sctp_auth.c revision 212850
1/*-
2 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * a) Redistributions of source code must retain the above copyright notice,
8 *   this list of conditions and the following disclaimer.
9 *
10 * b) Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *   the documentation and/or other materials provided with the distribution.
13 *
14 * c) Neither the name of Cisco Systems, Inc. nor the names of its
15 *    contributors may be used to endorse or promote products derived
16 *    from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28 * THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/netinet/sctp_auth.c 212850 2010-09-19 11:42:16Z tuexen $");
33
34#include <netinet/sctp_os.h>
35#include <netinet/sctp.h>
36#include <netinet/sctp_header.h>
37#include <netinet/sctp_pcb.h>
38#include <netinet/sctp_var.h>
39#include <netinet/sctp_sysctl.h>
40#include <netinet/sctputil.h>
41#include <netinet/sctp_indata.h>
42#include <netinet/sctp_output.h>
43#include <netinet/sctp_auth.h>
44
45#ifdef SCTP_DEBUG
46#define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
47#define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
48#endif				/* SCTP_DEBUG */
49
50
51void
52sctp_clear_chunklist(sctp_auth_chklist_t * chklist)
53{
54	bzero(chklist, sizeof(*chklist));
55	/* chklist->num_chunks = 0; */
56}
57
58sctp_auth_chklist_t *
59sctp_alloc_chunklist(void)
60{
61	sctp_auth_chklist_t *chklist;
62
63	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
64	    SCTP_M_AUTH_CL);
65	if (chklist == NULL) {
66		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
67	} else {
68		sctp_clear_chunklist(chklist);
69	}
70	return (chklist);
71}
72
73void
74sctp_free_chunklist(sctp_auth_chklist_t * list)
75{
76	if (list != NULL)
77		SCTP_FREE(list, SCTP_M_AUTH_CL);
78}
79
80sctp_auth_chklist_t *
81sctp_copy_chunklist(sctp_auth_chklist_t * list)
82{
83	sctp_auth_chklist_t *new_list;
84
85	if (list == NULL)
86		return (NULL);
87
88	/* get a new list */
89	new_list = sctp_alloc_chunklist();
90	if (new_list == NULL)
91		return (NULL);
92	/* copy it */
93	bcopy(list, new_list, sizeof(*new_list));
94
95	return (new_list);
96}
97
98
99/*
100 * add a chunk to the required chunks list
101 */
102int
103sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
104{
105	if (list == NULL)
106		return (-1);
107
108	/* is chunk restricted? */
109	if ((chunk == SCTP_INITIATION) ||
110	    (chunk == SCTP_INITIATION_ACK) ||
111	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
112	    (chunk == SCTP_AUTHENTICATION)) {
113		return (-1);
114	}
115	if (list->chunks[chunk] == 0) {
116		list->chunks[chunk] = 1;
117		list->num_chunks++;
118		SCTPDBG(SCTP_DEBUG_AUTH1,
119		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
120		    chunk, chunk);
121	}
122	return (0);
123}
124
125/*
126 * delete a chunk from the required chunks list
127 */
128int
129sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
130{
131	if (list == NULL)
132		return (-1);
133
134	/* is chunk restricted? */
135	if ((chunk == SCTP_ASCONF) ||
136	    (chunk == SCTP_ASCONF_ACK)) {
137		return (-1);
138	}
139	if (list->chunks[chunk] == 1) {
140		list->chunks[chunk] = 0;
141		list->num_chunks--;
142		SCTPDBG(SCTP_DEBUG_AUTH1,
143		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
144		    chunk, chunk);
145	}
146	return (0);
147}
148
149size_t
150sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list)
151{
152	if (list == NULL)
153		return (0);
154	else
155		return (list->num_chunks);
156}
157
158/*
159 * set the default list of chunks requiring AUTH
160 */
161void
162sctp_auth_set_default_chunks(sctp_auth_chklist_t * list)
163{
164	(void)sctp_auth_add_chunk(SCTP_ASCONF, list);
165	(void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list);
166}
167
168/*
169 * return the current number and list of required chunks caller must
170 * guarantee ptr has space for up to 256 bytes
171 */
172int
173sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
174{
175	int i, count = 0;
176
177	if (list == NULL)
178		return (0);
179
180	for (i = 0; i < 256; i++) {
181		if (list->chunks[i] != 0) {
182			*ptr++ = i;
183			count++;
184		}
185	}
186	return (count);
187}
188
189int
190sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
191{
192	int i, size = 0;
193
194	if (list == NULL)
195		return (0);
196
197	if (list->num_chunks <= 32) {
198		/* just list them, one byte each */
199		for (i = 0; i < 256; i++) {
200			if (list->chunks[i] != 0) {
201				*ptr++ = i;
202				size++;
203			}
204		}
205	} else {
206		int index, offset;
207
208		/* pack into a 32 byte bitfield */
209		for (i = 0; i < 256; i++) {
210			if (list->chunks[i] != 0) {
211				index = i / 8;
212				offset = i % 8;
213				ptr[index] |= (1 << offset);
214			}
215		}
216		size = 32;
217	}
218	return (size);
219}
220
221int
222sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks,
223    sctp_auth_chklist_t * list)
224{
225	int i;
226	int size;
227
228	if (list == NULL)
229		return (0);
230
231	if (num_chunks <= 32) {
232		/* just pull them, one byte each */
233		for (i = 0; i < num_chunks; i++) {
234			(void)sctp_auth_add_chunk(*ptr++, list);
235		}
236		size = num_chunks;
237	} else {
238		int index, offset;
239
240		/* unpack from a 32 byte bitfield */
241		for (index = 0; index < 32; index++) {
242			for (offset = 0; offset < 8; offset++) {
243				if (ptr[index] & (1 << offset)) {
244					(void)sctp_auth_add_chunk((index * 8) + offset, list);
245				}
246			}
247		}
248		size = 32;
249	}
250	return (size);
251}
252
253
254/*
255 * allocate structure space for a key of length keylen
256 */
257sctp_key_t *
258sctp_alloc_key(uint32_t keylen)
259{
260	sctp_key_t *new_key;
261
262	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
263	    SCTP_M_AUTH_KY);
264	if (new_key == NULL) {
265		/* out of memory */
266		return (NULL);
267	}
268	new_key->keylen = keylen;
269	return (new_key);
270}
271
272void
273sctp_free_key(sctp_key_t * key)
274{
275	if (key != NULL)
276		SCTP_FREE(key, SCTP_M_AUTH_KY);
277}
278
279void
280sctp_print_key(sctp_key_t * key, const char *str)
281{
282	uint32_t i;
283
284	if (key == NULL) {
285		printf("%s: [Null key]\n", str);
286		return;
287	}
288	printf("%s: len %u, ", str, key->keylen);
289	if (key->keylen) {
290		for (i = 0; i < key->keylen; i++)
291			printf("%02x", key->key[i]);
292		printf("\n");
293	} else {
294		printf("[Null key]\n");
295	}
296}
297
298void
299sctp_show_key(sctp_key_t * key, const char *str)
300{
301	uint32_t i;
302
303	if (key == NULL) {
304		printf("%s: [Null key]\n", str);
305		return;
306	}
307	printf("%s: len %u, ", str, key->keylen);
308	if (key->keylen) {
309		for (i = 0; i < key->keylen; i++)
310			printf("%02x", key->key[i]);
311		printf("\n");
312	} else {
313		printf("[Null key]\n");
314	}
315}
316
317static uint32_t
318sctp_get_keylen(sctp_key_t * key)
319{
320	if (key != NULL)
321		return (key->keylen);
322	else
323		return (0);
324}
325
326/*
327 * generate a new random key of length 'keylen'
328 */
329sctp_key_t *
330sctp_generate_random_key(uint32_t keylen)
331{
332	sctp_key_t *new_key;
333
334	/* validate keylen */
335	if (keylen > SCTP_AUTH_RANDOM_SIZE_MAX)
336		keylen = SCTP_AUTH_RANDOM_SIZE_MAX;
337
338	new_key = sctp_alloc_key(keylen);
339	if (new_key == NULL) {
340		/* out of memory */
341		return (NULL);
342	}
343	SCTP_READ_RANDOM(new_key->key, keylen);
344	new_key->keylen = keylen;
345	return (new_key);
346}
347
348sctp_key_t *
349sctp_set_key(uint8_t * key, uint32_t keylen)
350{
351	sctp_key_t *new_key;
352
353	new_key = sctp_alloc_key(keylen);
354	if (new_key == NULL) {
355		/* out of memory */
356		return (NULL);
357	}
358	bcopy(key, new_key->key, keylen);
359	return (new_key);
360}
361
362/*-
363 * given two keys of variable size, compute which key is "larger/smaller"
364 * returns:  1 if key1 > key2
365 *          -1 if key1 < key2
366 *           0 if key1 = key2
367 */
368static int
369sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2)
370{
371	uint32_t maxlen;
372	uint32_t i;
373	uint32_t key1len, key2len;
374	uint8_t *key_1, *key_2;
375	uint8_t temp[SCTP_AUTH_RANDOM_SIZE_MAX];
376
377	/* sanity/length check */
378	key1len = sctp_get_keylen(key1);
379	key2len = sctp_get_keylen(key2);
380	if ((key1len == 0) && (key2len == 0))
381		return (0);
382	else if (key1len == 0)
383		return (-1);
384	else if (key2len == 0)
385		return (1);
386
387	if (key1len != key2len) {
388		if (key1len >= key2len)
389			maxlen = key1len;
390		else
391			maxlen = key2len;
392		bzero(temp, maxlen);
393		if (key1len < maxlen) {
394			/* prepend zeroes to key1 */
395			bcopy(key1->key, temp + (maxlen - key1len), key1len);
396			key_1 = temp;
397			key_2 = key2->key;
398		} else {
399			/* prepend zeroes to key2 */
400			bcopy(key2->key, temp + (maxlen - key2len), key2len);
401			key_1 = key1->key;
402			key_2 = temp;
403		}
404	} else {
405		maxlen = key1len;
406		key_1 = key1->key;
407		key_2 = key2->key;
408	}
409
410	for (i = 0; i < maxlen; i++) {
411		if (*key_1 > *key_2)
412			return (1);
413		else if (*key_1 < *key_2)
414			return (-1);
415		key_1++;
416		key_2++;
417	}
418
419	/* keys are equal value, so check lengths */
420	if (key1len == key2len)
421		return (0);
422	else if (key1len < key2len)
423		return (-1);
424	else
425		return (1);
426}
427
428/*
429 * generate the concatenated keying material based on the two keys and the
430 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
431 * order for concatenation
432 */
433sctp_key_t *
434sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared)
435{
436	uint32_t keylen;
437	sctp_key_t *new_key;
438	uint8_t *key_ptr;
439
440	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
441	    sctp_get_keylen(shared);
442
443	if (keylen > 0) {
444		/* get space for the new key */
445		new_key = sctp_alloc_key(keylen);
446		if (new_key == NULL) {
447			/* out of memory */
448			return (NULL);
449		}
450		new_key->keylen = keylen;
451		key_ptr = new_key->key;
452	} else {
453		/* all keys empty/null?! */
454		return (NULL);
455	}
456
457	/* concatenate the keys */
458	if (sctp_compare_key(key1, key2) <= 0) {
459		/* key is shared + key1 + key2 */
460		if (sctp_get_keylen(shared)) {
461			bcopy(shared->key, key_ptr, shared->keylen);
462			key_ptr += shared->keylen;
463		}
464		if (sctp_get_keylen(key1)) {
465			bcopy(key1->key, key_ptr, key1->keylen);
466			key_ptr += key1->keylen;
467		}
468		if (sctp_get_keylen(key2)) {
469			bcopy(key2->key, key_ptr, key2->keylen);
470			key_ptr += key2->keylen;
471		}
472	} else {
473		/* key is shared + key2 + key1 */
474		if (sctp_get_keylen(shared)) {
475			bcopy(shared->key, key_ptr, shared->keylen);
476			key_ptr += shared->keylen;
477		}
478		if (sctp_get_keylen(key2)) {
479			bcopy(key2->key, key_ptr, key2->keylen);
480			key_ptr += key2->keylen;
481		}
482		if (sctp_get_keylen(key1)) {
483			bcopy(key1->key, key_ptr, key1->keylen);
484			key_ptr += key1->keylen;
485		}
486	}
487	return (new_key);
488}
489
490
491sctp_sharedkey_t *
492sctp_alloc_sharedkey(void)
493{
494	sctp_sharedkey_t *new_key;
495
496	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
497	    SCTP_M_AUTH_KY);
498	if (new_key == NULL) {
499		/* out of memory */
500		return (NULL);
501	}
502	new_key->keyid = 0;
503	new_key->key = NULL;
504	new_key->refcount = 1;
505	new_key->deactivated = 0;
506	return (new_key);
507}
508
509void
510sctp_free_sharedkey(sctp_sharedkey_t * skey)
511{
512	if (skey == NULL)
513		return;
514
515	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
516		if (skey->key != NULL)
517			sctp_free_key(skey->key);
518		SCTP_FREE(skey, SCTP_M_AUTH_KY);
519	}
520}
521
522sctp_sharedkey_t *
523sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
524{
525	sctp_sharedkey_t *skey;
526
527	LIST_FOREACH(skey, shared_keys, next) {
528		if (skey->keyid == key_id)
529			return (skey);
530	}
531	return (NULL);
532}
533
534int
535sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
536    sctp_sharedkey_t * new_skey)
537{
538	sctp_sharedkey_t *skey;
539
540	if ((shared_keys == NULL) || (new_skey == NULL))
541		return (EINVAL);
542
543	/* insert into an empty list? */
544	if (LIST_EMPTY(shared_keys)) {
545		LIST_INSERT_HEAD(shared_keys, new_skey, next);
546		return (0);
547	}
548	/* insert into the existing list, ordered by key id */
549	LIST_FOREACH(skey, shared_keys, next) {
550		if (new_skey->keyid < skey->keyid) {
551			/* insert it before here */
552			LIST_INSERT_BEFORE(skey, new_skey, next);
553			return (0);
554		} else if (new_skey->keyid == skey->keyid) {
555			/* replace the existing key */
556			/* verify this key *can* be replaced */
557			if ((skey->deactivated) && (skey->refcount > 1)) {
558				SCTPDBG(SCTP_DEBUG_AUTH1,
559				    "can't replace shared key id %u\n",
560				    new_skey->keyid);
561				return (EBUSY);
562			}
563			SCTPDBG(SCTP_DEBUG_AUTH1,
564			    "replacing shared key id %u\n",
565			    new_skey->keyid);
566			LIST_INSERT_BEFORE(skey, new_skey, next);
567			LIST_REMOVE(skey, next);
568			sctp_free_sharedkey(skey);
569			return (0);
570		}
571		if (LIST_NEXT(skey, next) == NULL) {
572			/* belongs at the end of the list */
573			LIST_INSERT_AFTER(skey, new_skey, next);
574			return (0);
575		}
576	}
577	/* shouldn't reach here */
578	return (0);
579}
580
581void
582sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
583{
584	sctp_sharedkey_t *skey;
585
586	/* find the shared key */
587	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
588
589	/* bump the ref count */
590	if (skey) {
591		atomic_add_int(&skey->refcount, 1);
592		SCTPDBG(SCTP_DEBUG_AUTH2,
593		    "%s: stcb %p key %u refcount acquire to %d\n",
594		    __FUNCTION__, stcb, key_id, skey->refcount);
595	}
596}
597
598void
599sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id)
600{
601	sctp_sharedkey_t *skey;
602
603	/* find the shared key */
604	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
605
606	/* decrement the ref count */
607	if (skey) {
608		sctp_free_sharedkey(skey);
609		SCTPDBG(SCTP_DEBUG_AUTH2,
610		    "%s: stcb %p key %u refcount release to %d\n",
611		    __FUNCTION__, stcb, key_id, skey->refcount);
612
613		/* see if a notification should be generated */
614		if ((skey->refcount <= 1) && (skey->deactivated)) {
615			/* notify ULP that key is no longer used */
616			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
617			    key_id, 0, SCTP_SO_LOCKED);
618			SCTPDBG(SCTP_DEBUG_AUTH2,
619			    "%s: stcb %p key %u no longer used, %d\n",
620			    __FUNCTION__, stcb, key_id, skey->refcount);
621		}
622	}
623}
624
625static sctp_sharedkey_t *
626sctp_copy_sharedkey(const sctp_sharedkey_t * skey)
627{
628	sctp_sharedkey_t *new_skey;
629
630	if (skey == NULL)
631		return (NULL);
632	new_skey = sctp_alloc_sharedkey();
633	if (new_skey == NULL)
634		return (NULL);
635	if (skey->key != NULL)
636		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
637	else
638		new_skey->key = NULL;
639	new_skey->keyid = skey->keyid;
640	return (new_skey);
641}
642
643int
644sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
645{
646	sctp_sharedkey_t *skey, *new_skey;
647	int count = 0;
648
649	if ((src == NULL) || (dest == NULL))
650		return (0);
651	LIST_FOREACH(skey, src, next) {
652		new_skey = sctp_copy_sharedkey(skey);
653		if (new_skey != NULL) {
654			(void)sctp_insert_sharedkey(dest, new_skey);
655			count++;
656		}
657	}
658	return (count);
659}
660
661
662sctp_hmaclist_t *
663sctp_alloc_hmaclist(uint8_t num_hmacs)
664{
665	sctp_hmaclist_t *new_list;
666	int alloc_size;
667
668	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
669	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
670	    SCTP_M_AUTH_HL);
671	if (new_list == NULL) {
672		/* out of memory */
673		return (NULL);
674	}
675	new_list->max_algo = num_hmacs;
676	new_list->num_algo = 0;
677	return (new_list);
678}
679
680void
681sctp_free_hmaclist(sctp_hmaclist_t * list)
682{
683	if (list != NULL) {
684		SCTP_FREE(list, SCTP_M_AUTH_HL);
685		list = NULL;
686	}
687}
688
689int
690sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id)
691{
692	int i;
693
694	if (list == NULL)
695		return (-1);
696	if (list->num_algo == list->max_algo) {
697		SCTPDBG(SCTP_DEBUG_AUTH1,
698		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
699		return (-1);
700	}
701	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
702#ifdef HAVE_SHA224
703	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA224) &&
704#endif
705#ifdef HAVE_SHA2
706	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256) &&
707	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA384) &&
708	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA512) &&
709#endif
710	    1) {
711		return (-1);
712	}
713	/* Now is it already in the list */
714	for (i = 0; i < list->num_algo; i++) {
715		if (list->hmac[i] == hmac_id) {
716			/* already in list */
717			return (-1);
718		}
719	}
720	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
721	list->hmac[list->num_algo++] = hmac_id;
722	return (0);
723}
724
725sctp_hmaclist_t *
726sctp_copy_hmaclist(sctp_hmaclist_t * list)
727{
728	sctp_hmaclist_t *new_list;
729	int i;
730
731	if (list == NULL)
732		return (NULL);
733	/* get a new list */
734	new_list = sctp_alloc_hmaclist(list->max_algo);
735	if (new_list == NULL)
736		return (NULL);
737	/* copy it */
738	new_list->max_algo = list->max_algo;
739	new_list->num_algo = list->num_algo;
740	for (i = 0; i < list->num_algo; i++)
741		new_list->hmac[i] = list->hmac[i];
742	return (new_list);
743}
744
745sctp_hmaclist_t *
746sctp_default_supported_hmaclist(void)
747{
748	sctp_hmaclist_t *new_list;
749
750	new_list = sctp_alloc_hmaclist(2);
751	if (new_list == NULL)
752		return (NULL);
753	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
754	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
755	return (new_list);
756}
757
758/*-
759 * HMAC algos are listed in priority/preference order
760 * find the best HMAC id to use for the peer based on local support
761 */
762uint16_t
763sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local)
764{
765	int i, j;
766
767	if ((local == NULL) || (peer == NULL))
768		return (SCTP_AUTH_HMAC_ID_RSVD);
769
770	for (i = 0; i < peer->num_algo; i++) {
771		for (j = 0; j < local->num_algo; j++) {
772			if (peer->hmac[i] == local->hmac[j]) {
773				/* found the "best" one */
774				SCTPDBG(SCTP_DEBUG_AUTH1,
775				    "SCTP: negotiated peer HMAC id %u\n",
776				    peer->hmac[i]);
777				return (peer->hmac[i]);
778			}
779		}
780	}
781	/* didn't find one! */
782	return (SCTP_AUTH_HMAC_ID_RSVD);
783}
784
785/*-
786 * serialize the HMAC algo list and return space used
787 * caller must guarantee ptr has appropriate space
788 */
789int
790sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr)
791{
792	int i;
793	uint16_t hmac_id;
794
795	if (list == NULL)
796		return (0);
797
798	for (i = 0; i < list->num_algo; i++) {
799		hmac_id = htons(list->hmac[i]);
800		bcopy(&hmac_id, ptr, sizeof(hmac_id));
801		ptr += sizeof(hmac_id);
802	}
803	return (list->num_algo * sizeof(hmac_id));
804}
805
806int
807sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
808{
809	uint32_t i;
810	uint16_t hmac_id;
811	uint32_t sha1_supported = 0;
812
813	for (i = 0; i < num_hmacs; i++) {
814		hmac_id = ntohs(hmacs->hmac_ids[i]);
815		if (hmac_id == SCTP_AUTH_HMAC_ID_SHA1)
816			sha1_supported = 1;
817	}
818	/* all HMAC id's are supported */
819	if (sha1_supported == 0)
820		return (-1);
821	else
822		return (0);
823}
824
825sctp_authinfo_t *
826sctp_alloc_authinfo(void)
827{
828	sctp_authinfo_t *new_authinfo;
829
830	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
831	    SCTP_M_AUTH_IF);
832
833	if (new_authinfo == NULL) {
834		/* out of memory */
835		return (NULL);
836	}
837	bzero(new_authinfo, sizeof(*new_authinfo));
838	return (new_authinfo);
839}
840
841void
842sctp_free_authinfo(sctp_authinfo_t * authinfo)
843{
844	if (authinfo == NULL)
845		return;
846
847	if (authinfo->random != NULL)
848		sctp_free_key(authinfo->random);
849	if (authinfo->peer_random != NULL)
850		sctp_free_key(authinfo->peer_random);
851	if (authinfo->assoc_key != NULL)
852		sctp_free_key(authinfo->assoc_key);
853	if (authinfo->recv_key != NULL)
854		sctp_free_key(authinfo->recv_key);
855
856	/* We are NOT dynamically allocating authinfo's right now... */
857	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
858}
859
860
861uint32_t
862sctp_get_auth_chunk_len(uint16_t hmac_algo)
863{
864	int size;
865
866	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
867	return (SCTP_SIZE32(size));
868}
869
870uint32_t
871sctp_get_hmac_digest_len(uint16_t hmac_algo)
872{
873	switch (hmac_algo) {
874	case SCTP_AUTH_HMAC_ID_SHA1:
875		return (SCTP_AUTH_DIGEST_LEN_SHA1);
876#ifdef HAVE_SHA224
877	case SCTP_AUTH_HMAC_ID_SHA224:
878		return (SCTP_AUTH_DIGEST_LEN_SHA224);
879#endif
880#ifdef HAVE_SHA2
881	case SCTP_AUTH_HMAC_ID_SHA256:
882		return (SCTP_AUTH_DIGEST_LEN_SHA256);
883	case SCTP_AUTH_HMAC_ID_SHA384:
884		return (SCTP_AUTH_DIGEST_LEN_SHA384);
885	case SCTP_AUTH_HMAC_ID_SHA512:
886		return (SCTP_AUTH_DIGEST_LEN_SHA512);
887#endif
888	default:
889		/* unknown HMAC algorithm: can't do anything */
890		return (0);
891	}			/* end switch */
892}
893
894static inline int
895sctp_get_hmac_block_len(uint16_t hmac_algo)
896{
897	switch (hmac_algo) {
898	case SCTP_AUTH_HMAC_ID_SHA1:
899#ifdef HAVE_SHA224
900	case SCTP_AUTH_HMAC_ID_SHA224:
901#endif
902		return (64);
903#ifdef HAVE_SHA2
904	case SCTP_AUTH_HMAC_ID_SHA256:
905		return (64);
906	case SCTP_AUTH_HMAC_ID_SHA384:
907	case SCTP_AUTH_HMAC_ID_SHA512:
908		return (128);
909#endif
910	case SCTP_AUTH_HMAC_ID_RSVD:
911	default:
912		/* unknown HMAC algorithm: can't do anything */
913		return (0);
914	}			/* end switch */
915}
916
917static void
918sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx)
919{
920	switch (hmac_algo) {
921	case SCTP_AUTH_HMAC_ID_SHA1:
922		SHA1_Init(&ctx->sha1);
923		break;
924#ifdef HAVE_SHA224
925	case SCTP_AUTH_HMAC_ID_SHA224:
926		break;
927#endif
928#ifdef HAVE_SHA2
929	case SCTP_AUTH_HMAC_ID_SHA256:
930		SHA256_Init(&ctx->sha256);
931		break;
932	case SCTP_AUTH_HMAC_ID_SHA384:
933		SHA384_Init(&ctx->sha384);
934		break;
935	case SCTP_AUTH_HMAC_ID_SHA512:
936		SHA512_Init(&ctx->sha512);
937		break;
938#endif
939	case SCTP_AUTH_HMAC_ID_RSVD:
940	default:
941		/* unknown HMAC algorithm: can't do anything */
942		return;
943	}			/* end switch */
944}
945
946static void
947sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx,
948    uint8_t * text, uint32_t textlen)
949{
950	switch (hmac_algo) {
951	case SCTP_AUTH_HMAC_ID_SHA1:
952		SHA1_Update(&ctx->sha1, text, textlen);
953		break;
954#ifdef HAVE_SHA224
955	case SCTP_AUTH_HMAC_ID_SHA224:
956		break;
957#endif
958#ifdef HAVE_SHA2
959	case SCTP_AUTH_HMAC_ID_SHA256:
960		SHA256_Update(&ctx->sha256, text, textlen);
961		break;
962	case SCTP_AUTH_HMAC_ID_SHA384:
963		SHA384_Update(&ctx->sha384, text, textlen);
964		break;
965	case SCTP_AUTH_HMAC_ID_SHA512:
966		SHA512_Update(&ctx->sha512, text, textlen);
967		break;
968#endif
969	case SCTP_AUTH_HMAC_ID_RSVD:
970	default:
971		/* unknown HMAC algorithm: can't do anything */
972		return;
973	}			/* end switch */
974}
975
976static void
977sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx,
978    uint8_t * digest)
979{
980	switch (hmac_algo) {
981	case SCTP_AUTH_HMAC_ID_SHA1:
982		SHA1_Final(digest, &ctx->sha1);
983		break;
984#ifdef HAVE_SHA224
985	case SCTP_AUTH_HMAC_ID_SHA224:
986		break;
987#endif
988#ifdef HAVE_SHA2
989	case SCTP_AUTH_HMAC_ID_SHA256:
990		SHA256_Final(digest, &ctx->sha256);
991		break;
992	case SCTP_AUTH_HMAC_ID_SHA384:
993		/* SHA384 is truncated SHA512 */
994		SHA384_Final(digest, &ctx->sha384);
995		break;
996	case SCTP_AUTH_HMAC_ID_SHA512:
997		SHA512_Final(digest, &ctx->sha512);
998		break;
999#endif
1000	case SCTP_AUTH_HMAC_ID_RSVD:
1001	default:
1002		/* unknown HMAC algorithm: can't do anything */
1003		return;
1004	}			/* end switch */
1005}
1006
1007/*-
1008 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
1009 *
1010 * Compute the HMAC digest using the desired hash key, text, and HMAC
1011 * algorithm.  Resulting digest is placed in 'digest' and digest length
1012 * is returned, if the HMAC was performed.
1013 *
1014 * WARNING: it is up to the caller to supply sufficient space to hold the
1015 * resultant digest.
1016 */
1017uint32_t
1018sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1019    uint8_t * text, uint32_t textlen, uint8_t * digest)
1020{
1021	uint32_t digestlen;
1022	uint32_t blocklen;
1023	sctp_hash_context_t ctx;
1024	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1025	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1026	uint32_t i;
1027
1028	/* sanity check the material and length */
1029	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
1030	    (textlen == 0) || (digest == NULL)) {
1031		/* can't do HMAC with empty key or text or digest store */
1032		return (0);
1033	}
1034	/* validate the hmac algo and get the digest length */
1035	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1036	if (digestlen == 0)
1037		return (0);
1038
1039	/* hash the key if it is longer than the hash block size */
1040	blocklen = sctp_get_hmac_block_len(hmac_algo);
1041	if (keylen > blocklen) {
1042		sctp_hmac_init(hmac_algo, &ctx);
1043		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1044		sctp_hmac_final(hmac_algo, &ctx, temp);
1045		/* set the hashed key as the key */
1046		keylen = digestlen;
1047		key = temp;
1048	}
1049	/* initialize the inner/outer pads with the key and "append" zeroes */
1050	bzero(ipad, blocklen);
1051	bzero(opad, blocklen);
1052	bcopy(key, ipad, keylen);
1053	bcopy(key, opad, keylen);
1054
1055	/* XOR the key with ipad and opad values */
1056	for (i = 0; i < blocklen; i++) {
1057		ipad[i] ^= 0x36;
1058		opad[i] ^= 0x5c;
1059	}
1060
1061	/* perform inner hash */
1062	sctp_hmac_init(hmac_algo, &ctx);
1063	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1064	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
1065	sctp_hmac_final(hmac_algo, &ctx, temp);
1066
1067	/* perform outer hash */
1068	sctp_hmac_init(hmac_algo, &ctx);
1069	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1070	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1071	sctp_hmac_final(hmac_algo, &ctx, digest);
1072
1073	return (digestlen);
1074}
1075
1076/* mbuf version */
1077uint32_t
1078sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1079    struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer)
1080{
1081	uint32_t digestlen;
1082	uint32_t blocklen;
1083	sctp_hash_context_t ctx;
1084	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1085	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1086	uint32_t i;
1087	struct mbuf *m_tmp;
1088
1089	/* sanity check the material and length */
1090	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
1091		/* can't do HMAC with empty key or text or digest store */
1092		return (0);
1093	}
1094	/* validate the hmac algo and get the digest length */
1095	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1096	if (digestlen == 0)
1097		return (0);
1098
1099	/* hash the key if it is longer than the hash block size */
1100	blocklen = sctp_get_hmac_block_len(hmac_algo);
1101	if (keylen > blocklen) {
1102		sctp_hmac_init(hmac_algo, &ctx);
1103		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1104		sctp_hmac_final(hmac_algo, &ctx, temp);
1105		/* set the hashed key as the key */
1106		keylen = digestlen;
1107		key = temp;
1108	}
1109	/* initialize the inner/outer pads with the key and "append" zeroes */
1110	bzero(ipad, blocklen);
1111	bzero(opad, blocklen);
1112	bcopy(key, ipad, keylen);
1113	bcopy(key, opad, keylen);
1114
1115	/* XOR the key with ipad and opad values */
1116	for (i = 0; i < blocklen; i++) {
1117		ipad[i] ^= 0x36;
1118		opad[i] ^= 0x5c;
1119	}
1120
1121	/* perform inner hash */
1122	sctp_hmac_init(hmac_algo, &ctx);
1123	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1124	/* find the correct starting mbuf and offset (get start of text) */
1125	m_tmp = m;
1126	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1127		m_offset -= SCTP_BUF_LEN(m_tmp);
1128		m_tmp = SCTP_BUF_NEXT(m_tmp);
1129	}
1130	/* now use the rest of the mbuf chain for the text */
1131	while (m_tmp != NULL) {
1132		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1133			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1134			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1135		} else {
1136			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1137			    SCTP_BUF_LEN(m_tmp) - m_offset);
1138		}
1139
1140		/* clear the offset since it's only for the first mbuf */
1141		m_offset = 0;
1142		m_tmp = SCTP_BUF_NEXT(m_tmp);
1143	}
1144	sctp_hmac_final(hmac_algo, &ctx, temp);
1145
1146	/* perform outer hash */
1147	sctp_hmac_init(hmac_algo, &ctx);
1148	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1149	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1150	sctp_hmac_final(hmac_algo, &ctx, digest);
1151
1152	return (digestlen);
1153}
1154
1155/*-
1156 * verify the HMAC digest using the desired hash key, text, and HMAC
1157 * algorithm.
1158 * Returns -1 on error, 0 on success.
1159 */
1160int
1161sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1162    uint8_t * text, uint32_t textlen,
1163    uint8_t * digest, uint32_t digestlen)
1164{
1165	uint32_t len;
1166	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1167
1168	/* sanity check the material and length */
1169	if ((key == NULL) || (keylen == 0) ||
1170	    (text == NULL) || (textlen == 0) || (digest == NULL)) {
1171		/* can't do HMAC with empty key or text or digest */
1172		return (-1);
1173	}
1174	len = sctp_get_hmac_digest_len(hmac_algo);
1175	if ((len == 0) || (digestlen != len))
1176		return (-1);
1177
1178	/* compute the expected hash */
1179	if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len)
1180		return (-1);
1181
1182	if (memcmp(digest, temp, digestlen) != 0)
1183		return (-1);
1184	else
1185		return (0);
1186}
1187
1188
1189/*
1190 * computes the requested HMAC using a key struct (which may be modified if
1191 * the keylen exceeds the HMAC block len).
1192 */
1193uint32_t
1194sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text,
1195    uint32_t textlen, uint8_t * digest)
1196{
1197	uint32_t digestlen;
1198	uint32_t blocklen;
1199	sctp_hash_context_t ctx;
1200	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1201
1202	/* sanity check */
1203	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1204	    (digest == NULL)) {
1205		/* can't do HMAC with empty key or text or digest store */
1206		return (0);
1207	}
1208	/* validate the hmac algo and get the digest length */
1209	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1210	if (digestlen == 0)
1211		return (0);
1212
1213	/* hash the key if it is longer than the hash block size */
1214	blocklen = sctp_get_hmac_block_len(hmac_algo);
1215	if (key->keylen > blocklen) {
1216		sctp_hmac_init(hmac_algo, &ctx);
1217		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1218		sctp_hmac_final(hmac_algo, &ctx, temp);
1219		/* save the hashed key as the new key */
1220		key->keylen = digestlen;
1221		bcopy(temp, key->key, key->keylen);
1222	}
1223	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1224	    digest));
1225}
1226
1227/* mbuf version */
1228uint32_t
1229sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m,
1230    uint32_t m_offset, uint8_t * digest)
1231{
1232	uint32_t digestlen;
1233	uint32_t blocklen;
1234	sctp_hash_context_t ctx;
1235	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1236
1237	/* sanity check */
1238	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1239		/* can't do HMAC with empty key or text or digest store */
1240		return (0);
1241	}
1242	/* validate the hmac algo and get the digest length */
1243	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1244	if (digestlen == 0)
1245		return (0);
1246
1247	/* hash the key if it is longer than the hash block size */
1248	blocklen = sctp_get_hmac_block_len(hmac_algo);
1249	if (key->keylen > blocklen) {
1250		sctp_hmac_init(hmac_algo, &ctx);
1251		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1252		sctp_hmac_final(hmac_algo, &ctx, temp);
1253		/* save the hashed key as the new key */
1254		key->keylen = digestlen;
1255		bcopy(temp, key->key, key->keylen);
1256	}
1257	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1258}
1259
1260int
1261sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id)
1262{
1263	int i;
1264
1265	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1266		return (0);
1267
1268	for (i = 0; i < list->num_algo; i++)
1269		if (list->hmac[i] == id)
1270			return (1);
1271
1272	/* not in the list */
1273	return (0);
1274}
1275
1276
1277/*-
1278 * clear any cached key(s) if they match the given key id on an association.
1279 * the cached key(s) will be recomputed and re-cached at next use.
1280 * ASSUMES TCB_LOCK is already held
1281 */
1282void
1283sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1284{
1285	if (stcb == NULL)
1286		return;
1287
1288	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1289		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1290		stcb->asoc.authinfo.assoc_key = NULL;
1291	}
1292	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1293		sctp_free_key(stcb->asoc.authinfo.recv_key);
1294		stcb->asoc.authinfo.recv_key = NULL;
1295	}
1296}
1297
1298/*-
1299 * clear any cached key(s) if they match the given key id for all assocs on
1300 * an endpoint.
1301 * ASSUMES INP_WLOCK is already held
1302 */
1303void
1304sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1305{
1306	struct sctp_tcb *stcb;
1307
1308	if (inp == NULL)
1309		return;
1310
1311	/* clear the cached keys on all assocs on this instance */
1312	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1313		SCTP_TCB_LOCK(stcb);
1314		sctp_clear_cachedkeys(stcb, keyid);
1315		SCTP_TCB_UNLOCK(stcb);
1316	}
1317}
1318
1319/*-
1320 * delete a shared key from an association
1321 * ASSUMES TCB_LOCK is already held
1322 */
1323int
1324sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1325{
1326	sctp_sharedkey_t *skey;
1327
1328	if (stcb == NULL)
1329		return (-1);
1330
1331	/* is the keyid the assoc active sending key */
1332	if (keyid == stcb->asoc.authinfo.active_keyid)
1333		return (-1);
1334
1335	/* does the key exist? */
1336	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1337	if (skey == NULL)
1338		return (-1);
1339
1340	/* are there other refcount holders on the key? */
1341	if (skey->refcount > 1)
1342		return (-1);
1343
1344	/* remove it */
1345	LIST_REMOVE(skey, next);
1346	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1347
1348	/* clear any cached keys */
1349	sctp_clear_cachedkeys(stcb, keyid);
1350	return (0);
1351}
1352
1353/*-
1354 * deletes a shared key from the endpoint
1355 * ASSUMES INP_WLOCK is already held
1356 */
1357int
1358sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1359{
1360	sctp_sharedkey_t *skey;
1361
1362	if (inp == NULL)
1363		return (-1);
1364
1365	/* is the keyid the active sending key on the endpoint */
1366	if (keyid == inp->sctp_ep.default_keyid)
1367		return (-1);
1368
1369	/* does the key exist? */
1370	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1371	if (skey == NULL)
1372		return (-1);
1373
1374	/* endpoint keys are not refcounted */
1375
1376	/* remove it */
1377	LIST_REMOVE(skey, next);
1378	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1379
1380	/* clear any cached keys */
1381	sctp_clear_cachedkeys_ep(inp, keyid);
1382	return (0);
1383}
1384
1385/*-
1386 * set the active key on an association
1387 * ASSUMES TCB_LOCK is already held
1388 */
1389int
1390sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1391{
1392	sctp_sharedkey_t *skey = NULL;
1393
1394	/* find the key on the assoc */
1395	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1396	if (skey == NULL) {
1397		/* that key doesn't exist */
1398		return (-1);
1399	}
1400	if ((skey->deactivated) && (skey->refcount > 1)) {
1401		/* can't reactivate a deactivated key with other refcounts */
1402		return (-1);
1403	}
1404	/* set the (new) active key */
1405	stcb->asoc.authinfo.active_keyid = keyid;
1406	/* reset the deactivated flag */
1407	skey->deactivated = 0;
1408
1409	return (0);
1410}
1411
1412/*-
1413 * set the active key on an endpoint
1414 * ASSUMES INP_WLOCK is already held
1415 */
1416int
1417sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1418{
1419	sctp_sharedkey_t *skey;
1420
1421	/* find the key */
1422	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1423	if (skey == NULL) {
1424		/* that key doesn't exist */
1425		return (-1);
1426	}
1427	inp->sctp_ep.default_keyid = keyid;
1428	return (0);
1429}
1430
1431/*-
1432 * deactivates a shared key from the association
1433 * ASSUMES INP_WLOCK is already held
1434 */
1435int
1436sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1437{
1438	sctp_sharedkey_t *skey;
1439
1440	if (stcb == NULL)
1441		return (-1);
1442
1443	/* is the keyid the assoc active sending key */
1444	if (keyid == stcb->asoc.authinfo.active_keyid)
1445		return (-1);
1446
1447	/* does the key exist? */
1448	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1449	if (skey == NULL)
1450		return (-1);
1451
1452	/* are there other refcount holders on the key? */
1453	if (skey->refcount == 1) {
1454		/* no other users, send a notification for this key */
1455		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1456		    SCTP_SO_LOCKED);
1457	}
1458	/* mark the key as deactivated */
1459	skey->deactivated = 1;
1460
1461	return (0);
1462}
1463
1464/*-
1465 * deactivates a shared key from the endpoint
1466 * ASSUMES INP_WLOCK is already held
1467 */
1468int
1469sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1470{
1471	sctp_sharedkey_t *skey;
1472
1473	if (inp == NULL)
1474		return (-1);
1475
1476	/* is the keyid the active sending key on the endpoint */
1477	if (keyid == inp->sctp_ep.default_keyid)
1478		return (-1);
1479
1480	/* does the key exist? */
1481	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1482	if (skey == NULL)
1483		return (-1);
1484
1485	/* endpoint keys are not refcounted */
1486
1487	/* remove it */
1488	LIST_REMOVE(skey, next);
1489	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1490
1491	return (0);
1492}
1493
1494/*
1495 * get local authentication parameters from cookie (from INIT-ACK)
1496 */
1497void
1498sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1499    uint32_t offset, uint32_t length)
1500{
1501	struct sctp_paramhdr *phdr, tmp_param;
1502	uint16_t plen, ptype;
1503	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1504	struct sctp_auth_random *p_random = NULL;
1505	uint16_t random_len = 0;
1506	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1507	struct sctp_auth_hmac_algo *hmacs = NULL;
1508	uint16_t hmacs_len = 0;
1509	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1510	struct sctp_auth_chunk_list *chunks = NULL;
1511	uint16_t num_chunks = 0;
1512	sctp_key_t *new_key;
1513	uint32_t keylen;
1514
1515	/* convert to upper bound */
1516	length += offset;
1517
1518	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1519	    sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param);
1520	while (phdr != NULL) {
1521		ptype = ntohs(phdr->param_type);
1522		plen = ntohs(phdr->param_length);
1523
1524		if ((plen == 0) || (offset + plen > length))
1525			break;
1526
1527		if (ptype == SCTP_RANDOM) {
1528			if (plen > sizeof(random_store))
1529				break;
1530			phdr = sctp_get_next_param(m, offset,
1531			    (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store)));
1532			if (phdr == NULL)
1533				return;
1534			/* save the random and length for the key */
1535			p_random = (struct sctp_auth_random *)phdr;
1536			random_len = plen - sizeof(*p_random);
1537		} else if (ptype == SCTP_HMAC_LIST) {
1538			int num_hmacs;
1539			int i;
1540
1541			if (plen > sizeof(hmacs_store))
1542				break;
1543			phdr = sctp_get_next_param(m, offset,
1544			    (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store)));
1545			if (phdr == NULL)
1546				return;
1547			/* save the hmacs list and num for the key */
1548			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1549			hmacs_len = plen - sizeof(*hmacs);
1550			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1551			if (stcb->asoc.local_hmacs != NULL)
1552				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1553			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1554			if (stcb->asoc.local_hmacs != NULL) {
1555				for (i = 0; i < num_hmacs; i++) {
1556					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1557					    ntohs(hmacs->hmac_ids[i]));
1558				}
1559			}
1560		} else if (ptype == SCTP_CHUNK_LIST) {
1561			int i;
1562
1563			if (plen > sizeof(chunks_store))
1564				break;
1565			phdr = sctp_get_next_param(m, offset,
1566			    (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store)));
1567			if (phdr == NULL)
1568				return;
1569			chunks = (struct sctp_auth_chunk_list *)phdr;
1570			num_chunks = plen - sizeof(*chunks);
1571			/* save chunks list and num for the key */
1572			if (stcb->asoc.local_auth_chunks != NULL)
1573				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1574			else
1575				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1576			for (i = 0; i < num_chunks; i++) {
1577				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1578				    stcb->asoc.local_auth_chunks);
1579			}
1580		}
1581		/* get next parameter */
1582		offset += SCTP_SIZE32(plen);
1583		if (offset + sizeof(struct sctp_paramhdr) > length)
1584			break;
1585		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1586		    (uint8_t *) & tmp_param);
1587	}
1588	/* concatenate the full random key */
1589	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1590	if (chunks != NULL) {
1591		keylen += sizeof(*chunks) + num_chunks;
1592	}
1593	new_key = sctp_alloc_key(keylen);
1594	if (new_key != NULL) {
1595		/* copy in the RANDOM */
1596		if (p_random != NULL) {
1597			keylen = sizeof(*p_random) + random_len;
1598			bcopy(p_random, new_key->key, keylen);
1599		}
1600		/* append in the AUTH chunks */
1601		if (chunks != NULL) {
1602			bcopy(chunks, new_key->key + keylen,
1603			    sizeof(*chunks) + num_chunks);
1604			keylen += sizeof(*chunks) + num_chunks;
1605		}
1606		/* append in the HMACs */
1607		if (hmacs != NULL) {
1608			bcopy(hmacs, new_key->key + keylen,
1609			    sizeof(*hmacs) + hmacs_len);
1610		}
1611	}
1612	if (stcb->asoc.authinfo.random != NULL)
1613		sctp_free_key(stcb->asoc.authinfo.random);
1614	stcb->asoc.authinfo.random = new_key;
1615	stcb->asoc.authinfo.random_len = random_len;
1616	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1617	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1618
1619	/* negotiate what HMAC to use for the peer */
1620	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1621	    stcb->asoc.local_hmacs);
1622
1623	/* copy defaults from the endpoint */
1624	/* FIX ME: put in cookie? */
1625	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1626	/* copy out the shared key list (by reference) from the endpoint */
1627	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1628	    &stcb->asoc.shared_keys);
1629}
1630
1631/*
1632 * compute and fill in the HMAC digest for a packet
1633 */
1634void
1635sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1636    struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1637{
1638	uint32_t digestlen;
1639	sctp_sharedkey_t *skey;
1640	sctp_key_t *key;
1641
1642	if ((stcb == NULL) || (auth == NULL))
1643		return;
1644
1645	/* zero the digest + chunk padding */
1646	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1647	bzero(auth->hmac, SCTP_SIZE32(digestlen));
1648
1649	/* is the desired key cached? */
1650	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1651	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1652		if (stcb->asoc.authinfo.assoc_key != NULL) {
1653			/* free the old cached key */
1654			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1655		}
1656		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1657		/* the only way skey is NULL is if null key id 0 is used */
1658		if (skey != NULL)
1659			key = skey->key;
1660		else
1661			key = NULL;
1662		/* compute a new assoc key and cache it */
1663		stcb->asoc.authinfo.assoc_key =
1664		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1665		    stcb->asoc.authinfo.peer_random, key);
1666		stcb->asoc.authinfo.assoc_keyid = keyid;
1667		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1668		    stcb->asoc.authinfo.assoc_keyid);
1669#ifdef SCTP_DEBUG
1670		if (SCTP_AUTH_DEBUG)
1671			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1672			    "Assoc Key");
1673#endif
1674	}
1675	/* set in the active key id */
1676	auth->shared_key_id = htons(keyid);
1677
1678	/* compute and fill in the digest */
1679	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1680	    m, auth_offset, auth->hmac);
1681}
1682
1683
1684static void
1685sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1686{
1687	struct mbuf *m_tmp;
1688	uint8_t *data;
1689
1690	/* sanity check */
1691	if (m == NULL)
1692		return;
1693
1694	/* find the correct starting mbuf and offset (get start position) */
1695	m_tmp = m;
1696	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1697		m_offset -= SCTP_BUF_LEN(m_tmp);
1698		m_tmp = SCTP_BUF_NEXT(m_tmp);
1699	}
1700	/* now use the rest of the mbuf chain */
1701	while ((m_tmp != NULL) && (size > 0)) {
1702		data = mtod(m_tmp, uint8_t *) + m_offset;
1703		if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) {
1704			bzero(data, SCTP_BUF_LEN(m_tmp));
1705			size -= SCTP_BUF_LEN(m_tmp);
1706		} else {
1707			bzero(data, size);
1708			size = 0;
1709		}
1710		/* clear the offset since it's only for the first mbuf */
1711		m_offset = 0;
1712		m_tmp = SCTP_BUF_NEXT(m_tmp);
1713	}
1714}
1715
1716/*-
1717 * process the incoming Authentication chunk
1718 * return codes:
1719 *   -1 on any authentication error
1720 *    0 on authentication verification
1721 */
1722int
1723sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1724    struct mbuf *m, uint32_t offset)
1725{
1726	uint16_t chunklen;
1727	uint16_t shared_key_id;
1728	uint16_t hmac_id;
1729	sctp_sharedkey_t *skey;
1730	uint32_t digestlen;
1731	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1732	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1733
1734	/* auth is checked for NULL by caller */
1735	chunklen = ntohs(auth->ch.chunk_length);
1736	if (chunklen < sizeof(*auth)) {
1737		SCTP_STAT_INCR(sctps_recvauthfailed);
1738		return (-1);
1739	}
1740	SCTP_STAT_INCR(sctps_recvauth);
1741
1742	/* get the auth params */
1743	shared_key_id = ntohs(auth->shared_key_id);
1744	hmac_id = ntohs(auth->hmac_id);
1745	SCTPDBG(SCTP_DEBUG_AUTH1,
1746	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1747	    shared_key_id, hmac_id);
1748
1749	/* is the indicated HMAC supported? */
1750	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1751		struct mbuf *m_err;
1752		struct sctp_auth_invalid_hmac *err;
1753
1754		SCTP_STAT_INCR(sctps_recvivalhmacid);
1755		SCTPDBG(SCTP_DEBUG_AUTH1,
1756		    "SCTP Auth: unsupported HMAC id %u\n",
1757		    hmac_id);
1758		/*
1759		 * report this in an Error Chunk: Unsupported HMAC
1760		 * Identifier
1761		 */
1762		m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_DONTWAIT,
1763		    1, MT_HEADER);
1764		if (m_err != NULL) {
1765			/* pre-reserve some space */
1766			SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr));
1767			/* fill in the error */
1768			err = mtod(m_err, struct sctp_auth_invalid_hmac *);
1769			bzero(err, sizeof(*err));
1770			err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1771			err->ph.param_length = htons(sizeof(*err));
1772			err->hmac_id = ntohs(hmac_id);
1773			SCTP_BUF_LEN(m_err) = sizeof(*err);
1774			/* queue it */
1775			sctp_queue_op_err(stcb, m_err);
1776		}
1777		return (-1);
1778	}
1779	/* get the indicated shared key, if available */
1780	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1781	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1782		/* find the shared key on the assoc first */
1783		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1784		    shared_key_id);
1785		/* if the shared key isn't found, discard the chunk */
1786		if (skey == NULL) {
1787			SCTP_STAT_INCR(sctps_recvivalkeyid);
1788			SCTPDBG(SCTP_DEBUG_AUTH1,
1789			    "SCTP Auth: unknown key id %u\n",
1790			    shared_key_id);
1791			return (-1);
1792		}
1793		/* generate a notification if this is a new key id */
1794		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1795			/*
1796			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1797			 * shared_key_id, (void
1798			 * *)stcb->asoc.authinfo.recv_keyid);
1799			 */
1800			sctp_notify_authentication(stcb, SCTP_AUTH_NEWKEY,
1801			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1802			    SCTP_SO_NOT_LOCKED);
1803		/* compute a new recv assoc key and cache it */
1804		if (stcb->asoc.authinfo.recv_key != NULL)
1805			sctp_free_key(stcb->asoc.authinfo.recv_key);
1806		stcb->asoc.authinfo.recv_key =
1807		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1808		    stcb->asoc.authinfo.peer_random, skey->key);
1809		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1810#ifdef SCTP_DEBUG
1811		if (SCTP_AUTH_DEBUG)
1812			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1813#endif
1814	}
1815	/* validate the digest length */
1816	digestlen = sctp_get_hmac_digest_len(hmac_id);
1817	if (chunklen < (sizeof(*auth) + digestlen)) {
1818		/* invalid digest length */
1819		SCTP_STAT_INCR(sctps_recvauthfailed);
1820		SCTPDBG(SCTP_DEBUG_AUTH1,
1821		    "SCTP Auth: chunk too short for HMAC\n");
1822		return (-1);
1823	}
1824	/* save a copy of the digest, zero the pseudo header, and validate */
1825	bcopy(auth->hmac, digest, digestlen);
1826	sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1827	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1828	    m, offset, computed_digest);
1829
1830	/* compare the computed digest with the one in the AUTH chunk */
1831	if (memcmp(digest, computed_digest, digestlen) != 0) {
1832		SCTP_STAT_INCR(sctps_recvauthfailed);
1833		SCTPDBG(SCTP_DEBUG_AUTH1,
1834		    "SCTP Auth: HMAC digest check failed\n");
1835		return (-1);
1836	}
1837	return (0);
1838}
1839
1840/*
1841 * Generate NOTIFICATION
1842 */
1843void
1844sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1845    uint16_t keyid, uint16_t alt_keyid, int so_locked
1846#if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1847    SCTP_UNUSED
1848#endif
1849)
1850{
1851	struct mbuf *m_notify;
1852	struct sctp_authkey_event *auth;
1853	struct sctp_queued_to_read *control;
1854
1855	if ((stcb == NULL) ||
1856	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1857	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1858	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1859	    ) {
1860		/* If the socket is gone we are out of here */
1861		return;
1862	}
1863	if (sctp_is_feature_off(stcb->sctp_ep, SCTP_PCB_FLAGS_AUTHEVNT))
1864		/* event not enabled */
1865		return;
1866
1867	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1868	    0, M_DONTWAIT, 1, MT_HEADER);
1869	if (m_notify == NULL)
1870		/* no space left */
1871		return;
1872
1873	SCTP_BUF_LEN(m_notify) = 0;
1874	auth = mtod(m_notify, struct sctp_authkey_event *);
1875	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1876	auth->auth_flags = 0;
1877	auth->auth_length = sizeof(*auth);
1878	auth->auth_keynumber = keyid;
1879	auth->auth_altkeynumber = alt_keyid;
1880	auth->auth_indication = indication;
1881	auth->auth_assoc_id = sctp_get_associd(stcb);
1882
1883	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1884	SCTP_BUF_NEXT(m_notify) = NULL;
1885
1886	/* append to socket */
1887	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1888	    0, 0, 0, 0, 0, 0, m_notify);
1889	if (control == NULL) {
1890		/* no memory */
1891		sctp_m_freem(m_notify);
1892		return;
1893	}
1894	control->spec_flags = M_NOTIFICATION;
1895	control->length = SCTP_BUF_LEN(m_notify);
1896	/* not that we need this */
1897	control->tail_mbuf = m_notify;
1898	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1899	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1900}
1901
1902
1903/*-
1904 * validates the AUTHentication related parameters in an INIT/INIT-ACK
1905 * Note: currently only used for INIT as INIT-ACK is handled inline
1906 * with sctp_load_addresses_from_init()
1907 */
1908int
1909sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1910{
1911	struct sctp_paramhdr *phdr, parm_buf;
1912	uint16_t ptype, plen;
1913	int peer_supports_asconf = 0;
1914	int peer_supports_auth = 0;
1915	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1916	uint8_t saw_asconf = 0;
1917	uint8_t saw_asconf_ack = 0;
1918
1919	/* go through each of the params. */
1920	phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
1921	while (phdr) {
1922		ptype = ntohs(phdr->param_type);
1923		plen = ntohs(phdr->param_length);
1924
1925		if (offset + plen > limit) {
1926			break;
1927		}
1928		if (plen < sizeof(struct sctp_paramhdr)) {
1929			break;
1930		}
1931		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1932			/* A supported extension chunk */
1933			struct sctp_supported_chunk_types_param *pr_supported;
1934			uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
1935			int num_ent, i;
1936
1937			phdr = sctp_get_next_param(m, offset,
1938			    (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store)));
1939			if (phdr == NULL) {
1940				return (-1);
1941			}
1942			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1943			num_ent = plen - sizeof(struct sctp_paramhdr);
1944			for (i = 0; i < num_ent; i++) {
1945				switch (pr_supported->chunk_types[i]) {
1946				case SCTP_ASCONF:
1947				case SCTP_ASCONF_ACK:
1948					peer_supports_asconf = 1;
1949					break;
1950				case SCTP_AUTHENTICATION:
1951					peer_supports_auth = 1;
1952					break;
1953				default:
1954					/* one we don't care about */
1955					break;
1956				}
1957			}
1958		} else if (ptype == SCTP_RANDOM) {
1959			got_random = 1;
1960			/* enforce the random length */
1961			if (plen != (sizeof(struct sctp_auth_random) +
1962			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1963				SCTPDBG(SCTP_DEBUG_AUTH1,
1964				    "SCTP: invalid RANDOM len\n");
1965				return (-1);
1966			}
1967		} else if (ptype == SCTP_HMAC_LIST) {
1968			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1969			struct sctp_auth_hmac_algo *hmacs;
1970			int num_hmacs;
1971
1972			if (plen > sizeof(store))
1973				break;
1974			phdr = sctp_get_next_param(m, offset,
1975			    (struct sctp_paramhdr *)store, min(plen, sizeof(store)));
1976			if (phdr == NULL)
1977				return (-1);
1978			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1979			num_hmacs = (plen - sizeof(*hmacs)) /
1980			    sizeof(hmacs->hmac_ids[0]);
1981			/* validate the hmac list */
1982			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1983				SCTPDBG(SCTP_DEBUG_AUTH1,
1984				    "SCTP: invalid HMAC param\n");
1985				return (-1);
1986			}
1987			got_hmacs = 1;
1988		} else if (ptype == SCTP_CHUNK_LIST) {
1989			int i, num_chunks;
1990			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1991
1992			/* did the peer send a non-empty chunk list? */
1993			struct sctp_auth_chunk_list *chunks = NULL;
1994
1995			phdr = sctp_get_next_param(m, offset,
1996			    (struct sctp_paramhdr *)chunks_store,
1997			    min(plen, sizeof(chunks_store)));
1998			if (phdr == NULL)
1999				return (-1);
2000
2001			/*-
2002			 * Flip through the list and mark that the
2003			 * peer supports asconf/asconf_ack.
2004			 */
2005			chunks = (struct sctp_auth_chunk_list *)phdr;
2006			num_chunks = plen - sizeof(*chunks);
2007			for (i = 0; i < num_chunks; i++) {
2008				/* record asconf/asconf-ack if listed */
2009				if (chunks->chunk_types[i] == SCTP_ASCONF)
2010					saw_asconf = 1;
2011				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
2012					saw_asconf_ack = 1;
2013
2014			}
2015			if (num_chunks)
2016				got_chklist = 1;
2017		}
2018		offset += SCTP_SIZE32(plen);
2019		if (offset >= limit) {
2020			break;
2021		}
2022		phdr = sctp_get_next_param(m, offset, &parm_buf,
2023		    sizeof(parm_buf));
2024	}
2025	/* validate authentication required parameters */
2026	if (got_random && got_hmacs) {
2027		peer_supports_auth = 1;
2028	} else {
2029		peer_supports_auth = 0;
2030	}
2031	if (!peer_supports_auth && got_chklist) {
2032		SCTPDBG(SCTP_DEBUG_AUTH1,
2033		    "SCTP: peer sent chunk list w/o AUTH\n");
2034		return (-1);
2035	}
2036	if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf &&
2037	    !peer_supports_auth) {
2038		SCTPDBG(SCTP_DEBUG_AUTH1,
2039		    "SCTP: peer supports ASCONF but not AUTH\n");
2040		return (-1);
2041	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
2042	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
2043		return (-2);
2044	}
2045	return (0);
2046}
2047
2048void
2049sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
2050{
2051	uint16_t chunks_len = 0;
2052	uint16_t hmacs_len = 0;
2053	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
2054	sctp_key_t *new_key;
2055	uint16_t keylen;
2056
2057	/* initialize hmac list from endpoint */
2058	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
2059	if (stcb->asoc.local_hmacs != NULL) {
2060		hmacs_len = stcb->asoc.local_hmacs->num_algo *
2061		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
2062	}
2063	/* initialize auth chunks list from endpoint */
2064	stcb->asoc.local_auth_chunks =
2065	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
2066	if (stcb->asoc.local_auth_chunks != NULL) {
2067		int i;
2068
2069		for (i = 0; i < 256; i++) {
2070			if (stcb->asoc.local_auth_chunks->chunks[i])
2071				chunks_len++;
2072		}
2073	}
2074	/* copy defaults from the endpoint */
2075	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
2076
2077	/* copy out the shared key list (by reference) from the endpoint */
2078	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
2079	    &stcb->asoc.shared_keys);
2080
2081	/* now set the concatenated key (random + chunks + hmacs) */
2082	/* key includes parameter headers */
2083	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
2084	    hmacs_len;
2085	new_key = sctp_alloc_key(keylen);
2086	if (new_key != NULL) {
2087		struct sctp_paramhdr *ph;
2088		int plen;
2089
2090		/* generate and copy in the RANDOM */
2091		ph = (struct sctp_paramhdr *)new_key->key;
2092		ph->param_type = htons(SCTP_RANDOM);
2093		plen = sizeof(*ph) + random_len;
2094		ph->param_length = htons(plen);
2095		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
2096		keylen = plen;
2097
2098		/* append in the AUTH chunks */
2099		/* NOTE: currently we always have chunks to list */
2100		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2101		ph->param_type = htons(SCTP_CHUNK_LIST);
2102		plen = sizeof(*ph) + chunks_len;
2103		ph->param_length = htons(plen);
2104		keylen += sizeof(*ph);
2105		if (stcb->asoc.local_auth_chunks) {
2106			int i;
2107
2108			for (i = 0; i < 256; i++) {
2109				if (stcb->asoc.local_auth_chunks->chunks[i])
2110					new_key->key[keylen++] = i;
2111			}
2112		}
2113		/* append in the HMACs */
2114		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2115		ph->param_type = htons(SCTP_HMAC_LIST);
2116		plen = sizeof(*ph) + hmacs_len;
2117		ph->param_length = htons(plen);
2118		keylen += sizeof(*ph);
2119		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2120		    new_key->key + keylen);
2121	}
2122	if (stcb->asoc.authinfo.random != NULL)
2123		sctp_free_key(stcb->asoc.authinfo.random);
2124	stcb->asoc.authinfo.random = new_key;
2125	stcb->asoc.authinfo.random_len = random_len;
2126}
2127