siftr.c revision 220592
1228753Smm/*-
2228753Smm * Copyright (c) 2007-2009
3228753Smm * 	Swinburne University of Technology, Melbourne, Australia.
4228753Smm * Copyright (c) 2009-2010, The FreeBSD Foundation
5228753Smm * All rights reserved.
6228753Smm *
7228753Smm * Portions of this software were developed at the Centre for Advanced
8228753Smm * Internet Architectures, Swinburne University of Technology, Melbourne,
9228753Smm * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
10228753Smm *
11228753Smm * Redistribution and use in source and binary forms, with or without
12228753Smm * modification, are permitted provided that the following conditions
13228753Smm * are met:
14228753Smm * 1. Redistributions of source code must retain the above copyright
15228753Smm *    notice, this list of conditions and the following disclaimer.
16228753Smm * 2. Redistributions in binary form must reproduce the above copyright
17228753Smm *    notice, this list of conditions and the following disclaimer in the
18228753Smm *    documentation and/or other materials provided with the distribution.
19228753Smm *
20228753Smm * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
21228753Smm * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22228753Smm * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23228753Smm * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
24228753Smm * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25228753Smm * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26228763Smm * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27228753Smm * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28228753Smm * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29228753Smm * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30228753Smm * SUCH DAMAGE.
31228753Smm */
32228753Smm
33228753Smm/******************************************************
34228753Smm * Statistical Information For TCP Research (SIFTR)
35228753Smm *
36228753Smm * A FreeBSD kernel module that adds very basic intrumentation to the
37232153Smm * TCP stack, allowing internal stats to be recorded to a log file
38232153Smm * for experimental, debugging and performance analysis purposes.
39232153Smm *
40228753Smm * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
41228753Smm * working on the NewTCP research project at Swinburne University of
42228753Smm * Technology's Centre for Advanced Internet Architectures, Melbourne,
43228753Smm * Australia, which was made possible in part by a grant from the Cisco
44228753Smm * University Research Program Fund at Community Foundation Silicon Valley.
45228753Smm * More details are available at:
46228753Smm *   http://caia.swin.edu.au/urp/newtcp/
47228753Smm *
48228753Smm * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
49228753Smm * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
50228753Smm * More details are available at:
51228753Smm *   http://www.freebsdfoundation.org/
52228753Smm *   http://caia.swin.edu.au/freebsd/etcp09/
53228753Smm *
54228753Smm * Lawrence Stewart is the current maintainer, and all contact regarding
55228753Smm * SIFTR should be directed to him via email: lastewart@swin.edu.au
56228753Smm *
57228753Smm * Initial release date: June 2007
58228753Smm * Most recent update: September 2010
59228753Smm ******************************************************/
60228753Smm
61228753Smm#include <sys/cdefs.h>
62228753Smm__FBSDID("$FreeBSD: head/sys/netinet/siftr.c 220592 2011-04-13 11:28:46Z pluknet $");
63228753Smm
64228753Smm#include <sys/param.h>
65228753Smm#include <sys/alq.h>
66228753Smm#include <sys/errno.h>
67228753Smm#include <sys/hash.h>
68228753Smm#include <sys/kernel.h>
69228753Smm#include <sys/kthread.h>
70228753Smm#include <sys/lock.h>
71228753Smm#include <sys/mbuf.h>
72228753Smm#include <sys/module.h>
73228753Smm#include <sys/mutex.h>
74228753Smm#include <sys/pcpu.h>
75228753Smm#include <sys/proc.h>
76228753Smm#include <sys/sbuf.h>
77228753Smm#include <sys/smp.h>
78228753Smm#include <sys/socket.h>
79228753Smm#include <sys/socketvar.h>
80228753Smm#include <sys/sysctl.h>
81228753Smm#include <sys/unistd.h>
82228753Smm
83228753Smm#include <net/if.h>
84228753Smm#include <net/pfil.h>
85228753Smm
86228753Smm#include <netinet/in.h>
87228753Smm#include <netinet/in_pcb.h>
88228753Smm#include <netinet/in_systm.h>
89228753Smm#include <netinet/in_var.h>
90228753Smm#include <netinet/ip.h>
91228753Smm#include <netinet/tcp_var.h>
92228753Smm
93228753Smm#ifdef SIFTR_IPV6
94228753Smm#include <netinet/ip6.h>
95228753Smm#include <netinet6/in6_pcb.h>
96228753Smm#endif /* SIFTR_IPV6 */
97228753Smm
98228753Smm#include <machine/in_cksum.h>
99228753Smm
100228753Smm/*
101228753Smm * Three digit version number refers to X.Y.Z where:
102228753Smm * X is the major version number
103228753Smm * Y is bumped to mark backwards incompatible changes
104228753Smm * Z is bumped to mark backwards compatible changes
105228753Smm */
106228753Smm#define V_MAJOR		1
107228753Smm#define V_BACKBREAK	2
108228753Smm#define V_BACKCOMPAT	4
109228753Smm#define MODVERSION	__CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
110228753Smm#define MODVERSION_STR	__XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
111228753Smm    __XSTRING(V_BACKCOMPAT)
112228753Smm
113228753Smm#define HOOK 0
114228753Smm#define UNHOOK 1
115228753Smm#define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
116228753Smm#define SYS_NAME "FreeBSD"
117228753Smm#define PACKET_TAG_SIFTR 100
118228753Smm#define PACKET_COOKIE_SIFTR 21749576
119228753Smm#define SIFTR_LOG_FILE_MODE 0644
120228753Smm#define SIFTR_DISABLE 0
121228753Smm#define SIFTR_ENABLE 1
122228753Smm
123228753Smm/*
124228753Smm * Hard upper limit on the length of log messages. Bump this up if you add new
125228753Smm * data fields such that the line length could exceed the below value.
126228753Smm */
127228753Smm#define MAX_LOG_MSG_LEN 200
128228753Smm/* XXX: Make this a sysctl tunable. */
129228753Smm#define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
130228753Smm
131228753Smm/*
132228753Smm * 1 byte for IP version
133228753Smm * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
134228753Smm * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
135228753Smm */
136228753Smm#ifdef SIFTR_IPV6
137228753Smm#define FLOW_KEY_LEN 37
138228753Smm#else
139228753Smm#define FLOW_KEY_LEN 13
140228753Smm#endif
141228753Smm
142228753Smm#ifdef SIFTR_IPV6
143228753Smm#define SIFTR_IPMODE 6
144228753Smm#else
145228753Smm#define SIFTR_IPMODE 4
146228753Smm#endif
147228753Smm
148228753Smm/* useful macros */
149228753Smm#define CAST_PTR_INT(X) (*((int*)(X)))
150228753Smm
151228753Smm#define UPPER_SHORT(X)	(((X) & 0xFFFF0000) >> 16)
152228753Smm#define LOWER_SHORT(X)	((X) & 0x0000FFFF)
153228753Smm
154228753Smm#define FIRST_OCTET(X)	(((X) & 0xFF000000) >> 24)
155228753Smm#define SECOND_OCTET(X)	(((X) & 0x00FF0000) >> 16)
156228753Smm#define THIRD_OCTET(X)	(((X) & 0x0000FF00) >> 8)
157228753Smm#define FOURTH_OCTET(X)	((X) & 0x000000FF)
158228753Smm
159228753Smmstatic MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
160228753Smmstatic MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
161228753Smm    "SIFTR pkt_node struct");
162228753Smmstatic MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
163228753Smm    "SIFTR flow_hash_node struct");
164228753Smm
165228753Smm/* Used as links in the pkt manager queue. */
166228753Smmstruct pkt_node {
167228753Smm	/* Timestamp of pkt as noted in the pfil hook. */
168228753Smm	struct timeval		tval;
169228753Smm	/* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
170228753Smm	uint8_t			direction;
171228753Smm	/* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
172228753Smm	uint8_t			ipver;
173228753Smm	/* Hash of the pkt which triggered the log message. */
174228753Smm	uint32_t		hash;
175228753Smm	/* Local/foreign IP address. */
176228753Smm#ifdef SIFTR_IPV6
177228753Smm	uint32_t		ip_laddr[4];
178228753Smm	uint32_t		ip_faddr[4];
179228753Smm#else
180228753Smm	uint8_t			ip_laddr[4];
181232153Smm	uint8_t			ip_faddr[4];
182228753Smm#endif
183228753Smm	/* Local TCP port. */
184228753Smm	uint16_t		tcp_localport;
185228753Smm	/* Foreign TCP port. */
186228753Smm	uint16_t		tcp_foreignport;
187228753Smm	/* Congestion Window (bytes). */
188228753Smm	u_long			snd_cwnd;
189228753Smm	/* Sending Window (bytes). */
190228753Smm	u_long			snd_wnd;
191228753Smm	/* Receive Window (bytes). */
192228753Smm	u_long			rcv_wnd;
193228753Smm	/* Unused (was: Bandwidth Controlled Window (bytes)). */
194228753Smm	u_long			snd_bwnd;
195228753Smm	/* Slow Start Threshold (bytes). */
196228753Smm	u_long			snd_ssthresh;
197228753Smm	/* Current state of the TCP FSM. */
198228753Smm	int			conn_state;
199228753Smm	/* Max Segment Size (bytes). */
200228753Smm	u_int			max_seg_size;
201228753Smm	/*
202228753Smm	 * Smoothed RTT stored as found in the TCP control block
203228753Smm	 * in units of (TCP_RTT_SCALE*hz).
204228753Smm	 */
205228753Smm	int			smoothed_rtt;
206228753Smm	/* Is SACK enabled? */
207228753Smm	u_char			sack_enabled;
208228753Smm	/* Window scaling for snd window. */
209228753Smm	u_char			snd_scale;
210228753Smm	/* Window scaling for recv window. */
211228753Smm	u_char			rcv_scale;
212228753Smm	/* TCP control block flags. */
213228753Smm	u_int			flags;
214228753Smm	/* Retransmit timeout length. */
215228753Smm	int			rxt_length;
216	/* Size of the TCP send buffer in bytes. */
217	u_int			snd_buf_hiwater;
218	/* Current num bytes in the send socket buffer. */
219	u_int			snd_buf_cc;
220	/* Size of the TCP receive buffer in bytes. */
221	u_int			rcv_buf_hiwater;
222	/* Current num bytes in the receive socket buffer. */
223	u_int			rcv_buf_cc;
224	/* Number of bytes inflight that we are waiting on ACKs for. */
225	u_int			sent_inflight_bytes;
226	/* Number of segments currently in the reassembly queue. */
227	int			t_segqlen;
228	/* Link to next pkt_node in the list. */
229	STAILQ_ENTRY(pkt_node)	nodes;
230};
231
232struct flow_hash_node
233{
234	uint16_t counter;
235	uint8_t key[FLOW_KEY_LEN];
236	LIST_ENTRY(flow_hash_node) nodes;
237};
238
239struct siftr_stats
240{
241	/* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
242	uint64_t n_in;
243	uint64_t n_out;
244	/* # pkts skipped due to failed malloc calls. */
245	uint32_t nskip_in_malloc;
246	uint32_t nskip_out_malloc;
247	/* # pkts skipped due to failed mtx acquisition. */
248	uint32_t nskip_in_mtx;
249	uint32_t nskip_out_mtx;
250	/* # pkts skipped due to failed inpcb lookups. */
251	uint32_t nskip_in_inpcb;
252	uint32_t nskip_out_inpcb;
253	/* # pkts skipped due to failed tcpcb lookups. */
254	uint32_t nskip_in_tcpcb;
255	uint32_t nskip_out_tcpcb;
256	/* # pkts skipped due to stack reinjection. */
257	uint32_t nskip_in_dejavu;
258	uint32_t nskip_out_dejavu;
259};
260
261static DPCPU_DEFINE(struct siftr_stats, ss);
262
263static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
264static unsigned int siftr_enabled = 0;
265static unsigned int siftr_pkts_per_log = 1;
266static unsigned int siftr_generate_hashes = 0;
267/* static unsigned int siftr_binary_log = 0; */
268static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
269static u_long siftr_hashmask;
270STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
271LIST_HEAD(listhead, flow_hash_node) *counter_hash;
272static int wait_for_pkt;
273static struct alq *siftr_alq = NULL;
274static struct mtx siftr_pkt_queue_mtx;
275static struct mtx siftr_pkt_mgr_mtx;
276static struct thread *siftr_pkt_manager_thr = NULL;
277/*
278 * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
279 * which we use as an index into this array.
280 */
281static char direction[3] = {'\0', 'i','o'};
282
283/* Required function prototypes. */
284static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
285static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
286
287
288/* Declare the net.inet.siftr sysctl tree and populate it. */
289
290SYSCTL_DECL(_net_inet_siftr);
291
292SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
293    "siftr related settings");
294
295SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
296    &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
297    "switch siftr module operations on/off");
298
299SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
300    &siftr_logfile, sizeof(siftr_logfile), &siftr_sysctl_logfile_name_handler,
301    "A", "file to save siftr log messages to");
302
303SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
304    &siftr_pkts_per_log, 1,
305    "number of packets between generating a log message");
306
307SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
308    &siftr_generate_hashes, 0,
309    "enable packet hash generation");
310
311/* XXX: TODO
312SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
313    &siftr_binary_log, 0,
314    "write log files in binary instead of ascii");
315*/
316
317
318/* Begin functions. */
319
320static void
321siftr_process_pkt(struct pkt_node * pkt_node)
322{
323	struct flow_hash_node *hash_node;
324	struct listhead *counter_list;
325	struct siftr_stats *ss;
326	struct ale *log_buf;
327	uint8_t key[FLOW_KEY_LEN];
328	uint8_t found_match, key_offset;
329
330	hash_node = NULL;
331	ss = DPCPU_PTR(ss);
332	found_match = 0;
333	key_offset = 1;
334
335	/*
336	 * Create the key that will be used to create a hash index
337	 * into our hash table. Our key consists of:
338	 * ipversion, localip, localport, foreignip, foreignport
339	 */
340	key[0] = pkt_node->ipver;
341	memcpy(key + key_offset, &pkt_node->ip_laddr,
342	    sizeof(pkt_node->ip_laddr));
343	key_offset += sizeof(pkt_node->ip_laddr);
344	memcpy(key + key_offset, &pkt_node->tcp_localport,
345	    sizeof(pkt_node->tcp_localport));
346	key_offset += sizeof(pkt_node->tcp_localport);
347	memcpy(key + key_offset, &pkt_node->ip_faddr,
348	    sizeof(pkt_node->ip_faddr));
349	key_offset += sizeof(pkt_node->ip_faddr);
350	memcpy(key + key_offset, &pkt_node->tcp_foreignport,
351	    sizeof(pkt_node->tcp_foreignport));
352
353	counter_list = counter_hash +
354	    (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
355
356	/*
357	 * If the list is not empty i.e. the hash index has
358	 * been used by another flow previously.
359	 */
360	if (LIST_FIRST(counter_list) != NULL) {
361		/*
362		 * Loop through the hash nodes in the list.
363		 * There should normally only be 1 hash node in the list,
364		 * except if there have been collisions at the hash index
365		 * computed by hash32_buf().
366		 */
367		LIST_FOREACH(hash_node, counter_list, nodes) {
368			/*
369			 * Check if the key for the pkt we are currently
370			 * processing is the same as the key stored in the
371			 * hash node we are currently processing.
372			 * If they are the same, then we've found the
373			 * hash node that stores the counter for the flow
374			 * the pkt belongs to.
375			 */
376			if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
377				found_match = 1;
378				break;
379			}
380		}
381	}
382
383	/* If this flow hash hasn't been seen before or we have a collision. */
384	if (hash_node == NULL || !found_match) {
385		/* Create a new hash node to store the flow's counter. */
386		hash_node = malloc(sizeof(struct flow_hash_node),
387		    M_SIFTR_HASHNODE, M_WAITOK);
388
389		if (hash_node != NULL) {
390			/* Initialise our new hash node list entry. */
391			hash_node->counter = 0;
392			memcpy(hash_node->key, key, sizeof(key));
393			LIST_INSERT_HEAD(counter_list, hash_node, nodes);
394		} else {
395			/* Malloc failed. */
396			if (pkt_node->direction == PFIL_IN)
397				ss->nskip_in_malloc++;
398			else
399				ss->nskip_out_malloc++;
400
401			return;
402		}
403	} else if (siftr_pkts_per_log > 1) {
404		/*
405		 * Taking the remainder of the counter divided
406		 * by the current value of siftr_pkts_per_log
407		 * and storing that in counter provides a neat
408		 * way to modulate the frequency of log
409		 * messages being written to the log file.
410		 */
411		hash_node->counter = (hash_node->counter + 1) %
412		    siftr_pkts_per_log;
413
414		/*
415		 * If we have not seen enough packets since the last time
416		 * we wrote a log message for this connection, return.
417		 */
418		if (hash_node->counter > 0)
419			return;
420	}
421
422	log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
423
424	if (log_buf == NULL)
425		return; /* Should only happen if the ALQ is shutting down. */
426
427#ifdef SIFTR_IPV6
428	pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
429	pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
430
431	if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
432		pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
433		pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
434		pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
435		pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
436		pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
437		pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
438
439		/* Construct an IPv6 log message. */
440		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
441		    MAX_LOG_MSG_LEN,
442		    "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
443		    "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
444		    "%u,%d,%u,%u,%u,%u,%u,%u\n",
445		    direction[pkt_node->direction],
446		    pkt_node->hash,
447		    pkt_node->tval.tv_sec,
448		    pkt_node->tval.tv_usec,
449		    UPPER_SHORT(pkt_node->ip_laddr[0]),
450		    LOWER_SHORT(pkt_node->ip_laddr[0]),
451		    UPPER_SHORT(pkt_node->ip_laddr[1]),
452		    LOWER_SHORT(pkt_node->ip_laddr[1]),
453		    UPPER_SHORT(pkt_node->ip_laddr[2]),
454		    LOWER_SHORT(pkt_node->ip_laddr[2]),
455		    UPPER_SHORT(pkt_node->ip_laddr[3]),
456		    LOWER_SHORT(pkt_node->ip_laddr[3]),
457		    ntohs(pkt_node->tcp_localport),
458		    UPPER_SHORT(pkt_node->ip_faddr[0]),
459		    LOWER_SHORT(pkt_node->ip_faddr[0]),
460		    UPPER_SHORT(pkt_node->ip_faddr[1]),
461		    LOWER_SHORT(pkt_node->ip_faddr[1]),
462		    UPPER_SHORT(pkt_node->ip_faddr[2]),
463		    LOWER_SHORT(pkt_node->ip_faddr[2]),
464		    UPPER_SHORT(pkt_node->ip_faddr[3]),
465		    LOWER_SHORT(pkt_node->ip_faddr[3]),
466		    ntohs(pkt_node->tcp_foreignport),
467		    pkt_node->snd_ssthresh,
468		    pkt_node->snd_cwnd,
469		    pkt_node->snd_bwnd,
470		    pkt_node->snd_wnd,
471		    pkt_node->rcv_wnd,
472		    pkt_node->snd_scale,
473		    pkt_node->rcv_scale,
474		    pkt_node->conn_state,
475		    pkt_node->max_seg_size,
476		    pkt_node->smoothed_rtt,
477		    pkt_node->sack_enabled,
478		    pkt_node->flags,
479		    pkt_node->rxt_length,
480		    pkt_node->snd_buf_hiwater,
481		    pkt_node->snd_buf_cc,
482		    pkt_node->rcv_buf_hiwater,
483		    pkt_node->rcv_buf_cc,
484		    pkt_node->sent_inflight_bytes,
485		    pkt_node->t_segqlen);
486	} else { /* IPv4 packet */
487		pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
488		pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
489		pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
490		pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
491		pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
492		pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
493		pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
494		pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
495#endif /* SIFTR_IPV6 */
496
497		/* Construct an IPv4 log message. */
498		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
499		    MAX_LOG_MSG_LEN,
500		    "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
501		    "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u\n",
502		    direction[pkt_node->direction],
503		    pkt_node->hash,
504		    (intmax_t)pkt_node->tval.tv_sec,
505		    pkt_node->tval.tv_usec,
506		    pkt_node->ip_laddr[0],
507		    pkt_node->ip_laddr[1],
508		    pkt_node->ip_laddr[2],
509		    pkt_node->ip_laddr[3],
510		    ntohs(pkt_node->tcp_localport),
511		    pkt_node->ip_faddr[0],
512		    pkt_node->ip_faddr[1],
513		    pkt_node->ip_faddr[2],
514		    pkt_node->ip_faddr[3],
515		    ntohs(pkt_node->tcp_foreignport),
516		    pkt_node->snd_ssthresh,
517		    pkt_node->snd_cwnd,
518		    pkt_node->snd_bwnd,
519		    pkt_node->snd_wnd,
520		    pkt_node->rcv_wnd,
521		    pkt_node->snd_scale,
522		    pkt_node->rcv_scale,
523		    pkt_node->conn_state,
524		    pkt_node->max_seg_size,
525		    pkt_node->smoothed_rtt,
526		    pkt_node->sack_enabled,
527		    pkt_node->flags,
528		    pkt_node->rxt_length,
529		    pkt_node->snd_buf_hiwater,
530		    pkt_node->snd_buf_cc,
531		    pkt_node->rcv_buf_hiwater,
532		    pkt_node->rcv_buf_cc,
533		    pkt_node->sent_inflight_bytes,
534		    pkt_node->t_segqlen);
535#ifdef SIFTR_IPV6
536	}
537#endif
538
539	alq_post_flags(siftr_alq, log_buf, 0);
540}
541
542
543static void
544siftr_pkt_manager_thread(void *arg)
545{
546	STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
547	    STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
548	struct pkt_node *pkt_node, *pkt_node_temp;
549	uint8_t draining;
550
551	draining = 2;
552
553	mtx_lock(&siftr_pkt_mgr_mtx);
554
555	/* draining == 0 when queue has been flushed and it's safe to exit. */
556	while (draining) {
557		/*
558		 * Sleep until we are signalled to wake because thread has
559		 * been told to exit or until 1 tick has passed.
560		 */
561		mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
562		    1);
563
564		/* Gain exclusive access to the pkt_node queue. */
565		mtx_lock(&siftr_pkt_queue_mtx);
566
567		/*
568		 * Move pkt_queue to tmp_pkt_queue, which leaves
569		 * pkt_queue empty and ready to receive more pkt_nodes.
570		 */
571		STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
572
573		/*
574		 * We've finished making changes to the list. Unlock it
575		 * so the pfil hooks can continue queuing pkt_nodes.
576		 */
577		mtx_unlock(&siftr_pkt_queue_mtx);
578
579		/*
580		 * We can't hold a mutex whilst calling siftr_process_pkt
581		 * because ALQ might sleep waiting for buffer space.
582		 */
583		mtx_unlock(&siftr_pkt_mgr_mtx);
584
585		/* Flush all pkt_nodes to the log file. */
586		STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
587		    pkt_node_temp) {
588			siftr_process_pkt(pkt_node);
589			STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
590			free(pkt_node, M_SIFTR_PKTNODE);
591		}
592
593		KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
594		    ("SIFTR tmp_pkt_queue not empty after flush"));
595
596		mtx_lock(&siftr_pkt_mgr_mtx);
597
598		/*
599		 * If siftr_exit_pkt_manager_thread gets set during the window
600		 * where we are draining the tmp_pkt_queue above, there might
601		 * still be pkts in pkt_queue that need to be drained.
602		 * Allow one further iteration to occur after
603		 * siftr_exit_pkt_manager_thread has been set to ensure
604		 * pkt_queue is completely empty before we kill the thread.
605		 *
606		 * siftr_exit_pkt_manager_thread is set only after the pfil
607		 * hooks have been removed, so only 1 extra iteration
608		 * is needed to drain the queue.
609		 */
610		if (siftr_exit_pkt_manager_thread)
611			draining--;
612	}
613
614	mtx_unlock(&siftr_pkt_mgr_mtx);
615
616	/* Calls wakeup on this thread's struct thread ptr. */
617	kthread_exit();
618}
619
620
621static uint32_t
622hash_pkt(struct mbuf *m, uint32_t offset)
623{
624	uint32_t hash;
625
626	hash = 0;
627
628	while (m != NULL && offset > m->m_len) {
629		/*
630		 * The IP packet payload does not start in this mbuf, so
631		 * need to figure out which mbuf it starts in and what offset
632		 * into the mbuf's data region the payload starts at.
633		 */
634		offset -= m->m_len;
635		m = m->m_next;
636	}
637
638	while (m != NULL) {
639		/* Ensure there is data in the mbuf */
640		if ((m->m_len - offset) > 0)
641			hash = hash32_buf(m->m_data + offset,
642			    m->m_len - offset, hash);
643
644		m = m->m_next;
645		offset = 0;
646        }
647
648	return (hash);
649}
650
651
652/*
653 * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
654 * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
655 * Return value >0 means the caller should skip processing this mbuf.
656 */
657static inline int
658siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
659{
660	if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
661	    != NULL) {
662		if (dir == PFIL_IN)
663			ss->nskip_in_dejavu++;
664		else
665			ss->nskip_out_dejavu++;
666
667		return (1);
668	} else {
669		struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
670		    PACKET_TAG_SIFTR, 0, M_NOWAIT);
671		if (tag == NULL) {
672			if (dir == PFIL_IN)
673				ss->nskip_in_malloc++;
674			else
675				ss->nskip_out_malloc++;
676
677			return (1);
678		}
679
680		m_tag_prepend(m, tag);
681	}
682
683	return (0);
684}
685
686
687/*
688 * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
689 * otherwise.
690 */
691static inline struct inpcb *
692siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
693    uint16_t dport, int dir, struct siftr_stats *ss)
694{
695	struct inpcb *inp;
696
697	/* We need the tcbinfo lock. */
698	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
699	INP_INFO_RLOCK(&V_tcbinfo);
700
701	if (dir == PFIL_IN)
702		inp = (ipver == INP_IPV4 ?
703		    in_pcblookup_hash(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
704		    dport, 0, m->m_pkthdr.rcvif)
705		    :
706#ifdef SIFTR_IPV6
707		    in6_pcblookup_hash(&V_tcbinfo,
708		    &((struct ip6_hdr *)ip)->ip6_src, sport,
709		    &((struct ip6_hdr *)ip)->ip6_dst, dport, 0,
710		    m->m_pkthdr.rcvif)
711#else
712		    NULL
713#endif
714		    );
715
716	else
717		inp = (ipver == INP_IPV4 ?
718		    in_pcblookup_hash(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
719		    sport, 0, m->m_pkthdr.rcvif)
720		    :
721#ifdef SIFTR_IPV6
722		    in6_pcblookup_hash(&V_tcbinfo,
723		    &((struct ip6_hdr *)ip)->ip6_dst, dport,
724		    &((struct ip6_hdr *)ip)->ip6_src, sport, 0,
725		    m->m_pkthdr.rcvif)
726#else
727		    NULL
728#endif
729		    );
730
731	/* If we can't find the inpcb, bail. */
732	if (inp == NULL) {
733		if (dir == PFIL_IN)
734			ss->nskip_in_inpcb++;
735		else
736			ss->nskip_out_inpcb++;
737	} else {
738		/* Acquire the inpcb lock. */
739		INP_UNLOCK_ASSERT(inp);
740		INP_RLOCK(inp);
741	}
742	INP_INFO_RUNLOCK(&V_tcbinfo);
743
744	return (inp);
745}
746
747
748static inline void
749siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
750    int ipver, int dir, int inp_locally_locked)
751{
752#ifdef SIFTR_IPV6
753	if (ipver == INP_IPV4) {
754		pn->ip_laddr[3] = inp->inp_laddr.s_addr;
755		pn->ip_faddr[3] = inp->inp_faddr.s_addr;
756#else
757		*((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
758		*((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
759#endif
760#ifdef SIFTR_IPV6
761	} else {
762		pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
763		pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
764		pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
765		pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
766		pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
767		pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
768		pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
769		pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
770	}
771#endif
772	pn->tcp_localport = inp->inp_lport;
773	pn->tcp_foreignport = inp->inp_fport;
774	pn->snd_cwnd = tp->snd_cwnd;
775	pn->snd_wnd = tp->snd_wnd;
776	pn->rcv_wnd = tp->rcv_wnd;
777	pn->snd_bwnd = 0;		/* Unused, kept for compat. */
778	pn->snd_ssthresh = tp->snd_ssthresh;
779	pn->snd_scale = tp->snd_scale;
780	pn->rcv_scale = tp->rcv_scale;
781	pn->conn_state = tp->t_state;
782	pn->max_seg_size = tp->t_maxseg;
783	pn->smoothed_rtt = tp->t_srtt;
784	pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
785	pn->flags = tp->t_flags;
786	pn->rxt_length = tp->t_rxtcur;
787	pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
788	pn->snd_buf_cc = inp->inp_socket->so_snd.sb_cc;
789	pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
790	pn->rcv_buf_cc = inp->inp_socket->so_rcv.sb_cc;
791	pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
792	pn->t_segqlen = tp->t_segqlen;
793
794	/* We've finished accessing the tcb so release the lock. */
795	if (inp_locally_locked)
796		INP_RUNLOCK(inp);
797
798	pn->ipver = ipver;
799	pn->direction = dir;
800
801	/*
802	 * Significantly more accurate than using getmicrotime(), but slower!
803	 * Gives true microsecond resolution at the expense of a hit to
804	 * maximum pps throughput processing when SIFTR is loaded and enabled.
805	 */
806	microtime(&pn->tval);
807}
808
809
810/*
811 * pfil hook that is called for each IPv4 packet making its way through the
812 * stack in either direction.
813 * The pfil subsystem holds a non-sleepable mutex somewhere when
814 * calling our hook function, so we can't sleep at all.
815 * It's very important to use the M_NOWAIT flag with all function calls
816 * that support it so that they won't sleep, otherwise you get a panic.
817 */
818static int
819siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
820    struct inpcb *inp)
821{
822	struct pkt_node *pn;
823	struct ip *ip;
824	struct tcphdr *th;
825	struct tcpcb *tp;
826	struct siftr_stats *ss;
827	unsigned int ip_hl;
828	int inp_locally_locked;
829
830	inp_locally_locked = 0;
831	ss = DPCPU_PTR(ss);
832
833	/*
834	 * m_pullup is not required here because ip_{input|output}
835	 * already do the heavy lifting for us.
836	 */
837
838	ip = mtod(*m, struct ip *);
839
840	/* Only continue processing if the packet is TCP. */
841	if (ip->ip_p != IPPROTO_TCP)
842		goto ret;
843
844	/*
845	 * If a kernel subsystem reinjects packets into the stack, our pfil
846	 * hook will be called multiple times for the same packet.
847	 * Make sure we only process unique packets.
848	 */
849	if (siftr_chkreinject(*m, dir, ss))
850		goto ret;
851
852	if (dir == PFIL_IN)
853		ss->n_in++;
854	else
855		ss->n_out++;
856
857	/*
858	 * Create a tcphdr struct starting at the correct offset
859	 * in the IP packet. ip->ip_hl gives the ip header length
860	 * in 4-byte words, so multiply it to get the size in bytes.
861	 */
862	ip_hl = (ip->ip_hl << 2);
863	th = (struct tcphdr *)((caddr_t)ip + ip_hl);
864
865	/*
866	 * If the pfil hooks don't provide a pointer to the
867	 * inpcb, we need to find it ourselves and lock it.
868	 */
869	if (!inp) {
870		/* Find the corresponding inpcb for this pkt. */
871		inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
872		    th->th_dport, dir, ss);
873
874		if (inp == NULL)
875			goto ret;
876		else
877			inp_locally_locked = 1;
878	}
879
880	INP_LOCK_ASSERT(inp);
881
882	/* Find the TCP control block that corresponds with this packet */
883	tp = intotcpcb(inp);
884
885	/*
886	 * If we can't find the TCP control block (happens occasionaly for a
887	 * packet sent during the shutdown phase of a TCP connection),
888	 * or we're in the timewait state, bail
889	 */
890	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
891		if (dir == PFIL_IN)
892			ss->nskip_in_tcpcb++;
893		else
894			ss->nskip_out_tcpcb++;
895
896		goto inp_unlock;
897	}
898
899	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
900
901	if (pn == NULL) {
902		if (dir == PFIL_IN)
903			ss->nskip_in_malloc++;
904		else
905			ss->nskip_out_malloc++;
906
907		goto inp_unlock;
908	}
909
910	siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
911
912	if (siftr_generate_hashes) {
913		if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
914			/*
915			 * For outbound packets, the TCP checksum isn't
916			 * calculated yet. This is a problem for our packet
917			 * hashing as the receiver will calc a different hash
918			 * to ours if we don't include the correct TCP checksum
919			 * in the bytes being hashed. To work around this
920			 * problem, we manually calc the TCP checksum here in
921			 * software. We unset the CSUM_TCP flag so the lower
922			 * layers don't recalc it.
923			 */
924			(*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
925
926			/*
927			 * Calculate the TCP checksum in software and assign
928			 * to correct TCP header field, which will follow the
929			 * packet mbuf down the stack. The trick here is that
930			 * tcp_output() sets th->th_sum to the checksum of the
931			 * pseudo header for us already. Because of the nature
932			 * of the checksumming algorithm, we can sum over the
933			 * entire IP payload (i.e. TCP header and data), which
934			 * will include the already calculated pseduo header
935			 * checksum, thus giving us the complete TCP checksum.
936			 *
937			 * To put it in simple terms, if checksum(1,2,3,4)=10,
938			 * then checksum(1,2,3,4,5) == checksum(10,5).
939			 * This property is what allows us to "cheat" and
940			 * checksum only the IP payload which has the TCP
941			 * th_sum field populated with the pseudo header's
942			 * checksum, and not need to futz around checksumming
943			 * pseudo header bytes and TCP header/data in one hit.
944			 * Refer to RFC 1071 for more info.
945			 *
946			 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
947			 * in_cksum_skip 2nd argument is NOT the number of
948			 * bytes to read from the mbuf at "skip" bytes offset
949			 * from the start of the mbuf (very counter intuitive!).
950			 * The number of bytes to read is calculated internally
951			 * by the function as len-skip i.e. to sum over the IP
952			 * payload (TCP header + data) bytes, it is INCORRECT
953			 * to call the function like this:
954			 * in_cksum_skip(at, ip->ip_len - offset, offset)
955			 * Rather, it should be called like this:
956			 * in_cksum_skip(at, ip->ip_len, offset)
957			 * which means read "ip->ip_len - offset" bytes from
958			 * the mbuf cluster "at" at offset "offset" bytes from
959			 * the beginning of the "at" mbuf's data pointer.
960			 */
961			th->th_sum = in_cksum_skip(*m, ip->ip_len, ip_hl);
962		}
963
964		/*
965		 * XXX: Having to calculate the checksum in software and then
966		 * hash over all bytes is really inefficient. Would be nice to
967		 * find a way to create the hash and checksum in the same pass
968		 * over the bytes.
969		 */
970		pn->hash = hash_pkt(*m, ip_hl);
971	}
972
973	mtx_lock(&siftr_pkt_queue_mtx);
974	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
975	mtx_unlock(&siftr_pkt_queue_mtx);
976	goto ret;
977
978inp_unlock:
979	if (inp_locally_locked)
980		INP_RUNLOCK(inp);
981
982ret:
983	/* Returning 0 ensures pfil will not discard the pkt */
984	return (0);
985}
986
987
988#ifdef SIFTR_IPV6
989static int
990siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
991    struct inpcb *inp)
992{
993	struct pkt_node *pn;
994	struct ip6_hdr *ip6;
995	struct tcphdr *th;
996	struct tcpcb *tp;
997	struct siftr_stats *ss;
998	unsigned int ip6_hl;
999	int inp_locally_locked;
1000
1001	inp_locally_locked = 0;
1002	ss = DPCPU_PTR(ss);
1003
1004	/*
1005	 * m_pullup is not required here because ip6_{input|output}
1006	 * already do the heavy lifting for us.
1007	 */
1008
1009	ip6 = mtod(*m, struct ip6_hdr *);
1010
1011	/*
1012	 * Only continue processing if the packet is TCP
1013	 * XXX: We should follow the next header fields
1014	 * as shown on Pg 6 RFC 2460, but right now we'll
1015	 * only check pkts that have no extension headers.
1016	 */
1017	if (ip6->ip6_nxt != IPPROTO_TCP)
1018		goto ret6;
1019
1020	/*
1021	 * If a kernel subsystem reinjects packets into the stack, our pfil
1022	 * hook will be called multiple times for the same packet.
1023	 * Make sure we only process unique packets.
1024	 */
1025	if (siftr_chkreinject(*m, dir, ss))
1026		goto ret6;
1027
1028	if (dir == PFIL_IN)
1029		ss->n_in++;
1030	else
1031		ss->n_out++;
1032
1033	ip6_hl = sizeof(struct ip6_hdr);
1034
1035	/*
1036	 * Create a tcphdr struct starting at the correct offset
1037	 * in the ipv6 packet. ip->ip_hl gives the ip header length
1038	 * in 4-byte words, so multiply it to get the size in bytes.
1039	 */
1040	th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1041
1042	/*
1043	 * For inbound packets, the pfil hooks don't provide a pointer to the
1044	 * inpcb, so we need to find it ourselves and lock it.
1045	 */
1046	if (!inp) {
1047		/* Find the corresponding inpcb for this pkt. */
1048		inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1049		    th->th_sport, th->th_dport, dir, ss);
1050
1051		if (inp == NULL)
1052			goto ret6;
1053		else
1054			inp_locally_locked = 1;
1055	}
1056
1057	/* Find the TCP control block that corresponds with this packet. */
1058	tp = intotcpcb(inp);
1059
1060	/*
1061	 * If we can't find the TCP control block (happens occasionaly for a
1062	 * packet sent during the shutdown phase of a TCP connection),
1063	 * or we're in the timewait state, bail.
1064	 */
1065	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1066		if (dir == PFIL_IN)
1067			ss->nskip_in_tcpcb++;
1068		else
1069			ss->nskip_out_tcpcb++;
1070
1071		goto inp_unlock6;
1072	}
1073
1074	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1075
1076	if (pn == NULL) {
1077		if (dir == PFIL_IN)
1078			ss->nskip_in_malloc++;
1079		else
1080			ss->nskip_out_malloc++;
1081
1082		goto inp_unlock6;
1083	}
1084
1085	siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1086
1087	/* XXX: Figure out how to generate hashes for IPv6 packets. */
1088
1089	mtx_lock(&siftr_pkt_queue_mtx);
1090	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1091	mtx_unlock(&siftr_pkt_queue_mtx);
1092	goto ret6;
1093
1094inp_unlock6:
1095	if (inp_locally_locked)
1096		INP_RUNLOCK(inp);
1097
1098ret6:
1099	/* Returning 0 ensures pfil will not discard the pkt. */
1100	return (0);
1101}
1102#endif /* #ifdef SIFTR_IPV6 */
1103
1104
1105static int
1106siftr_pfil(int action)
1107{
1108	struct pfil_head *pfh_inet;
1109#ifdef SIFTR_IPV6
1110	struct pfil_head *pfh_inet6;
1111#endif
1112	VNET_ITERATOR_DECL(vnet_iter);
1113
1114	VNET_LIST_RLOCK();
1115	VNET_FOREACH(vnet_iter) {
1116		CURVNET_SET(vnet_iter);
1117		pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
1118#ifdef SIFTR_IPV6
1119		pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
1120#endif
1121
1122		if (action == HOOK) {
1123			pfil_add_hook(siftr_chkpkt, NULL,
1124			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1125#ifdef SIFTR_IPV6
1126			pfil_add_hook(siftr_chkpkt6, NULL,
1127			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1128#endif
1129		} else if (action == UNHOOK) {
1130			pfil_remove_hook(siftr_chkpkt, NULL,
1131			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1132#ifdef SIFTR_IPV6
1133			pfil_remove_hook(siftr_chkpkt6, NULL,
1134			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1135#endif
1136		}
1137		CURVNET_RESTORE();
1138	}
1139	VNET_LIST_RUNLOCK();
1140
1141	return (0);
1142}
1143
1144
1145static int
1146siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1147{
1148	struct alq *new_alq;
1149	int error;
1150
1151	if (req->newptr == NULL)
1152		goto skip;
1153
1154	/* If old filename and new filename are different. */
1155	if (strncmp(siftr_logfile, (char *)req->newptr, PATH_MAX)) {
1156
1157		error = alq_open(&new_alq, req->newptr, curthread->td_ucred,
1158		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1159
1160		/* Bail if unable to create new alq. */
1161		if (error)
1162			return (1);
1163
1164		/*
1165		 * If disabled, siftr_alq == NULL so we simply close
1166		 * the alq as we've proved it can be opened.
1167		 * If enabled, close the existing alq and switch the old
1168		 * for the new.
1169		 */
1170		if (siftr_alq == NULL)
1171			alq_close(new_alq);
1172		else {
1173			alq_close(siftr_alq);
1174			siftr_alq = new_alq;
1175		}
1176	}
1177
1178skip:
1179	return (sysctl_handle_string(oidp, arg1, arg2, req));
1180}
1181
1182
1183static int
1184siftr_manage_ops(uint8_t action)
1185{
1186	struct siftr_stats totalss;
1187	struct timeval tval;
1188	struct flow_hash_node *counter, *tmp_counter;
1189	struct sbuf *s;
1190	int i, key_index, ret, error;
1191	uint32_t bytes_to_write, total_skipped_pkts;
1192	uint16_t lport, fport;
1193	uint8_t *key, ipver;
1194
1195#ifdef SIFTR_IPV6
1196	uint32_t laddr[4];
1197	uint32_t faddr[4];
1198#else
1199	uint8_t laddr[4];
1200	uint8_t faddr[4];
1201#endif
1202
1203	error = 0;
1204	total_skipped_pkts = 0;
1205
1206	/* Init an autosizing sbuf that initially holds 200 chars. */
1207	if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1208		return (-1);
1209
1210	if (action == SIFTR_ENABLE) {
1211		/*
1212		 * Create our alq
1213		 * XXX: We should abort if alq_open fails!
1214		 */
1215		alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1216		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1217
1218		STAILQ_INIT(&pkt_queue);
1219
1220		DPCPU_ZERO(ss);
1221
1222		siftr_exit_pkt_manager_thread = 0;
1223
1224		ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1225		    &siftr_pkt_manager_thr, RFNOWAIT, 0,
1226		    "siftr_pkt_manager_thr");
1227
1228		siftr_pfil(HOOK);
1229
1230		microtime(&tval);
1231
1232		sbuf_printf(s,
1233		    "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1234		    "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1235		    "sysver=%u\tipmode=%u\n",
1236		    (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1237		    TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1238
1239		sbuf_finish(s);
1240		alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1241
1242	} else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1243		/*
1244		 * Remove the pfil hook functions. All threads currently in
1245		 * the hook functions are allowed to exit before siftr_pfil()
1246		 * returns.
1247		 */
1248		siftr_pfil(UNHOOK);
1249
1250		/* This will block until the pkt manager thread unlocks it. */
1251		mtx_lock(&siftr_pkt_mgr_mtx);
1252
1253		/* Tell the pkt manager thread that it should exit now. */
1254		siftr_exit_pkt_manager_thread = 1;
1255
1256		/*
1257		 * Wake the pkt_manager thread so it realises that
1258		 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1259		 * The wakeup won't be delivered until we unlock
1260		 * siftr_pkt_mgr_mtx so this isn't racy.
1261		 */
1262		wakeup(&wait_for_pkt);
1263
1264		/* Wait for the pkt_manager thread to exit. */
1265		mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1266		    "thrwait", 0);
1267
1268		siftr_pkt_manager_thr = NULL;
1269		mtx_unlock(&siftr_pkt_mgr_mtx);
1270
1271		totalss.n_in = DPCPU_VARSUM(ss, n_in);
1272		totalss.n_out = DPCPU_VARSUM(ss, n_out);
1273		totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1274		totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1275		totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1276		totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1277		totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1278		totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1279		totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1280		totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1281
1282		total_skipped_pkts = totalss.nskip_in_malloc +
1283		    totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1284		    totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1285		    totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1286		    totalss.nskip_out_inpcb;
1287
1288		microtime(&tval);
1289
1290		sbuf_printf(s,
1291		    "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1292		    "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1293		    "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1294		    "num_outbound_skipped_pkts_malloc=%u\t"
1295		    "num_inbound_skipped_pkts_mtx=%u\t"
1296		    "num_outbound_skipped_pkts_mtx=%u\t"
1297		    "num_inbound_skipped_pkts_tcpcb=%u\t"
1298		    "num_outbound_skipped_pkts_tcpcb=%u\t"
1299		    "num_inbound_skipped_pkts_inpcb=%u\t"
1300		    "num_outbound_skipped_pkts_inpcb=%u\t"
1301		    "total_skipped_tcp_pkts=%u\tflow_list=",
1302		    (intmax_t)tval.tv_sec,
1303		    tval.tv_usec,
1304		    (uintmax_t)totalss.n_in,
1305		    (uintmax_t)totalss.n_out,
1306		    (uintmax_t)(totalss.n_in + totalss.n_out),
1307		    totalss.nskip_in_malloc,
1308		    totalss.nskip_out_malloc,
1309		    totalss.nskip_in_mtx,
1310		    totalss.nskip_out_mtx,
1311		    totalss.nskip_in_tcpcb,
1312		    totalss.nskip_out_tcpcb,
1313		    totalss.nskip_in_inpcb,
1314		    totalss.nskip_out_inpcb,
1315		    total_skipped_pkts);
1316
1317		/*
1318		 * Iterate over the flow hash, printing a summary of each
1319		 * flow seen and freeing any malloc'd memory.
1320		 * The hash consists of an array of LISTs (man 3 queue).
1321		 */
1322		for (i = 0; i < siftr_hashmask; i++) {
1323			LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1324			    tmp_counter) {
1325				key = counter->key;
1326				key_index = 1;
1327
1328				ipver = key[0];
1329
1330				memcpy(laddr, key + key_index, sizeof(laddr));
1331				key_index += sizeof(laddr);
1332				memcpy(&lport, key + key_index, sizeof(lport));
1333				key_index += sizeof(lport);
1334				memcpy(faddr, key + key_index, sizeof(faddr));
1335				key_index += sizeof(faddr);
1336				memcpy(&fport, key + key_index, sizeof(fport));
1337
1338#ifdef SIFTR_IPV6
1339				laddr[3] = ntohl(laddr[3]);
1340				faddr[3] = ntohl(faddr[3]);
1341
1342				if (ipver == INP_IPV6) {
1343					laddr[0] = ntohl(laddr[0]);
1344					laddr[1] = ntohl(laddr[1]);
1345					laddr[2] = ntohl(laddr[2]);
1346					faddr[0] = ntohl(faddr[0]);
1347					faddr[1] = ntohl(faddr[1]);
1348					faddr[2] = ntohl(faddr[2]);
1349
1350					sbuf_printf(s,
1351					    "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1352					    "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1353					    UPPER_SHORT(laddr[0]),
1354					    LOWER_SHORT(laddr[0]),
1355					    UPPER_SHORT(laddr[1]),
1356					    LOWER_SHORT(laddr[1]),
1357					    UPPER_SHORT(laddr[2]),
1358					    LOWER_SHORT(laddr[2]),
1359					    UPPER_SHORT(laddr[3]),
1360					    LOWER_SHORT(laddr[3]),
1361					    ntohs(lport),
1362					    UPPER_SHORT(faddr[0]),
1363					    LOWER_SHORT(faddr[0]),
1364					    UPPER_SHORT(faddr[1]),
1365					    LOWER_SHORT(faddr[1]),
1366					    UPPER_SHORT(faddr[2]),
1367					    LOWER_SHORT(faddr[2]),
1368					    UPPER_SHORT(faddr[3]),
1369					    LOWER_SHORT(faddr[3]),
1370					    ntohs(fport));
1371				} else {
1372					laddr[0] = FIRST_OCTET(laddr[3]);
1373					laddr[1] = SECOND_OCTET(laddr[3]);
1374					laddr[2] = THIRD_OCTET(laddr[3]);
1375					laddr[3] = FOURTH_OCTET(laddr[3]);
1376					faddr[0] = FIRST_OCTET(faddr[3]);
1377					faddr[1] = SECOND_OCTET(faddr[3]);
1378					faddr[2] = THIRD_OCTET(faddr[3]);
1379					faddr[3] = FOURTH_OCTET(faddr[3]);
1380#endif
1381					sbuf_printf(s,
1382					    "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1383					    laddr[0],
1384					    laddr[1],
1385					    laddr[2],
1386					    laddr[3],
1387					    ntohs(lport),
1388					    faddr[0],
1389					    faddr[1],
1390					    faddr[2],
1391					    faddr[3],
1392					    ntohs(fport));
1393#ifdef SIFTR_IPV6
1394				}
1395#endif
1396
1397				free(counter, M_SIFTR_HASHNODE);
1398			}
1399
1400			LIST_INIT(counter_hash + i);
1401		}
1402
1403		sbuf_printf(s, "\n");
1404		sbuf_finish(s);
1405
1406		i = 0;
1407		do {
1408			bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1409			alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1410			i += bytes_to_write;
1411		} while (i < sbuf_len(s));
1412
1413		alq_close(siftr_alq);
1414		siftr_alq = NULL;
1415	}
1416
1417	sbuf_delete(s);
1418
1419	/*
1420	 * XXX: Should be using ret to check if any functions fail
1421	 * and set error appropriately
1422	 */
1423
1424	return (error);
1425}
1426
1427
1428static int
1429siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1430{
1431	if (req->newptr == NULL)
1432		goto skip;
1433
1434	/* If the value passed in isn't 0 or 1, return an error. */
1435	if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
1436		return (1);
1437
1438	/* If we are changing state (0 to 1 or 1 to 0). */
1439	if (CAST_PTR_INT(req->newptr) != siftr_enabled )
1440		if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
1441			siftr_manage_ops(SIFTR_DISABLE);
1442			return (1);
1443		}
1444
1445skip:
1446	return (sysctl_handle_int(oidp, arg1, arg2, req));
1447}
1448
1449
1450static void
1451siftr_shutdown_handler(void *arg)
1452{
1453	siftr_manage_ops(SIFTR_DISABLE);
1454}
1455
1456
1457/*
1458 * Module is being unloaded or machine is shutting down. Take care of cleanup.
1459 */
1460static int
1461deinit_siftr(void)
1462{
1463	/* Cleanup. */
1464	siftr_manage_ops(SIFTR_DISABLE);
1465	hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1466	mtx_destroy(&siftr_pkt_queue_mtx);
1467	mtx_destroy(&siftr_pkt_mgr_mtx);
1468
1469	return (0);
1470}
1471
1472
1473/*
1474 * Module has just been loaded into the kernel.
1475 */
1476static int
1477init_siftr(void)
1478{
1479	EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1480	    SHUTDOWN_PRI_FIRST);
1481
1482	/* Initialise our flow counter hash table. */
1483	counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1484	    &siftr_hashmask);
1485
1486	mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1487	mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1488
1489	/* Print message to the user's current terminal. */
1490	uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1491	    "          http://caia.swin.edu.au/urp/newtcp\n\n",
1492	    MODVERSION_STR);
1493
1494	return (0);
1495}
1496
1497
1498/*
1499 * This is the function that is called to load and unload the module.
1500 * When the module is loaded, this function is called once with
1501 * "what" == MOD_LOAD
1502 * When the module is unloaded, this function is called twice with
1503 * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1504 * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1505 * this function is called once with "what" = MOD_SHUTDOWN
1506 * When the system is shut down, the handler isn't called until the very end
1507 * of the shutdown sequence i.e. after the disks have been synced.
1508 */
1509static int
1510siftr_load_handler(module_t mod, int what, void *arg)
1511{
1512	int ret;
1513
1514	switch (what) {
1515	case MOD_LOAD:
1516		ret = init_siftr();
1517		break;
1518
1519	case MOD_QUIESCE:
1520	case MOD_SHUTDOWN:
1521		ret = deinit_siftr();
1522		break;
1523
1524	case MOD_UNLOAD:
1525		ret = 0;
1526		break;
1527
1528	default:
1529		ret = EINVAL;
1530		break;
1531	}
1532
1533	return (ret);
1534}
1535
1536
1537static moduledata_t siftr_mod = {
1538	.name = "siftr",
1539	.evhand = siftr_load_handler,
1540};
1541
1542/*
1543 * Param 1: name of the kernel module
1544 * Param 2: moduledata_t struct containing info about the kernel module
1545 *          and the execution entry point for the module
1546 * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1547 *          Defines the module initialisation order
1548 * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1549 *          Defines the initialisation order of this kld relative to others
1550 *          within the same subsystem as defined by param 3
1551 */
1552DECLARE_MODULE(siftr, siftr_mod, SI_SUB_SMP, SI_ORDER_ANY);
1553MODULE_DEPEND(siftr, alq, 1, 1, 1);
1554MODULE_VERSION(siftr, MODVERSION);
1555