN(req, addrs, sizeof(addrs));
916	if (error)
917		return (error);
918	s = splnet();
919	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
920	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
921	if (inp == NULL || inp->inp_socket == NULL) {
922		error = ENOENT;
923		goto out;
924	}
925	error = cr_cansee(req->p->p_ucred, inp->inp_socket->so_cred);
926	if (error)
927		goto out;
928	bzero(&xuc, sizeof(xuc));
929	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
930	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
931	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
932	    sizeof(xuc.cr_groups));
933	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
934out:
935	splx(s);
936	return (error);
937}
938
939SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
940    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
941    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
942
943#ifdef INET6
944static int
945tcp6_getcred(SYSCTL_HANDLER_ARGS)
946{
947	struct xucred xuc;
948	struct sockaddr_in6 addrs[2];
949	struct inpcb *inp;
950	int error, s, mapped = 0;
951
952	error = suser_xxx(0, req->p, PRISON_ROOT);
953	if (error)
954		return (error);
955	error = SYSCTL_IN(req, addrs, sizeof(addrs));
956	if (error)
957		return (error);
958	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
959		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
960			mapped = 1;
961		else
962			return (EINVAL);
963	}
964	s = splnet();
965	if (mapped == 1)
966		inp = in_pcblookup_hash(&tcbinfo,
967			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
968			addrs[1].sin6_port,
969			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
970			addrs[0].sin6_port,
971			0, NULL);
972	else
973		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
974				 addrs[1].sin6_port,
975				 &addrs[0].sin6_addr, addrs[0].sin6_port,
976				 0, NULL);
977	if (inp == NULL || inp->inp_socket == NULL) {
978		error = ENOENT;
979		goto out;
980	}
981	error = cr_cansee(req->p->p_ucred, inp->inp_socket->so_cred);
982	if (error)
983		goto out;
984	bzero(&xuc, sizeof(xuc));
985	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
986	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
987	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
988	    sizeof(xuc.cr_groups));
989	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
990out:
991	splx(s);
992	return (error);
993}
994
995SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
996    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
997    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
998#endif
999
1000
1001void
1002tcp_ctlinput(cmd, sa, vip)
1003	int cmd;
1004	struct sockaddr *sa;
1005	void *vip;
1006{
1007	struct ip *ip = vip;
1008	struct tcphdr *th;
1009	struct in_addr faddr;
1010	struct inpcb *inp;
1011	struct tcpcb *tp;
1012	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1013	tcp_seq icmp_seq;
1014	int s;
1015
1016	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1017	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1018		return;
1019
1020	if (cmd == PRC_QUENCH)
1021		notify = tcp_quench;
1022	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1023		cmd == PRC_UNREACH_PORT) && ip)
1024		notify = tcp_drop_syn_sent;
1025	else if (cmd == PRC_MSGSIZE)
1026		notify = tcp_mtudisc;
1027	else if (PRC_IS_REDIRECT(cmd)) {
1028		ip = 0;
1029		notify = in_rtchange;
1030	} else if (cmd == PRC_HOSTDEAD)
1031		ip = 0;
1032	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1033		return;
1034	if (ip) {
1035		s = splnet();
1036		th = (struct tcphdr *)((caddr_t)ip
1037				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1038		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1039		    ip->ip_src, th->th_sport, 0, NULL);
1040		if (inp != NULL && inp->inp_socket != NULL) {
1041			icmp_seq = htonl(th->th_seq);
1042			tp = intotcpcb(inp);
1043			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1044			    SEQ_LT(icmp_seq, tp->snd_max))
1045				(*notify)(inp, inetctlerrmap[cmd]);
1046		}
1047		splx(s);
1048	} else
1049		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1050}
1051
1052#ifdef INET6
1053void
1054tcp6_ctlinput(cmd, sa, d)
1055	int cmd;
1056	struct sockaddr *sa;
1057	void *d;
1058{
1059	struct tcphdr th;
1060	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1061	struct ip6_hdr *ip6;
1062	struct mbuf *m;
1063	struct ip6ctlparam *ip6cp = NULL;
1064	const struct sockaddr_in6 *sa6_src = NULL;
1065	int off;
1066	struct tcp_portonly {
1067		u_int16_t th_sport;
1068		u_int16_t th_dport;
1069	} *thp;
1070
1071	if (sa->sa_family != AF_INET6 ||
1072	    sa->sa_len != sizeof(struct sockaddr_in6))
1073		return;
1074
1075	if (cmd == PRC_QUENCH)
1076		notify = tcp_quench;
1077	else if (cmd == PRC_MSGSIZE)
1078		notify = tcp_mtudisc;
1079	else if (!PRC_IS_REDIRECT(cmd) &&
1080		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1081		return;
1082
1083	/* if the parameter is from icmp6, decode it. */
1084	if (d != NULL) {
1085		ip6cp = (struct ip6ctlparam *)d;
1086		m = ip6cp->ip6c_m;
1087		ip6 = ip6cp->ip6c_ip6;
1088		off = ip6cp->ip6c_off;
1089		sa6_src = ip6cp->ip6c_src;
1090	} else {
1091		m = NULL;
1092		ip6 = NULL;
1093		off = 0;	/* fool gcc */
1094		sa6_src = &sa6_any;
1095	}
1096
1097	if (ip6) {
1098		/*
1099		 * XXX: We assume that when IPV6 is non NULL,
1100		 * M and OFF are valid.
1101		 */
1102
1103		/* check if we can safely examine src and dst ports */
1104		if (m->m_pkthdr.len < off + sizeof(*thp))
1105			return;
1106
1107		bzero(&th, sizeof(th));
1108		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1109
1110		in6_pcbnotify(&tcb, sa, th.th_dport,
1111		    (struct sockaddr *)ip6cp->ip6c_src,
1112		    th.th_sport, cmd, notify);
1113	} else
1114		in6_pcbnotify(&tcb, sa, 0, (struct sockaddr *)sa6_src,
1115			      0, cmd, notify);
1116}
1117#endif /* INET6 */
1118
1119
1120/*
1121 * Following is where TCP initial sequence number generation occurs.
1122 *
1123 * There are two places where we must use initial sequence numbers:
1124 * 1.  In SYN-ACK packets.
1125 * 2.  In SYN packets.
1126 *
1127 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1128 * and should be as unpredictable as possible to avoid the possibility
1129 * of spoofing and/or connection hijacking.  To satisfy this
1130 * requirement, SYN-ACK ISNs are generated via the arc4random()
1131 * function.  If exact RFC 1948 compliance is requested via sysctl,
1132 * these ISNs will be generated just like those in SYN packets.
1133 *
1134 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1135 * depends on this property.  In addition, these ISNs should be
1136 * unguessable so as to prevent connection hijacking.  To satisfy
1137 * the requirements of this situation, the algorithm outlined in
1138 * RFC 1948 is used to generate sequence numbers.
1139 *
1140 * For more information on the theory of operation, please see
1141 * RFC 1948.
1142 *
1143 * Implementation details:
1144 *
1145 * Time is based off the system timer, and is corrected so that it
1146 * increases by one megabyte per second.  This allows for proper
1147 * recycling on high speed LANs while still leaving over an hour
1148 * before rollover.
1149 *
1150 * Two sysctls control the generation of ISNs:
1151 *
1152 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1153 * between seeding of isn_secret.  This is normally set to zero,
1154 * as reseeding should not be necessary.
1155 *
1156 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1157 * strictly.  When strict compliance is requested, reseeding is
1158 * disabled and SYN-ACKs will be generated in the same manner as
1159 * SYNs.  Strict mode is disabled by default.
1160 *
1161 */
1162
1163#define ISN_BYTES_PER_SECOND 1048576
1164
1165u_char isn_secret[32];
1166int isn_last_reseed;
1167MD5_CTX isn_ctx;
1168
1169tcp_seq
1170tcp_new_isn(tp)
1171	struct tcpcb *tp;
1172{
1173	u_int32_t md5_buffer[4];
1174	tcp_seq new_isn;
1175
1176	/* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1177	if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1178	   && tcp_strict_rfc1948 == 0)
1179		return arc4random();
1180
1181	/* Seed if this is the first use, reseed if requested. */
1182	if ((isn_last_reseed == 0) ||
1183	    ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1184	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1185		< (u_int)ticks))) {
1186		read_random(&isn_secret, sizeof(isn_secret));
1187		isn_last_reseed = ticks;
1188	}
1189
1190	/* Compute the md5 hash and return the ISN. */
1191	MD5Init(&isn_ctx);
1192	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1193	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1194#ifdef INET6
1195	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1196		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1197			  sizeof(struct in6_addr));
1198		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1199			  sizeof(struct in6_addr));
1200	} else
1201#endif
1202	{
1203		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1204			  sizeof(struct in_addr));
1205		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1206			  sizeof(struct in_addr));
1207	}
1208	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1209	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1210	new_isn = (tcp_seq) md5_buffer[0];
1211	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1212	return new_isn;
1213}
1214
1215/*
1216 * When a source quench is received, close congestion window
1217 * to one segment.  We will gradually open it again as we proceed.
1218 */
1219void
1220tcp_quench(inp, errno)
1221	struct inpcb *inp;
1222	int errno;
1223{
1224	struct tcpcb *tp = intotcpcb(inp);
1225
1226	if (tp)
1227		tp->snd_cwnd = tp->t_maxseg;
1228}
1229
1230/*
1231 * When a specific ICMP unreachable message is received and the
1232 * connection state is SYN-SENT, drop the connection.  This behavior
1233 * is controlled by the icmp_may_rst sysctl.
1234 */
1235void
1236tcp_drop_syn_sent(inp, errno)
1237	struct inpcb *inp;
1238	int errno;
1239{
1240	struct tcpcb *tp = intotcpcb(inp);
1241
1242	if (tp && tp->t_state == TCPS_SYN_SENT)
1243		tcp_drop(tp, errno);
1244}
1245
1246/*
1247 * When `need fragmentation' ICMP is received, update our idea of the MSS
1248 * based on the new value in the route.  Also nudge TCP to send something,
1249 * since we know the packet we just sent was dropped.
1250 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1251 */
1252void
1253tcp_mtudisc(inp, errno)
1254	struct inpcb *inp;
1255	int errno;
1256{
1257	struct tcpcb *tp = intotcpcb(inp);
1258	struct rtentry *rt;
1259	struct rmxp_tao *taop;
1260	struct socket *so = inp->inp_socket;
1261	int offered;
1262	int mss;
1263#ifdef INET6
1264	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1265#endif /* INET6 */
1266
1267	if (tp) {
1268#ifdef INET6
1269		if (isipv6)
1270			rt = tcp_rtlookup6(inp);
1271		else
1272#endif /* INET6 */
1273		rt = tcp_rtlookup(inp);
1274		if (!rt || !rt->rt_rmx.rmx_mtu) {
1275			tp->t_maxopd = tp->t_maxseg =
1276#ifdef INET6
1277				isipv6 ? tcp_v6mssdflt :
1278#endif /* INET6 */
1279				tcp_mssdflt;
1280			return;
1281		}
1282		taop = rmx_taop(rt->rt_rmx);
1283		offered = taop->tao_mssopt;
1284		mss = rt->rt_rmx.rmx_mtu -
1285#ifdef INET6
1286			(isipv6 ?
1287			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1288#endif /* INET6 */
1289			 sizeof(struct tcpiphdr)
1290#ifdef INET6
1291			 )
1292#endif /* INET6 */
1293			;
1294
1295		if (offered)
1296			mss = min(mss, offered);
1297		/*
1298		 * XXX - The above conditional probably violates the TCP
1299		 * spec.  The problem is that, since we don't know the
1300		 * other end's MSS, we are supposed to use a conservative
1301		 * default.  But, if we do that, then MTU discovery will
1302		 * never actually take place, because the conservative
1303		 * default is much less than the MTUs typically seen
1304		 * on the Internet today.  For the moment, we'll sweep
1305		 * this under the carpet.
1306		 *
1307		 * The conservative default might not actually be a problem
1308		 * if the only case this occurs is when sending an initial
1309		 * SYN with options and data to a host we've never talked
1310		 * to before.  Then, they will reply with an MSS value which
1311		 * will get recorded and the new parameters should get
1312		 * recomputed.  For Further Study.
1313		 */
1314		if (tp->t_maxopd <= mss)
1315			return;
1316		tp->t_maxopd = mss;
1317
1318		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1319		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1320			mss -= TCPOLEN_TSTAMP_APPA;
1321		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1322		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1323			mss -= TCPOLEN_CC_APPA;
1324#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1325		if (mss > MCLBYTES)
1326			mss &= ~(MCLBYTES-1);
1327#else
1328		if (mss > MCLBYTES)
1329			mss = mss / MCLBYTES * MCLBYTES;
1330#endif
1331		if (so->so_snd.sb_hiwat < mss)
1332			mss = so->so_snd.sb_hiwat;
1333
1334		tp->t_maxseg = mss;
1335
1336		tcpstat.tcps_mturesent++;
1337		tp->t_rtttime = 0;
1338		tp->snd_nxt = tp->snd_una;
1339		tcp_output(tp);
1340	}
1341}
1342
1343/*
1344 * Look-up the routing entry to the peer of this inpcb.  If no route
1345 * is found and it cannot be allocated the return NULL.  This routine
1346 * is called by TCP routines that access the rmx structure and by tcp_mss
1347 * to get the interface MTU.
1348 */
1349struct rtentry *
1350tcp_rtlookup(inp)
1351	struct inpcb *inp;
1352{
1353	struct route *ro;
1354	struct rtentry *rt;
1355
1356	ro = &inp->inp_route;
1357	rt = ro->ro_rt;
1358	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1359		/* No route yet, so try to acquire one */
1360		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1361			ro->ro_dst.sa_family = AF_INET;
1362			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1363			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1364				inp->inp_faddr;
1365			rtalloc(ro);
1366			rt = ro->ro_rt;
1367		}
1368	}
1369	return rt;
1370}
1371
1372#ifdef INET6
1373struct rtentry *
1374tcp_rtlookup6(inp)
1375	struct inpcb *inp;
1376{
1377	struct route_in6 *ro6;
1378	struct rtentry *rt;
1379
1380	ro6 = &inp->in6p_route;
1381	rt = ro6->ro_rt;
1382	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1383		/* No route yet, so try to acquire one */
1384		if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1385			struct sockaddr_in6 *dst6;
1386
1387			dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
1388			dst6->sin6_family = AF_INET6;
1389			dst6->sin6_len = sizeof(*dst6);
1390			dst6->sin6_addr = inp->in6p_faddr;
1391			rtalloc((struct route *)ro6);
1392			rt = ro6->ro_rt;
1393		}
1394	}
1395	return rt;
1396}
1397#endif /* INET6 */
1398
1399#ifdef IPSEC
1400/* compute ESP/AH header size for TCP, including outer IP header. */
1401size_t
1402ipsec_hdrsiz_tcp(tp)
1403	struct tcpcb *tp;
1404{
1405	struct inpcb *inp;
1406	struct mbuf *m;
1407	size_t hdrsiz;
1408	struct ip *ip;
1409#ifdef INET6
1410	struct ip6_hdr *ip6;
1411#endif /* INET6 */
1412	struct tcphdr *th;
1413
1414	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1415		return 0;
1416	MGETHDR(m, M_DONTWAIT, MT_DATA);
1417	if (!m)
1418		return 0;
1419
1420#ifdef INET6
1421	if ((inp->inp_vflag & INP_IPV6) != 0) {
1422		ip6 = mtod(m, struct ip6_hdr *);
1423		th = (struct tcphdr *)(ip6 + 1);
1424		m->m_pkthdr.len = m->m_len =
1425			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1426		tcp_fillheaders(tp, ip6, th);
1427		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1428	} else
1429#endif /* INET6 */
1430      {
1431	ip = mtod(m, struct ip *);
1432	th = (struct tcphdr *)(ip + 1);
1433	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1434	tcp_fillheaders(tp, ip, th);
1435	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1436      }
1437
1438	m_free(m);
1439	return hdrsiz;
1440}
1441#endif /*IPSEC*/
1442
1443/*
1444 * Return a pointer to the cached information about the remote host.
1445 * The cached information is stored in the protocol specific part of
1446 * the route metrics.
1447 */
1448struct rmxp_tao *
1449tcp_gettaocache(inp)
1450	struct inpcb *inp;
1451{
1452	struct rtentry *rt;
1453
1454#ifdef INET6
1455	if ((inp->inp_vflag & INP_IPV6) != 0)
1456		rt = tcp_rtlookup6(inp);
1457	else
1458#endif /* INET6 */
1459	rt = tcp_rtlookup(inp);
1460
1461	/* Make sure this is a host route and is up. */
1462	if (rt == NULL ||
1463	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1464		return NULL;
1465
1466	return rmx_taop(rt->rt_rmx);
1467}
1468
1469/*
1470 * Clear all the TAO cache entries, called from tcp_init.
1471 *
1472 * XXX
1473 * This routine is just an empty one, because we assume that the routing
1474 * routing tables are initialized at the same time when TCP, so there is
1475 * nothing in the cache left over.
1476 */
1477static void
1478tcp_cleartaocache()
1479{
1480}
1481