sctp_auth.c revision 234995
1/*-
2 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2008-2011, by Randall Stewart. All rights reserved.
4 * Copyright (c) 2008-2011, by Michael Tuexen. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are met:
8 *
9 * a) Redistributions of source code must retain the above copyright notice,
10 *    this list of conditions and the following disclaimer.
11 *
12 * b) Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the distribution.
15 *
16 * c) Neither the name of Cisco Systems, Inc. nor the names of its
17 *    contributors may be used to endorse or promote products derived
18 *    from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/netinet/sctp_auth.c 234995 2012-05-04 09:27:00Z tuexen $");
35
36#include <netinet/sctp_os.h>
37#include <netinet/sctp.h>
38#include <netinet/sctp_header.h>
39#include <netinet/sctp_pcb.h>
40#include <netinet/sctp_var.h>
41#include <netinet/sctp_sysctl.h>
42#include <netinet/sctputil.h>
43#include <netinet/sctp_indata.h>
44#include <netinet/sctp_output.h>
45#include <netinet/sctp_auth.h>
46
47#ifdef SCTP_DEBUG
48#define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
49#define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
50#endif				/* SCTP_DEBUG */
51
52
53void
54sctp_clear_chunklist(sctp_auth_chklist_t * chklist)
55{
56	bzero(chklist, sizeof(*chklist));
57	/* chklist->num_chunks = 0; */
58}
59
60sctp_auth_chklist_t *
61sctp_alloc_chunklist(void)
62{
63	sctp_auth_chklist_t *chklist;
64
65	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
66	    SCTP_M_AUTH_CL);
67	if (chklist == NULL) {
68		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
69	} else {
70		sctp_clear_chunklist(chklist);
71	}
72	return (chklist);
73}
74
75void
76sctp_free_chunklist(sctp_auth_chklist_t * list)
77{
78	if (list != NULL)
79		SCTP_FREE(list, SCTP_M_AUTH_CL);
80}
81
82sctp_auth_chklist_t *
83sctp_copy_chunklist(sctp_auth_chklist_t * list)
84{
85	sctp_auth_chklist_t *new_list;
86
87	if (list == NULL)
88		return (NULL);
89
90	/* get a new list */
91	new_list = sctp_alloc_chunklist();
92	if (new_list == NULL)
93		return (NULL);
94	/* copy it */
95	bcopy(list, new_list, sizeof(*new_list));
96
97	return (new_list);
98}
99
100
101/*
102 * add a chunk to the required chunks list
103 */
104int
105sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
106{
107	if (list == NULL)
108		return (-1);
109
110	/* is chunk restricted? */
111	if ((chunk == SCTP_INITIATION) ||
112	    (chunk == SCTP_INITIATION_ACK) ||
113	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
114	    (chunk == SCTP_AUTHENTICATION)) {
115		return (-1);
116	}
117	if (list->chunks[chunk] == 0) {
118		list->chunks[chunk] = 1;
119		list->num_chunks++;
120		SCTPDBG(SCTP_DEBUG_AUTH1,
121		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
122		    chunk, chunk);
123	}
124	return (0);
125}
126
127/*
128 * delete a chunk from the required chunks list
129 */
130int
131sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
132{
133	if (list == NULL)
134		return (-1);
135
136	/* is chunk restricted? */
137	if ((chunk == SCTP_ASCONF) ||
138	    (chunk == SCTP_ASCONF_ACK)) {
139		return (-1);
140	}
141	if (list->chunks[chunk] == 1) {
142		list->chunks[chunk] = 0;
143		list->num_chunks--;
144		SCTPDBG(SCTP_DEBUG_AUTH1,
145		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
146		    chunk, chunk);
147	}
148	return (0);
149}
150
151size_t
152sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list)
153{
154	if (list == NULL)
155		return (0);
156	else
157		return (list->num_chunks);
158}
159
160/*
161 * set the default list of chunks requiring AUTH
162 */
163void
164sctp_auth_set_default_chunks(sctp_auth_chklist_t * list)
165{
166	(void)sctp_auth_add_chunk(SCTP_ASCONF, list);
167	(void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list);
168}
169
170/*
171 * return the current number and list of required chunks caller must
172 * guarantee ptr has space for up to 256 bytes
173 */
174int
175sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
176{
177	int i, count = 0;
178
179	if (list == NULL)
180		return (0);
181
182	for (i = 0; i < 256; i++) {
183		if (list->chunks[i] != 0) {
184			*ptr++ = i;
185			count++;
186		}
187	}
188	return (count);
189}
190
191int
192sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
193{
194	int i, size = 0;
195
196	if (list == NULL)
197		return (0);
198
199	if (list->num_chunks <= 32) {
200		/* just list them, one byte each */
201		for (i = 0; i < 256; i++) {
202			if (list->chunks[i] != 0) {
203				*ptr++ = i;
204				size++;
205			}
206		}
207	} else {
208		int index, offset;
209
210		/* pack into a 32 byte bitfield */
211		for (i = 0; i < 256; i++) {
212			if (list->chunks[i] != 0) {
213				index = i / 8;
214				offset = i % 8;
215				ptr[index] |= (1 << offset);
216			}
217		}
218		size = 32;
219	}
220	return (size);
221}
222
223int
224sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks,
225    sctp_auth_chklist_t * list)
226{
227	int i;
228	int size;
229
230	if (list == NULL)
231		return (0);
232
233	if (num_chunks <= 32) {
234		/* just pull them, one byte each */
235		for (i = 0; i < num_chunks; i++) {
236			(void)sctp_auth_add_chunk(*ptr++, list);
237		}
238		size = num_chunks;
239	} else {
240		int index, offset;
241
242		/* unpack from a 32 byte bitfield */
243		for (index = 0; index < 32; index++) {
244			for (offset = 0; offset < 8; offset++) {
245				if (ptr[index] & (1 << offset)) {
246					(void)sctp_auth_add_chunk((index * 8) + offset, list);
247				}
248			}
249		}
250		size = 32;
251	}
252	return (size);
253}
254
255
256/*
257 * allocate structure space for a key of length keylen
258 */
259sctp_key_t *
260sctp_alloc_key(uint32_t keylen)
261{
262	sctp_key_t *new_key;
263
264	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
265	    SCTP_M_AUTH_KY);
266	if (new_key == NULL) {
267		/* out of memory */
268		return (NULL);
269	}
270	new_key->keylen = keylen;
271	return (new_key);
272}
273
274void
275sctp_free_key(sctp_key_t * key)
276{
277	if (key != NULL)
278		SCTP_FREE(key, SCTP_M_AUTH_KY);
279}
280
281void
282sctp_print_key(sctp_key_t * key, const char *str)
283{
284	uint32_t i;
285
286	if (key == NULL) {
287		SCTP_PRINTF("%s: [Null key]\n", str);
288		return;
289	}
290	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
291	if (key->keylen) {
292		for (i = 0; i < key->keylen; i++)
293			SCTP_PRINTF("%02x", key->key[i]);
294		SCTP_PRINTF("\n");
295	} else {
296		SCTP_PRINTF("[Null key]\n");
297	}
298}
299
300void
301sctp_show_key(sctp_key_t * key, const char *str)
302{
303	uint32_t i;
304
305	if (key == NULL) {
306		SCTP_PRINTF("%s: [Null key]\n", str);
307		return;
308	}
309	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
310	if (key->keylen) {
311		for (i = 0; i < key->keylen; i++)
312			SCTP_PRINTF("%02x", key->key[i]);
313		SCTP_PRINTF("\n");
314	} else {
315		SCTP_PRINTF("[Null key]\n");
316	}
317}
318
319static uint32_t
320sctp_get_keylen(sctp_key_t * key)
321{
322	if (key != NULL)
323		return (key->keylen);
324	else
325		return (0);
326}
327
328/*
329 * generate a new random key of length 'keylen'
330 */
331sctp_key_t *
332sctp_generate_random_key(uint32_t keylen)
333{
334	sctp_key_t *new_key;
335
336	/* validate keylen */
337	if (keylen > SCTP_AUTH_RANDOM_SIZE_MAX)
338		keylen = SCTP_AUTH_RANDOM_SIZE_MAX;
339
340	new_key = sctp_alloc_key(keylen);
341	if (new_key == NULL) {
342		/* out of memory */
343		return (NULL);
344	}
345	SCTP_READ_RANDOM(new_key->key, keylen);
346	new_key->keylen = keylen;
347	return (new_key);
348}
349
350sctp_key_t *
351sctp_set_key(uint8_t * key, uint32_t keylen)
352{
353	sctp_key_t *new_key;
354
355	new_key = sctp_alloc_key(keylen);
356	if (new_key == NULL) {
357		/* out of memory */
358		return (NULL);
359	}
360	bcopy(key, new_key->key, keylen);
361	return (new_key);
362}
363
364/*-
365 * given two keys of variable size, compute which key is "larger/smaller"
366 * returns:  1 if key1 > key2
367 *          -1 if key1 < key2
368 *           0 if key1 = key2
369 */
370static int
371sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2)
372{
373	uint32_t maxlen;
374	uint32_t i;
375	uint32_t key1len, key2len;
376	uint8_t *key_1, *key_2;
377	uint8_t temp[SCTP_AUTH_RANDOM_SIZE_MAX];
378
379	/* sanity/length check */
380	key1len = sctp_get_keylen(key1);
381	key2len = sctp_get_keylen(key2);
382	if ((key1len == 0) && (key2len == 0))
383		return (0);
384	else if (key1len == 0)
385		return (-1);
386	else if (key2len == 0)
387		return (1);
388
389	if (key1len != key2len) {
390		if (key1len >= key2len)
391			maxlen = key1len;
392		else
393			maxlen = key2len;
394		bzero(temp, maxlen);
395		if (key1len < maxlen) {
396			/* prepend zeroes to key1 */
397			bcopy(key1->key, temp + (maxlen - key1len), key1len);
398			key_1 = temp;
399			key_2 = key2->key;
400		} else {
401			/* prepend zeroes to key2 */
402			bcopy(key2->key, temp + (maxlen - key2len), key2len);
403			key_1 = key1->key;
404			key_2 = temp;
405		}
406	} else {
407		maxlen = key1len;
408		key_1 = key1->key;
409		key_2 = key2->key;
410	}
411
412	for (i = 0; i < maxlen; i++) {
413		if (*key_1 > *key_2)
414			return (1);
415		else if (*key_1 < *key_2)
416			return (-1);
417		key_1++;
418		key_2++;
419	}
420
421	/* keys are equal value, so check lengths */
422	if (key1len == key2len)
423		return (0);
424	else if (key1len < key2len)
425		return (-1);
426	else
427		return (1);
428}
429
430/*
431 * generate the concatenated keying material based on the two keys and the
432 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
433 * order for concatenation
434 */
435sctp_key_t *
436sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared)
437{
438	uint32_t keylen;
439	sctp_key_t *new_key;
440	uint8_t *key_ptr;
441
442	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
443	    sctp_get_keylen(shared);
444
445	if (keylen > 0) {
446		/* get space for the new key */
447		new_key = sctp_alloc_key(keylen);
448		if (new_key == NULL) {
449			/* out of memory */
450			return (NULL);
451		}
452		new_key->keylen = keylen;
453		key_ptr = new_key->key;
454	} else {
455		/* all keys empty/null?! */
456		return (NULL);
457	}
458
459	/* concatenate the keys */
460	if (sctp_compare_key(key1, key2) <= 0) {
461		/* key is shared + key1 + key2 */
462		if (sctp_get_keylen(shared)) {
463			bcopy(shared->key, key_ptr, shared->keylen);
464			key_ptr += shared->keylen;
465		}
466		if (sctp_get_keylen(key1)) {
467			bcopy(key1->key, key_ptr, key1->keylen);
468			key_ptr += key1->keylen;
469		}
470		if (sctp_get_keylen(key2)) {
471			bcopy(key2->key, key_ptr, key2->keylen);
472		}
473	} else {
474		/* key is shared + key2 + key1 */
475		if (sctp_get_keylen(shared)) {
476			bcopy(shared->key, key_ptr, shared->keylen);
477			key_ptr += shared->keylen;
478		}
479		if (sctp_get_keylen(key2)) {
480			bcopy(key2->key, key_ptr, key2->keylen);
481			key_ptr += key2->keylen;
482		}
483		if (sctp_get_keylen(key1)) {
484			bcopy(key1->key, key_ptr, key1->keylen);
485		}
486	}
487	return (new_key);
488}
489
490
491sctp_sharedkey_t *
492sctp_alloc_sharedkey(void)
493{
494	sctp_sharedkey_t *new_key;
495
496	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
497	    SCTP_M_AUTH_KY);
498	if (new_key == NULL) {
499		/* out of memory */
500		return (NULL);
501	}
502	new_key->keyid = 0;
503	new_key->key = NULL;
504	new_key->refcount = 1;
505	new_key->deactivated = 0;
506	return (new_key);
507}
508
509void
510sctp_free_sharedkey(sctp_sharedkey_t * skey)
511{
512	if (skey == NULL)
513		return;
514
515	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
516		if (skey->key != NULL)
517			sctp_free_key(skey->key);
518		SCTP_FREE(skey, SCTP_M_AUTH_KY);
519	}
520}
521
522sctp_sharedkey_t *
523sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
524{
525	sctp_sharedkey_t *skey;
526
527	LIST_FOREACH(skey, shared_keys, next) {
528		if (skey->keyid == key_id)
529			return (skey);
530	}
531	return (NULL);
532}
533
534int
535sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
536    sctp_sharedkey_t * new_skey)
537{
538	sctp_sharedkey_t *skey;
539
540	if ((shared_keys == NULL) || (new_skey == NULL))
541		return (EINVAL);
542
543	/* insert into an empty list? */
544	if (LIST_EMPTY(shared_keys)) {
545		LIST_INSERT_HEAD(shared_keys, new_skey, next);
546		return (0);
547	}
548	/* insert into the existing list, ordered by key id */
549	LIST_FOREACH(skey, shared_keys, next) {
550		if (new_skey->keyid < skey->keyid) {
551			/* insert it before here */
552			LIST_INSERT_BEFORE(skey, new_skey, next);
553			return (0);
554		} else if (new_skey->keyid == skey->keyid) {
555			/* replace the existing key */
556			/* verify this key *can* be replaced */
557			if ((skey->deactivated) && (skey->refcount > 1)) {
558				SCTPDBG(SCTP_DEBUG_AUTH1,
559				    "can't replace shared key id %u\n",
560				    new_skey->keyid);
561				return (EBUSY);
562			}
563			SCTPDBG(SCTP_DEBUG_AUTH1,
564			    "replacing shared key id %u\n",
565			    new_skey->keyid);
566			LIST_INSERT_BEFORE(skey, new_skey, next);
567			LIST_REMOVE(skey, next);
568			sctp_free_sharedkey(skey);
569			return (0);
570		}
571		if (LIST_NEXT(skey, next) == NULL) {
572			/* belongs at the end of the list */
573			LIST_INSERT_AFTER(skey, new_skey, next);
574			return (0);
575		}
576	}
577	/* shouldn't reach here */
578	return (0);
579}
580
581void
582sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
583{
584	sctp_sharedkey_t *skey;
585
586	/* find the shared key */
587	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
588
589	/* bump the ref count */
590	if (skey) {
591		atomic_add_int(&skey->refcount, 1);
592		SCTPDBG(SCTP_DEBUG_AUTH2,
593		    "%s: stcb %p key %u refcount acquire to %d\n",
594		    __FUNCTION__, stcb, key_id, skey->refcount);
595	}
596}
597
598void
599sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked
600#if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
601    SCTP_UNUSED
602#endif
603)
604{
605	sctp_sharedkey_t *skey;
606
607	/* find the shared key */
608	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
609
610	/* decrement the ref count */
611	if (skey) {
612		sctp_free_sharedkey(skey);
613		SCTPDBG(SCTP_DEBUG_AUTH2,
614		    "%s: stcb %p key %u refcount release to %d\n",
615		    __FUNCTION__, stcb, key_id, skey->refcount);
616
617		/* see if a notification should be generated */
618		if ((skey->refcount <= 1) && (skey->deactivated)) {
619			/* notify ULP that key is no longer used */
620			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
621			    key_id, 0, so_locked);
622			SCTPDBG(SCTP_DEBUG_AUTH2,
623			    "%s: stcb %p key %u no longer used, %d\n",
624			    __FUNCTION__, stcb, key_id, skey->refcount);
625		}
626	}
627}
628
629static sctp_sharedkey_t *
630sctp_copy_sharedkey(const sctp_sharedkey_t * skey)
631{
632	sctp_sharedkey_t *new_skey;
633
634	if (skey == NULL)
635		return (NULL);
636	new_skey = sctp_alloc_sharedkey();
637	if (new_skey == NULL)
638		return (NULL);
639	if (skey->key != NULL)
640		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
641	else
642		new_skey->key = NULL;
643	new_skey->keyid = skey->keyid;
644	return (new_skey);
645}
646
647int
648sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
649{
650	sctp_sharedkey_t *skey, *new_skey;
651	int count = 0;
652
653	if ((src == NULL) || (dest == NULL))
654		return (0);
655	LIST_FOREACH(skey, src, next) {
656		new_skey = sctp_copy_sharedkey(skey);
657		if (new_skey != NULL) {
658			(void)sctp_insert_sharedkey(dest, new_skey);
659			count++;
660		}
661	}
662	return (count);
663}
664
665
666sctp_hmaclist_t *
667sctp_alloc_hmaclist(uint8_t num_hmacs)
668{
669	sctp_hmaclist_t *new_list;
670	int alloc_size;
671
672	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
673	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
674	    SCTP_M_AUTH_HL);
675	if (new_list == NULL) {
676		/* out of memory */
677		return (NULL);
678	}
679	new_list->max_algo = num_hmacs;
680	new_list->num_algo = 0;
681	return (new_list);
682}
683
684void
685sctp_free_hmaclist(sctp_hmaclist_t * list)
686{
687	if (list != NULL) {
688		SCTP_FREE(list, SCTP_M_AUTH_HL);
689		list = NULL;
690	}
691}
692
693int
694sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id)
695{
696	int i;
697
698	if (list == NULL)
699		return (-1);
700	if (list->num_algo == list->max_algo) {
701		SCTPDBG(SCTP_DEBUG_AUTH1,
702		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
703		return (-1);
704	}
705	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
706#ifdef HAVE_SHA224
707	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA224) &&
708#endif
709#ifdef HAVE_SHA2
710	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256) &&
711	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA384) &&
712	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA512) &&
713#endif
714	    1) {
715		return (-1);
716	}
717	/* Now is it already in the list */
718	for (i = 0; i < list->num_algo; i++) {
719		if (list->hmac[i] == hmac_id) {
720			/* already in list */
721			return (-1);
722		}
723	}
724	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
725	list->hmac[list->num_algo++] = hmac_id;
726	return (0);
727}
728
729sctp_hmaclist_t *
730sctp_copy_hmaclist(sctp_hmaclist_t * list)
731{
732	sctp_hmaclist_t *new_list;
733	int i;
734
735	if (list == NULL)
736		return (NULL);
737	/* get a new list */
738	new_list = sctp_alloc_hmaclist(list->max_algo);
739	if (new_list == NULL)
740		return (NULL);
741	/* copy it */
742	new_list->max_algo = list->max_algo;
743	new_list->num_algo = list->num_algo;
744	for (i = 0; i < list->num_algo; i++)
745		new_list->hmac[i] = list->hmac[i];
746	return (new_list);
747}
748
749sctp_hmaclist_t *
750sctp_default_supported_hmaclist(void)
751{
752	sctp_hmaclist_t *new_list;
753
754	new_list = sctp_alloc_hmaclist(2);
755	if (new_list == NULL)
756		return (NULL);
757	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
758	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
759	return (new_list);
760}
761
762/*-
763 * HMAC algos are listed in priority/preference order
764 * find the best HMAC id to use for the peer based on local support
765 */
766uint16_t
767sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local)
768{
769	int i, j;
770
771	if ((local == NULL) || (peer == NULL))
772		return (SCTP_AUTH_HMAC_ID_RSVD);
773
774	for (i = 0; i < peer->num_algo; i++) {
775		for (j = 0; j < local->num_algo; j++) {
776			if (peer->hmac[i] == local->hmac[j]) {
777				/* found the "best" one */
778				SCTPDBG(SCTP_DEBUG_AUTH1,
779				    "SCTP: negotiated peer HMAC id %u\n",
780				    peer->hmac[i]);
781				return (peer->hmac[i]);
782			}
783		}
784	}
785	/* didn't find one! */
786	return (SCTP_AUTH_HMAC_ID_RSVD);
787}
788
789/*-
790 * serialize the HMAC algo list and return space used
791 * caller must guarantee ptr has appropriate space
792 */
793int
794sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr)
795{
796	int i;
797	uint16_t hmac_id;
798
799	if (list == NULL)
800		return (0);
801
802	for (i = 0; i < list->num_algo; i++) {
803		hmac_id = htons(list->hmac[i]);
804		bcopy(&hmac_id, ptr, sizeof(hmac_id));
805		ptr += sizeof(hmac_id);
806	}
807	return (list->num_algo * sizeof(hmac_id));
808}
809
810int
811sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
812{
813	uint32_t i;
814	uint16_t hmac_id;
815	uint32_t sha1_supported = 0;
816
817	for (i = 0; i < num_hmacs; i++) {
818		hmac_id = ntohs(hmacs->hmac_ids[i]);
819		if (hmac_id == SCTP_AUTH_HMAC_ID_SHA1)
820			sha1_supported = 1;
821	}
822	/* all HMAC id's are supported */
823	if (sha1_supported == 0)
824		return (-1);
825	else
826		return (0);
827}
828
829sctp_authinfo_t *
830sctp_alloc_authinfo(void)
831{
832	sctp_authinfo_t *new_authinfo;
833
834	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
835	    SCTP_M_AUTH_IF);
836
837	if (new_authinfo == NULL) {
838		/* out of memory */
839		return (NULL);
840	}
841	bzero(new_authinfo, sizeof(*new_authinfo));
842	return (new_authinfo);
843}
844
845void
846sctp_free_authinfo(sctp_authinfo_t * authinfo)
847{
848	if (authinfo == NULL)
849		return;
850
851	if (authinfo->random != NULL)
852		sctp_free_key(authinfo->random);
853	if (authinfo->peer_random != NULL)
854		sctp_free_key(authinfo->peer_random);
855	if (authinfo->assoc_key != NULL)
856		sctp_free_key(authinfo->assoc_key);
857	if (authinfo->recv_key != NULL)
858		sctp_free_key(authinfo->recv_key);
859
860	/* We are NOT dynamically allocating authinfo's right now... */
861	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
862}
863
864
865uint32_t
866sctp_get_auth_chunk_len(uint16_t hmac_algo)
867{
868	int size;
869
870	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
871	return (SCTP_SIZE32(size));
872}
873
874uint32_t
875sctp_get_hmac_digest_len(uint16_t hmac_algo)
876{
877	switch (hmac_algo) {
878	case SCTP_AUTH_HMAC_ID_SHA1:
879		return (SCTP_AUTH_DIGEST_LEN_SHA1);
880#ifdef HAVE_SHA224
881	case SCTP_AUTH_HMAC_ID_SHA224:
882		return (SCTP_AUTH_DIGEST_LEN_SHA224);
883#endif
884#ifdef HAVE_SHA2
885	case SCTP_AUTH_HMAC_ID_SHA256:
886		return (SCTP_AUTH_DIGEST_LEN_SHA256);
887	case SCTP_AUTH_HMAC_ID_SHA384:
888		return (SCTP_AUTH_DIGEST_LEN_SHA384);
889	case SCTP_AUTH_HMAC_ID_SHA512:
890		return (SCTP_AUTH_DIGEST_LEN_SHA512);
891#endif
892	default:
893		/* unknown HMAC algorithm: can't do anything */
894		return (0);
895	}			/* end switch */
896}
897
898static inline int
899sctp_get_hmac_block_len(uint16_t hmac_algo)
900{
901	switch (hmac_algo) {
902	case SCTP_AUTH_HMAC_ID_SHA1:
903#ifdef HAVE_SHA224
904	case SCTP_AUTH_HMAC_ID_SHA224:
905#endif
906		return (64);
907#ifdef HAVE_SHA2
908	case SCTP_AUTH_HMAC_ID_SHA256:
909		return (64);
910	case SCTP_AUTH_HMAC_ID_SHA384:
911	case SCTP_AUTH_HMAC_ID_SHA512:
912		return (128);
913#endif
914	case SCTP_AUTH_HMAC_ID_RSVD:
915	default:
916		/* unknown HMAC algorithm: can't do anything */
917		return (0);
918	}			/* end switch */
919}
920
921static void
922sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx)
923{
924	switch (hmac_algo) {
925	case SCTP_AUTH_HMAC_ID_SHA1:
926		SHA1_Init(&ctx->sha1);
927		break;
928#ifdef HAVE_SHA224
929	case SCTP_AUTH_HMAC_ID_SHA224:
930		break;
931#endif
932#ifdef HAVE_SHA2
933	case SCTP_AUTH_HMAC_ID_SHA256:
934		SHA256_Init(&ctx->sha256);
935		break;
936	case SCTP_AUTH_HMAC_ID_SHA384:
937		SHA384_Init(&ctx->sha384);
938		break;
939	case SCTP_AUTH_HMAC_ID_SHA512:
940		SHA512_Init(&ctx->sha512);
941		break;
942#endif
943	case SCTP_AUTH_HMAC_ID_RSVD:
944	default:
945		/* unknown HMAC algorithm: can't do anything */
946		return;
947	}			/* end switch */
948}
949
950static void
951sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx,
952    uint8_t * text, uint32_t textlen)
953{
954	switch (hmac_algo) {
955	case SCTP_AUTH_HMAC_ID_SHA1:
956		SHA1_Update(&ctx->sha1, text, textlen);
957		break;
958#ifdef HAVE_SHA224
959	case SCTP_AUTH_HMAC_ID_SHA224:
960		break;
961#endif
962#ifdef HAVE_SHA2
963	case SCTP_AUTH_HMAC_ID_SHA256:
964		SHA256_Update(&ctx->sha256, text, textlen);
965		break;
966	case SCTP_AUTH_HMAC_ID_SHA384:
967		SHA384_Update(&ctx->sha384, text, textlen);
968		break;
969	case SCTP_AUTH_HMAC_ID_SHA512:
970		SHA512_Update(&ctx->sha512, text, textlen);
971		break;
972#endif
973	case SCTP_AUTH_HMAC_ID_RSVD:
974	default:
975		/* unknown HMAC algorithm: can't do anything */
976		return;
977	}			/* end switch */
978}
979
980static void
981sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx,
982    uint8_t * digest)
983{
984	switch (hmac_algo) {
985	case SCTP_AUTH_HMAC_ID_SHA1:
986		SHA1_Final(digest, &ctx->sha1);
987		break;
988#ifdef HAVE_SHA224
989	case SCTP_AUTH_HMAC_ID_SHA224:
990		break;
991#endif
992#ifdef HAVE_SHA2
993	case SCTP_AUTH_HMAC_ID_SHA256:
994		SHA256_Final(digest, &ctx->sha256);
995		break;
996	case SCTP_AUTH_HMAC_ID_SHA384:
997		/* SHA384 is truncated SHA512 */
998		SHA384_Final(digest, &ctx->sha384);
999		break;
1000	case SCTP_AUTH_HMAC_ID_SHA512:
1001		SHA512_Final(digest, &ctx->sha512);
1002		break;
1003#endif
1004	case SCTP_AUTH_HMAC_ID_RSVD:
1005	default:
1006		/* unknown HMAC algorithm: can't do anything */
1007		return;
1008	}			/* end switch */
1009}
1010
1011/*-
1012 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
1013 *
1014 * Compute the HMAC digest using the desired hash key, text, and HMAC
1015 * algorithm.  Resulting digest is placed in 'digest' and digest length
1016 * is returned, if the HMAC was performed.
1017 *
1018 * WARNING: it is up to the caller to supply sufficient space to hold the
1019 * resultant digest.
1020 */
1021uint32_t
1022sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1023    uint8_t * text, uint32_t textlen, uint8_t * digest)
1024{
1025	uint32_t digestlen;
1026	uint32_t blocklen;
1027	sctp_hash_context_t ctx;
1028	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1029	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1030	uint32_t i;
1031
1032	/* sanity check the material and length */
1033	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
1034	    (textlen == 0) || (digest == NULL)) {
1035		/* can't do HMAC with empty key or text or digest store */
1036		return (0);
1037	}
1038	/* validate the hmac algo and get the digest length */
1039	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1040	if (digestlen == 0)
1041		return (0);
1042
1043	/* hash the key if it is longer than the hash block size */
1044	blocklen = sctp_get_hmac_block_len(hmac_algo);
1045	if (keylen > blocklen) {
1046		sctp_hmac_init(hmac_algo, &ctx);
1047		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1048		sctp_hmac_final(hmac_algo, &ctx, temp);
1049		/* set the hashed key as the key */
1050		keylen = digestlen;
1051		key = temp;
1052	}
1053	/* initialize the inner/outer pads with the key and "append" zeroes */
1054	bzero(ipad, blocklen);
1055	bzero(opad, blocklen);
1056	bcopy(key, ipad, keylen);
1057	bcopy(key, opad, keylen);
1058
1059	/* XOR the key with ipad and opad values */
1060	for (i = 0; i < blocklen; i++) {
1061		ipad[i] ^= 0x36;
1062		opad[i] ^= 0x5c;
1063	}
1064
1065	/* perform inner hash */
1066	sctp_hmac_init(hmac_algo, &ctx);
1067	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1068	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
1069	sctp_hmac_final(hmac_algo, &ctx, temp);
1070
1071	/* perform outer hash */
1072	sctp_hmac_init(hmac_algo, &ctx);
1073	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1074	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1075	sctp_hmac_final(hmac_algo, &ctx, digest);
1076
1077	return (digestlen);
1078}
1079
1080/* mbuf version */
1081uint32_t
1082sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1083    struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer)
1084{
1085	uint32_t digestlen;
1086	uint32_t blocklen;
1087	sctp_hash_context_t ctx;
1088	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1089	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1090	uint32_t i;
1091	struct mbuf *m_tmp;
1092
1093	/* sanity check the material and length */
1094	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
1095		/* can't do HMAC with empty key or text or digest store */
1096		return (0);
1097	}
1098	/* validate the hmac algo and get the digest length */
1099	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1100	if (digestlen == 0)
1101		return (0);
1102
1103	/* hash the key if it is longer than the hash block size */
1104	blocklen = sctp_get_hmac_block_len(hmac_algo);
1105	if (keylen > blocklen) {
1106		sctp_hmac_init(hmac_algo, &ctx);
1107		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1108		sctp_hmac_final(hmac_algo, &ctx, temp);
1109		/* set the hashed key as the key */
1110		keylen = digestlen;
1111		key = temp;
1112	}
1113	/* initialize the inner/outer pads with the key and "append" zeroes */
1114	bzero(ipad, blocklen);
1115	bzero(opad, blocklen);
1116	bcopy(key, ipad, keylen);
1117	bcopy(key, opad, keylen);
1118
1119	/* XOR the key with ipad and opad values */
1120	for (i = 0; i < blocklen; i++) {
1121		ipad[i] ^= 0x36;
1122		opad[i] ^= 0x5c;
1123	}
1124
1125	/* perform inner hash */
1126	sctp_hmac_init(hmac_algo, &ctx);
1127	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1128	/* find the correct starting mbuf and offset (get start of text) */
1129	m_tmp = m;
1130	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1131		m_offset -= SCTP_BUF_LEN(m_tmp);
1132		m_tmp = SCTP_BUF_NEXT(m_tmp);
1133	}
1134	/* now use the rest of the mbuf chain for the text */
1135	while (m_tmp != NULL) {
1136		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1137			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1138			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1139		} else {
1140			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1141			    SCTP_BUF_LEN(m_tmp) - m_offset);
1142		}
1143
1144		/* clear the offset since it's only for the first mbuf */
1145		m_offset = 0;
1146		m_tmp = SCTP_BUF_NEXT(m_tmp);
1147	}
1148	sctp_hmac_final(hmac_algo, &ctx, temp);
1149
1150	/* perform outer hash */
1151	sctp_hmac_init(hmac_algo, &ctx);
1152	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1153	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1154	sctp_hmac_final(hmac_algo, &ctx, digest);
1155
1156	return (digestlen);
1157}
1158
1159/*-
1160 * verify the HMAC digest using the desired hash key, text, and HMAC
1161 * algorithm.
1162 * Returns -1 on error, 0 on success.
1163 */
1164int
1165sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1166    uint8_t * text, uint32_t textlen,
1167    uint8_t * digest, uint32_t digestlen)
1168{
1169	uint32_t len;
1170	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1171
1172	/* sanity check the material and length */
1173	if ((key == NULL) || (keylen == 0) ||
1174	    (text == NULL) || (textlen == 0) || (digest == NULL)) {
1175		/* can't do HMAC with empty key or text or digest */
1176		return (-1);
1177	}
1178	len = sctp_get_hmac_digest_len(hmac_algo);
1179	if ((len == 0) || (digestlen != len))
1180		return (-1);
1181
1182	/* compute the expected hash */
1183	if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len)
1184		return (-1);
1185
1186	if (memcmp(digest, temp, digestlen) != 0)
1187		return (-1);
1188	else
1189		return (0);
1190}
1191
1192
1193/*
1194 * computes the requested HMAC using a key struct (which may be modified if
1195 * the keylen exceeds the HMAC block len).
1196 */
1197uint32_t
1198sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text,
1199    uint32_t textlen, uint8_t * digest)
1200{
1201	uint32_t digestlen;
1202	uint32_t blocklen;
1203	sctp_hash_context_t ctx;
1204	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1205
1206	/* sanity check */
1207	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1208	    (digest == NULL)) {
1209		/* can't do HMAC with empty key or text or digest store */
1210		return (0);
1211	}
1212	/* validate the hmac algo and get the digest length */
1213	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1214	if (digestlen == 0)
1215		return (0);
1216
1217	/* hash the key if it is longer than the hash block size */
1218	blocklen = sctp_get_hmac_block_len(hmac_algo);
1219	if (key->keylen > blocklen) {
1220		sctp_hmac_init(hmac_algo, &ctx);
1221		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1222		sctp_hmac_final(hmac_algo, &ctx, temp);
1223		/* save the hashed key as the new key */
1224		key->keylen = digestlen;
1225		bcopy(temp, key->key, key->keylen);
1226	}
1227	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1228	    digest));
1229}
1230
1231/* mbuf version */
1232uint32_t
1233sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m,
1234    uint32_t m_offset, uint8_t * digest)
1235{
1236	uint32_t digestlen;
1237	uint32_t blocklen;
1238	sctp_hash_context_t ctx;
1239	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1240
1241	/* sanity check */
1242	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1243		/* can't do HMAC with empty key or text or digest store */
1244		return (0);
1245	}
1246	/* validate the hmac algo and get the digest length */
1247	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1248	if (digestlen == 0)
1249		return (0);
1250
1251	/* hash the key if it is longer than the hash block size */
1252	blocklen = sctp_get_hmac_block_len(hmac_algo);
1253	if (key->keylen > blocklen) {
1254		sctp_hmac_init(hmac_algo, &ctx);
1255		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1256		sctp_hmac_final(hmac_algo, &ctx, temp);
1257		/* save the hashed key as the new key */
1258		key->keylen = digestlen;
1259		bcopy(temp, key->key, key->keylen);
1260	}
1261	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1262}
1263
1264int
1265sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id)
1266{
1267	int i;
1268
1269	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1270		return (0);
1271
1272	for (i = 0; i < list->num_algo; i++)
1273		if (list->hmac[i] == id)
1274			return (1);
1275
1276	/* not in the list */
1277	return (0);
1278}
1279
1280
1281/*-
1282 * clear any cached key(s) if they match the given key id on an association.
1283 * the cached key(s) will be recomputed and re-cached at next use.
1284 * ASSUMES TCB_LOCK is already held
1285 */
1286void
1287sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1288{
1289	if (stcb == NULL)
1290		return;
1291
1292	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1293		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1294		stcb->asoc.authinfo.assoc_key = NULL;
1295	}
1296	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1297		sctp_free_key(stcb->asoc.authinfo.recv_key);
1298		stcb->asoc.authinfo.recv_key = NULL;
1299	}
1300}
1301
1302/*-
1303 * clear any cached key(s) if they match the given key id for all assocs on
1304 * an endpoint.
1305 * ASSUMES INP_WLOCK is already held
1306 */
1307void
1308sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1309{
1310	struct sctp_tcb *stcb;
1311
1312	if (inp == NULL)
1313		return;
1314
1315	/* clear the cached keys on all assocs on this instance */
1316	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1317		SCTP_TCB_LOCK(stcb);
1318		sctp_clear_cachedkeys(stcb, keyid);
1319		SCTP_TCB_UNLOCK(stcb);
1320	}
1321}
1322
1323/*-
1324 * delete a shared key from an association
1325 * ASSUMES TCB_LOCK is already held
1326 */
1327int
1328sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1329{
1330	sctp_sharedkey_t *skey;
1331
1332	if (stcb == NULL)
1333		return (-1);
1334
1335	/* is the keyid the assoc active sending key */
1336	if (keyid == stcb->asoc.authinfo.active_keyid)
1337		return (-1);
1338
1339	/* does the key exist? */
1340	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1341	if (skey == NULL)
1342		return (-1);
1343
1344	/* are there other refcount holders on the key? */
1345	if (skey->refcount > 1)
1346		return (-1);
1347
1348	/* remove it */
1349	LIST_REMOVE(skey, next);
1350	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1351
1352	/* clear any cached keys */
1353	sctp_clear_cachedkeys(stcb, keyid);
1354	return (0);
1355}
1356
1357/*-
1358 * deletes a shared key from the endpoint
1359 * ASSUMES INP_WLOCK is already held
1360 */
1361int
1362sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1363{
1364	sctp_sharedkey_t *skey;
1365
1366	if (inp == NULL)
1367		return (-1);
1368
1369	/* is the keyid the active sending key on the endpoint */
1370	if (keyid == inp->sctp_ep.default_keyid)
1371		return (-1);
1372
1373	/* does the key exist? */
1374	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1375	if (skey == NULL)
1376		return (-1);
1377
1378	/* endpoint keys are not refcounted */
1379
1380	/* remove it */
1381	LIST_REMOVE(skey, next);
1382	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1383
1384	/* clear any cached keys */
1385	sctp_clear_cachedkeys_ep(inp, keyid);
1386	return (0);
1387}
1388
1389/*-
1390 * set the active key on an association
1391 * ASSUMES TCB_LOCK is already held
1392 */
1393int
1394sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1395{
1396	sctp_sharedkey_t *skey = NULL;
1397
1398	/* find the key on the assoc */
1399	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1400	if (skey == NULL) {
1401		/* that key doesn't exist */
1402		return (-1);
1403	}
1404	if ((skey->deactivated) && (skey->refcount > 1)) {
1405		/* can't reactivate a deactivated key with other refcounts */
1406		return (-1);
1407	}
1408	/* set the (new) active key */
1409	stcb->asoc.authinfo.active_keyid = keyid;
1410	/* reset the deactivated flag */
1411	skey->deactivated = 0;
1412
1413	return (0);
1414}
1415
1416/*-
1417 * set the active key on an endpoint
1418 * ASSUMES INP_WLOCK is already held
1419 */
1420int
1421sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1422{
1423	sctp_sharedkey_t *skey;
1424
1425	/* find the key */
1426	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1427	if (skey == NULL) {
1428		/* that key doesn't exist */
1429		return (-1);
1430	}
1431	inp->sctp_ep.default_keyid = keyid;
1432	return (0);
1433}
1434
1435/*-
1436 * deactivates a shared key from the association
1437 * ASSUMES INP_WLOCK is already held
1438 */
1439int
1440sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1441{
1442	sctp_sharedkey_t *skey;
1443
1444	if (stcb == NULL)
1445		return (-1);
1446
1447	/* is the keyid the assoc active sending key */
1448	if (keyid == stcb->asoc.authinfo.active_keyid)
1449		return (-1);
1450
1451	/* does the key exist? */
1452	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1453	if (skey == NULL)
1454		return (-1);
1455
1456	/* are there other refcount holders on the key? */
1457	if (skey->refcount == 1) {
1458		/* no other users, send a notification for this key */
1459		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1460		    SCTP_SO_LOCKED);
1461	}
1462	/* mark the key as deactivated */
1463	skey->deactivated = 1;
1464
1465	return (0);
1466}
1467
1468/*-
1469 * deactivates a shared key from the endpoint
1470 * ASSUMES INP_WLOCK is already held
1471 */
1472int
1473sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1474{
1475	sctp_sharedkey_t *skey;
1476
1477	if (inp == NULL)
1478		return (-1);
1479
1480	/* is the keyid the active sending key on the endpoint */
1481	if (keyid == inp->sctp_ep.default_keyid)
1482		return (-1);
1483
1484	/* does the key exist? */
1485	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1486	if (skey == NULL)
1487		return (-1);
1488
1489	/* endpoint keys are not refcounted */
1490
1491	/* remove it */
1492	LIST_REMOVE(skey, next);
1493	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1494
1495	return (0);
1496}
1497
1498/*
1499 * get local authentication parameters from cookie (from INIT-ACK)
1500 */
1501void
1502sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1503    uint32_t offset, uint32_t length)
1504{
1505	struct sctp_paramhdr *phdr, tmp_param;
1506	uint16_t plen, ptype;
1507	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1508	struct sctp_auth_random *p_random = NULL;
1509	uint16_t random_len = 0;
1510	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1511	struct sctp_auth_hmac_algo *hmacs = NULL;
1512	uint16_t hmacs_len = 0;
1513	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1514	struct sctp_auth_chunk_list *chunks = NULL;
1515	uint16_t num_chunks = 0;
1516	sctp_key_t *new_key;
1517	uint32_t keylen;
1518
1519	/* convert to upper bound */
1520	length += offset;
1521
1522	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1523	    sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param);
1524	while (phdr != NULL) {
1525		ptype = ntohs(phdr->param_type);
1526		plen = ntohs(phdr->param_length);
1527
1528		if ((plen == 0) || (offset + plen > length))
1529			break;
1530
1531		if (ptype == SCTP_RANDOM) {
1532			if (plen > sizeof(random_store))
1533				break;
1534			phdr = sctp_get_next_param(m, offset,
1535			    (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store)));
1536			if (phdr == NULL)
1537				return;
1538			/* save the random and length for the key */
1539			p_random = (struct sctp_auth_random *)phdr;
1540			random_len = plen - sizeof(*p_random);
1541		} else if (ptype == SCTP_HMAC_LIST) {
1542			int num_hmacs;
1543			int i;
1544
1545			if (plen > sizeof(hmacs_store))
1546				break;
1547			phdr = sctp_get_next_param(m, offset,
1548			    (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store)));
1549			if (phdr == NULL)
1550				return;
1551			/* save the hmacs list and num for the key */
1552			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1553			hmacs_len = plen - sizeof(*hmacs);
1554			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1555			if (stcb->asoc.local_hmacs != NULL)
1556				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1557			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1558			if (stcb->asoc.local_hmacs != NULL) {
1559				for (i = 0; i < num_hmacs; i++) {
1560					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1561					    ntohs(hmacs->hmac_ids[i]));
1562				}
1563			}
1564		} else if (ptype == SCTP_CHUNK_LIST) {
1565			int i;
1566
1567			if (plen > sizeof(chunks_store))
1568				break;
1569			phdr = sctp_get_next_param(m, offset,
1570			    (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store)));
1571			if (phdr == NULL)
1572				return;
1573			chunks = (struct sctp_auth_chunk_list *)phdr;
1574			num_chunks = plen - sizeof(*chunks);
1575			/* save chunks list and num for the key */
1576			if (stcb->asoc.local_auth_chunks != NULL)
1577				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1578			else
1579				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1580			for (i = 0; i < num_chunks; i++) {
1581				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1582				    stcb->asoc.local_auth_chunks);
1583			}
1584		}
1585		/* get next parameter */
1586		offset += SCTP_SIZE32(plen);
1587		if (offset + sizeof(struct sctp_paramhdr) > length)
1588			break;
1589		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1590		    (uint8_t *) & tmp_param);
1591	}
1592	/* concatenate the full random key */
1593	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1594	if (chunks != NULL) {
1595		keylen += sizeof(*chunks) + num_chunks;
1596	}
1597	new_key = sctp_alloc_key(keylen);
1598	if (new_key != NULL) {
1599		/* copy in the RANDOM */
1600		if (p_random != NULL) {
1601			keylen = sizeof(*p_random) + random_len;
1602			bcopy(p_random, new_key->key, keylen);
1603		}
1604		/* append in the AUTH chunks */
1605		if (chunks != NULL) {
1606			bcopy(chunks, new_key->key + keylen,
1607			    sizeof(*chunks) + num_chunks);
1608			keylen += sizeof(*chunks) + num_chunks;
1609		}
1610		/* append in the HMACs */
1611		if (hmacs != NULL) {
1612			bcopy(hmacs, new_key->key + keylen,
1613			    sizeof(*hmacs) + hmacs_len);
1614		}
1615	}
1616	if (stcb->asoc.authinfo.random != NULL)
1617		sctp_free_key(stcb->asoc.authinfo.random);
1618	stcb->asoc.authinfo.random = new_key;
1619	stcb->asoc.authinfo.random_len = random_len;
1620	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1621	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1622
1623	/* negotiate what HMAC to use for the peer */
1624	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1625	    stcb->asoc.local_hmacs);
1626
1627	/* copy defaults from the endpoint */
1628	/* FIX ME: put in cookie? */
1629	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1630	/* copy out the shared key list (by reference) from the endpoint */
1631	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1632	    &stcb->asoc.shared_keys);
1633}
1634
1635/*
1636 * compute and fill in the HMAC digest for a packet
1637 */
1638void
1639sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1640    struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1641{
1642	uint32_t digestlen;
1643	sctp_sharedkey_t *skey;
1644	sctp_key_t *key;
1645
1646	if ((stcb == NULL) || (auth == NULL))
1647		return;
1648
1649	/* zero the digest + chunk padding */
1650	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1651	bzero(auth->hmac, SCTP_SIZE32(digestlen));
1652
1653	/* is the desired key cached? */
1654	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1655	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1656		if (stcb->asoc.authinfo.assoc_key != NULL) {
1657			/* free the old cached key */
1658			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1659		}
1660		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1661		/* the only way skey is NULL is if null key id 0 is used */
1662		if (skey != NULL)
1663			key = skey->key;
1664		else
1665			key = NULL;
1666		/* compute a new assoc key and cache it */
1667		stcb->asoc.authinfo.assoc_key =
1668		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1669		    stcb->asoc.authinfo.peer_random, key);
1670		stcb->asoc.authinfo.assoc_keyid = keyid;
1671		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1672		    stcb->asoc.authinfo.assoc_keyid);
1673#ifdef SCTP_DEBUG
1674		if (SCTP_AUTH_DEBUG)
1675			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1676			    "Assoc Key");
1677#endif
1678	}
1679	/* set in the active key id */
1680	auth->shared_key_id = htons(keyid);
1681
1682	/* compute and fill in the digest */
1683	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1684	    m, auth_offset, auth->hmac);
1685}
1686
1687
1688static void
1689sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1690{
1691	struct mbuf *m_tmp;
1692	uint8_t *data;
1693
1694	/* sanity check */
1695	if (m == NULL)
1696		return;
1697
1698	/* find the correct starting mbuf and offset (get start position) */
1699	m_tmp = m;
1700	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1701		m_offset -= SCTP_BUF_LEN(m_tmp);
1702		m_tmp = SCTP_BUF_NEXT(m_tmp);
1703	}
1704	/* now use the rest of the mbuf chain */
1705	while ((m_tmp != NULL) && (size > 0)) {
1706		data = mtod(m_tmp, uint8_t *) + m_offset;
1707		if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) {
1708			bzero(data, SCTP_BUF_LEN(m_tmp));
1709			size -= SCTP_BUF_LEN(m_tmp);
1710		} else {
1711			bzero(data, size);
1712			size = 0;
1713		}
1714		/* clear the offset since it's only for the first mbuf */
1715		m_offset = 0;
1716		m_tmp = SCTP_BUF_NEXT(m_tmp);
1717	}
1718}
1719
1720/*-
1721 * process the incoming Authentication chunk
1722 * return codes:
1723 *   -1 on any authentication error
1724 *    0 on authentication verification
1725 */
1726int
1727sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1728    struct mbuf *m, uint32_t offset)
1729{
1730	uint16_t chunklen;
1731	uint16_t shared_key_id;
1732	uint16_t hmac_id;
1733	sctp_sharedkey_t *skey;
1734	uint32_t digestlen;
1735	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1736	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1737
1738	/* auth is checked for NULL by caller */
1739	chunklen = ntohs(auth->ch.chunk_length);
1740	if (chunklen < sizeof(*auth)) {
1741		SCTP_STAT_INCR(sctps_recvauthfailed);
1742		return (-1);
1743	}
1744	SCTP_STAT_INCR(sctps_recvauth);
1745
1746	/* get the auth params */
1747	shared_key_id = ntohs(auth->shared_key_id);
1748	hmac_id = ntohs(auth->hmac_id);
1749	SCTPDBG(SCTP_DEBUG_AUTH1,
1750	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1751	    shared_key_id, hmac_id);
1752
1753	/* is the indicated HMAC supported? */
1754	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1755		struct mbuf *m_err;
1756		struct sctp_auth_invalid_hmac *err;
1757
1758		SCTP_STAT_INCR(sctps_recvivalhmacid);
1759		SCTPDBG(SCTP_DEBUG_AUTH1,
1760		    "SCTP Auth: unsupported HMAC id %u\n",
1761		    hmac_id);
1762		/*
1763		 * report this in an Error Chunk: Unsupported HMAC
1764		 * Identifier
1765		 */
1766		m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_DONTWAIT,
1767		    1, MT_HEADER);
1768		if (m_err != NULL) {
1769			/* pre-reserve some space */
1770			SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr));
1771			/* fill in the error */
1772			err = mtod(m_err, struct sctp_auth_invalid_hmac *);
1773			bzero(err, sizeof(*err));
1774			err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1775			err->ph.param_length = htons(sizeof(*err));
1776			err->hmac_id = ntohs(hmac_id);
1777			SCTP_BUF_LEN(m_err) = sizeof(*err);
1778			/* queue it */
1779			sctp_queue_op_err(stcb, m_err);
1780		}
1781		return (-1);
1782	}
1783	/* get the indicated shared key, if available */
1784	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1785	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1786		/* find the shared key on the assoc first */
1787		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1788		    shared_key_id);
1789		/* if the shared key isn't found, discard the chunk */
1790		if (skey == NULL) {
1791			SCTP_STAT_INCR(sctps_recvivalkeyid);
1792			SCTPDBG(SCTP_DEBUG_AUTH1,
1793			    "SCTP Auth: unknown key id %u\n",
1794			    shared_key_id);
1795			return (-1);
1796		}
1797		/* generate a notification if this is a new key id */
1798		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1799			/*
1800			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1801			 * shared_key_id, (void
1802			 * *)stcb->asoc.authinfo.recv_keyid);
1803			 */
1804			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1805			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1806			    SCTP_SO_NOT_LOCKED);
1807		/* compute a new recv assoc key and cache it */
1808		if (stcb->asoc.authinfo.recv_key != NULL)
1809			sctp_free_key(stcb->asoc.authinfo.recv_key);
1810		stcb->asoc.authinfo.recv_key =
1811		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1812		    stcb->asoc.authinfo.peer_random, skey->key);
1813		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1814#ifdef SCTP_DEBUG
1815		if (SCTP_AUTH_DEBUG)
1816			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1817#endif
1818	}
1819	/* validate the digest length */
1820	digestlen = sctp_get_hmac_digest_len(hmac_id);
1821	if (chunklen < (sizeof(*auth) + digestlen)) {
1822		/* invalid digest length */
1823		SCTP_STAT_INCR(sctps_recvauthfailed);
1824		SCTPDBG(SCTP_DEBUG_AUTH1,
1825		    "SCTP Auth: chunk too short for HMAC\n");
1826		return (-1);
1827	}
1828	/* save a copy of the digest, zero the pseudo header, and validate */
1829	bcopy(auth->hmac, digest, digestlen);
1830	sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1831	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1832	    m, offset, computed_digest);
1833
1834	/* compare the computed digest with the one in the AUTH chunk */
1835	if (memcmp(digest, computed_digest, digestlen) != 0) {
1836		SCTP_STAT_INCR(sctps_recvauthfailed);
1837		SCTPDBG(SCTP_DEBUG_AUTH1,
1838		    "SCTP Auth: HMAC digest check failed\n");
1839		return (-1);
1840	}
1841	return (0);
1842}
1843
1844/*
1845 * Generate NOTIFICATION
1846 */
1847void
1848sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1849    uint16_t keyid, uint16_t alt_keyid, int so_locked
1850#if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1851    SCTP_UNUSED
1852#endif
1853)
1854{
1855	struct mbuf *m_notify;
1856	struct sctp_authkey_event *auth;
1857	struct sctp_queued_to_read *control;
1858
1859	if ((stcb == NULL) ||
1860	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1861	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1862	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1863	    ) {
1864		/* If the socket is gone we are out of here */
1865		return;
1866	}
1867	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1868		/* event not enabled */
1869		return;
1870
1871	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1872	    0, M_DONTWAIT, 1, MT_HEADER);
1873	if (m_notify == NULL)
1874		/* no space left */
1875		return;
1876
1877	SCTP_BUF_LEN(m_notify) = 0;
1878	auth = mtod(m_notify, struct sctp_authkey_event *);
1879	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1880	auth->auth_flags = 0;
1881	auth->auth_length = sizeof(*auth);
1882	auth->auth_keynumber = keyid;
1883	auth->auth_altkeynumber = alt_keyid;
1884	auth->auth_indication = indication;
1885	auth->auth_assoc_id = sctp_get_associd(stcb);
1886
1887	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1888	SCTP_BUF_NEXT(m_notify) = NULL;
1889
1890	/* append to socket */
1891	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1892	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1893	if (control == NULL) {
1894		/* no memory */
1895		sctp_m_freem(m_notify);
1896		return;
1897	}
1898	control->spec_flags = M_NOTIFICATION;
1899	control->length = SCTP_BUF_LEN(m_notify);
1900	/* not that we need this */
1901	control->tail_mbuf = m_notify;
1902	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1903	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1904}
1905
1906
1907/*-
1908 * validates the AUTHentication related parameters in an INIT/INIT-ACK
1909 * Note: currently only used for INIT as INIT-ACK is handled inline
1910 * with sctp_load_addresses_from_init()
1911 */
1912int
1913sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1914{
1915	struct sctp_paramhdr *phdr, parm_buf;
1916	uint16_t ptype, plen;
1917	int peer_supports_asconf = 0;
1918	int peer_supports_auth = 0;
1919	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1920	uint8_t saw_asconf = 0;
1921	uint8_t saw_asconf_ack = 0;
1922
1923	/* go through each of the params. */
1924	phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
1925	while (phdr) {
1926		ptype = ntohs(phdr->param_type);
1927		plen = ntohs(phdr->param_length);
1928
1929		if (offset + plen > limit) {
1930			break;
1931		}
1932		if (plen < sizeof(struct sctp_paramhdr)) {
1933			break;
1934		}
1935		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1936			/* A supported extension chunk */
1937			struct sctp_supported_chunk_types_param *pr_supported;
1938			uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
1939			int num_ent, i;
1940
1941			phdr = sctp_get_next_param(m, offset,
1942			    (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store)));
1943			if (phdr == NULL) {
1944				return (-1);
1945			}
1946			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1947			num_ent = plen - sizeof(struct sctp_paramhdr);
1948			for (i = 0; i < num_ent; i++) {
1949				switch (pr_supported->chunk_types[i]) {
1950				case SCTP_ASCONF:
1951				case SCTP_ASCONF_ACK:
1952					peer_supports_asconf = 1;
1953					break;
1954				default:
1955					/* one we don't care about */
1956					break;
1957				}
1958			}
1959		} else if (ptype == SCTP_RANDOM) {
1960			got_random = 1;
1961			/* enforce the random length */
1962			if (plen != (sizeof(struct sctp_auth_random) +
1963			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1964				SCTPDBG(SCTP_DEBUG_AUTH1,
1965				    "SCTP: invalid RANDOM len\n");
1966				return (-1);
1967			}
1968		} else if (ptype == SCTP_HMAC_LIST) {
1969			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1970			struct sctp_auth_hmac_algo *hmacs;
1971			int num_hmacs;
1972
1973			if (plen > sizeof(store))
1974				break;
1975			phdr = sctp_get_next_param(m, offset,
1976			    (struct sctp_paramhdr *)store, min(plen, sizeof(store)));
1977			if (phdr == NULL)
1978				return (-1);
1979			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1980			num_hmacs = (plen - sizeof(*hmacs)) /
1981			    sizeof(hmacs->hmac_ids[0]);
1982			/* validate the hmac list */
1983			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1984				SCTPDBG(SCTP_DEBUG_AUTH1,
1985				    "SCTP: invalid HMAC param\n");
1986				return (-1);
1987			}
1988			got_hmacs = 1;
1989		} else if (ptype == SCTP_CHUNK_LIST) {
1990			int i, num_chunks;
1991			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1992
1993			/* did the peer send a non-empty chunk list? */
1994			struct sctp_auth_chunk_list *chunks = NULL;
1995
1996			phdr = sctp_get_next_param(m, offset,
1997			    (struct sctp_paramhdr *)chunks_store,
1998			    min(plen, sizeof(chunks_store)));
1999			if (phdr == NULL)
2000				return (-1);
2001
2002			/*-
2003			 * Flip through the list and mark that the
2004			 * peer supports asconf/asconf_ack.
2005			 */
2006			chunks = (struct sctp_auth_chunk_list *)phdr;
2007			num_chunks = plen - sizeof(*chunks);
2008			for (i = 0; i < num_chunks; i++) {
2009				/* record asconf/asconf-ack if listed */
2010				if (chunks->chunk_types[i] == SCTP_ASCONF)
2011					saw_asconf = 1;
2012				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
2013					saw_asconf_ack = 1;
2014
2015			}
2016			if (num_chunks)
2017				got_chklist = 1;
2018		}
2019		offset += SCTP_SIZE32(plen);
2020		if (offset >= limit) {
2021			break;
2022		}
2023		phdr = sctp_get_next_param(m, offset, &parm_buf,
2024		    sizeof(parm_buf));
2025	}
2026	/* validate authentication required parameters */
2027	if (got_random && got_hmacs) {
2028		peer_supports_auth = 1;
2029	} else {
2030		peer_supports_auth = 0;
2031	}
2032	if (!peer_supports_auth && got_chklist) {
2033		SCTPDBG(SCTP_DEBUG_AUTH1,
2034		    "SCTP: peer sent chunk list w/o AUTH\n");
2035		return (-1);
2036	}
2037	if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf &&
2038	    !peer_supports_auth) {
2039		SCTPDBG(SCTP_DEBUG_AUTH1,
2040		    "SCTP: peer supports ASCONF but not AUTH\n");
2041		return (-1);
2042	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
2043	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
2044		return (-2);
2045	}
2046	return (0);
2047}
2048
2049void
2050sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
2051{
2052	uint16_t chunks_len = 0;
2053	uint16_t hmacs_len = 0;
2054	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
2055	sctp_key_t *new_key;
2056	uint16_t keylen;
2057
2058	/* initialize hmac list from endpoint */
2059	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
2060	if (stcb->asoc.local_hmacs != NULL) {
2061		hmacs_len = stcb->asoc.local_hmacs->num_algo *
2062		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
2063	}
2064	/* initialize auth chunks list from endpoint */
2065	stcb->asoc.local_auth_chunks =
2066	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
2067	if (stcb->asoc.local_auth_chunks != NULL) {
2068		int i;
2069
2070		for (i = 0; i < 256; i++) {
2071			if (stcb->asoc.local_auth_chunks->chunks[i])
2072				chunks_len++;
2073		}
2074	}
2075	/* copy defaults from the endpoint */
2076	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
2077
2078	/* copy out the shared key list (by reference) from the endpoint */
2079	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
2080	    &stcb->asoc.shared_keys);
2081
2082	/* now set the concatenated key (random + chunks + hmacs) */
2083	/* key includes parameter headers */
2084	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
2085	    hmacs_len;
2086	new_key = sctp_alloc_key(keylen);
2087	if (new_key != NULL) {
2088		struct sctp_paramhdr *ph;
2089		int plen;
2090
2091		/* generate and copy in the RANDOM */
2092		ph = (struct sctp_paramhdr *)new_key->key;
2093		ph->param_type = htons(SCTP_RANDOM);
2094		plen = sizeof(*ph) + random_len;
2095		ph->param_length = htons(plen);
2096		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
2097		keylen = plen;
2098
2099		/* append in the AUTH chunks */
2100		/* NOTE: currently we always have chunks to list */
2101		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2102		ph->param_type = htons(SCTP_CHUNK_LIST);
2103		plen = sizeof(*ph) + chunks_len;
2104		ph->param_length = htons(plen);
2105		keylen += sizeof(*ph);
2106		if (stcb->asoc.local_auth_chunks) {
2107			int i;
2108
2109			for (i = 0; i < 256; i++) {
2110				if (stcb->asoc.local_auth_chunks->chunks[i])
2111					new_key->key[keylen++] = i;
2112			}
2113		}
2114		/* append in the HMACs */
2115		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2116		ph->param_type = htons(SCTP_HMAC_LIST);
2117		plen = sizeof(*ph) + hmacs_len;
2118		ph->param_length = htons(plen);
2119		keylen += sizeof(*ph);
2120		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2121		    new_key->key + keylen);
2122	}
2123	if (stcb->asoc.authinfo.random != NULL)
2124		sctp_free_key(stcb->asoc.authinfo.random);
2125	stcb->asoc.authinfo.random = new_key;
2126	stcb->asoc.authinfo.random_len = random_len;
2127}
2128