tcp_syncache.c revision 106696
1/*-
2 * Copyright (c) 2001 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Jonathan Lemon
6 * and NAI Labs, the Security Research Division of Network Associates, Inc.
7 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8 * DARPA CHATS research program.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 *    products derived from this software without specific prior written
20 *    permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $FreeBSD: head/sys/netinet/tcp_syncache.c 106696 2002-11-09 12:55:07Z alfred $
35 */
36
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/malloc.h>
46#include <sys/mac.h>
47#include <sys/mbuf.h>
48#include <sys/md5.h>
49#include <sys/proc.h>		/* for proc0 declaration */
50#include <sys/random.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53
54#include <net/if.h>
55#include <net/route.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/in_var.h>
61#include <netinet/in_pcb.h>
62#include <netinet/ip_var.h>
63#ifdef INET6
64#include <netinet/ip6.h>
65#include <netinet/icmp6.h>
66#include <netinet6/nd6.h>
67#include <netinet6/ip6_var.h>
68#include <netinet6/in6_pcb.h>
69#endif
70#include <netinet/tcp.h>
71#include <netinet/tcp_fsm.h>
72#include <netinet/tcp_seq.h>
73#include <netinet/tcp_timer.h>
74#include <netinet/tcp_var.h>
75#ifdef INET6
76#include <netinet6/tcp6_var.h>
77#endif
78
79#ifdef IPSEC
80#include <netinet6/ipsec.h>
81#ifdef INET6
82#include <netinet6/ipsec6.h>
83#endif
84#endif /*IPSEC*/
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#ifdef INET6
89#include <netipsec/ipsec6.h>
90#endif
91#include <netipsec/key.h>
92#define	IPSEC
93#endif /*FAST_IPSEC*/
94
95#include <machine/in_cksum.h>
96#include <vm/uma.h>
97
98static int tcp_syncookies = 1;
99SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
100    &tcp_syncookies, 0,
101    "Use TCP SYN cookies if the syncache overflows");
102
103static void	 syncache_drop(struct syncache *, struct syncache_head *);
104static void	 syncache_free(struct syncache *);
105static void	 syncache_insert(struct syncache *, struct syncache_head *);
106struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
107static int	 syncache_respond(struct syncache *, struct mbuf *);
108static struct 	 socket *syncache_socket(struct syncache *, struct socket *,
109		    struct mbuf *m);
110static void	 syncache_timer(void *);
111static u_int32_t syncookie_generate(struct syncache *);
112static struct syncache *syncookie_lookup(struct in_conninfo *,
113		    struct tcphdr *, struct socket *);
114
115/*
116 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
117 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
118 * the odds are that the user has given up attempting to connect by then.
119 */
120#define SYNCACHE_MAXREXMTS		3
121
122/* Arbitrary values */
123#define TCP_SYNCACHE_HASHSIZE		512
124#define TCP_SYNCACHE_BUCKETLIMIT	30
125
126struct tcp_syncache {
127	struct	syncache_head *hashbase;
128	uma_zone_t zone;
129	u_int	hashsize;
130	u_int	hashmask;
131	u_int	bucket_limit;
132	u_int	cache_count;
133	u_int	cache_limit;
134	u_int	rexmt_limit;
135	u_int	hash_secret;
136	u_int	next_reseed;
137	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
138	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
139};
140static struct tcp_syncache tcp_syncache;
141
142SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
143
144SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
145     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
146
147SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
148     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
149
150SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
151     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
152
153SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
154     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
155
156SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
157     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
158
159static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
160
161#define SYNCACHE_HASH(inc, mask) 					\
162	((tcp_syncache.hash_secret ^					\
163	  (inc)->inc_faddr.s_addr ^					\
164	  ((inc)->inc_faddr.s_addr >> 16) ^ 				\
165	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
166
167#define SYNCACHE_HASH6(inc, mask) 					\
168	((tcp_syncache.hash_secret ^					\
169	  (inc)->inc6_faddr.s6_addr32[0] ^ 				\
170	  (inc)->inc6_faddr.s6_addr32[3] ^ 				\
171	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
172
173#define ENDPTS_EQ(a, b) (						\
174	(a)->ie_fport == (b)->ie_fport &&				\
175	(a)->ie_lport == (b)->ie_lport &&				\
176	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
177	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
178)
179
180#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
181
182#define SYNCACHE_TIMEOUT(sc, slot) do {				\
183	sc->sc_rxtslot = (slot);					\
184	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[(slot)];	\
185	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[(slot)], sc, sc_timerq);	\
186	if (!callout_active(&tcp_syncache.tt_timerq[(slot)]))		\
187		callout_reset(&tcp_syncache.tt_timerq[(slot)],		\
188		    TCPTV_RTOBASE * tcp_backoff[(slot)],		\
189		    syncache_timer, (void *)((intptr_t)(slot)));	\
190} while (0)
191
192static void
193syncache_free(struct syncache *sc)
194{
195	struct rtentry *rt;
196
197	if (sc->sc_ipopts)
198		(void) m_free(sc->sc_ipopts);
199#ifdef INET6
200	if (sc->sc_inc.inc_isipv6)
201		rt = sc->sc_route6.ro_rt;
202	else
203#endif
204		rt = sc->sc_route.ro_rt;
205	if (rt != NULL) {
206		/*
207		 * If this is the only reference to a protocol cloned
208		 * route, remove it immediately.
209		 */
210		if (rt->rt_flags & RTF_WASCLONED &&
211		    (sc->sc_flags & SCF_KEEPROUTE) == 0 &&
212		    rt->rt_refcnt == 1)
213			rtrequest(RTM_DELETE, rt_key(rt),
214			    rt->rt_gateway, rt_mask(rt),
215			    rt->rt_flags, NULL);
216		RTFREE(rt);
217	}
218	uma_zfree(tcp_syncache.zone, sc);
219}
220
221void
222syncache_init(void)
223{
224	int i;
225
226	tcp_syncache.cache_count = 0;
227	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
228	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
229	tcp_syncache.cache_limit =
230	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
231	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
232	tcp_syncache.next_reseed = 0;
233	tcp_syncache.hash_secret = arc4random();
234
235        TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
236	    &tcp_syncache.hashsize);
237        TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
238	    &tcp_syncache.cache_limit);
239        TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
240	    &tcp_syncache.bucket_limit);
241	if (!powerof2(tcp_syncache.hashsize)) {
242                printf("WARNING: syncache hash size is not a power of 2.\n");
243		tcp_syncache.hashsize = 512;	/* safe default */
244        }
245	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
246
247	/* Allocate the hash table. */
248	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
249	    tcp_syncache.hashsize * sizeof(struct syncache_head),
250	    M_SYNCACHE, M_WAITOK);
251
252	/* Initialize the hash buckets. */
253	for (i = 0; i < tcp_syncache.hashsize; i++) {
254		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
255		tcp_syncache.hashbase[i].sch_length = 0;
256	}
257
258	/* Initialize the timer queues. */
259	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
260		TAILQ_INIT(&tcp_syncache.timerq[i]);
261		callout_init(&tcp_syncache.tt_timerq[i], 0);
262	}
263
264	/*
265	 * Allocate the syncache entries.  Allow the zone to allocate one
266	 * more entry than cache limit, so a new entry can bump out an
267	 * older one.
268	 */
269	tcp_syncache.cache_limit -= 1;
270	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
271	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
272	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
273}
274
275static void
276syncache_insert(sc, sch)
277	struct syncache *sc;
278	struct syncache_head *sch;
279{
280	struct syncache *sc2;
281	int s, i;
282
283	/*
284	 * Make sure that we don't overflow the per-bucket
285	 * limit or the total cache size limit.
286	 */
287	s = splnet();
288	if (sch->sch_length >= tcp_syncache.bucket_limit) {
289		/*
290		 * The bucket is full, toss the oldest element.
291		 */
292		sc2 = TAILQ_FIRST(&sch->sch_bucket);
293		sc2->sc_tp->ts_recent = ticks;
294		syncache_drop(sc2, sch);
295		tcpstat.tcps_sc_bucketoverflow++;
296	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
297		/*
298		 * The cache is full.  Toss the oldest entry in the
299		 * entire cache.  This is the front entry in the
300		 * first non-empty timer queue with the largest
301		 * timeout value.
302		 */
303		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
304			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
305			if (sc2 != NULL)
306				break;
307		}
308		sc2->sc_tp->ts_recent = ticks;
309		syncache_drop(sc2, NULL);
310		tcpstat.tcps_sc_cacheoverflow++;
311	}
312
313	/* Initialize the entry's timer. */
314	SYNCACHE_TIMEOUT(sc, 0);
315
316	/* Put it into the bucket. */
317	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
318	sch->sch_length++;
319	tcp_syncache.cache_count++;
320	tcpstat.tcps_sc_added++;
321	splx(s);
322}
323
324static void
325syncache_drop(sc, sch)
326	struct syncache *sc;
327	struct syncache_head *sch;
328{
329	int s;
330
331	if (sch == NULL) {
332#ifdef INET6
333		if (sc->sc_inc.inc_isipv6) {
334			sch = &tcp_syncache.hashbase[
335			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
336		} else
337#endif
338		{
339			sch = &tcp_syncache.hashbase[
340			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
341		}
342	}
343
344	s = splnet();
345
346	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
347	sch->sch_length--;
348	tcp_syncache.cache_count--;
349
350	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
351	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
352		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
353	splx(s);
354
355	syncache_free(sc);
356}
357
358/*
359 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
360 * If we have retransmitted an entry the maximum number of times, expire it.
361 */
362static void
363syncache_timer(xslot)
364	void *xslot;
365{
366	intptr_t slot = (intptr_t)xslot;
367	struct syncache *sc, *nsc;
368	struct inpcb *inp;
369	int s;
370
371	s = splnet();
372        if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
373            !callout_active(&tcp_syncache.tt_timerq[slot])) {
374                splx(s);
375                return;
376        }
377        callout_deactivate(&tcp_syncache.tt_timerq[slot]);
378
379        nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
380	INP_INFO_RLOCK(&tcbinfo);
381	while (nsc != NULL) {
382		if (ticks < nsc->sc_rxttime)
383			break;
384		sc = nsc;
385		inp = sc->sc_tp->t_inpcb;
386		INP_LOCK(inp);
387		if (slot == SYNCACHE_MAXREXMTS ||
388		    slot >= tcp_syncache.rexmt_limit ||
389		    inp->inp_gencnt != sc->sc_inp_gencnt) {
390			nsc = TAILQ_NEXT(sc, sc_timerq);
391			syncache_drop(sc, NULL);
392			tcpstat.tcps_sc_stale++;
393			INP_UNLOCK(inp);
394			continue;
395		}
396		/*
397		 * syncache_respond() may call back into the syncache to
398		 * to modify another entry, so do not obtain the next
399		 * entry on the timer chain until it has completed.
400		 */
401		(void) syncache_respond(sc, NULL);
402		INP_UNLOCK(inp);
403		nsc = TAILQ_NEXT(sc, sc_timerq);
404		tcpstat.tcps_sc_retransmitted++;
405		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
406		SYNCACHE_TIMEOUT(sc, slot + 1);
407	}
408	INP_INFO_RUNLOCK(&tcbinfo);
409	if (nsc != NULL)
410		callout_reset(&tcp_syncache.tt_timerq[slot],
411		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
412	splx(s);
413}
414
415/*
416 * Find an entry in the syncache.
417 */
418struct syncache *
419syncache_lookup(inc, schp)
420	struct in_conninfo *inc;
421	struct syncache_head **schp;
422{
423	struct syncache *sc;
424	struct syncache_head *sch;
425	int s;
426
427#ifdef INET6
428	if (inc->inc_isipv6) {
429		sch = &tcp_syncache.hashbase[
430		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
431		*schp = sch;
432		s = splnet();
433		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
434			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
435				splx(s);
436				return (sc);
437			}
438		}
439		splx(s);
440	} else
441#endif
442	{
443		sch = &tcp_syncache.hashbase[
444		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
445		*schp = sch;
446		s = splnet();
447		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
448#ifdef INET6
449			if (sc->sc_inc.inc_isipv6)
450				continue;
451#endif
452			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
453				splx(s);
454				return (sc);
455			}
456		}
457		splx(s);
458	}
459	return (NULL);
460}
461
462/*
463 * This function is called when we get a RST for a
464 * non-existent connection, so that we can see if the
465 * connection is in the syn cache.  If it is, zap it.
466 */
467void
468syncache_chkrst(inc, th)
469	struct in_conninfo *inc;
470	struct tcphdr *th;
471{
472	struct syncache *sc;
473	struct syncache_head *sch;
474
475	sc = syncache_lookup(inc, &sch);
476	if (sc == NULL)
477		return;
478	/*
479	 * If the RST bit is set, check the sequence number to see
480	 * if this is a valid reset segment.
481	 * RFC 793 page 37:
482	 *   In all states except SYN-SENT, all reset (RST) segments
483	 *   are validated by checking their SEQ-fields.  A reset is
484	 *   valid if its sequence number is in the window.
485	 *
486	 *   The sequence number in the reset segment is normally an
487	 *   echo of our outgoing acknowlegement numbers, but some hosts
488	 *   send a reset with the sequence number at the rightmost edge
489	 *   of our receive window, and we have to handle this case.
490	 */
491	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
492	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
493		syncache_drop(sc, sch);
494		tcpstat.tcps_sc_reset++;
495	}
496}
497
498void
499syncache_badack(inc)
500	struct in_conninfo *inc;
501{
502	struct syncache *sc;
503	struct syncache_head *sch;
504
505	sc = syncache_lookup(inc, &sch);
506	if (sc != NULL) {
507		syncache_drop(sc, sch);
508		tcpstat.tcps_sc_badack++;
509	}
510}
511
512void
513syncache_unreach(inc, th)
514	struct in_conninfo *inc;
515	struct tcphdr *th;
516{
517	struct syncache *sc;
518	struct syncache_head *sch;
519
520	/* we are called at splnet() here */
521	sc = syncache_lookup(inc, &sch);
522	if (sc == NULL)
523		return;
524
525	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
526	if (ntohl(th->th_seq) != sc->sc_iss)
527		return;
528
529	/*
530	 * If we've rertransmitted 3 times and this is our second error,
531	 * we remove the entry.  Otherwise, we allow it to continue on.
532	 * This prevents us from incorrectly nuking an entry during a
533	 * spurious network outage.
534	 *
535	 * See tcp_notify().
536	 */
537	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
538		sc->sc_flags |= SCF_UNREACH;
539		return;
540	}
541	syncache_drop(sc, sch);
542	tcpstat.tcps_sc_unreach++;
543}
544
545/*
546 * Build a new TCP socket structure from a syncache entry.
547 */
548static struct socket *
549syncache_socket(sc, lso, m)
550	struct syncache *sc;
551	struct socket *lso;
552	struct mbuf *m;
553{
554	struct inpcb *inp = NULL;
555	struct socket *so;
556	struct tcpcb *tp;
557
558	/*
559	 * Ok, create the full blown connection, and set things up
560	 * as they would have been set up if we had created the
561	 * connection when the SYN arrived.  If we can't create
562	 * the connection, abort it.
563	 */
564	so = sonewconn(lso, SS_ISCONNECTED);
565	if (so == NULL) {
566		/*
567		 * Drop the connection; we will send a RST if the peer
568		 * retransmits the ACK,
569		 */
570		tcpstat.tcps_listendrop++;
571		goto abort;
572	}
573#ifdef MAC
574	mac_set_socket_peer_from_mbuf(m, so);
575#endif
576
577	inp = sotoinpcb(so);
578
579	/*
580	 * Insert new socket into hash list.
581	 */
582	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
583#ifdef INET6
584	if (sc->sc_inc.inc_isipv6) {
585		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
586	} else {
587		inp->inp_vflag &= ~INP_IPV6;
588		inp->inp_vflag |= INP_IPV4;
589#endif
590		inp->inp_laddr = sc->sc_inc.inc_laddr;
591#ifdef INET6
592	}
593#endif
594	inp->inp_lport = sc->sc_inc.inc_lport;
595	if (in_pcbinshash(inp) != 0) {
596		/*
597		 * Undo the assignments above if we failed to
598		 * put the PCB on the hash lists.
599		 */
600#ifdef INET6
601		if (sc->sc_inc.inc_isipv6)
602			inp->in6p_laddr = in6addr_any;
603       		else
604#endif
605			inp->inp_laddr.s_addr = INADDR_ANY;
606		inp->inp_lport = 0;
607		goto abort;
608	}
609#ifdef IPSEC
610	/* copy old policy into new socket's */
611	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
612		printf("syncache_expand: could not copy policy\n");
613#endif
614#ifdef INET6
615	if (sc->sc_inc.inc_isipv6) {
616		struct inpcb *oinp = sotoinpcb(lso);
617		struct in6_addr laddr6;
618		struct sockaddr_in6 *sin6;
619		/*
620		 * Inherit socket options from the listening socket.
621		 * Note that in6p_inputopts are not (and should not be)
622		 * copied, since it stores previously received options and is
623		 * used to detect if each new option is different than the
624		 * previous one and hence should be passed to a user.
625                 * If we copied in6p_inputopts, a user would not be able to
626		 * receive options just after calling the accept system call.
627		 */
628		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
629		if (oinp->in6p_outputopts)
630			inp->in6p_outputopts =
631			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
632		inp->in6p_route = sc->sc_route6;
633		sc->sc_route6.ro_rt = NULL;
634
635		MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
636		    M_SONAME, M_NOWAIT | M_ZERO);
637		if (sin6 == NULL)
638			goto abort;
639		sin6->sin6_family = AF_INET6;
640		sin6->sin6_len = sizeof(*sin6);
641		sin6->sin6_addr = sc->sc_inc.inc6_faddr;
642		sin6->sin6_port = sc->sc_inc.inc_fport;
643		laddr6 = inp->in6p_laddr;
644		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
645			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
646		if (in6_pcbconnect(inp, (struct sockaddr *)sin6, &thread0)) {
647			inp->in6p_laddr = laddr6;
648			FREE(sin6, M_SONAME);
649			goto abort;
650		}
651		FREE(sin6, M_SONAME);
652	} else
653#endif
654	{
655		struct in_addr laddr;
656		struct sockaddr_in *sin;
657
658		inp->inp_options = ip_srcroute();
659		if (inp->inp_options == NULL) {
660			inp->inp_options = sc->sc_ipopts;
661			sc->sc_ipopts = NULL;
662		}
663		inp->inp_route = sc->sc_route;
664		sc->sc_route.ro_rt = NULL;
665
666		MALLOC(sin, struct sockaddr_in *, sizeof *sin,
667		    M_SONAME, M_NOWAIT | M_ZERO);
668		if (sin == NULL)
669			goto abort;
670		sin->sin_family = AF_INET;
671		sin->sin_len = sizeof(*sin);
672		sin->sin_addr = sc->sc_inc.inc_faddr;
673		sin->sin_port = sc->sc_inc.inc_fport;
674		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
675		laddr = inp->inp_laddr;
676		if (inp->inp_laddr.s_addr == INADDR_ANY)
677			inp->inp_laddr = sc->sc_inc.inc_laddr;
678		if (in_pcbconnect(inp, (struct sockaddr *)sin, &thread0)) {
679			inp->inp_laddr = laddr;
680			FREE(sin, M_SONAME);
681			goto abort;
682		}
683		FREE(sin, M_SONAME);
684	}
685
686	tp = intotcpcb(inp);
687	tp->t_state = TCPS_SYN_RECEIVED;
688	tp->iss = sc->sc_iss;
689	tp->irs = sc->sc_irs;
690	tcp_rcvseqinit(tp);
691	tcp_sendseqinit(tp);
692	tp->snd_wl1 = sc->sc_irs;
693	tp->rcv_up = sc->sc_irs + 1;
694	tp->rcv_wnd = sc->sc_wnd;
695	tp->rcv_adv += tp->rcv_wnd;
696
697	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
698	if (sc->sc_flags & SCF_NOOPT)
699		tp->t_flags |= TF_NOOPT;
700	if (sc->sc_flags & SCF_WINSCALE) {
701		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
702		tp->requested_s_scale = sc->sc_requested_s_scale;
703		tp->request_r_scale = sc->sc_request_r_scale;
704	}
705	if (sc->sc_flags & SCF_TIMESTAMP) {
706		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
707		tp->ts_recent = sc->sc_tsrecent;
708		tp->ts_recent_age = ticks;
709	}
710	if (sc->sc_flags & SCF_CC) {
711		/*
712		 * Initialization of the tcpcb for transaction;
713		 *   set SND.WND = SEG.WND,
714		 *   initialize CCsend and CCrecv.
715		 */
716		tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
717		tp->cc_send = sc->sc_cc_send;
718		tp->cc_recv = sc->sc_cc_recv;
719	}
720
721	tcp_mss(tp, sc->sc_peer_mss);
722
723	/*
724	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
725	 */
726	if (sc->sc_rxtslot != 0)
727                tp->snd_cwnd = tp->t_maxseg;
728	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
729
730	tcpstat.tcps_accepts++;
731	return (so);
732
733abort:
734	if (so != NULL)
735		(void) soabort(so);
736	return (NULL);
737}
738
739/*
740 * This function gets called when we receive an ACK for a
741 * socket in the LISTEN state.  We look up the connection
742 * in the syncache, and if its there, we pull it out of
743 * the cache and turn it into a full-blown connection in
744 * the SYN-RECEIVED state.
745 */
746int
747syncache_expand(inc, th, sop, m)
748	struct in_conninfo *inc;
749	struct tcphdr *th;
750	struct socket **sop;
751	struct mbuf *m;
752{
753	struct syncache *sc;
754	struct syncache_head *sch;
755	struct socket *so;
756
757	sc = syncache_lookup(inc, &sch);
758	if (sc == NULL) {
759		/*
760		 * There is no syncache entry, so see if this ACK is
761		 * a returning syncookie.  To do this, first:
762		 *  A. See if this socket has had a syncache entry dropped in
763		 *     the past.  We don't want to accept a bogus syncookie
764 		 *     if we've never received a SYN.
765		 *  B. check that the syncookie is valid.  If it is, then
766		 *     cobble up a fake syncache entry, and return.
767		 */
768		if (!tcp_syncookies)
769			return (0);
770		sc = syncookie_lookup(inc, th, *sop);
771		if (sc == NULL)
772			return (0);
773		sch = NULL;
774		tcpstat.tcps_sc_recvcookie++;
775	}
776
777	/*
778	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
779	 */
780	if (th->th_ack != sc->sc_iss + 1)
781		return (0);
782
783	so = syncache_socket(sc, *sop, m);
784	if (so == NULL) {
785#if 0
786resetandabort:
787		/* XXXjlemon check this - is this correct? */
788		(void) tcp_respond(NULL, m, m, th,
789		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
790#endif
791		m_freem(m);			/* XXX only needed for above */
792		tcpstat.tcps_sc_aborted++;
793	} else {
794		sc->sc_flags |= SCF_KEEPROUTE;
795		tcpstat.tcps_sc_completed++;
796	}
797	if (sch == NULL)
798		syncache_free(sc);
799	else
800		syncache_drop(sc, sch);
801	*sop = so;
802	return (1);
803}
804
805/*
806 * Given a LISTEN socket and an inbound SYN request, add
807 * this to the syn cache, and send back a segment:
808 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
809 * to the source.
810 *
811 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
812 * Doing so would require that we hold onto the data and deliver it
813 * to the application.  However, if we are the target of a SYN-flood
814 * DoS attack, an attacker could send data which would eventually
815 * consume all available buffer space if it were ACKed.  By not ACKing
816 * the data, we avoid this DoS scenario.
817 */
818int
819syncache_add(inc, to, th, sop, m)
820	struct in_conninfo *inc;
821	struct tcpopt *to;
822	struct tcphdr *th;
823	struct socket **sop;
824	struct mbuf *m;
825{
826	struct tcpcb *tp;
827	struct socket *so;
828	struct syncache *sc = NULL;
829	struct syncache_head *sch;
830	struct mbuf *ipopts = NULL;
831	struct rmxp_tao *taop;
832	int i, s, win;
833
834	so = *sop;
835	tp = sototcpcb(so);
836
837	/*
838	 * Remember the IP options, if any.
839	 */
840#ifdef INET6
841	if (!inc->inc_isipv6)
842#endif
843		ipopts = ip_srcroute();
844
845	/*
846	 * See if we already have an entry for this connection.
847	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
848	 *
849	 * XXX
850	 * should the syncache be re-initialized with the contents
851	 * of the new SYN here (which may have different options?)
852	 */
853	sc = syncache_lookup(inc, &sch);
854	if (sc != NULL) {
855		tcpstat.tcps_sc_dupsyn++;
856		if (ipopts) {
857			/*
858			 * If we were remembering a previous source route,
859			 * forget it and use the new one we've been given.
860			 */
861			if (sc->sc_ipopts)
862				(void) m_free(sc->sc_ipopts);
863			sc->sc_ipopts = ipopts;
864		}
865		/*
866		 * Update timestamp if present.
867		 */
868		if (sc->sc_flags & SCF_TIMESTAMP)
869			sc->sc_tsrecent = to->to_tsval;
870		/*
871		 * PCB may have changed, pick up new values.
872		 */
873		sc->sc_tp = tp;
874		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
875		if (syncache_respond(sc, m) == 0) {
876		        s = splnet();
877			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
878			    sc, sc_timerq);
879			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
880		        splx(s);
881		 	tcpstat.tcps_sndacks++;
882			tcpstat.tcps_sndtotal++;
883		}
884		*sop = NULL;
885		return (1);
886	}
887
888	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
889	if (sc == NULL) {
890		/*
891		 * The zone allocator couldn't provide more entries.
892		 * Treat this as if the cache was full; drop the oldest
893		 * entry and insert the new one.
894		 */
895		s = splnet();
896		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
897			sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
898			if (sc != NULL)
899				break;
900		}
901		sc->sc_tp->ts_recent = ticks;
902		syncache_drop(sc, NULL);
903		splx(s);
904		tcpstat.tcps_sc_zonefail++;
905		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
906		if (sc == NULL) {
907			if (ipopts)
908				(void) m_free(ipopts);
909			return (0);
910		}
911	}
912
913	/*
914	 * Fill in the syncache values.
915	 */
916	bzero(sc, sizeof(*sc));
917	sc->sc_tp = tp;
918	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
919	sc->sc_ipopts = ipopts;
920	sc->sc_inc.inc_fport = inc->inc_fport;
921	sc->sc_inc.inc_lport = inc->inc_lport;
922#ifdef INET6
923	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
924	if (inc->inc_isipv6) {
925		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
926		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
927		sc->sc_route6.ro_rt = NULL;
928	} else
929#endif
930	{
931		sc->sc_inc.inc_faddr = inc->inc_faddr;
932		sc->sc_inc.inc_laddr = inc->inc_laddr;
933		sc->sc_route.ro_rt = NULL;
934	}
935	sc->sc_irs = th->th_seq;
936	if (tcp_syncookies)
937		sc->sc_iss = syncookie_generate(sc);
938	else
939		sc->sc_iss = arc4random();
940
941	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
942	win = sbspace(&so->so_rcv);
943	win = imax(win, 0);
944	win = imin(win, TCP_MAXWIN);
945	sc->sc_wnd = win;
946
947	sc->sc_flags = 0;
948	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
949	if (tcp_do_rfc1323) {
950		/*
951		 * A timestamp received in a SYN makes
952		 * it ok to send timestamp requests and replies.
953		 */
954		if (to->to_flags & TOF_TS) {
955			sc->sc_tsrecent = to->to_tsval;
956			sc->sc_flags |= SCF_TIMESTAMP;
957		}
958		if (to->to_flags & TOF_SCALE) {
959			int wscale = 0;
960
961			/* Compute proper scaling value from buffer space */
962			while (wscale < TCP_MAX_WINSHIFT &&
963			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
964				wscale++;
965			sc->sc_request_r_scale = wscale;
966			sc->sc_requested_s_scale = to->to_requested_s_scale;
967			sc->sc_flags |= SCF_WINSCALE;
968		}
969	}
970	if (tcp_do_rfc1644) {
971		/*
972		 * A CC or CC.new option received in a SYN makes
973		 * it ok to send CC in subsequent segments.
974		 */
975		if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
976			sc->sc_cc_recv = to->to_cc;
977			sc->sc_cc_send = CC_INC(tcp_ccgen);
978			sc->sc_flags |= SCF_CC;
979		}
980	}
981	if (tp->t_flags & TF_NOOPT)
982		sc->sc_flags = SCF_NOOPT;
983
984	/*
985	 * XXX
986	 * We have the option here of not doing TAO (even if the segment
987	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
988	 * This allows us to apply synflood protection to TAO-qualifying SYNs
989	 * also. However, there should be a hueristic to determine when to
990	 * do this, and is not present at the moment.
991	 */
992
993	/*
994	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
995	 * - compare SEG.CC against cached CC from the same host, if any.
996	 * - if SEG.CC > chached value, SYN must be new and is accepted
997	 *	immediately: save new CC in the cache, mark the socket
998	 *	connected, enter ESTABLISHED state, turn on flag to
999	 *	send a SYN in the next segment.
1000	 *	A virtual advertised window is set in rcv_adv to
1001	 *	initialize SWS prevention.  Then enter normal segment
1002	 *	processing: drop SYN, process data and FIN.
1003	 * - otherwise do a normal 3-way handshake.
1004	 */
1005	taop = tcp_gettaocache(&sc->sc_inc);
1006	if ((to->to_flags & TOF_CC) != 0) {
1007		if (((tp->t_flags & TF_NOPUSH) != 0) &&
1008		    sc->sc_flags & SCF_CC &&
1009		    taop != NULL && taop->tao_cc != 0 &&
1010		    CC_GT(to->to_cc, taop->tao_cc)) {
1011			sc->sc_rxtslot = 0;
1012			so = syncache_socket(sc, *sop, m);
1013			if (so != NULL) {
1014				sc->sc_flags |= SCF_KEEPROUTE;
1015				taop->tao_cc = to->to_cc;
1016				*sop = so;
1017			}
1018			syncache_free(sc);
1019			return (so != NULL);
1020		}
1021	} else {
1022		/*
1023		 * No CC option, but maybe CC.NEW: invalidate cached value.
1024		 */
1025		if (taop != NULL)
1026			taop->tao_cc = 0;
1027	}
1028	/*
1029	 * TAO test failed or there was no CC option,
1030	 *    do a standard 3-way handshake.
1031	 */
1032	if (syncache_respond(sc, m) == 0) {
1033		syncache_insert(sc, sch);
1034		tcpstat.tcps_sndacks++;
1035		tcpstat.tcps_sndtotal++;
1036	} else {
1037		syncache_free(sc);
1038		tcpstat.tcps_sc_dropped++;
1039	}
1040	*sop = NULL;
1041	return (1);
1042}
1043
1044static int
1045syncache_respond(sc, m)
1046	struct syncache *sc;
1047	struct mbuf *m;
1048{
1049	u_int8_t *optp;
1050	int optlen, error;
1051	u_int16_t tlen, hlen, mssopt;
1052	struct ip *ip = NULL;
1053	struct rtentry *rt;
1054	struct tcphdr *th;
1055#ifdef INET6
1056	struct ip6_hdr *ip6 = NULL;
1057#endif
1058
1059#ifdef INET6
1060	if (sc->sc_inc.inc_isipv6) {
1061		rt = tcp_rtlookup6(&sc->sc_inc);
1062		if (rt != NULL)
1063			mssopt = rt->rt_ifp->if_mtu -
1064			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1065		else
1066			mssopt = tcp_v6mssdflt;
1067		hlen = sizeof(struct ip6_hdr);
1068	} else
1069#endif
1070	{
1071		rt = tcp_rtlookup(&sc->sc_inc);
1072		if (rt != NULL)
1073			mssopt = rt->rt_ifp->if_mtu -
1074			     (sizeof(struct ip) + sizeof(struct tcphdr));
1075		else
1076			mssopt = tcp_mssdflt;
1077		hlen = sizeof(struct ip);
1078	}
1079
1080	/* Compute the size of the TCP options. */
1081	if (sc->sc_flags & SCF_NOOPT) {
1082		optlen = 0;
1083	} else {
1084		optlen = TCPOLEN_MAXSEG +
1085		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1086		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1087		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1088	}
1089	tlen = hlen + sizeof(struct tcphdr) + optlen;
1090
1091	/*
1092	 * XXX
1093	 * assume that the entire packet will fit in a header mbuf
1094	 */
1095	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1096
1097	/*
1098	 * XXX shouldn't this reuse the mbuf if possible ?
1099	 * Create the IP+TCP header from scratch.
1100	 */
1101	if (m)
1102		m_freem(m);
1103
1104	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1105	if (m == NULL)
1106		return (ENOBUFS);
1107	m->m_data += max_linkhdr;
1108	m->m_len = tlen;
1109	m->m_pkthdr.len = tlen;
1110	m->m_pkthdr.rcvif = NULL;
1111#ifdef MAC
1112	mac_create_mbuf_from_socket(sc->sc_tp->t_inpcb->inp_socket, m);
1113#endif
1114
1115#ifdef INET6
1116	if (sc->sc_inc.inc_isipv6) {
1117		ip6 = mtod(m, struct ip6_hdr *);
1118		ip6->ip6_vfc = IPV6_VERSION;
1119		ip6->ip6_nxt = IPPROTO_TCP;
1120		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1121		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1122		ip6->ip6_plen = htons(tlen - hlen);
1123		/* ip6_hlim is set after checksum */
1124		/* ip6_flow = ??? */
1125
1126		th = (struct tcphdr *)(ip6 + 1);
1127	} else
1128#endif
1129	{
1130		ip = mtod(m, struct ip *);
1131		ip->ip_v = IPVERSION;
1132		ip->ip_hl = sizeof(struct ip) >> 2;
1133		ip->ip_len = tlen;
1134		ip->ip_id = 0;
1135		ip->ip_off = 0;
1136		ip->ip_sum = 0;
1137		ip->ip_p = IPPROTO_TCP;
1138		ip->ip_src = sc->sc_inc.inc_laddr;
1139		ip->ip_dst = sc->sc_inc.inc_faddr;
1140		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1141		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1142
1143		/*
1144		 * See if we should do MTU discovery.  Route lookups are expensive,
1145		 * so we will only unset the DF bit if:
1146		 *
1147		 *	1) path_mtu_discovery is disabled
1148		 *	2) the SCF_UNREACH flag has been set
1149		 */
1150		if (path_mtu_discovery
1151		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1152		       ip->ip_off |= IP_DF;
1153		}
1154
1155		th = (struct tcphdr *)(ip + 1);
1156	}
1157	th->th_sport = sc->sc_inc.inc_lport;
1158	th->th_dport = sc->sc_inc.inc_fport;
1159
1160	th->th_seq = htonl(sc->sc_iss);
1161	th->th_ack = htonl(sc->sc_irs + 1);
1162	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1163	th->th_x2 = 0;
1164	th->th_flags = TH_SYN|TH_ACK;
1165	th->th_win = htons(sc->sc_wnd);
1166	th->th_urp = 0;
1167
1168	/* Tack on the TCP options. */
1169	if (optlen == 0)
1170		goto no_options;
1171	optp = (u_int8_t *)(th + 1);
1172	*optp++ = TCPOPT_MAXSEG;
1173	*optp++ = TCPOLEN_MAXSEG;
1174	*optp++ = (mssopt >> 8) & 0xff;
1175	*optp++ = mssopt & 0xff;
1176
1177	if (sc->sc_flags & SCF_WINSCALE) {
1178		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1179		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1180		    sc->sc_request_r_scale);
1181		optp += 4;
1182	}
1183
1184	if (sc->sc_flags & SCF_TIMESTAMP) {
1185		u_int32_t *lp = (u_int32_t *)(optp);
1186
1187		/* Form timestamp option as shown in appendix A of RFC 1323. */
1188		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1189		*lp++ = htonl(ticks);
1190		*lp   = htonl(sc->sc_tsrecent);
1191		optp += TCPOLEN_TSTAMP_APPA;
1192	}
1193
1194	/*
1195         * Send CC and CC.echo if we received CC from our peer.
1196         */
1197        if (sc->sc_flags & SCF_CC) {
1198		u_int32_t *lp = (u_int32_t *)(optp);
1199
1200		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1201		*lp++ = htonl(sc->sc_cc_send);
1202		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1203		*lp   = htonl(sc->sc_cc_recv);
1204		optp += TCPOLEN_CC_APPA * 2;
1205	}
1206no_options:
1207
1208#ifdef INET6
1209	if (sc->sc_inc.inc_isipv6) {
1210		struct route_in6 *ro6 = &sc->sc_route6;
1211
1212		th->th_sum = 0;
1213		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1214		ip6->ip6_hlim = in6_selecthlim(NULL,
1215		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1216		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1217				sc->sc_tp->t_inpcb);
1218	} else
1219#endif
1220	{
1221        	th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1222		    htons(tlen - hlen + IPPROTO_TCP));
1223		m->m_pkthdr.csum_flags = CSUM_TCP;
1224		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1225		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1226				sc->sc_tp->t_inpcb);
1227	}
1228	return (error);
1229}
1230
1231/*
1232 * cookie layers:
1233 *
1234 *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1235 *	| peer iss                                                      |
1236 *	| MD5(laddr,faddr,lport,fport,secret)             |. . . . . . .|
1237 *	|                     0                       |(A)|             |
1238 * (A): peer mss index
1239 */
1240
1241/*
1242 * The values below are chosen to minimize the size of the tcp_secret
1243 * table, as well as providing roughly a 4 second lifetime for the cookie.
1244 */
1245
1246#define SYNCOOKIE_HASHSHIFT	2	/* log2(# of 32bit words from hash) */
1247#define SYNCOOKIE_WNDBITS	7	/* exposed bits for window indexing */
1248#define SYNCOOKIE_TIMESHIFT	5	/* scale ticks to window time units */
1249
1250#define SYNCOOKIE_HASHMASK	((1 << SYNCOOKIE_HASHSHIFT) - 1)
1251#define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1252#define SYNCOOKIE_NSECRETS	(1 << (SYNCOOKIE_WNDBITS - SYNCOOKIE_HASHSHIFT))
1253#define SYNCOOKIE_TIMEOUT \
1254    (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1255#define SYNCOOKIE_DATAMASK 	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1256
1257static struct {
1258	u_int32_t	ts_secbits;
1259	u_int		ts_expire;
1260} tcp_secret[SYNCOOKIE_NSECRETS];
1261
1262static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1263
1264static MD5_CTX syn_ctx;
1265
1266#define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1267
1268/*
1269 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1270 * original SYN was accepted, the connection is established.  The second
1271 * SYN is inflight, and if it arrives with an ISN that falls within the
1272 * receive window, the connection is killed.
1273 *
1274 * However, since cookies have other problems, this may not be worth
1275 * worrying about.
1276 */
1277
1278static u_int32_t
1279syncookie_generate(struct syncache *sc)
1280{
1281	u_int32_t md5_buffer[4];
1282	u_int32_t data;
1283	int wnd, idx;
1284
1285	wnd = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1286	idx = wnd >> SYNCOOKIE_HASHSHIFT;
1287	if (tcp_secret[idx].ts_expire < ticks) {
1288		tcp_secret[idx].ts_secbits = arc4random();
1289		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1290	}
1291	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1292		if (tcp_msstab[data] <= sc->sc_peer_mss)
1293			break;
1294	data = (data << SYNCOOKIE_WNDBITS) | wnd;
1295	data ^= sc->sc_irs;				/* peer's iss */
1296	MD5Init(&syn_ctx);
1297#ifdef INET6
1298	if (sc->sc_inc.inc_isipv6) {
1299		MD5Add(sc->sc_inc.inc6_laddr);
1300		MD5Add(sc->sc_inc.inc6_faddr);
1301	} else
1302#endif
1303	{
1304		MD5Add(sc->sc_inc.inc_laddr);
1305		MD5Add(sc->sc_inc.inc_faddr);
1306	}
1307	MD5Add(sc->sc_inc.inc_lport);
1308	MD5Add(sc->sc_inc.inc_fport);
1309	MD5Add(tcp_secret[idx].ts_secbits);
1310	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1311	data ^= (md5_buffer[wnd & SYNCOOKIE_HASHMASK] & ~SYNCOOKIE_WNDMASK);
1312	return (data);
1313}
1314
1315static struct syncache *
1316syncookie_lookup(inc, th, so)
1317	struct in_conninfo *inc;
1318	struct tcphdr *th;
1319	struct socket *so;
1320{
1321	u_int32_t md5_buffer[4];
1322	struct syncache *sc;
1323	u_int32_t data;
1324	int wnd, idx;
1325
1326	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1327	wnd = data & SYNCOOKIE_WNDMASK;
1328	idx = wnd >> SYNCOOKIE_HASHSHIFT;
1329	if (tcp_secret[idx].ts_expire < ticks ||
1330	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1331		return (NULL);
1332	MD5Init(&syn_ctx);
1333#ifdef INET6
1334	if (inc->inc_isipv6) {
1335		MD5Add(inc->inc6_laddr);
1336		MD5Add(inc->inc6_faddr);
1337	} else
1338#endif
1339	{
1340		MD5Add(inc->inc_laddr);
1341		MD5Add(inc->inc_faddr);
1342	}
1343	MD5Add(inc->inc_lport);
1344	MD5Add(inc->inc_fport);
1345	MD5Add(tcp_secret[idx].ts_secbits);
1346	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1347	data ^= md5_buffer[wnd & SYNCOOKIE_HASHMASK];
1348	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1349		return (NULL);
1350	data = data >> SYNCOOKIE_WNDBITS;
1351
1352	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1353	if (sc == NULL)
1354		return (NULL);
1355	/*
1356	 * Fill in the syncache values.
1357	 * XXX duplicate code from syncache_add
1358	 */
1359	sc->sc_ipopts = NULL;
1360	sc->sc_inc.inc_fport = inc->inc_fport;
1361	sc->sc_inc.inc_lport = inc->inc_lport;
1362#ifdef INET6
1363	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1364	if (inc->inc_isipv6) {
1365		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1366		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1367		sc->sc_route6.ro_rt = NULL;
1368	} else
1369#endif
1370	{
1371		sc->sc_inc.inc_faddr = inc->inc_faddr;
1372		sc->sc_inc.inc_laddr = inc->inc_laddr;
1373		sc->sc_route.ro_rt = NULL;
1374	}
1375	sc->sc_irs = th->th_seq - 1;
1376	sc->sc_iss = th->th_ack - 1;
1377	wnd = sbspace(&so->so_rcv);
1378	wnd = imax(wnd, 0);
1379	wnd = imin(wnd, TCP_MAXWIN);
1380	sc->sc_wnd = wnd;
1381	sc->sc_flags = 0;
1382	sc->sc_rxtslot = 0;
1383	sc->sc_peer_mss = tcp_msstab[data];
1384	return (sc);
1385}
1386