siftr.c revision 212765
1/*-
2 * Copyright (c) 2007-2009, Centre for Advanced Internet Architectures
3 * Swinburne University of Technology, Melbourne, Australia
4 * (CRICOS number 00111D).
5 * Copyright (c) 2009-2010, The FreeBSD Foundation
6 * All rights reserved.
7 *
8 * Portions of this software were developed at the Centre for Advanced
9 * Internet Architectures, Swinburne University of Technology, Melbourne,
10 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34/******************************************************
35 * Statistical Information For TCP Research (SIFTR)
36 *
37 * A FreeBSD kernel module that adds very basic intrumentation to the
38 * TCP stack, allowing internal stats to be recorded to a log file
39 * for experimental, debugging and performance analysis purposes.
40 *
41 * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
42 * working on the NewTCP research project at Swinburne University's Centre for
43 * Advanced Internet Architectures, Melbourne, Australia, which was made
44 * possible in part by a grant from the Cisco University Research Program Fund
45 * at Community Foundation Silicon Valley. More details are available at:
46 *   http://caia.swin.edu.au/urp/newtcp/
47 *
48 * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
49 * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
50 * More details are available at:
51 *   http://www.freebsdfoundation.org/
52 *   http://caia.swin.edu.au/freebsd/etcp09/
53 *
54 * Lawrence Stewart is the current maintainer, and all contact regarding
55 * SIFTR should be directed to him via email: lastewart@swin.edu.au
56 *
57 * Initial release date: June 2007
58 * Most recent update: June 2010
59 ******************************************************/
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD: head/sys/netinet/siftr.c 212765 2010-09-16 21:06:45Z andre $");
63
64#include <sys/param.h>
65#include <sys/alq.h>
66#include <sys/errno.h>
67#include <sys/hash.h>
68#include <sys/kernel.h>
69#include <sys/kthread.h>
70#include <sys/lock.h>
71#include <sys/mbuf.h>
72#include <sys/module.h>
73#include <sys/mutex.h>
74#include <sys/pcpu.h>
75#include <sys/proc.h>
76#include <sys/sbuf.h>
77#include <sys/smp.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/sysctl.h>
81#include <sys/unistd.h>
82
83#include <net/if.h>
84#include <net/pfil.h>
85
86#include <netinet/in.h>
87#include <netinet/in_pcb.h>
88#include <netinet/in_systm.h>
89#include <netinet/in_var.h>
90#include <netinet/ip.h>
91#include <netinet/tcp_var.h>
92
93#ifdef SIFTR_IPV6
94#include <netinet/ip6.h>
95#include <netinet6/in6_pcb.h>
96#endif /* SIFTR_IPV6 */
97
98#include <machine/in_cksum.h>
99
100/*
101 * Three digit version number refers to X.Y.Z where:
102 * X is the major version number
103 * Y is bumped to mark backwards incompatible changes
104 * Z is bumped to mark backwards compatible changes
105 */
106#define V_MAJOR		1
107#define V_BACKBREAK	2
108#define V_BACKCOMPAT	3
109#define MODVERSION	__CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
110#define MODVERSION_STR	__XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
111    __XSTRING(V_BACKCOMPAT)
112
113#define HOOK 0
114#define UNHOOK 1
115#define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
116#define SYS_NAME "FreeBSD"
117#define PACKET_TAG_SIFTR 100
118#define PACKET_COOKIE_SIFTR 21749576
119#define SIFTR_LOG_FILE_MODE 0644
120#define SIFTR_DISABLE 0
121#define SIFTR_ENABLE 1
122
123/*
124 * Hard upper limit on the length of log messages. Bump this up if you add new
125 * data fields such that the line length could exceed the below value.
126 */
127#define MAX_LOG_MSG_LEN 200
128/* XXX: Make this a sysctl tunable. */
129#define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
130
131/*
132 * 1 byte for IP version
133 * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
134 * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
135 */
136#ifdef SIFTR_IPV6
137#define FLOW_KEY_LEN 37
138#else
139#define FLOW_KEY_LEN 13
140#endif
141
142#ifdef SIFTR_IPV6
143#define SIFTR_IPMODE 6
144#else
145#define SIFTR_IPMODE 4
146#endif
147
148/* useful macros */
149#define CAST_PTR_INT(X) (*((int*)(X)))
150
151#define UPPER_SHORT(X)	(((X) & 0xFFFF0000) >> 16)
152#define LOWER_SHORT(X)	((X) & 0x0000FFFF)
153
154#define FIRST_OCTET(X)	(((X) & 0xFF000000) >> 24)
155#define SECOND_OCTET(X)	(((X) & 0x00FF0000) >> 16)
156#define THIRD_OCTET(X)	(((X) & 0x0000FF00) >> 8)
157#define FOURTH_OCTET(X)	((X) & 0x000000FF)
158
159MALLOC_DECLARE(M_SIFTR);
160MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
161
162MALLOC_DECLARE(M_SIFTR_PKTNODE);
163MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode", "SIFTR pkt_node struct");
164
165MALLOC_DECLARE(M_SIFTR_HASHNODE);
166MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode", "SIFTR flow_hash_node struct");
167
168/* Used as links in the pkt manager queue. */
169struct pkt_node {
170	/* Timestamp of pkt as noted in the pfil hook. */
171	struct timeval		tval;
172	/* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
173	uint8_t			direction;
174	/* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
175	uint8_t			ipver;
176	/* Hash of the pkt which triggered the log message. */
177	uint32_t		hash;
178	/* Local/foreign IP address. */
179#ifdef SIFTR_IPV6
180	uint32_t		ip_laddr[4];
181	uint32_t		ip_faddr[4];
182#else
183	uint8_t			ip_laddr[4];
184	uint8_t			ip_faddr[4];
185#endif
186	/* Local TCP port. */
187	uint16_t		tcp_localport;
188	/* Foreign TCP port. */
189	uint16_t		tcp_foreignport;
190	/* Congestion Window (bytes). */
191	u_long			snd_cwnd;
192	/* Sending Window (bytes). */
193	u_long			snd_wnd;
194	/* Receive Window (bytes). */
195	u_long			rcv_wnd;
196	/* Unused (was: Bandwidth Controlled Window (bytes)). */
197	u_long			snd_bwnd;
198	/* Slow Start Threshold (bytes). */
199	u_long			snd_ssthresh;
200	/* Current state of the TCP FSM. */
201	int			conn_state;
202	/* Max Segment Size (bytes). */
203	u_int			max_seg_size;
204	/*
205	 * Smoothed RTT stored as found in the TCP control block
206	 * in units of (TCP_RTT_SCALE*hz).
207	 */
208	int			smoothed_rtt;
209	/* Is SACK enabled? */
210	u_char			sack_enabled;
211	/* Window scaling for snd window. */
212	u_char			snd_scale;
213	/* Window scaling for recv window. */
214	u_char			rcv_scale;
215	/* TCP control block flags. */
216	u_int			flags;
217	/* Retransmit timeout length. */
218	int			rxt_length;
219	/* Size of the TCP send buffer in bytes. */
220	u_int			snd_buf_hiwater;
221	/* Current num bytes in the send socket buffer. */
222	u_int			snd_buf_cc;
223	/* Size of the TCP receive buffer in bytes. */
224	u_int			rcv_buf_hiwater;
225	/* Current num bytes in the receive socket buffer. */
226	u_int			rcv_buf_cc;
227	/* Number of bytes inflight that we are waiting on ACKs for. */
228	u_int			sent_inflight_bytes;
229	/* Link to next pkt_node in the list. */
230	STAILQ_ENTRY(pkt_node)	nodes;
231};
232
233struct flow_hash_node
234{
235	uint16_t counter;
236	uint8_t key[FLOW_KEY_LEN];
237	LIST_ENTRY(flow_hash_node) nodes;
238};
239
240struct siftr_stats
241{
242	/* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
243	uint64_t n_in;
244	uint64_t n_out;
245	/* # pkts skipped due to failed malloc calls. */
246	uint32_t nskip_in_malloc;
247	uint32_t nskip_out_malloc;
248	/* # pkts skipped due to failed mtx acquisition. */
249	uint32_t nskip_in_mtx;
250	uint32_t nskip_out_mtx;
251	/* # pkts skipped due to failed inpcb lookups. */
252	uint32_t nskip_in_inpcb;
253	uint32_t nskip_out_inpcb;
254	/* # pkts skipped due to failed tcpcb lookups. */
255	uint32_t nskip_in_tcpcb;
256	uint32_t nskip_out_tcpcb;
257	/* # pkts skipped due to stack reinjection. */
258	uint32_t nskip_in_dejavu;
259	uint32_t nskip_out_dejavu;
260};
261
262static DPCPU_DEFINE(struct siftr_stats, ss);
263
264static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
265static unsigned int siftr_enabled = 0;
266static unsigned int siftr_pkts_per_log = 1;
267static unsigned int siftr_generate_hashes = 0;
268/* static unsigned int siftr_binary_log = 0; */
269static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
270static u_long siftr_hashmask;
271STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
272LIST_HEAD(listhead, flow_hash_node) *counter_hash;
273static int wait_for_pkt;
274static struct alq *siftr_alq = NULL;
275static struct mtx siftr_pkt_queue_mtx;
276static struct mtx siftr_pkt_mgr_mtx;
277static struct thread *siftr_pkt_manager_thr = NULL;
278/*
279 * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
280 * which we use as an index into this array.
281 */
282static char direction[3] = {'\0', 'i','o'};
283
284/* Required function prototypes. */
285static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
286static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
287
288
289/* Declare the net.inet.siftr sysctl tree and populate it. */
290
291SYSCTL_DECL(_net_inet_siftr);
292
293SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
294    "siftr related settings");
295
296SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
297    &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
298    "switch siftr module operations on/off");
299
300SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
301    &siftr_logfile, sizeof(siftr_logfile), &siftr_sysctl_logfile_name_handler,
302    "A", "file to save siftr log messages to");
303
304SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
305    &siftr_pkts_per_log, 1,
306    "number of packets between generating a log message");
307
308SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
309    &siftr_generate_hashes, 0,
310    "enable packet hash generation");
311
312/* XXX: TODO
313SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
314    &siftr_binary_log, 0,
315    "write log files in binary instead of ascii");
316*/
317
318
319/* Begin functions. */
320
321static void
322siftr_process_pkt(struct pkt_node * pkt_node)
323{
324	struct flow_hash_node *hash_node;
325	struct listhead *counter_list;
326	struct siftr_stats *ss;
327	struct ale *log_buf;
328	uint8_t key[FLOW_KEY_LEN];
329	uint8_t found_match, key_offset;
330
331	hash_node = NULL;
332	ss = DPCPU_PTR(ss);
333	found_match = 0;
334	key_offset = 1;
335
336	/*
337	 * Create the key that will be used to create a hash index
338	 * into our hash table. Our key consists of:
339	 * ipversion, localip, localport, foreignip, foreignport
340	 */
341	key[0] = pkt_node->ipver;
342	memcpy(key + key_offset, &pkt_node->ip_laddr,
343	    sizeof(pkt_node->ip_laddr));
344	key_offset += sizeof(pkt_node->ip_laddr);
345	memcpy(key + key_offset, &pkt_node->tcp_localport,
346	    sizeof(pkt_node->tcp_localport));
347	key_offset += sizeof(pkt_node->tcp_localport);
348	memcpy(key + key_offset, &pkt_node->ip_faddr,
349	    sizeof(pkt_node->ip_faddr));
350	key_offset += sizeof(pkt_node->ip_faddr);
351	memcpy(key + key_offset, &pkt_node->tcp_foreignport,
352	    sizeof(pkt_node->tcp_foreignport));
353
354	counter_list = counter_hash +
355	    (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
356
357	/*
358	 * If the list is not empty i.e. the hash index has
359	 * been used by another flow previously.
360	 */
361	if (LIST_FIRST(counter_list) != NULL) {
362		/*
363		 * Loop through the hash nodes in the list.
364		 * There should normally only be 1 hash node in the list,
365		 * except if there have been collisions at the hash index
366		 * computed by hash32_buf().
367		 */
368		LIST_FOREACH(hash_node, counter_list, nodes) {
369			/*
370			 * Check if the key for the pkt we are currently
371			 * processing is the same as the key stored in the
372			 * hash node we are currently processing.
373			 * If they are the same, then we've found the
374			 * hash node that stores the counter for the flow
375			 * the pkt belongs to.
376			 */
377			if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
378				found_match = 1;
379				break;
380			}
381		}
382	}
383
384	/* If this flow hash hasn't been seen before or we have a collision. */
385	if (hash_node == NULL || !found_match) {
386		/* Create a new hash node to store the flow's counter. */
387		hash_node = malloc(sizeof(struct flow_hash_node),
388		    M_SIFTR_HASHNODE, M_WAITOK);
389
390		if (hash_node != NULL) {
391			/* Initialise our new hash node list entry. */
392			hash_node->counter = 0;
393			memcpy(hash_node->key, key, sizeof(key));
394			LIST_INSERT_HEAD(counter_list, hash_node, nodes);
395		} else {
396			/* Malloc failed. */
397			if (pkt_node->direction == PFIL_IN)
398				ss->nskip_in_malloc++;
399			else
400				ss->nskip_out_malloc++;
401
402			return;
403		}
404	} else if (siftr_pkts_per_log > 1) {
405		/*
406		 * Taking the remainder of the counter divided
407		 * by the current value of siftr_pkts_per_log
408		 * and storing that in counter provides a neat
409		 * way to modulate the frequency of log
410		 * messages being written to the log file.
411		 */
412		hash_node->counter = (hash_node->counter + 1) %
413		    siftr_pkts_per_log;
414
415		/*
416		 * If we have not seen enough packets since the last time
417		 * we wrote a log message for this connection, return.
418		 */
419		if (hash_node->counter > 0)
420			return;
421	}
422
423	log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
424
425	if (log_buf == NULL)
426		return; /* Should only happen if the ALQ is shutting down. */
427
428#ifdef SIFTR_IPV6
429	pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
430	pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
431
432	if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
433		pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
434		pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
435		pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
436		pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
437		pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
438		pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
439
440		/* Construct an IPv6 log message. */
441		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
442		    MAX_LOG_MSG_LEN,
443		    "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
444		    "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
445		    "%u,%d,%u,%u,%u,%u,%u\n",
446		    direction[pkt_node->direction],
447		    pkt_node->hash,
448		    pkt_node->tval.tv_sec,
449		    pkt_node->tval.tv_usec,
450		    UPPER_SHORT(pkt_node->ip_laddr[0]),
451		    LOWER_SHORT(pkt_node->ip_laddr[0]),
452		    UPPER_SHORT(pkt_node->ip_laddr[1]),
453		    LOWER_SHORT(pkt_node->ip_laddr[1]),
454		    UPPER_SHORT(pkt_node->ip_laddr[2]),
455		    LOWER_SHORT(pkt_node->ip_laddr[2]),
456		    UPPER_SHORT(pkt_node->ip_laddr[3]),
457		    LOWER_SHORT(pkt_node->ip_laddr[3]),
458		    ntohs(pkt_node->tcp_localport),
459		    UPPER_SHORT(pkt_node->ip_faddr[0]),
460		    LOWER_SHORT(pkt_node->ip_faddr[0]),
461		    UPPER_SHORT(pkt_node->ip_faddr[1]),
462		    LOWER_SHORT(pkt_node->ip_faddr[1]),
463		    UPPER_SHORT(pkt_node->ip_faddr[2]),
464		    LOWER_SHORT(pkt_node->ip_faddr[2]),
465		    UPPER_SHORT(pkt_node->ip_faddr[3]),
466		    LOWER_SHORT(pkt_node->ip_faddr[3]),
467		    ntohs(pkt_node->tcp_foreignport),
468		    pkt_node->snd_ssthresh,
469		    pkt_node->snd_cwnd,
470		    pkt_node->snd_bwnd,
471		    pkt_node->snd_wnd,
472		    pkt_node->rcv_wnd,
473		    pkt_node->snd_scale,
474		    pkt_node->rcv_scale,
475		    pkt_node->conn_state,
476		    pkt_node->max_seg_size,
477		    pkt_node->smoothed_rtt,
478		    pkt_node->sack_enabled,
479		    pkt_node->flags,
480		    pkt_node->rxt_length,
481		    pkt_node->snd_buf_hiwater,
482		    pkt_node->snd_buf_cc,
483		    pkt_node->rcv_buf_hiwater,
484		    pkt_node->rcv_buf_cc,
485		    pkt_node->sent_inflight_bytes);
486	} else { /* IPv4 packet */
487		pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
488		pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
489		pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
490		pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
491		pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
492		pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
493		pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
494		pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
495#endif /* SIFTR_IPV6 */
496
497		/* Construct an IPv4 log message. */
498		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
499		    MAX_LOG_MSG_LEN,
500		    "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
501		    "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u\n",
502		    direction[pkt_node->direction],
503		    pkt_node->hash,
504		    (intmax_t)pkt_node->tval.tv_sec,
505		    pkt_node->tval.tv_usec,
506		    pkt_node->ip_laddr[0],
507		    pkt_node->ip_laddr[1],
508		    pkt_node->ip_laddr[2],
509		    pkt_node->ip_laddr[3],
510		    ntohs(pkt_node->tcp_localport),
511		    pkt_node->ip_faddr[0],
512		    pkt_node->ip_faddr[1],
513		    pkt_node->ip_faddr[2],
514		    pkt_node->ip_faddr[3],
515		    ntohs(pkt_node->tcp_foreignport),
516		    pkt_node->snd_ssthresh,
517		    pkt_node->snd_cwnd,
518		    pkt_node->snd_bwnd,
519		    pkt_node->snd_wnd,
520		    pkt_node->rcv_wnd,
521		    pkt_node->snd_scale,
522		    pkt_node->rcv_scale,
523		    pkt_node->conn_state,
524		    pkt_node->max_seg_size,
525		    pkt_node->smoothed_rtt,
526		    pkt_node->sack_enabled,
527		    pkt_node->flags,
528		    pkt_node->rxt_length,
529		    pkt_node->snd_buf_hiwater,
530		    pkt_node->snd_buf_cc,
531		    pkt_node->rcv_buf_hiwater,
532		    pkt_node->rcv_buf_cc,
533		    pkt_node->sent_inflight_bytes);
534#ifdef SIFTR_IPV6
535	}
536#endif
537
538	alq_post_flags(siftr_alq, log_buf, 0);
539}
540
541
542static void
543siftr_pkt_manager_thread(void *arg)
544{
545	STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
546	    STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
547	struct pkt_node *pkt_node, *pkt_node_temp;
548	uint8_t draining;
549
550	draining = 2;
551
552	mtx_lock(&siftr_pkt_mgr_mtx);
553
554	/* draining == 0 when queue has been flushed and it's safe to exit. */
555	while (draining) {
556		/*
557		 * Sleep until we are signalled to wake because thread has
558		 * been told to exit or until 1 tick has passed.
559		 */
560		mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
561		    1);
562
563		/* Gain exclusive access to the pkt_node queue. */
564		mtx_lock(&siftr_pkt_queue_mtx);
565
566		/*
567		 * Move pkt_queue to tmp_pkt_queue, which leaves
568		 * pkt_queue empty and ready to receive more pkt_nodes.
569		 */
570		STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
571
572		/*
573		 * We've finished making changes to the list. Unlock it
574		 * so the pfil hooks can continue queuing pkt_nodes.
575		 */
576		mtx_unlock(&siftr_pkt_queue_mtx);
577
578		/*
579		 * We can't hold a mutex whilst calling siftr_process_pkt
580		 * because ALQ might sleep waiting for buffer space.
581		 */
582		mtx_unlock(&siftr_pkt_mgr_mtx);
583
584		/* Flush all pkt_nodes to the log file. */
585		STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
586		    pkt_node_temp) {
587			siftr_process_pkt(pkt_node);
588			STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
589			free(pkt_node, M_SIFTR_PKTNODE);
590		}
591
592		KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
593		    ("SIFTR tmp_pkt_queue not empty after flush"));
594
595		mtx_lock(&siftr_pkt_mgr_mtx);
596
597		/*
598		 * If siftr_exit_pkt_manager_thread gets set during the window
599		 * where we are draining the tmp_pkt_queue above, there might
600		 * still be pkts in pkt_queue that need to be drained.
601		 * Allow one further iteration to occur after
602		 * siftr_exit_pkt_manager_thread has been set to ensure
603		 * pkt_queue is completely empty before we kill the thread.
604		 *
605		 * siftr_exit_pkt_manager_thread is set only after the pfil
606		 * hooks have been removed, so only 1 extra iteration
607		 * is needed to drain the queue.
608		 */
609		if (siftr_exit_pkt_manager_thread)
610			draining--;
611	}
612
613	mtx_unlock(&siftr_pkt_mgr_mtx);
614
615	/* Calls wakeup on this thread's struct thread ptr. */
616	kthread_exit();
617}
618
619
620static uint32_t
621hash_pkt(struct mbuf *m, uint32_t offset)
622{
623	uint32_t hash;
624
625	hash = 0;
626
627	while (m != NULL && offset > m->m_len) {
628		/*
629		 * The IP packet payload does not start in this mbuf, so
630		 * need to figure out which mbuf it starts in and what offset
631		 * into the mbuf's data region the payload starts at.
632		 */
633		offset -= m->m_len;
634		m = m->m_next;
635	}
636
637	while (m != NULL) {
638		/* Ensure there is data in the mbuf */
639		if ((m->m_len - offset) > 0)
640			hash = hash32_buf(m->m_data + offset,
641			    m->m_len - offset, hash);
642
643		m = m->m_next;
644		offset = 0;
645        }
646
647	return (hash);
648}
649
650
651/*
652 * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
653 * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
654 * Return value >0 means the caller should skip processing this mbuf.
655 */
656static inline int
657siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
658{
659	if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
660	    != NULL) {
661		if (dir == PFIL_IN)
662			ss->nskip_in_dejavu++;
663		else
664			ss->nskip_out_dejavu++;
665
666		return (1);
667	} else {
668		struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
669		    PACKET_TAG_SIFTR, 0, M_NOWAIT);
670		if (tag == NULL) {
671			if (dir == PFIL_IN)
672				ss->nskip_in_malloc++;
673			else
674				ss->nskip_out_malloc++;
675
676			return (1);
677		}
678
679		m_tag_prepend(m, tag);
680	}
681
682	return (0);
683}
684
685
686/*
687 * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
688 * otherwise.
689 */
690static inline struct inpcb *
691siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
692    uint16_t dport, int dir, struct siftr_stats *ss)
693{
694	struct inpcb *inp;
695
696	/* We need the tcbinfo lock. */
697	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
698	INP_INFO_RLOCK(&V_tcbinfo);
699
700	if (dir == PFIL_IN)
701		inp = (ipver == INP_IPV4 ?
702		    in_pcblookup_hash(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
703		    dport, 0, m->m_pkthdr.rcvif)
704		    :
705#ifdef SIFTR_IPV6
706		    in6_pcblookup_hash(&V_tcbinfo,
707		    &((struct ip6_hdr *)ip)->ip6_src, sport,
708		    &((struct ip6_hdr *)ip)->ip6_dst, dport, 0,
709		    m->m_pkthdr.rcvif)
710#else
711		    NULL
712#endif
713		    );
714
715	else
716		inp = (ipver == INP_IPV4 ?
717		    in_pcblookup_hash(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
718		    sport, 0, m->m_pkthdr.rcvif)
719		    :
720#ifdef SIFTR_IPV6
721		    in6_pcblookup_hash(&V_tcbinfo,
722		    &((struct ip6_hdr *)ip)->ip6_dst, dport,
723		    &((struct ip6_hdr *)ip)->ip6_src, sport, 0,
724		    m->m_pkthdr.rcvif)
725#else
726		    NULL
727#endif
728		    );
729
730	/* If we can't find the inpcb, bail. */
731	if (inp == NULL) {
732		if (dir == PFIL_IN)
733			ss->nskip_in_inpcb++;
734		else
735			ss->nskip_out_inpcb++;
736
737		INP_INFO_RUNLOCK(&V_tcbinfo);
738	} else {
739		/* Acquire the inpcb lock. */
740		INP_UNLOCK_ASSERT(inp);
741		INP_RLOCK(inp);
742		INP_INFO_RUNLOCK(&V_tcbinfo);
743	}
744
745	return (inp);
746}
747
748
749static inline void
750siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
751    int ipver, int dir, int inp_locally_locked)
752{
753#ifdef SIFTR_IPV6
754	if (ipver == INP_IPV4) {
755		pn->ip_laddr[3] = inp->inp_laddr.s_addr;
756		pn->ip_faddr[3] = inp->inp_faddr.s_addr;
757#else
758		*((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
759		*((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
760#endif
761#ifdef SIFTR_IPV6
762	} else {
763		pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
764		pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
765		pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
766		pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
767		pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
768		pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
769		pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
770		pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
771	}
772#endif
773	pn->tcp_localport = inp->inp_lport;
774	pn->tcp_foreignport = inp->inp_fport;
775	pn->snd_cwnd = tp->snd_cwnd;
776	pn->snd_wnd = tp->snd_wnd;
777	pn->rcv_wnd = tp->rcv_wnd;
778	pn->snd_bwnd = 0;		/* Unused, kept for compat. */
779	pn->snd_ssthresh = tp->snd_ssthresh;
780	pn->snd_scale = tp->snd_scale;
781	pn->rcv_scale = tp->rcv_scale;
782	pn->conn_state = tp->t_state;
783	pn->max_seg_size = tp->t_maxseg;
784	pn->smoothed_rtt = tp->t_srtt;
785	pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
786	pn->flags = tp->t_flags;
787	pn->rxt_length = tp->t_rxtcur;
788	pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
789	pn->snd_buf_cc = inp->inp_socket->so_snd.sb_cc;
790	pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
791	pn->rcv_buf_cc = inp->inp_socket->so_rcv.sb_cc;
792	pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
793
794	/* We've finished accessing the tcb so release the lock. */
795	if (inp_locally_locked)
796		INP_RUNLOCK(inp);
797
798	pn->ipver = ipver;
799	pn->direction = dir;
800
801	/*
802	 * Significantly more accurate than using getmicrotime(), but slower!
803	 * Gives true microsecond resolution at the expense of a hit to
804	 * maximum pps throughput processing when SIFTR is loaded and enabled.
805	 */
806	microtime(&pn->tval);
807}
808
809
810/*
811 * pfil hook that is called for each IPv4 packet making its way through the
812 * stack in either direction.
813 * The pfil subsystem holds a non-sleepable mutex somewhere when
814 * calling our hook function, so we can't sleep at all.
815 * It's very important to use the M_NOWAIT flag with all function calls
816 * that support it so that they won't sleep, otherwise you get a panic.
817 */
818static int
819siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
820    struct inpcb *inp)
821{
822	struct pkt_node *pn;
823	struct ip *ip;
824	struct tcphdr *th;
825	struct tcpcb *tp;
826	struct siftr_stats *ss;
827	unsigned int ip_hl;
828	int inp_locally_locked;
829
830	inp_locally_locked = 0;
831	ss = DPCPU_PTR(ss);
832
833	/*
834	 * m_pullup is not required here because ip_{input|output}
835	 * already do the heavy lifting for us.
836	 */
837
838	ip = mtod(*m, struct ip *);
839
840	/* Only continue processing if the packet is TCP. */
841	if (ip->ip_p != IPPROTO_TCP)
842		goto ret;
843
844	/*
845	 * If a kernel subsystem reinjects packets into the stack, our pfil
846	 * hook will be called multiple times for the same packet.
847	 * Make sure we only process unique packets.
848	 */
849	if (siftr_chkreinject(*m, dir, ss))
850		goto ret;
851
852	if (dir == PFIL_IN)
853		ss->n_in++;
854	else
855		ss->n_out++;
856
857	/*
858	 * Create a tcphdr struct starting at the correct offset
859	 * in the IP packet. ip->ip_hl gives the ip header length
860	 * in 4-byte words, so multiply it to get the size in bytes.
861	 */
862	ip_hl = (ip->ip_hl << 2);
863	th = (struct tcphdr *)((caddr_t)ip + ip_hl);
864
865	/*
866	 * If the pfil hooks don't provide a pointer to the
867	 * inpcb, we need to find it ourselves and lock it.
868	 */
869	if (!inp) {
870		/* Find the corresponding inpcb for this pkt. */
871		inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
872		    th->th_dport, dir, ss);
873
874		if (inp == NULL)
875			goto ret;
876		else
877			inp_locally_locked = 1;
878	}
879
880	INP_LOCK_ASSERT(inp);
881
882	/* Find the TCP control block that corresponds with this packet */
883	tp = intotcpcb(inp);
884
885	/*
886	 * If we can't find the TCP control block (happens occasionaly for a
887	 * packet sent during the shutdown phase of a TCP connection),
888	 * or we're in the timewait state, bail
889	 */
890	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
891		if (dir == PFIL_IN)
892			ss->nskip_in_tcpcb++;
893		else
894			ss->nskip_out_tcpcb++;
895
896		goto inp_unlock;
897	}
898
899	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
900
901	if (pn == NULL) {
902		if (dir == PFIL_IN)
903			ss->nskip_in_malloc++;
904		else
905			ss->nskip_out_malloc++;
906
907		goto inp_unlock;
908	}
909
910	siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
911
912	if (siftr_generate_hashes) {
913		if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
914			/*
915			 * For outbound packets, the TCP checksum isn't
916			 * calculated yet. This is a problem for our packet
917			 * hashing as the receiver will calc a different hash
918			 * to ours if we don't include the correct TCP checksum
919			 * in the bytes being hashed. To work around this
920			 * problem, we manually calc the TCP checksum here in
921			 * software. We unset the CSUM_TCP flag so the lower
922			 * layers don't recalc it.
923			 */
924			(*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
925
926			/*
927			 * Calculate the TCP checksum in software and assign
928			 * to correct TCP header field, which will follow the
929			 * packet mbuf down the stack. The trick here is that
930			 * tcp_output() sets th->th_sum to the checksum of the
931			 * pseudo header for us already. Because of the nature
932			 * of the checksumming algorithm, we can sum over the
933			 * entire IP payload (i.e. TCP header and data), which
934			 * will include the already calculated pseduo header
935			 * checksum, thus giving us the complete TCP checksum.
936			 *
937			 * To put it in simple terms, if checksum(1,2,3,4)=10,
938			 * then checksum(1,2,3,4,5) == checksum(10,5).
939			 * This property is what allows us to "cheat" and
940			 * checksum only the IP payload which has the TCP
941			 * th_sum field populated with the pseudo header's
942			 * checksum, and not need to futz around checksumming
943			 * pseudo header bytes and TCP header/data in one hit.
944			 * Refer to RFC 1071 for more info.
945			 *
946			 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
947			 * in_cksum_skip 2nd argument is NOT the number of
948			 * bytes to read from the mbuf at "skip" bytes offset
949			 * from the start of the mbuf (very counter intuitive!).
950			 * The number of bytes to read is calculated internally
951			 * by the function as len-skip i.e. to sum over the IP
952			 * payload (TCP header + data) bytes, it is INCORRECT
953			 * to call the function like this:
954			 * in_cksum_skip(at, ip->ip_len - offset, offset)
955			 * Rather, it should be called like this:
956			 * in_cksum_skip(at, ip->ip_len, offset)
957			 * which means read "ip->ip_len - offset" bytes from
958			 * the mbuf cluster "at" at offset "offset" bytes from
959			 * the beginning of the "at" mbuf's data pointer.
960			 */
961			th->th_sum = in_cksum_skip(*m, ip->ip_len, ip_hl);
962		}
963
964		/*
965		 * XXX: Having to calculate the checksum in software and then
966		 * hash over all bytes is really inefficient. Would be nice to
967		 * find a way to create the hash and checksum in the same pass
968		 * over the bytes.
969		 */
970		pn->hash = hash_pkt(*m, ip_hl);
971	}
972
973	mtx_lock(&siftr_pkt_queue_mtx);
974	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
975	mtx_unlock(&siftr_pkt_queue_mtx);
976	goto ret;
977
978inp_unlock:
979	if (inp_locally_locked)
980		INP_RUNLOCK(inp);
981
982ret:
983	/* Returning 0 ensures pfil will not discard the pkt */
984	return (0);
985}
986
987
988#ifdef SIFTR_IPV6
989static int
990siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
991    struct inpcb *inp)
992{
993	struct pkt_node *pn;
994	struct ip6_hdr *ip6;
995	struct tcphdr *th;
996	struct tcpcb *tp;
997	struct siftr_stats *ss;
998	unsigned int ip6_hl;
999	int inp_locally_locked;
1000
1001	inp_locally_locked = 0;
1002	ss = DPCPU_PTR(ss);
1003
1004	/*
1005	 * m_pullup is not required here because ip6_{input|output}
1006	 * already do the heavy lifting for us.
1007	 */
1008
1009	ip6 = mtod(*m, struct ip6_hdr *);
1010
1011	/*
1012	 * Only continue processing if the packet is TCP
1013	 * XXX: We should follow the next header fields
1014	 * as shown on Pg 6 RFC 2460, but right now we'll
1015	 * only check pkts that have no extension headers.
1016	 */
1017	if (ip6->ip6_nxt != IPPROTO_TCP)
1018		goto ret6;
1019
1020	/*
1021	 * If a kernel subsystem reinjects packets into the stack, our pfil
1022	 * hook will be called multiple times for the same packet.
1023	 * Make sure we only process unique packets.
1024	 */
1025	if (siftr_chkreinject(*m, dir, ss))
1026		goto ret6;
1027
1028	if (dir == PFIL_IN)
1029		ss->n_in++;
1030	else
1031		ss->n_out++;
1032
1033	ip6_hl = sizeof(struct ip6_hdr);
1034
1035	/*
1036	 * Create a tcphdr struct starting at the correct offset
1037	 * in the ipv6 packet. ip->ip_hl gives the ip header length
1038	 * in 4-byte words, so multiply it to get the size in bytes.
1039	 */
1040	th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1041
1042	/*
1043	 * For inbound packets, the pfil hooks don't provide a pointer to the
1044	 * inpcb, so we need to find it ourselves and lock it.
1045	 */
1046	if (!inp) {
1047		/* Find the corresponding inpcb for this pkt. */
1048		inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1049		    th->th_sport, th->th_dport, dir, ss);
1050
1051		if (inp == NULL)
1052			goto ret6;
1053		else
1054			inp_locally_locked = 1;
1055	}
1056
1057	/* Find the TCP control block that corresponds with this packet. */
1058	tp = intotcpcb(inp);
1059
1060	/*
1061	 * If we can't find the TCP control block (happens occasionaly for a
1062	 * packet sent during the shutdown phase of a TCP connection),
1063	 * or we're in the timewait state, bail.
1064	 */
1065	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1066		if (dir == PFIL_IN)
1067			ss->nskip_in_tcpcb++;
1068		else
1069			ss->nskip_out_tcpcb++;
1070
1071		goto inp_unlock6;
1072	}
1073
1074	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1075
1076	if (pn == NULL) {
1077		if (dir == PFIL_IN)
1078			ss->nskip_in_malloc++;
1079		else
1080			ss->nskip_out_malloc++;
1081
1082		goto inp_unlock6;
1083	}
1084
1085	siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1086
1087	/* XXX: Figure out how to generate hashes for IPv6 packets. */
1088
1089	mtx_lock(&siftr_pkt_queue_mtx);
1090	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1091	mtx_unlock(&siftr_pkt_queue_mtx);
1092	goto ret6;
1093
1094inp_unlock6:
1095	if (inp_locally_locked)
1096		INP_RUNLOCK(inp);
1097
1098ret6:
1099	/* Returning 0 ensures pfil will not discard the pkt. */
1100	return (0);
1101}
1102#endif /* #ifdef SIFTR_IPV6 */
1103
1104
1105static int
1106siftr_pfil(int action)
1107{
1108	struct pfil_head *pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
1109#ifdef SIFTR_IPV6
1110	struct pfil_head *pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
1111#endif
1112
1113	if (action == HOOK) {
1114		pfil_add_hook(siftr_chkpkt, NULL,
1115		    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1116#ifdef SIFTR_IPV6
1117		pfil_add_hook(siftr_chkpkt6, NULL,
1118		    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1119#endif
1120	} else if (action == UNHOOK) {
1121		pfil_remove_hook(siftr_chkpkt, NULL,
1122		    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1123#ifdef SIFTR_IPV6
1124		pfil_remove_hook(siftr_chkpkt6, NULL,
1125		    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1126#endif
1127	}
1128
1129	return (0);
1130}
1131
1132
1133static int
1134siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1135{
1136	struct alq *new_alq;
1137	int error;
1138
1139	if (req->newptr == NULL)
1140		goto skip;
1141
1142	/* If old filename and new filename are different. */
1143	if (strncmp(siftr_logfile, (char *)req->newptr, PATH_MAX)) {
1144
1145		error = alq_open(&new_alq, req->newptr, curthread->td_ucred,
1146		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1147
1148		/* Bail if unable to create new alq. */
1149		if (error)
1150			return (1);
1151
1152		/*
1153		 * If disabled, siftr_alq == NULL so we simply close
1154		 * the alq as we've proved it can be opened.
1155		 * If enabled, close the existing alq and switch the old
1156		 * for the new.
1157		 */
1158		if (siftr_alq == NULL)
1159			alq_close(new_alq);
1160		else {
1161			alq_close(siftr_alq);
1162			siftr_alq = new_alq;
1163		}
1164	}
1165
1166skip:
1167	return (sysctl_handle_string(oidp, arg1, arg2, req));
1168}
1169
1170
1171static int
1172siftr_manage_ops(uint8_t action)
1173{
1174	struct siftr_stats totalss;
1175	struct timeval tval;
1176	struct flow_hash_node *counter, *tmp_counter;
1177	struct sbuf *s;
1178	int i, key_index, ret, error;
1179	uint32_t bytes_to_write, total_skipped_pkts;
1180	uint16_t lport, fport;
1181	uint8_t *key, ipver;
1182
1183#ifdef SIFTR_IPV6
1184	uint32_t laddr[4];
1185	uint32_t faddr[4];
1186#else
1187	uint8_t laddr[4];
1188	uint8_t faddr[4];
1189#endif
1190
1191	error = 0;
1192	total_skipped_pkts = 0;
1193
1194	/* Init an autosizing sbuf that initially holds 200 chars. */
1195	if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1196		return (-1);
1197
1198	if (action == SIFTR_ENABLE) {
1199		/*
1200		 * Create our alq
1201		 * XXX: We should abort if alq_open fails!
1202		 */
1203		alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1204		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1205
1206		STAILQ_INIT(&pkt_queue);
1207
1208		DPCPU_ZERO(ss);
1209
1210		siftr_exit_pkt_manager_thread = 0;
1211
1212		ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1213		    &siftr_pkt_manager_thr, RFNOWAIT, 0,
1214		    "siftr_pkt_manager_thr");
1215
1216		siftr_pfil(HOOK);
1217
1218		microtime(&tval);
1219
1220		sbuf_printf(s,
1221		    "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1222		    "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1223		    "sysver=%u\tipmode=%u\n",
1224		    (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1225		    TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1226
1227		sbuf_finish(s);
1228		alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1229
1230	} else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1231		/*
1232		 * Remove the pfil hook functions. All threads currently in
1233		 * the hook functions are allowed to exit before siftr_pfil()
1234		 * returns.
1235		 */
1236		siftr_pfil(UNHOOK);
1237
1238		/* This will block until the pkt manager thread unlocks it. */
1239		mtx_lock(&siftr_pkt_mgr_mtx);
1240
1241		/* Tell the pkt manager thread that it should exit now. */
1242		siftr_exit_pkt_manager_thread = 1;
1243
1244		/*
1245		 * Wake the pkt_manager thread so it realises that
1246		 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1247		 * The wakeup won't be delivered until we unlock
1248		 * siftr_pkt_mgr_mtx so this isn't racy.
1249		 */
1250		wakeup(&wait_for_pkt);
1251
1252		/* Wait for the pkt_manager thread to exit. */
1253		mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1254		    "thrwait", 0);
1255
1256		siftr_pkt_manager_thr = NULL;
1257		mtx_unlock(&siftr_pkt_mgr_mtx);
1258
1259		totalss.n_in = DPCPU_VARSUM(ss, n_in);
1260		totalss.n_out = DPCPU_VARSUM(ss, n_out);
1261		totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1262		totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1263		totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1264		totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1265		totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1266		totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1267		totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1268		totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1269
1270		total_skipped_pkts = totalss.nskip_in_malloc +
1271		    totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1272		    totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1273		    totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1274		    totalss.nskip_out_inpcb;
1275
1276		microtime(&tval);
1277
1278		sbuf_printf(s,
1279		    "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1280		    "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1281		    "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1282		    "num_outbound_skipped_pkts_malloc=%u\t"
1283		    "num_inbound_skipped_pkts_mtx=%u\t"
1284		    "num_outbound_skipped_pkts_mtx=%u\t"
1285		    "num_inbound_skipped_pkts_tcpcb=%u\t"
1286		    "num_outbound_skipped_pkts_tcpcb=%u\t"
1287		    "num_inbound_skipped_pkts_inpcb=%u\t"
1288		    "num_outbound_skipped_pkts_inpcb=%u\t"
1289		    "total_skipped_tcp_pkts=%u\tflow_list=",
1290		    (intmax_t)tval.tv_sec,
1291		    tval.tv_usec,
1292		    (uintmax_t)totalss.n_in,
1293		    (uintmax_t)totalss.n_out,
1294		    (uintmax_t)(totalss.n_in + totalss.n_out),
1295		    totalss.nskip_in_malloc,
1296		    totalss.nskip_out_malloc,
1297		    totalss.nskip_in_mtx,
1298		    totalss.nskip_out_mtx,
1299		    totalss.nskip_in_tcpcb,
1300		    totalss.nskip_out_tcpcb,
1301		    totalss.nskip_in_inpcb,
1302		    totalss.nskip_out_inpcb,
1303		    total_skipped_pkts);
1304
1305		/*
1306		 * Iterate over the flow hash, printing a summary of each
1307		 * flow seen and freeing any malloc'd memory.
1308		 * The hash consists of an array of LISTs (man 3 queue).
1309		 */
1310		for (i = 0; i < siftr_hashmask; i++) {
1311			LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1312			    tmp_counter) {
1313				key = counter->key;
1314				key_index = 1;
1315
1316				ipver = key[0];
1317
1318				memcpy(laddr, key + key_index, sizeof(laddr));
1319				key_index += sizeof(laddr);
1320				memcpy(&lport, key + key_index, sizeof(lport));
1321				key_index += sizeof(lport);
1322				memcpy(faddr, key + key_index, sizeof(faddr));
1323				key_index += sizeof(faddr);
1324				memcpy(&fport, key + key_index, sizeof(fport));
1325
1326#ifdef SIFTR_IPV6
1327				laddr[3] = ntohl(laddr[3]);
1328				faddr[3] = ntohl(faddr[3]);
1329
1330				if (ipver == INP_IPV6) {
1331					laddr[0] = ntohl(laddr[0]);
1332					laddr[1] = ntohl(laddr[1]);
1333					laddr[2] = ntohl(laddr[2]);
1334					faddr[0] = ntohl(faddr[0]);
1335					faddr[1] = ntohl(faddr[1]);
1336					faddr[2] = ntohl(faddr[2]);
1337
1338					sbuf_printf(s,
1339					    "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1340					    "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1341					    UPPER_SHORT(laddr[0]),
1342					    LOWER_SHORT(laddr[0]),
1343					    UPPER_SHORT(laddr[1]),
1344					    LOWER_SHORT(laddr[1]),
1345					    UPPER_SHORT(laddr[2]),
1346					    LOWER_SHORT(laddr[2]),
1347					    UPPER_SHORT(laddr[3]),
1348					    LOWER_SHORT(laddr[3]),
1349					    ntohs(lport),
1350					    UPPER_SHORT(faddr[0]),
1351					    LOWER_SHORT(faddr[0]),
1352					    UPPER_SHORT(faddr[1]),
1353					    LOWER_SHORT(faddr[1]),
1354					    UPPER_SHORT(faddr[2]),
1355					    LOWER_SHORT(faddr[2]),
1356					    UPPER_SHORT(faddr[3]),
1357					    LOWER_SHORT(faddr[3]),
1358					    ntohs(fport));
1359				} else {
1360					laddr[0] = FIRST_OCTET(laddr[3]);
1361					laddr[1] = SECOND_OCTET(laddr[3]);
1362					laddr[2] = THIRD_OCTET(laddr[3]);
1363					laddr[3] = FOURTH_OCTET(laddr[3]);
1364					faddr[0] = FIRST_OCTET(faddr[3]);
1365					faddr[1] = SECOND_OCTET(faddr[3]);
1366					faddr[2] = THIRD_OCTET(faddr[3]);
1367					faddr[3] = FOURTH_OCTET(faddr[3]);
1368#endif
1369					sbuf_printf(s,
1370					    "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1371					    laddr[0],
1372					    laddr[1],
1373					    laddr[2],
1374					    laddr[3],
1375					    ntohs(lport),
1376					    faddr[0],
1377					    faddr[1],
1378					    faddr[2],
1379					    faddr[3],
1380					    ntohs(fport));
1381#ifdef SIFTR_IPV6
1382				}
1383#endif
1384
1385				free(counter, M_SIFTR_HASHNODE);
1386			}
1387
1388			LIST_INIT(counter_hash + i);
1389		}
1390
1391		sbuf_printf(s, "\n");
1392		sbuf_finish(s);
1393
1394		i = 0;
1395		do {
1396			bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1397			alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1398			i += bytes_to_write;
1399		} while (i < sbuf_len(s));
1400
1401		alq_close(siftr_alq);
1402		siftr_alq = NULL;
1403	}
1404
1405	sbuf_delete(s);
1406
1407	/*
1408	 * XXX: Should be using ret to check if any functions fail
1409	 * and set error appropriately
1410	 */
1411
1412	return (error);
1413}
1414
1415
1416static int
1417siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1418{
1419	if (req->newptr == NULL)
1420		goto skip;
1421
1422	/* If the value passed in isn't 0 or 1, return an error. */
1423	if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
1424		return (1);
1425
1426	/* If we are changing state (0 to 1 or 1 to 0). */
1427	if (CAST_PTR_INT(req->newptr) != siftr_enabled )
1428		if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
1429			siftr_manage_ops(SIFTR_DISABLE);
1430			return (1);
1431		}
1432
1433skip:
1434	return (sysctl_handle_int(oidp, arg1, arg2, req));
1435}
1436
1437
1438static void
1439siftr_shutdown_handler(void *arg)
1440{
1441	siftr_manage_ops(SIFTR_DISABLE);
1442}
1443
1444
1445/*
1446 * Module is being unloaded or machine is shutting down. Take care of cleanup.
1447 */
1448static int
1449deinit_siftr(void)
1450{
1451	/* Cleanup. */
1452	siftr_manage_ops(SIFTR_DISABLE);
1453	hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1454	mtx_destroy(&siftr_pkt_queue_mtx);
1455	mtx_destroy(&siftr_pkt_mgr_mtx);
1456
1457	return (0);
1458}
1459
1460
1461/*
1462 * Module has just been loaded into the kernel.
1463 */
1464static int
1465init_siftr(void)
1466{
1467	EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1468	    SHUTDOWN_PRI_FIRST);
1469
1470	/* Initialise our flow counter hash table. */
1471	counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1472	    &siftr_hashmask);
1473
1474	mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1475	mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1476
1477	/* Print message to the user's current terminal. */
1478	uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1479	    "          http://caia.swin.edu.au/urp/newtcp\n\n",
1480	    MODVERSION_STR);
1481
1482	return (0);
1483}
1484
1485
1486/*
1487 * This is the function that is called to load and unload the module.
1488 * When the module is loaded, this function is called once with
1489 * "what" == MOD_LOAD
1490 * When the module is unloaded, this function is called twice with
1491 * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1492 * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1493 * this function is called once with "what" = MOD_SHUTDOWN
1494 * When the system is shut down, the handler isn't called until the very end
1495 * of the shutdown sequence i.e. after the disks have been synced.
1496 */
1497static int
1498siftr_load_handler(module_t mod, int what, void *arg)
1499{
1500	int ret;
1501
1502	switch (what) {
1503	case MOD_LOAD:
1504		ret = init_siftr();
1505		break;
1506
1507	case MOD_QUIESCE:
1508	case MOD_SHUTDOWN:
1509		ret = deinit_siftr();
1510		break;
1511
1512	case MOD_UNLOAD:
1513		ret = 0;
1514		break;
1515
1516	default:
1517		ret = EINVAL;
1518		break;
1519	}
1520
1521	return (ret);
1522}
1523
1524
1525static moduledata_t siftr_mod = {
1526	.name = "siftr",
1527	.evhand = siftr_load_handler,
1528};
1529
1530/*
1531 * Param 1: name of the kernel module
1532 * Param 2: moduledata_t struct containing info about the kernel module
1533 *          and the execution entry point for the module
1534 * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1535 *          Defines the module initialisation order
1536 * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1537 *          Defines the initialisation order of this kld relative to others
1538 *          within the same subsystem as defined by param 3
1539 */
1540DECLARE_MODULE(siftr, siftr_mod, SI_SUB_SMP, SI_ORDER_ANY);
1541MODULE_DEPEND(siftr, alq, 1, 1, 1);
1542MODULE_VERSION(siftr, MODVERSION);
1543