tcp_timewait.c revision 157967
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 157967 2006-04-22 19:23:24Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180static int	maxtcptw;
181SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxtcptw, CTLFLAG_RDTUN,
182    &maxtcptw, 0, "Maximum number of compressed TCP TIME_WAIT entries");
183
184/*
185 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
186 * 1024 exists only for debugging.  A good production default would be
187 * something like 6100.
188 */
189SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
190    "TCP inflight data limiting");
191
192static int	tcp_inflight_enable = 1;
193SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
194    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
195
196static int	tcp_inflight_debug = 0;
197SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
198    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
199
200static int	tcp_inflight_rttthresh;
201SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
202    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
203    "RTT threshold below which inflight will deactivate itself");
204
205static int	tcp_inflight_min = 6144;
206SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
207    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
208
209static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
210SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
211    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
212
213static int	tcp_inflight_stab = 20;
214SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
215    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
216
217uma_zone_t sack_hole_zone;
218
219static struct inpcb *tcp_notify(struct inpcb *, int);
220static void	tcp_isn_tick(void *);
221
222/*
223 * Target size of TCP PCB hash tables. Must be a power of two.
224 *
225 * Note that this can be overridden by the kernel environment
226 * variable net.inet.tcp.tcbhashsize
227 */
228#ifndef TCBHASHSIZE
229#define TCBHASHSIZE	512
230#endif
231
232/*
233 * XXX
234 * Callouts should be moved into struct tcp directly.  They are currently
235 * separate because the tcpcb structure is exported to userland for sysctl
236 * parsing purposes, which do not know about callouts.
237 */
238struct	tcpcb_mem {
239	struct	tcpcb tcb;
240	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
241	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
242};
243
244static uma_zone_t tcpcb_zone;
245static uma_zone_t tcptw_zone;
246struct callout isn_callout;
247static struct mtx isn_mtx;
248
249/*
250 * TCP initialization.
251 */
252static void
253tcp_zone_change(void *tag)
254{
255
256	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
257	uma_zone_set_max(tcpcb_zone, maxsockets);
258	uma_zone_set_max(tcptw_zone, maxsockets / 5);
259}
260
261void
262tcp_init(void)
263{
264	int hashsize = TCBHASHSIZE;
265
266	tcp_delacktime = TCPTV_DELACK;
267	tcp_keepinit = TCPTV_KEEP_INIT;
268	tcp_keepidle = TCPTV_KEEP_IDLE;
269	tcp_keepintvl = TCPTV_KEEPINTVL;
270	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
271	tcp_msl = TCPTV_MSL;
272	tcp_rexmit_min = TCPTV_MIN;
273	tcp_rexmit_slop = TCPTV_CPU_VAR;
274	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
275
276	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
277	LIST_INIT(&tcb);
278	tcbinfo.listhead = &tcb;
279	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
280	if (!powerof2(hashsize)) {
281		printf("WARNING: TCB hash size not a power of 2\n");
282		hashsize = 512; /* safe default */
283	}
284	tcp_tcbhashsize = hashsize;
285	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
286	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
287					&tcbinfo.porthashmask);
288	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
289	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
290	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
291#ifdef INET6
292#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
293#else /* INET6 */
294#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
295#endif /* INET6 */
296	if (max_protohdr < TCP_MINPROTOHDR)
297		max_protohdr = TCP_MINPROTOHDR;
298	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
299		panic("tcp_init");
300#undef TCP_MINPROTOHDR
301	/*
302	 * These have to be type stable for the benefit of the timers.
303	 */
304	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
305	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306	uma_zone_set_max(tcpcb_zone, maxsockets);
307	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
308	if (maxtcptw == 0)
309		maxtcptw = maxsockets / 5;
310	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
311	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
312	uma_zone_set_max(tcptw_zone, maxtcptw);
313	tcp_timer_init();
314	syncache_init();
315	tcp_hc_init();
316	tcp_reass_init();
317	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF);
318	callout_init(&isn_callout, CALLOUT_MPSAFE);
319	tcp_isn_tick(NULL);
320	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
321		SHUTDOWN_PRI_DEFAULT);
322	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
323	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
324	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
325		EVENTHANDLER_PRI_ANY);
326}
327
328void
329tcp_fini(void *xtp)
330{
331
332	callout_stop(&isn_callout);
333}
334
335/*
336 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
337 * tcp_template used to store this data in mbufs, but we now recopy it out
338 * of the tcpcb each time to conserve mbufs.
339 */
340void
341tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
342{
343	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
344
345	INP_LOCK_ASSERT(inp);
346
347#ifdef INET6
348	if ((inp->inp_vflag & INP_IPV6) != 0) {
349		struct ip6_hdr *ip6;
350
351		ip6 = (struct ip6_hdr *)ip_ptr;
352		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
353			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
354		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
355			(IPV6_VERSION & IPV6_VERSION_MASK);
356		ip6->ip6_nxt = IPPROTO_TCP;
357		ip6->ip6_plen = sizeof(struct tcphdr);
358		ip6->ip6_src = inp->in6p_laddr;
359		ip6->ip6_dst = inp->in6p_faddr;
360	} else
361#endif
362	{
363		struct ip *ip;
364
365		ip = (struct ip *)ip_ptr;
366		ip->ip_v = IPVERSION;
367		ip->ip_hl = 5;
368		ip->ip_tos = inp->inp_ip_tos;
369		ip->ip_len = 0;
370		ip->ip_id = 0;
371		ip->ip_off = 0;
372		ip->ip_ttl = inp->inp_ip_ttl;
373		ip->ip_sum = 0;
374		ip->ip_p = IPPROTO_TCP;
375		ip->ip_src = inp->inp_laddr;
376		ip->ip_dst = inp->inp_faddr;
377	}
378	th->th_sport = inp->inp_lport;
379	th->th_dport = inp->inp_fport;
380	th->th_seq = 0;
381	th->th_ack = 0;
382	th->th_x2 = 0;
383	th->th_off = 5;
384	th->th_flags = 0;
385	th->th_win = 0;
386	th->th_urp = 0;
387	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
388}
389
390/*
391 * Create template to be used to send tcp packets on a connection.
392 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
393 * use for this function is in keepalives, which use tcp_respond.
394 */
395struct tcptemp *
396tcpip_maketemplate(struct inpcb *inp)
397{
398	struct mbuf *m;
399	struct tcptemp *n;
400
401	m = m_get(M_DONTWAIT, MT_DATA);
402	if (m == NULL)
403		return (0);
404	m->m_len = sizeof(struct tcptemp);
405	n = mtod(m, struct tcptemp *);
406
407	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
408	return (n);
409}
410
411/*
412 * Send a single message to the TCP at address specified by
413 * the given TCP/IP header.  If m == NULL, then we make a copy
414 * of the tcpiphdr at ti and send directly to the addressed host.
415 * This is used to force keep alive messages out using the TCP
416 * template for a connection.  If flags are given then we send
417 * a message back to the TCP which originated the * segment ti,
418 * and discard the mbuf containing it and any other attached mbufs.
419 *
420 * In any case the ack and sequence number of the transmitted
421 * segment are as specified by the parameters.
422 *
423 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
424 */
425void
426tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
427    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
428{
429	register int tlen;
430	int win = 0;
431	struct ip *ip;
432	struct tcphdr *nth;
433#ifdef INET6
434	struct ip6_hdr *ip6;
435	int isipv6;
436#endif /* INET6 */
437	int ipflags = 0;
438	struct inpcb *inp;
439
440	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
441
442#ifdef INET6
443	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
444	ip6 = ipgen;
445#endif /* INET6 */
446	ip = ipgen;
447
448	if (tp != NULL) {
449		inp = tp->t_inpcb;
450		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
451		INP_INFO_WLOCK_ASSERT(&tcbinfo);
452		INP_LOCK_ASSERT(inp);
453	} else
454		inp = NULL;
455
456	if (tp != NULL) {
457		if (!(flags & TH_RST)) {
458			win = sbspace(&inp->inp_socket->so_rcv);
459			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
460				win = (long)TCP_MAXWIN << tp->rcv_scale;
461		}
462	}
463	if (m == NULL) {
464		m = m_gethdr(M_DONTWAIT, MT_DATA);
465		if (m == NULL)
466			return;
467		tlen = 0;
468		m->m_data += max_linkhdr;
469#ifdef INET6
470		if (isipv6) {
471			bcopy((caddr_t)ip6, mtod(m, caddr_t),
472			      sizeof(struct ip6_hdr));
473			ip6 = mtod(m, struct ip6_hdr *);
474			nth = (struct tcphdr *)(ip6 + 1);
475		} else
476#endif /* INET6 */
477	      {
478		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
479		ip = mtod(m, struct ip *);
480		nth = (struct tcphdr *)(ip + 1);
481	      }
482		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
483		flags = TH_ACK;
484	} else {
485		m_freem(m->m_next);
486		m->m_next = NULL;
487		m->m_data = (caddr_t)ipgen;
488		/* m_len is set later */
489		tlen = 0;
490#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
491#ifdef INET6
492		if (isipv6) {
493			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
494			nth = (struct tcphdr *)(ip6 + 1);
495		} else
496#endif /* INET6 */
497	      {
498		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
499		nth = (struct tcphdr *)(ip + 1);
500	      }
501		if (th != nth) {
502			/*
503			 * this is usually a case when an extension header
504			 * exists between the IPv6 header and the
505			 * TCP header.
506			 */
507			nth->th_sport = th->th_sport;
508			nth->th_dport = th->th_dport;
509		}
510		xchg(nth->th_dport, nth->th_sport, n_short);
511#undef xchg
512	}
513#ifdef INET6
514	if (isipv6) {
515		ip6->ip6_flow = 0;
516		ip6->ip6_vfc = IPV6_VERSION;
517		ip6->ip6_nxt = IPPROTO_TCP;
518		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
519						tlen));
520		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
521	} else
522#endif
523	{
524		tlen += sizeof (struct tcpiphdr);
525		ip->ip_len = tlen;
526		ip->ip_ttl = ip_defttl;
527		if (path_mtu_discovery)
528			ip->ip_off |= IP_DF;
529	}
530	m->m_len = tlen;
531	m->m_pkthdr.len = tlen;
532	m->m_pkthdr.rcvif = NULL;
533#ifdef MAC
534	if (inp != NULL) {
535		/*
536		 * Packet is associated with a socket, so allow the
537		 * label of the response to reflect the socket label.
538		 */
539		INP_LOCK_ASSERT(inp);
540		mac_create_mbuf_from_inpcb(inp, m);
541	} else {
542		/*
543		 * Packet is not associated with a socket, so possibly
544		 * update the label in place.
545		 */
546		mac_reflect_mbuf_tcp(m);
547	}
548#endif
549	nth->th_seq = htonl(seq);
550	nth->th_ack = htonl(ack);
551	nth->th_x2 = 0;
552	nth->th_off = sizeof (struct tcphdr) >> 2;
553	nth->th_flags = flags;
554	if (tp != NULL)
555		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
556	else
557		nth->th_win = htons((u_short)win);
558	nth->th_urp = 0;
559#ifdef INET6
560	if (isipv6) {
561		nth->th_sum = 0;
562		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
563					sizeof(struct ip6_hdr),
564					tlen - sizeof(struct ip6_hdr));
565		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
566		    NULL, NULL);
567	} else
568#endif /* INET6 */
569	{
570		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
571		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
572		m->m_pkthdr.csum_flags = CSUM_TCP;
573		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
574	}
575#ifdef TCPDEBUG
576	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
577		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
578#endif
579#ifdef INET6
580	if (isipv6)
581		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
582	else
583#endif /* INET6 */
584	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
585}
586
587/*
588 * Create a new TCP control block, making an
589 * empty reassembly queue and hooking it to the argument
590 * protocol control block.  The `inp' parameter must have
591 * come from the zone allocator set up in tcp_init().
592 */
593struct tcpcb *
594tcp_newtcpcb(struct inpcb *inp)
595{
596	struct tcpcb_mem *tm;
597	struct tcpcb *tp;
598#ifdef INET6
599	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
600#endif /* INET6 */
601
602	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
603	if (tm == NULL)
604		return (NULL);
605	tp = &tm->tcb;
606	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
607	tp->t_maxseg = tp->t_maxopd =
608#ifdef INET6
609		isipv6 ? tcp_v6mssdflt :
610#endif /* INET6 */
611		tcp_mssdflt;
612
613	/* Set up our timeouts. */
614	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
615	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
616	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
617	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
618	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
619
620	if (tcp_do_rfc1323)
621		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
622	tp->sack_enable = tcp_do_sack;
623	TAILQ_INIT(&tp->snd_holes);
624	tp->t_inpcb = inp;	/* XXX */
625	/*
626	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
627	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
628	 * reasonable initial retransmit time.
629	 */
630	tp->t_srtt = TCPTV_SRTTBASE;
631	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
632	tp->t_rttmin = tcp_rexmit_min;
633	tp->t_rxtcur = TCPTV_RTOBASE;
634	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
635	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
636	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
637	tp->t_rcvtime = ticks;
638	tp->t_bw_rtttime = ticks;
639	/*
640	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
641	 * because the socket may be bound to an IPv6 wildcard address,
642	 * which may match an IPv4-mapped IPv6 address.
643	 */
644	inp->inp_ip_ttl = ip_defttl;
645	inp->inp_ppcb = tp;
646	return (tp);		/* XXX */
647}
648
649/*
650 * Drop a TCP connection, reporting
651 * the specified error.  If connection is synchronized,
652 * then send a RST to peer.
653 */
654struct tcpcb *
655tcp_drop(struct tcpcb *tp, int errno)
656{
657	struct socket *so = tp->t_inpcb->inp_socket;
658
659	INP_INFO_WLOCK_ASSERT(&tcbinfo);
660	INP_LOCK_ASSERT(tp->t_inpcb);
661
662	if (TCPS_HAVERCVDSYN(tp->t_state)) {
663		tp->t_state = TCPS_CLOSED;
664		(void) tcp_output(tp);
665		tcpstat.tcps_drops++;
666	} else
667		tcpstat.tcps_conndrops++;
668	if (errno == ETIMEDOUT && tp->t_softerror)
669		errno = tp->t_softerror;
670	so->so_error = errno;
671	return (tcp_close(tp));
672}
673
674void
675tcp_discardcb(struct tcpcb *tp)
676{
677	struct tseg_qent *q;
678	struct inpcb *inp = tp->t_inpcb;
679	struct socket *so = inp->inp_socket;
680#ifdef INET6
681	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
682#endif /* INET6 */
683
684	/*
685	 * XXXRW: This is all very well and good, but actually, we might be
686	 * discarding the tcpcb after the socket is gone, so we can't do
687	 * this:
688	KASSERT(so != NULL, ("tcp_discardcb: so == NULL"));
689	 */
690	INP_LOCK_ASSERT(inp);
691
692	/*
693	 * Make sure that all of our timers are stopped before we
694	 * delete the PCB.
695	 */
696	callout_stop(tp->tt_rexmt);
697	callout_stop(tp->tt_persist);
698	callout_stop(tp->tt_keep);
699	callout_stop(tp->tt_2msl);
700	callout_stop(tp->tt_delack);
701
702	/*
703	 * If we got enough samples through the srtt filter,
704	 * save the rtt and rttvar in the routing entry.
705	 * 'Enough' is arbitrarily defined as 4 rtt samples.
706	 * 4 samples is enough for the srtt filter to converge
707	 * to within enough % of the correct value; fewer samples
708	 * and we could save a bogus rtt. The danger is not high
709	 * as tcp quickly recovers from everything.
710	 * XXX: Works very well but needs some more statistics!
711	 */
712	if (tp->t_rttupdated >= 4) {
713		struct hc_metrics_lite metrics;
714		u_long ssthresh;
715
716		bzero(&metrics, sizeof(metrics));
717		/*
718		 * Update the ssthresh always when the conditions below
719		 * are satisfied. This gives us better new start value
720		 * for the congestion avoidance for new connections.
721		 * ssthresh is only set if packet loss occured on a session.
722		 */
723		ssthresh = tp->snd_ssthresh;
724		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
725			/*
726			 * convert the limit from user data bytes to
727			 * packets then to packet data bytes.
728			 */
729			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
730			if (ssthresh < 2)
731				ssthresh = 2;
732			ssthresh *= (u_long)(tp->t_maxseg +
733#ifdef INET6
734				      (isipv6 ? sizeof (struct ip6_hdr) +
735					       sizeof (struct tcphdr) :
736#endif
737				       sizeof (struct tcpiphdr)
738#ifdef INET6
739				       )
740#endif
741				      );
742		} else
743			ssthresh = 0;
744		metrics.rmx_ssthresh = ssthresh;
745
746		metrics.rmx_rtt = tp->t_srtt;
747		metrics.rmx_rttvar = tp->t_rttvar;
748		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
749		metrics.rmx_bandwidth = tp->snd_bandwidth;
750		metrics.rmx_cwnd = tp->snd_cwnd;
751		metrics.rmx_sendpipe = 0;
752		metrics.rmx_recvpipe = 0;
753
754		tcp_hc_update(&inp->inp_inc, &metrics);
755	}
756
757	/* free the reassembly queue, if any */
758	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
759		LIST_REMOVE(q, tqe_q);
760		m_freem(q->tqe_m);
761		uma_zfree(tcp_reass_zone, q);
762		tp->t_segqlen--;
763		tcp_reass_qsize--;
764	}
765	tcp_free_sackholes(tp);
766	inp->inp_ppcb = NULL;
767	tp->t_inpcb = NULL;
768	uma_zfree(tcpcb_zone, tp);
769
770	/*
771	 * XXXRW: This seems a bit unclean.
772	 */
773	if (so != NULL)
774		soisdisconnected(so);
775}
776
777/*
778 * Attempt to close a TCP control block, marking it as dropped, and freeing
779 * the socket if we hold the only reference.
780 */
781struct tcpcb *
782tcp_close(struct tcpcb *tp)
783{
784	struct inpcb *inp = tp->t_inpcb;
785	struct socket *so;
786
787	INP_INFO_WLOCK_ASSERT(&tcbinfo);
788	INP_LOCK_ASSERT(inp);
789
790	inp->inp_vflag |= INP_DROPPED;
791
792	tcpstat.tcps_closed++;
793	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
794	so = inp->inp_socket;
795	soisdisconnected(so);
796	if (inp->inp_vflag & INP_SOCKREF) {
797		KASSERT(so->so_state & SS_PROTOREF,
798		    ("tcp_close: !SS_PROTOREF"));
799		inp->inp_vflag &= ~INP_SOCKREF;
800		tcp_discardcb(tp);
801#ifdef INET6
802		if (inp->inp_vflag & INP_IPV6PROTO) {
803			in6_pcbdetach(inp);
804			in6_pcbfree(inp);
805		} else {
806#endif
807			in_pcbdetach(inp);
808			in_pcbfree(inp);
809#ifdef INET6
810		}
811#endif
812		ACCEPT_LOCK();
813		SOCK_LOCK(so);
814		so->so_state &= ~SS_PROTOREF;
815		sofree(so);
816		return (NULL);
817	}
818	return (tp);
819}
820
821void
822tcp_drain(void)
823{
824
825	if (do_tcpdrain) {
826		struct inpcb *inpb;
827		struct tcpcb *tcpb;
828		struct tseg_qent *te;
829
830	/*
831	 * Walk the tcpbs, if existing, and flush the reassembly queue,
832	 * if there is one...
833	 * XXX: The "Net/3" implementation doesn't imply that the TCP
834	 *      reassembly queue should be flushed, but in a situation
835	 *	where we're really low on mbufs, this is potentially
836	 *	usefull.
837	 */
838		INP_INFO_RLOCK(&tcbinfo);
839		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
840			if (inpb->inp_vflag & INP_TIMEWAIT)
841				continue;
842			INP_LOCK(inpb);
843			if ((tcpb = intotcpcb(inpb)) != NULL) {
844				while ((te = LIST_FIRST(&tcpb->t_segq))
845			            != NULL) {
846					LIST_REMOVE(te, tqe_q);
847					m_freem(te->tqe_m);
848					uma_zfree(tcp_reass_zone, te);
849					tcpb->t_segqlen--;
850					tcp_reass_qsize--;
851				}
852				tcp_clean_sackreport(tcpb);
853			}
854			INP_UNLOCK(inpb);
855		}
856		INP_INFO_RUNLOCK(&tcbinfo);
857	}
858}
859
860/*
861 * Notify a tcp user of an asynchronous error;
862 * store error as soft error, but wake up user
863 * (for now, won't do anything until can select for soft error).
864 *
865 * Do not wake up user since there currently is no mechanism for
866 * reporting soft errors (yet - a kqueue filter may be added).
867 */
868static struct inpcb *
869tcp_notify(struct inpcb *inp, int error)
870{
871	struct tcpcb *tp;
872
873	INP_INFO_WLOCK_ASSERT(&tcbinfo);
874	INP_LOCK_ASSERT(inp);
875
876	if ((inp->inp_vflag & INP_TIMEWAIT) ||
877	    (inp->inp_vflag & INP_DROPPED))
878		return (inp);
879
880	tp = intotcpcb(inp);
881	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
882
883	/*
884	 * Ignore some errors if we are hooked up.
885	 * If connection hasn't completed, has retransmitted several times,
886	 * and receives a second error, give up now.  This is better
887	 * than waiting a long time to establish a connection that
888	 * can never complete.
889	 */
890	if (tp->t_state == TCPS_ESTABLISHED &&
891	    (error == EHOSTUNREACH || error == ENETUNREACH ||
892	     error == EHOSTDOWN)) {
893		return (inp);
894	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
895	    tp->t_softerror) {
896		tp = tcp_drop(tp, error);
897		if (tp != NULL)
898			return (inp);
899		else
900			return (NULL);
901	} else {
902		tp->t_softerror = error;
903		return (inp);
904	}
905#if 0
906	wakeup( &so->so_timeo);
907	sorwakeup(so);
908	sowwakeup(so);
909#endif
910}
911
912static int
913tcp_pcblist(SYSCTL_HANDLER_ARGS)
914{
915	int error, i, n;
916	struct inpcb *inp, **inp_list;
917	inp_gen_t gencnt;
918	struct xinpgen xig;
919
920	/*
921	 * The process of preparing the TCB list is too time-consuming and
922	 * resource-intensive to repeat twice on every request.
923	 */
924	if (req->oldptr == NULL) {
925		n = tcbinfo.ipi_count;
926		req->oldidx = 2 * (sizeof xig)
927			+ (n + n/8) * sizeof(struct xtcpcb);
928		return (0);
929	}
930
931	if (req->newptr != NULL)
932		return (EPERM);
933
934	/*
935	 * OK, now we're committed to doing something.
936	 */
937	INP_INFO_RLOCK(&tcbinfo);
938	gencnt = tcbinfo.ipi_gencnt;
939	n = tcbinfo.ipi_count;
940	INP_INFO_RUNLOCK(&tcbinfo);
941
942	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
943		+ n * sizeof(struct xtcpcb));
944	if (error != 0)
945		return (error);
946
947	xig.xig_len = sizeof xig;
948	xig.xig_count = n;
949	xig.xig_gen = gencnt;
950	xig.xig_sogen = so_gencnt;
951	error = SYSCTL_OUT(req, &xig, sizeof xig);
952	if (error)
953		return (error);
954
955	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
956	if (inp_list == NULL)
957		return (ENOMEM);
958
959	INP_INFO_RLOCK(&tcbinfo);
960	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
961	     inp = LIST_NEXT(inp, inp_list)) {
962		INP_LOCK(inp);
963		if (inp->inp_gencnt <= gencnt) {
964			/*
965			 * XXX: This use of cr_cansee(), introduced with
966			 * TCP state changes, is not quite right, but for
967			 * now, better than nothing.
968			 */
969			if (inp->inp_vflag & INP_TIMEWAIT) {
970				if (intotw(inp) != NULL)
971					error = cr_cansee(req->td->td_ucred,
972					    intotw(inp)->tw_cred);
973				else
974					error = EINVAL;	/* Skip this inp. */
975			} else
976				error = cr_canseesocket(req->td->td_ucred,
977				    inp->inp_socket);
978			if (error == 0)
979				inp_list[i++] = inp;
980		}
981		INP_UNLOCK(inp);
982	}
983	INP_INFO_RUNLOCK(&tcbinfo);
984	n = i;
985
986	error = 0;
987	for (i = 0; i < n; i++) {
988		inp = inp_list[i];
989		if (inp->inp_gencnt <= gencnt) {
990			struct xtcpcb xt;
991			void *inp_ppcb;
992
993			bzero(&xt, sizeof(xt));
994			xt.xt_len = sizeof xt;
995			/* XXX should avoid extra copy */
996			bcopy(inp, &xt.xt_inp, sizeof *inp);
997			inp_ppcb = inp->inp_ppcb;
998			if (inp_ppcb == NULL)
999				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1000			else if (inp->inp_vflag & INP_TIMEWAIT) {
1001				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1002				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1003			} else
1004				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1005			if (inp->inp_socket != NULL)
1006				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1007			else {
1008				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1009				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1010			}
1011			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1012			error = SYSCTL_OUT(req, &xt, sizeof xt);
1013		}
1014	}
1015	if (!error) {
1016		/*
1017		 * Give the user an updated idea of our state.
1018		 * If the generation differs from what we told
1019		 * her before, she knows that something happened
1020		 * while we were processing this request, and it
1021		 * might be necessary to retry.
1022		 */
1023		INP_INFO_RLOCK(&tcbinfo);
1024		xig.xig_gen = tcbinfo.ipi_gencnt;
1025		xig.xig_sogen = so_gencnt;
1026		xig.xig_count = tcbinfo.ipi_count;
1027		INP_INFO_RUNLOCK(&tcbinfo);
1028		error = SYSCTL_OUT(req, &xig, sizeof xig);
1029	}
1030	free(inp_list, M_TEMP);
1031	return (error);
1032}
1033
1034SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1035	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1036
1037static int
1038tcp_getcred(SYSCTL_HANDLER_ARGS)
1039{
1040	struct xucred xuc;
1041	struct sockaddr_in addrs[2];
1042	struct inpcb *inp;
1043	int error;
1044
1045	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1046	if (error)
1047		return (error);
1048	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1049	if (error)
1050		return (error);
1051	INP_INFO_RLOCK(&tcbinfo);
1052	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1053	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1054	if (inp == NULL) {
1055		error = ENOENT;
1056		goto outunlocked;
1057	}
1058	INP_LOCK(inp);
1059	if (inp->inp_socket == NULL) {
1060		error = ENOENT;
1061		goto out;
1062	}
1063	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1064	if (error)
1065		goto out;
1066	cru2x(inp->inp_socket->so_cred, &xuc);
1067out:
1068	INP_UNLOCK(inp);
1069outunlocked:
1070	INP_INFO_RUNLOCK(&tcbinfo);
1071	if (error == 0)
1072		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1073	return (error);
1074}
1075
1076SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1077    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1078    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1079
1080#ifdef INET6
1081static int
1082tcp6_getcred(SYSCTL_HANDLER_ARGS)
1083{
1084	struct xucred xuc;
1085	struct sockaddr_in6 addrs[2];
1086	struct inpcb *inp;
1087	int error, mapped = 0;
1088
1089	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1090	if (error)
1091		return (error);
1092	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1093	if (error)
1094		return (error);
1095	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1096	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1097		return (error);
1098	}
1099	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1100		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1101			mapped = 1;
1102		else
1103			return (EINVAL);
1104	}
1105
1106	INP_INFO_RLOCK(&tcbinfo);
1107	if (mapped == 1)
1108		inp = in_pcblookup_hash(&tcbinfo,
1109			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1110			addrs[1].sin6_port,
1111			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1112			addrs[0].sin6_port,
1113			0, NULL);
1114	else
1115		inp = in6_pcblookup_hash(&tcbinfo,
1116			&addrs[1].sin6_addr, addrs[1].sin6_port,
1117			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1118	if (inp == NULL) {
1119		error = ENOENT;
1120		goto outunlocked;
1121	}
1122	INP_LOCK(inp);
1123	if (inp->inp_socket == NULL) {
1124		error = ENOENT;
1125		goto out;
1126	}
1127	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1128	if (error)
1129		goto out;
1130	cru2x(inp->inp_socket->so_cred, &xuc);
1131out:
1132	INP_UNLOCK(inp);
1133outunlocked:
1134	INP_INFO_RUNLOCK(&tcbinfo);
1135	if (error == 0)
1136		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1137	return (error);
1138}
1139
1140SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1141    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1142    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1143#endif
1144
1145
1146void
1147tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1148{
1149	struct ip *ip = vip;
1150	struct tcphdr *th;
1151	struct in_addr faddr;
1152	struct inpcb *inp;
1153	struct tcpcb *tp;
1154	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1155	struct icmp *icp;
1156	struct in_conninfo inc;
1157	tcp_seq icmp_tcp_seq;
1158	int mtu;
1159
1160	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1161	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1162		return;
1163
1164	if (cmd == PRC_MSGSIZE)
1165		notify = tcp_mtudisc;
1166	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1167		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1168		notify = tcp_drop_syn_sent;
1169	/*
1170	 * Redirects don't need to be handled up here.
1171	 */
1172	else if (PRC_IS_REDIRECT(cmd))
1173		return;
1174	/*
1175	 * Source quench is depreciated.
1176	 */
1177	else if (cmd == PRC_QUENCH)
1178		return;
1179	/*
1180	 * Hostdead is ugly because it goes linearly through all PCBs.
1181	 * XXX: We never get this from ICMP, otherwise it makes an
1182	 * excellent DoS attack on machines with many connections.
1183	 */
1184	else if (cmd == PRC_HOSTDEAD)
1185		ip = NULL;
1186	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1187		return;
1188	if (ip != NULL) {
1189		icp = (struct icmp *)((caddr_t)ip
1190				      - offsetof(struct icmp, icmp_ip));
1191		th = (struct tcphdr *)((caddr_t)ip
1192				       + (ip->ip_hl << 2));
1193		INP_INFO_WLOCK(&tcbinfo);
1194		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1195		    ip->ip_src, th->th_sport, 0, NULL);
1196		if (inp != NULL)  {
1197			INP_LOCK(inp);
1198			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1199			    !(inp->inp_vflag & INP_DROPPED) &&
1200			    !(inp->inp_socket == NULL)) {
1201				icmp_tcp_seq = htonl(th->th_seq);
1202				tp = intotcpcb(inp);
1203				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1204				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1205					if (cmd == PRC_MSGSIZE) {
1206					    /*
1207					     * MTU discovery:
1208					     * If we got a needfrag set the MTU
1209					     * in the route to the suggested new
1210					     * value (if given) and then notify.
1211					     */
1212					    bzero(&inc, sizeof(inc));
1213					    inc.inc_flags = 0;	/* IPv4 */
1214					    inc.inc_faddr = faddr;
1215
1216					    mtu = ntohs(icp->icmp_nextmtu);
1217					    /*
1218					     * If no alternative MTU was
1219					     * proposed, try the next smaller
1220					     * one.  ip->ip_len has already
1221					     * been swapped in icmp_input().
1222					     */
1223					    if (!mtu)
1224						mtu = ip_next_mtu(ip->ip_len,
1225						 1);
1226					    if (mtu < max(296, (tcp_minmss)
1227						 + sizeof(struct tcpiphdr)))
1228						mtu = 0;
1229					    if (!mtu)
1230						mtu = tcp_mssdflt
1231						 + sizeof(struct tcpiphdr);
1232					    /*
1233					     * Only cache the the MTU if it
1234					     * is smaller than the interface
1235					     * or route MTU.  tcp_mtudisc()
1236					     * will do right thing by itself.
1237					     */
1238					    if (mtu <= tcp_maxmtu(&inc))
1239						tcp_hc_updatemtu(&inc, mtu);
1240					}
1241
1242					inp = (*notify)(inp, inetctlerrmap[cmd]);
1243				}
1244			}
1245			if (inp != NULL)
1246				INP_UNLOCK(inp);
1247		} else {
1248			inc.inc_fport = th->th_dport;
1249			inc.inc_lport = th->th_sport;
1250			inc.inc_faddr = faddr;
1251			inc.inc_laddr = ip->ip_src;
1252#ifdef INET6
1253			inc.inc_isipv6 = 0;
1254#endif
1255			syncache_unreach(&inc, th);
1256		}
1257		INP_INFO_WUNLOCK(&tcbinfo);
1258	} else
1259		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1260}
1261
1262#ifdef INET6
1263void
1264tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1265{
1266	struct tcphdr th;
1267	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1268	struct ip6_hdr *ip6;
1269	struct mbuf *m;
1270	struct ip6ctlparam *ip6cp = NULL;
1271	const struct sockaddr_in6 *sa6_src = NULL;
1272	int off;
1273	struct tcp_portonly {
1274		u_int16_t th_sport;
1275		u_int16_t th_dport;
1276	} *thp;
1277
1278	if (sa->sa_family != AF_INET6 ||
1279	    sa->sa_len != sizeof(struct sockaddr_in6))
1280		return;
1281
1282	if (cmd == PRC_MSGSIZE)
1283		notify = tcp_mtudisc;
1284	else if (!PRC_IS_REDIRECT(cmd) &&
1285		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1286		return;
1287	/* Source quench is depreciated. */
1288	else if (cmd == PRC_QUENCH)
1289		return;
1290
1291	/* if the parameter is from icmp6, decode it. */
1292	if (d != NULL) {
1293		ip6cp = (struct ip6ctlparam *)d;
1294		m = ip6cp->ip6c_m;
1295		ip6 = ip6cp->ip6c_ip6;
1296		off = ip6cp->ip6c_off;
1297		sa6_src = ip6cp->ip6c_src;
1298	} else {
1299		m = NULL;
1300		ip6 = NULL;
1301		off = 0;	/* fool gcc */
1302		sa6_src = &sa6_any;
1303	}
1304
1305	if (ip6 != NULL) {
1306		struct in_conninfo inc;
1307		/*
1308		 * XXX: We assume that when IPV6 is non NULL,
1309		 * M and OFF are valid.
1310		 */
1311
1312		/* check if we can safely examine src and dst ports */
1313		if (m->m_pkthdr.len < off + sizeof(*thp))
1314			return;
1315
1316		bzero(&th, sizeof(th));
1317		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1318
1319		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1320		    (struct sockaddr *)ip6cp->ip6c_src,
1321		    th.th_sport, cmd, NULL, notify);
1322
1323		inc.inc_fport = th.th_dport;
1324		inc.inc_lport = th.th_sport;
1325		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1326		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1327		inc.inc_isipv6 = 1;
1328		INP_INFO_WLOCK(&tcbinfo);
1329		syncache_unreach(&inc, &th);
1330		INP_INFO_WUNLOCK(&tcbinfo);
1331	} else
1332		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1333			      0, cmd, NULL, notify);
1334}
1335#endif /* INET6 */
1336
1337
1338/*
1339 * Following is where TCP initial sequence number generation occurs.
1340 *
1341 * There are two places where we must use initial sequence numbers:
1342 * 1.  In SYN-ACK packets.
1343 * 2.  In SYN packets.
1344 *
1345 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1346 * tcp_syncache.c for details.
1347 *
1348 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1349 * depends on this property.  In addition, these ISNs should be
1350 * unguessable so as to prevent connection hijacking.  To satisfy
1351 * the requirements of this situation, the algorithm outlined in
1352 * RFC 1948 is used, with only small modifications.
1353 *
1354 * Implementation details:
1355 *
1356 * Time is based off the system timer, and is corrected so that it
1357 * increases by one megabyte per second.  This allows for proper
1358 * recycling on high speed LANs while still leaving over an hour
1359 * before rollover.
1360 *
1361 * As reading the *exact* system time is too expensive to be done
1362 * whenever setting up a TCP connection, we increment the time
1363 * offset in two ways.  First, a small random positive increment
1364 * is added to isn_offset for each connection that is set up.
1365 * Second, the function tcp_isn_tick fires once per clock tick
1366 * and increments isn_offset as necessary so that sequence numbers
1367 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1368 * random positive increments serve only to ensure that the same
1369 * exact sequence number is never sent out twice (as could otherwise
1370 * happen when a port is recycled in less than the system tick
1371 * interval.)
1372 *
1373 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1374 * between seeding of isn_secret.  This is normally set to zero,
1375 * as reseeding should not be necessary.
1376 *
1377 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1378 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1379 * general, this means holding an exclusive (write) lock.
1380 */
1381
1382#define ISN_BYTES_PER_SECOND 1048576
1383#define ISN_STATIC_INCREMENT 4096
1384#define ISN_RANDOM_INCREMENT (4096 - 1)
1385
1386static u_char isn_secret[32];
1387static int isn_last_reseed;
1388static u_int32_t isn_offset, isn_offset_old;
1389static MD5_CTX isn_ctx;
1390
1391tcp_seq
1392tcp_new_isn(struct tcpcb *tp)
1393{
1394	u_int32_t md5_buffer[4];
1395	tcp_seq new_isn;
1396
1397	INP_LOCK_ASSERT(tp->t_inpcb);
1398
1399	mtx_lock(&isn_mtx);
1400	/* Seed if this is the first use, reseed if requested. */
1401	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1402	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1403		< (u_int)ticks))) {
1404		read_random(&isn_secret, sizeof(isn_secret));
1405		isn_last_reseed = ticks;
1406	}
1407
1408	/* Compute the md5 hash and return the ISN. */
1409	MD5Init(&isn_ctx);
1410	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1411	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1412#ifdef INET6
1413	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1414		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1415			  sizeof(struct in6_addr));
1416		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1417			  sizeof(struct in6_addr));
1418	} else
1419#endif
1420	{
1421		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1422			  sizeof(struct in_addr));
1423		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1424			  sizeof(struct in_addr));
1425	}
1426	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1427	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1428	new_isn = (tcp_seq) md5_buffer[0];
1429	isn_offset += ISN_STATIC_INCREMENT +
1430		(arc4random() & ISN_RANDOM_INCREMENT);
1431	new_isn += isn_offset;
1432	mtx_unlock(&isn_mtx);
1433	return (new_isn);
1434}
1435
1436/*
1437 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1438 * to keep time flowing at a relatively constant rate.  If the random
1439 * increments have already pushed us past the projected offset, do nothing.
1440 */
1441static void
1442tcp_isn_tick(void *xtp)
1443{
1444	u_int32_t projected_offset;
1445
1446	mtx_lock(&isn_mtx);
1447	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1448
1449	if (projected_offset > isn_offset)
1450		isn_offset = projected_offset;
1451
1452	isn_offset_old = isn_offset;
1453	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1454	mtx_unlock(&isn_mtx);
1455}
1456
1457/*
1458 * When a specific ICMP unreachable message is received and the
1459 * connection state is SYN-SENT, drop the connection.  This behavior
1460 * is controlled by the icmp_may_rst sysctl.
1461 */
1462struct inpcb *
1463tcp_drop_syn_sent(struct inpcb *inp, int errno)
1464{
1465	struct tcpcb *tp;
1466
1467	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1468	INP_LOCK_ASSERT(inp);
1469
1470	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1471	    (inp->inp_vflag & INP_DROPPED))
1472		return (inp);
1473
1474	tp = intotcpcb(inp);
1475	if (tp->t_state != TCPS_SYN_SENT)
1476		return (inp);
1477
1478	tp = tcp_drop(tp, errno);
1479	if (tp != NULL)
1480		return (inp);
1481	else
1482		return (NULL);
1483}
1484
1485/*
1486 * When `need fragmentation' ICMP is received, update our idea of the MSS
1487 * based on the new value in the route.  Also nudge TCP to send something,
1488 * since we know the packet we just sent was dropped.
1489 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1490 */
1491struct inpcb *
1492tcp_mtudisc(struct inpcb *inp, int errno)
1493{
1494	struct tcpcb *tp;
1495	struct socket *so = inp->inp_socket;
1496	u_int maxmtu;
1497	u_int romtu;
1498	int mss;
1499#ifdef INET6
1500	int isipv6;
1501#endif /* INET6 */
1502
1503	INP_LOCK_ASSERT(inp);
1504	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1505	    (inp->inp_vflag & INP_DROPPED))
1506		return (inp);
1507
1508	tp = intotcpcb(inp);
1509	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1510
1511#ifdef INET6
1512	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1513#endif
1514	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1515	romtu =
1516#ifdef INET6
1517	    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1518#endif /* INET6 */
1519	    tcp_maxmtu(&inp->inp_inc);
1520	if (!maxmtu)
1521		maxmtu = romtu;
1522	else
1523		maxmtu = min(maxmtu, romtu);
1524	if (!maxmtu) {
1525		tp->t_maxopd = tp->t_maxseg =
1526#ifdef INET6
1527			isipv6 ? tcp_v6mssdflt :
1528#endif /* INET6 */
1529			tcp_mssdflt;
1530		return (inp);
1531	}
1532	mss = maxmtu -
1533#ifdef INET6
1534		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1535#endif /* INET6 */
1536		 sizeof(struct tcpiphdr)
1537#ifdef INET6
1538		 )
1539#endif /* INET6 */
1540		;
1541
1542	/*
1543	 * XXX - The above conditional probably violates the TCP
1544	 * spec.  The problem is that, since we don't know the
1545	 * other end's MSS, we are supposed to use a conservative
1546	 * default.  But, if we do that, then MTU discovery will
1547	 * never actually take place, because the conservative
1548	 * default is much less than the MTUs typically seen
1549	 * on the Internet today.  For the moment, we'll sweep
1550	 * this under the carpet.
1551	 *
1552	 * The conservative default might not actually be a problem
1553	 * if the only case this occurs is when sending an initial
1554	 * SYN with options and data to a host we've never talked
1555	 * to before.  Then, they will reply with an MSS value which
1556	 * will get recorded and the new parameters should get
1557	 * recomputed.  For Further Study.
1558	 */
1559	if (tp->t_maxopd <= mss)
1560		return (inp);
1561	tp->t_maxopd = mss;
1562
1563	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1564	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1565		mss -= TCPOLEN_TSTAMP_APPA;
1566#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1567	if (mss > MCLBYTES)
1568		mss &= ~(MCLBYTES-1);
1569#else
1570	if (mss > MCLBYTES)
1571		mss = mss / MCLBYTES * MCLBYTES;
1572#endif
1573	if (so->so_snd.sb_hiwat < mss)
1574		mss = so->so_snd.sb_hiwat;
1575
1576	tp->t_maxseg = mss;
1577
1578	tcpstat.tcps_mturesent++;
1579	tp->t_rtttime = 0;
1580	tp->snd_nxt = tp->snd_una;
1581	tcp_output(tp);
1582	return (inp);
1583}
1584
1585/*
1586 * Look-up the routing entry to the peer of this inpcb.  If no route
1587 * is found and it cannot be allocated, then return NULL.  This routine
1588 * is called by TCP routines that access the rmx structure and by tcp_mss
1589 * to get the interface MTU.
1590 */
1591u_long
1592tcp_maxmtu(struct in_conninfo *inc)
1593{
1594	struct route sro;
1595	struct sockaddr_in *dst;
1596	struct ifnet *ifp;
1597	u_long maxmtu = 0;
1598
1599	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1600
1601	bzero(&sro, sizeof(sro));
1602	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1603	        dst = (struct sockaddr_in *)&sro.ro_dst;
1604		dst->sin_family = AF_INET;
1605		dst->sin_len = sizeof(*dst);
1606		dst->sin_addr = inc->inc_faddr;
1607		rtalloc_ign(&sro, RTF_CLONING);
1608	}
1609	if (sro.ro_rt != NULL) {
1610		ifp = sro.ro_rt->rt_ifp;
1611		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1612			maxmtu = ifp->if_mtu;
1613		else
1614			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1615		RTFREE(sro.ro_rt);
1616	}
1617	return (maxmtu);
1618}
1619
1620#ifdef INET6
1621u_long
1622tcp_maxmtu6(struct in_conninfo *inc)
1623{
1624	struct route_in6 sro6;
1625	struct ifnet *ifp;
1626	u_long maxmtu = 0;
1627
1628	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1629
1630	bzero(&sro6, sizeof(sro6));
1631	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1632		sro6.ro_dst.sin6_family = AF_INET6;
1633		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1634		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1635		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1636	}
1637	if (sro6.ro_rt != NULL) {
1638		ifp = sro6.ro_rt->rt_ifp;
1639		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1640			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1641		else
1642			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1643				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1644		RTFREE(sro6.ro_rt);
1645	}
1646
1647	return (maxmtu);
1648}
1649#endif /* INET6 */
1650
1651#ifdef IPSEC
1652/* compute ESP/AH header size for TCP, including outer IP header. */
1653size_t
1654ipsec_hdrsiz_tcp(struct tcpcb *tp)
1655{
1656	struct inpcb *inp;
1657	struct mbuf *m;
1658	size_t hdrsiz;
1659	struct ip *ip;
1660#ifdef INET6
1661	struct ip6_hdr *ip6;
1662#endif
1663	struct tcphdr *th;
1664
1665	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1666		return (0);
1667	MGETHDR(m, M_DONTWAIT, MT_DATA);
1668	if (!m)
1669		return (0);
1670
1671#ifdef INET6
1672	if ((inp->inp_vflag & INP_IPV6) != 0) {
1673		ip6 = mtod(m, struct ip6_hdr *);
1674		th = (struct tcphdr *)(ip6 + 1);
1675		m->m_pkthdr.len = m->m_len =
1676			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1677		tcpip_fillheaders(inp, ip6, th);
1678		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1679	} else
1680#endif /* INET6 */
1681	{
1682		ip = mtod(m, struct ip *);
1683		th = (struct tcphdr *)(ip + 1);
1684		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1685		tcpip_fillheaders(inp, ip, th);
1686		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1687	}
1688
1689	m_free(m);
1690	return (hdrsiz);
1691}
1692#endif /*IPSEC*/
1693
1694/*
1695 * Move a TCP connection into TIME_WAIT state.
1696 *    tcbinfo is locked.
1697 *    inp is locked, and is unlocked before returning.
1698 */
1699void
1700tcp_twstart(struct tcpcb *tp)
1701{
1702	struct tcptw *tw;
1703	struct inpcb *inp;
1704	int tw_time, acknow;
1705	struct socket *so;
1706
1707	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1708	INP_LOCK_ASSERT(tp->t_inpcb);
1709
1710	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1711	if (tw == NULL) {
1712		tw = tcp_timer_2msl_tw(1);
1713		if (tw == NULL) {
1714			tp = tcp_close(tp);
1715			if (tp != NULL)
1716				INP_UNLOCK(tp->t_inpcb);
1717			return;
1718		}
1719	}
1720	inp = tp->t_inpcb;
1721	tw->tw_inpcb = inp;
1722
1723	/*
1724	 * Recover last window size sent.
1725	 */
1726	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1727
1728	/*
1729	 * Set t_recent if timestamps are used on the connection.
1730	 */
1731	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1732	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1733		tw->t_recent = tp->ts_recent;
1734	else
1735		tw->t_recent = 0;
1736
1737	tw->snd_nxt = tp->snd_nxt;
1738	tw->rcv_nxt = tp->rcv_nxt;
1739	tw->iss     = tp->iss;
1740	tw->irs     = tp->irs;
1741	tw->t_starttime = tp->t_starttime;
1742	tw->tw_time = 0;
1743
1744/* XXX
1745 * If this code will
1746 * be used for fin-wait-2 state also, then we may need
1747 * a ts_recent from the last segment.
1748 */
1749	tw_time = 2 * tcp_msl;
1750	acknow = tp->t_flags & TF_ACKNOW;
1751
1752	/*
1753	 * First, discard tcpcb state, which includes stopping its timers and
1754	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1755	 * that work is now done in the caller.
1756	 */
1757	tcp_discardcb(tp);
1758	so = inp->inp_socket;
1759	SOCK_LOCK(so);
1760	tw->tw_cred = crhold(so->so_cred);
1761	tw->tw_so_options = so->so_options;
1762	SOCK_UNLOCK(so);
1763	if (acknow)
1764		tcp_twrespond(tw, TH_ACK);
1765	inp->inp_ppcb = tw;
1766	inp->inp_vflag |= INP_TIMEWAIT;
1767	tcp_timer_2msl_reset(tw, tw_time);
1768
1769	/*
1770	 * If the inpcb owns the sole reference to the socket, then we can
1771	 * detach and free the socket as it is not needed in time wait.
1772	 */
1773	if (inp->inp_vflag & INP_SOCKREF) {
1774		KASSERT(so->so_state & SS_PROTOREF,
1775		    ("tcp_twstart: !SS_PROTOREF"));
1776		inp->inp_vflag &= ~INP_SOCKREF;
1777#ifdef INET6
1778		if (inp->inp_vflag & INP_IPV6PROTO)
1779			in6_pcbdetach(inp);
1780		else
1781#endif
1782			in_pcbdetach(inp);
1783		INP_UNLOCK(inp);
1784		ACCEPT_LOCK();
1785		SOCK_LOCK(so);
1786		so->so_state &= ~SS_PROTOREF;
1787		sofree(so);
1788	} else
1789		INP_UNLOCK(inp);
1790}
1791
1792/*
1793 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1794 * the actual rate is slightly higher due to the addition of
1795 * random positive increments.
1796 *
1797 * Most other new OSes use semi-randomized ISN values, so we
1798 * do not need to worry about them.
1799 */
1800#define MS_ISN_BYTES_PER_SECOND		250000
1801
1802/*
1803 * Determine if the ISN we will generate has advanced beyond the last
1804 * sequence number used by the previous connection.  If so, indicate
1805 * that it is safe to recycle this tw socket by returning 1.
1806 *
1807 * XXXRW: This function should assert the inpcb lock as it does multiple
1808 * non-atomic reads from the tcptw, but is currently called without it from
1809 * in_pcb.c:in_pcblookup_local().
1810 */
1811int
1812tcp_twrecycleable(struct tcptw *tw)
1813{
1814	tcp_seq new_iss = tw->iss;
1815	tcp_seq new_irs = tw->irs;
1816
1817	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1818	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1819
1820	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1821		return (1);
1822	else
1823		return (0);
1824}
1825
1826void
1827tcp_twclose(struct tcptw *tw, int reuse)
1828{
1829	struct socket *so;
1830	struct inpcb *inp;
1831
1832	/*
1833	 * At this point, we are in one of two situations:
1834	 *
1835	 * (1) We have no socket, just an inpcb<->twtcp pair.  Release it all
1836	 * after validating.
1837	 *
1838	 * (2) We have a socket, which we may or may now own the reference
1839	 * for.  If we own the reference, release all the state after
1840	 * validating.  If not, leave it for the socket close to clean up.
1841	 */
1842	inp = tw->tw_inpcb;
1843	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1844	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1845	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1846	INP_LOCK_ASSERT(inp);
1847
1848	tw->tw_inpcb = NULL;
1849	tcp_timer_2msl_stop(tw);
1850	inp->inp_ppcb = NULL;
1851	inp->inp_vflag |= INP_DROPPED;
1852
1853	so = inp->inp_socket;
1854	if (so != NULL) {
1855		if (inp->inp_vflag & INP_SOCKREF) {
1856			/*
1857			 * If a socket is present, and we own the only
1858			 * reference, we need to tear down the socket and the
1859			 * inpcb.
1860			 */
1861			inp->inp_vflag &= ~INP_SOCKREF;
1862#ifdef INET6
1863			if (inp->inp_vflag & INP_IPV6PROTO) {
1864				in6_pcbdetach(inp);
1865				in6_pcbfree(inp);
1866			} else {
1867				in_pcbdetach(inp);
1868				in_pcbfree(inp);
1869			}
1870#endif
1871			ACCEPT_LOCK();
1872			SOCK_LOCK(so);
1873			KASSERT(so->so_state & SS_PROTOREF,
1874			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1875			so->so_state &= ~SS_PROTOREF;
1876			sofree(so);
1877		} else {
1878			/*
1879			 * If we don't own the only reference, the socket and
1880			 * inpcb need to be left around to be handled by
1881			 * tcp_usr_detach() later.
1882			 */
1883			INP_UNLOCK(inp);
1884		}
1885	} else {
1886#ifdef INET6
1887		if (inp->inp_vflag & INP_IPV6PROTO)
1888			in6_pcbfree(inp);
1889		else
1890#endif
1891			in_pcbfree(inp);
1892	}
1893	tcpstat.tcps_closed++;
1894	crfree(tw->tw_cred);
1895	tw->tw_cred = NULL;
1896	if (reuse)
1897		return;
1898	uma_zfree(tcptw_zone, tw);
1899}
1900
1901int
1902tcp_twrespond(struct tcptw *tw, int flags)
1903{
1904	struct inpcb *inp = tw->tw_inpcb;
1905	struct tcphdr *th;
1906	struct mbuf *m;
1907	struct ip *ip = NULL;
1908	u_int8_t *optp;
1909	u_int hdrlen, optlen;
1910	int error;
1911#ifdef INET6
1912	struct ip6_hdr *ip6 = NULL;
1913	int isipv6 = inp->inp_inc.inc_isipv6;
1914#endif
1915
1916	INP_LOCK_ASSERT(inp);
1917
1918	m = m_gethdr(M_DONTWAIT, MT_DATA);
1919	if (m == NULL)
1920		return (ENOBUFS);
1921	m->m_data += max_linkhdr;
1922
1923#ifdef MAC
1924	mac_create_mbuf_from_inpcb(inp, m);
1925#endif
1926
1927#ifdef INET6
1928	if (isipv6) {
1929		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1930		ip6 = mtod(m, struct ip6_hdr *);
1931		th = (struct tcphdr *)(ip6 + 1);
1932		tcpip_fillheaders(inp, ip6, th);
1933	} else
1934#endif
1935	{
1936		hdrlen = sizeof(struct tcpiphdr);
1937		ip = mtod(m, struct ip *);
1938		th = (struct tcphdr *)(ip + 1);
1939		tcpip_fillheaders(inp, ip, th);
1940	}
1941	optp = (u_int8_t *)(th + 1);
1942
1943	/*
1944	 * Send a timestamp and echo-reply if both our side and our peer
1945	 * have sent timestamps in our SYN's and this is not a RST.
1946	 */
1947	if (tw->t_recent && flags == TH_ACK) {
1948		u_int32_t *lp = (u_int32_t *)optp;
1949
1950		/* Form timestamp option as shown in appendix A of RFC 1323. */
1951		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1952		*lp++ = htonl(ticks);
1953		*lp   = htonl(tw->t_recent);
1954		optp += TCPOLEN_TSTAMP_APPA;
1955	}
1956
1957	optlen = optp - (u_int8_t *)(th + 1);
1958
1959	m->m_len = hdrlen + optlen;
1960	m->m_pkthdr.len = m->m_len;
1961
1962	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1963
1964	th->th_seq = htonl(tw->snd_nxt);
1965	th->th_ack = htonl(tw->rcv_nxt);
1966	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1967	th->th_flags = flags;
1968	th->th_win = htons(tw->last_win);
1969
1970#ifdef INET6
1971	if (isipv6) {
1972		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1973		    sizeof(struct tcphdr) + optlen);
1974		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1975		error = ip6_output(m, inp->in6p_outputopts, NULL,
1976		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1977	} else
1978#endif
1979	{
1980		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1981		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1982		m->m_pkthdr.csum_flags = CSUM_TCP;
1983		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1984		ip->ip_len = m->m_pkthdr.len;
1985		if (path_mtu_discovery)
1986			ip->ip_off |= IP_DF;
1987		error = ip_output(m, inp->inp_options, NULL,
1988		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1989		    NULL, inp);
1990	}
1991	if (flags & TH_ACK)
1992		tcpstat.tcps_sndacks++;
1993	else
1994		tcpstat.tcps_sndctrl++;
1995	tcpstat.tcps_sndtotal++;
1996	return (error);
1997}
1998
1999/*
2000 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2001 *
2002 * This code attempts to calculate the bandwidth-delay product as a
2003 * means of determining the optimal window size to maximize bandwidth,
2004 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2005 * routers.  This code also does a fairly good job keeping RTTs in check
2006 * across slow links like modems.  We implement an algorithm which is very
2007 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2008 * transmitter side of a TCP connection and so only effects the transmit
2009 * side of the connection.
2010 *
2011 * BACKGROUND:  TCP makes no provision for the management of buffer space
2012 * at the end points or at the intermediate routers and switches.  A TCP
2013 * stream, whether using NewReno or not, will eventually buffer as
2014 * many packets as it is able and the only reason this typically works is
2015 * due to the fairly small default buffers made available for a connection
2016 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2017 * scaling it is now fairly easy for even a single TCP connection to blow-out
2018 * all available buffer space not only on the local interface, but on
2019 * intermediate routers and switches as well.  NewReno makes a misguided
2020 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2021 * then backing off, then steadily increasing the window again until another
2022 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2023 * is only made worse as network loads increase and the idea of intentionally
2024 * blowing out network buffers is, frankly, a terrible way to manage network
2025 * resources.
2026 *
2027 * It is far better to limit the transmit window prior to the failure
2028 * condition being achieved.  There are two general ways to do this:  First
2029 * you can 'scan' through different transmit window sizes and locate the
2030 * point where the RTT stops increasing, indicating that you have filled the
2031 * pipe, then scan backwards until you note that RTT stops decreasing, then
2032 * repeat ad-infinitum.  This method works in principle but has severe
2033 * implementation issues due to RTT variances, timer granularity, and
2034 * instability in the algorithm which can lead to many false positives and
2035 * create oscillations as well as interact badly with other TCP streams
2036 * implementing the same algorithm.
2037 *
2038 * The second method is to limit the window to the bandwidth delay product
2039 * of the link.  This is the method we implement.  RTT variances and our
2040 * own manipulation of the congestion window, bwnd, can potentially
2041 * destabilize the algorithm.  For this reason we have to stabilize the
2042 * elements used to calculate the window.  We do this by using the minimum
2043 * observed RTT, the long term average of the observed bandwidth, and
2044 * by adding two segments worth of slop.  It isn't perfect but it is able
2045 * to react to changing conditions and gives us a very stable basis on
2046 * which to extend the algorithm.
2047 */
2048void
2049tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2050{
2051	u_long bw;
2052	u_long bwnd;
2053	int save_ticks;
2054
2055	INP_LOCK_ASSERT(tp->t_inpcb);
2056
2057	/*
2058	 * If inflight_enable is disabled in the middle of a tcp connection,
2059	 * make sure snd_bwnd is effectively disabled.
2060	 */
2061	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2062		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2063		tp->snd_bandwidth = 0;
2064		return;
2065	}
2066
2067	/*
2068	 * Figure out the bandwidth.  Due to the tick granularity this
2069	 * is a very rough number and it MUST be averaged over a fairly
2070	 * long period of time.  XXX we need to take into account a link
2071	 * that is not using all available bandwidth, but for now our
2072	 * slop will ramp us up if this case occurs and the bandwidth later
2073	 * increases.
2074	 *
2075	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2076	 * effectively reset t_bw_rtttime for this case.
2077	 */
2078	save_ticks = ticks;
2079	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2080		return;
2081
2082	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2083	    (save_ticks - tp->t_bw_rtttime);
2084	tp->t_bw_rtttime = save_ticks;
2085	tp->t_bw_rtseq = ack_seq;
2086	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2087		return;
2088	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2089
2090	tp->snd_bandwidth = bw;
2091
2092	/*
2093	 * Calculate the semi-static bandwidth delay product, plus two maximal
2094	 * segments.  The additional slop puts us squarely in the sweet
2095	 * spot and also handles the bandwidth run-up case and stabilization.
2096	 * Without the slop we could be locking ourselves into a lower
2097	 * bandwidth.
2098	 *
2099	 * Situations Handled:
2100	 *	(1) Prevents over-queueing of packets on LANs, especially on
2101	 *	    high speed LANs, allowing larger TCP buffers to be
2102	 *	    specified, and also does a good job preventing
2103	 *	    over-queueing of packets over choke points like modems
2104	 *	    (at least for the transmit side).
2105	 *
2106	 *	(2) Is able to handle changing network loads (bandwidth
2107	 *	    drops so bwnd drops, bandwidth increases so bwnd
2108	 *	    increases).
2109	 *
2110	 *	(3) Theoretically should stabilize in the face of multiple
2111	 *	    connections implementing the same algorithm (this may need
2112	 *	    a little work).
2113	 *
2114	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2115	 *	    be adjusted with a sysctl but typically only needs to be
2116	 *	    on very slow connections.  A value no smaller then 5
2117	 *	    should be used, but only reduce this default if you have
2118	 *	    no other choice.
2119	 */
2120#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2121	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2122#undef USERTT
2123
2124	if (tcp_inflight_debug > 0) {
2125		static int ltime;
2126		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2127			ltime = ticks;
2128			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2129			    tp,
2130			    bw,
2131			    tp->t_rttbest,
2132			    tp->t_srtt,
2133			    bwnd
2134			);
2135		}
2136	}
2137	if ((long)bwnd < tcp_inflight_min)
2138		bwnd = tcp_inflight_min;
2139	if (bwnd > tcp_inflight_max)
2140		bwnd = tcp_inflight_max;
2141	if ((long)bwnd < tp->t_maxseg * 2)
2142		bwnd = tp->t_maxseg * 2;
2143	tp->snd_bwnd = bwnd;
2144}
2145
2146#ifdef TCP_SIGNATURE
2147/*
2148 * Callback function invoked by m_apply() to digest TCP segment data
2149 * contained within an mbuf chain.
2150 */
2151static int
2152tcp_signature_apply(void *fstate, void *data, u_int len)
2153{
2154
2155	MD5Update(fstate, (u_char *)data, len);
2156	return (0);
2157}
2158
2159/*
2160 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2161 *
2162 * Parameters:
2163 * m		pointer to head of mbuf chain
2164 * off0		offset to TCP header within the mbuf chain
2165 * len		length of TCP segment data, excluding options
2166 * optlen	length of TCP segment options
2167 * buf		pointer to storage for computed MD5 digest
2168 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2169 *
2170 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2171 * When called from tcp_input(), we can be sure that th_sum has been
2172 * zeroed out and verified already.
2173 *
2174 * This function is for IPv4 use only. Calling this function with an
2175 * IPv6 packet in the mbuf chain will yield undefined results.
2176 *
2177 * Return 0 if successful, otherwise return -1.
2178 *
2179 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2180 * search with the destination IP address, and a 'magic SPI' to be
2181 * determined by the application. This is hardcoded elsewhere to 1179
2182 * right now. Another branch of this code exists which uses the SPD to
2183 * specify per-application flows but it is unstable.
2184 */
2185int
2186tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2187    u_char *buf, u_int direction)
2188{
2189	union sockaddr_union dst;
2190	struct ippseudo ippseudo;
2191	MD5_CTX ctx;
2192	int doff;
2193	struct ip *ip;
2194	struct ipovly *ipovly;
2195	struct secasvar *sav;
2196	struct tcphdr *th;
2197	u_short savecsum;
2198
2199	KASSERT(m != NULL, ("NULL mbuf chain"));
2200	KASSERT(buf != NULL, ("NULL signature pointer"));
2201
2202	/* Extract the destination from the IP header in the mbuf. */
2203	ip = mtod(m, struct ip *);
2204	bzero(&dst, sizeof(union sockaddr_union));
2205	dst.sa.sa_len = sizeof(struct sockaddr_in);
2206	dst.sa.sa_family = AF_INET;
2207	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2208	    ip->ip_src : ip->ip_dst;
2209
2210	/* Look up an SADB entry which matches the address of the peer. */
2211	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2212	if (sav == NULL) {
2213		printf("%s: SADB lookup failed for %s\n", __func__,
2214		    inet_ntoa(dst.sin.sin_addr));
2215		return (EINVAL);
2216	}
2217
2218	MD5Init(&ctx);
2219	ipovly = (struct ipovly *)ip;
2220	th = (struct tcphdr *)((u_char *)ip + off0);
2221	doff = off0 + sizeof(struct tcphdr) + optlen;
2222
2223	/*
2224	 * Step 1: Update MD5 hash with IP pseudo-header.
2225	 *
2226	 * XXX The ippseudo header MUST be digested in network byte order,
2227	 * or else we'll fail the regression test. Assume all fields we've
2228	 * been doing arithmetic on have been in host byte order.
2229	 * XXX One cannot depend on ipovly->ih_len here. When called from
2230	 * tcp_output(), the underlying ip_len member has not yet been set.
2231	 */
2232	ippseudo.ippseudo_src = ipovly->ih_src;
2233	ippseudo.ippseudo_dst = ipovly->ih_dst;
2234	ippseudo.ippseudo_pad = 0;
2235	ippseudo.ippseudo_p = IPPROTO_TCP;
2236	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2237	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2238
2239	/*
2240	 * Step 2: Update MD5 hash with TCP header, excluding options.
2241	 * The TCP checksum must be set to zero.
2242	 */
2243	savecsum = th->th_sum;
2244	th->th_sum = 0;
2245	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2246	th->th_sum = savecsum;
2247
2248	/*
2249	 * Step 3: Update MD5 hash with TCP segment data.
2250	 *         Use m_apply() to avoid an early m_pullup().
2251	 */
2252	if (len > 0)
2253		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2254
2255	/*
2256	 * Step 4: Update MD5 hash with shared secret.
2257	 */
2258	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2259	MD5Final(buf, &ctx);
2260
2261	key_sa_recordxfer(sav, m);
2262	KEY_FREESAV(&sav);
2263	return (0);
2264}
2265#endif /* TCP_SIGNATURE */
2266
2267static int
2268sysctl_drop(SYSCTL_HANDLER_ARGS)
2269{
2270	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2271	struct sockaddr_storage addrs[2];
2272	struct inpcb *inp;
2273	struct tcpcb *tp;
2274	struct tcptw *tw;
2275	struct sockaddr_in *fin, *lin;
2276#ifdef INET6
2277	struct sockaddr_in6 *fin6, *lin6;
2278	struct in6_addr f6, l6;
2279#endif
2280	int error;
2281
2282	inp = NULL;
2283	fin = lin = NULL;
2284#ifdef INET6
2285	fin6 = lin6 = NULL;
2286#endif
2287	error = 0;
2288
2289	if (req->oldptr != NULL || req->oldlen != 0)
2290		return (EINVAL);
2291	if (req->newptr == NULL)
2292		return (EPERM);
2293	if (req->newlen < sizeof(addrs))
2294		return (ENOMEM);
2295	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2296	if (error)
2297		return (error);
2298
2299	switch (addrs[0].ss_family) {
2300#ifdef INET6
2301	case AF_INET6:
2302		fin6 = (struct sockaddr_in6 *)&addrs[0];
2303		lin6 = (struct sockaddr_in6 *)&addrs[1];
2304		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2305		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2306			return (EINVAL);
2307		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2308			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2309				return (EINVAL);
2310			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2311			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2312			fin = (struct sockaddr_in *)&addrs[0];
2313			lin = (struct sockaddr_in *)&addrs[1];
2314			break;
2315		}
2316		error = sa6_embedscope(fin6, ip6_use_defzone);
2317		if (error)
2318			return (error);
2319		error = sa6_embedscope(lin6, ip6_use_defzone);
2320		if (error)
2321			return (error);
2322		break;
2323#endif
2324	case AF_INET:
2325		fin = (struct sockaddr_in *)&addrs[0];
2326		lin = (struct sockaddr_in *)&addrs[1];
2327		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2328		    lin->sin_len != sizeof(struct sockaddr_in))
2329			return (EINVAL);
2330		break;
2331	default:
2332		return (EINVAL);
2333	}
2334	INP_INFO_WLOCK(&tcbinfo);
2335	switch (addrs[0].ss_family) {
2336#ifdef INET6
2337	case AF_INET6:
2338		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2339		    &l6, lin6->sin6_port, 0, NULL);
2340		break;
2341#endif
2342	case AF_INET:
2343		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2344		    lin->sin_addr, lin->sin_port, 0, NULL);
2345		break;
2346	}
2347	if (inp != NULL) {
2348		INP_LOCK(inp);
2349		if (inp->inp_vflag & INP_TIMEWAIT) {
2350			/*
2351			 * XXXRW: There currently exists a state where an
2352			 * inpcb is present, but its timewait state has been
2353			 * discarded.  For now, don't allow dropping of this
2354			 * type of inpcb.
2355			 */
2356			tw = intotw(inp);
2357			if (tw != NULL)
2358				tcp_twclose(tw, 0);
2359		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2360			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2361			tp = intotcpcb(inp);
2362			tcp_drop(tp, ECONNABORTED);
2363		}
2364		INP_UNLOCK(inp);
2365	} else
2366		error = ESRCH;
2367	INP_INFO_WUNLOCK(&tcbinfo);
2368	return (error);
2369}
2370
2371SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2372    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2373    0, sysctl_drop, "", "Drop TCP connection");
2374