ip_output.c revision 243624
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_output.c 243624 2012-11-27 19:31:49Z andre $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_route.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40#include "opt_sctp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/priv.h>
48#include <sys/proc.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/ucred.h>
54
55#include <net/if.h>
56#include <net/if_llatbl.h>
57#include <net/netisr.h>
58#include <net/pfil.h>
59#include <net/route.h>
60#include <net/flowtable.h>
61#ifdef RADIX_MPATH
62#include <net/radix_mpath.h>
63#endif
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/in_var.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_options.h>
73#ifdef SCTP
74#include <netinet/sctp.h>
75#include <netinet/sctp_crc32.h>
76#endif
77
78#ifdef IPSEC
79#include <netinet/ip_ipsec.h>
80#include <netipsec/ipsec.h>
81#endif /* IPSEC*/
82
83#include <machine/in_cksum.h>
84
85#include <security/mac/mac_framework.h>
86
87VNET_DEFINE(u_short, ip_id);
88
89#ifdef MBUF_STRESS_TEST
90static int mbuf_frag_size = 0;
91SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93#endif
94
95static void	ip_mloopback
96	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
97
98
99extern int in_mcast_loop;
100extern	struct protosw inetsw[];
101
102/*
103 * IP output.  The packet in mbuf chain m contains a skeletal IP
104 * header (with len, off, ttl, proto, tos, src, dst).
105 * The mbuf chain containing the packet will be freed.
106 * The mbuf opt, if present, will not be freed.
107 * If route ro is present and has ro_rt initialized, route lookup would be
108 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
109 * then result of route lookup is stored in ro->ro_rt.
110 *
111 * In the IP forwarding case, the packet will arrive with options already
112 * inserted, so must have a NULL opt pointer.
113 */
114int
115ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
116    struct ip_moptions *imo, struct inpcb *inp)
117{
118	struct ip *ip;
119	struct ifnet *ifp = NULL;	/* keep compiler happy */
120	struct mbuf *m0;
121	int hlen = sizeof (struct ip);
122	int mtu;
123	int n;	/* scratchpad */
124	int error = 0;
125	struct sockaddr_in *dst;
126	struct in_ifaddr *ia;
127	int isbroadcast;
128	uint16_t ip_len, ip_off;
129	struct route iproute;
130	struct rtentry *rte;	/* cache for ro->ro_rt */
131	struct in_addr odst;
132	struct m_tag *fwd_tag = NULL;
133#ifdef IPSEC
134	int no_route_but_check_spd = 0;
135#endif
136	M_ASSERTPKTHDR(m);
137
138	if (inp != NULL) {
139		INP_LOCK_ASSERT(inp);
140		M_SETFIB(m, inp->inp_inc.inc_fibnum);
141		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
142			m->m_pkthdr.flowid = inp->inp_flowid;
143			m->m_flags |= M_FLOWID;
144		}
145	}
146
147	if (ro == NULL) {
148		ro = &iproute;
149		bzero(ro, sizeof (*ro));
150	}
151
152#ifdef FLOWTABLE
153	if (ro->ro_rt == NULL) {
154		struct flentry *fle;
155
156		/*
157		 * The flow table returns route entries valid for up to 30
158		 * seconds; we rely on the remainder of ip_output() taking no
159		 * longer than that long for the stability of ro_rt. The
160		 * flow ID assignment must have happened before this point.
161		 */
162		fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET);
163		if (fle != NULL)
164			flow_to_route(fle, ro);
165	}
166#endif
167
168	if (opt) {
169		int len = 0;
170		m = ip_insertoptions(m, opt, &len);
171		if (len != 0)
172			hlen = len; /* ip->ip_hl is updated above */
173	}
174	ip = mtod(m, struct ip *);
175	ip_len = ntohs(ip->ip_len);
176	ip_off = ntohs(ip->ip_off);
177
178	/*
179	 * Fill in IP header.  If we are not allowing fragmentation,
180	 * then the ip_id field is meaningless, but we don't set it
181	 * to zero.  Doing so causes various problems when devices along
182	 * the path (routers, load balancers, firewalls, etc.) illegally
183	 * disable DF on our packet.  Note that a 16-bit counter
184	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
185	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
186	 * for Counting NATted Hosts", Proc. IMW'02, available at
187	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
188	 */
189	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
190		ip->ip_v = IPVERSION;
191		ip->ip_hl = hlen >> 2;
192		ip->ip_id = ip_newid();
193		IPSTAT_INC(ips_localout);
194	} else {
195		/* Header already set, fetch hlen from there */
196		hlen = ip->ip_hl << 2;
197	}
198
199	dst = (struct sockaddr_in *)&ro->ro_dst;
200again:
201	ia = NULL;
202	/*
203	 * If there is a cached route,
204	 * check that it is to the same destination
205	 * and is still up.  If not, free it and try again.
206	 * The address family should also be checked in case of sharing the
207	 * cache with IPv6.
208	 */
209	rte = ro->ro_rt;
210	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
211		    rte->rt_ifp == NULL ||
212		    !RT_LINK_IS_UP(rte->rt_ifp) ||
213			  dst->sin_family != AF_INET ||
214			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
215		RO_RTFREE(ro);
216		ro->ro_lle = NULL;
217		rte = NULL;
218	}
219	if (rte == NULL && fwd_tag == NULL) {
220		bzero(dst, sizeof(*dst));
221		dst->sin_family = AF_INET;
222		dst->sin_len = sizeof(*dst);
223		dst->sin_addr = ip->ip_dst;
224	}
225	/*
226	 * If routing to interface only, short circuit routing lookup.
227	 * The use of an all-ones broadcast address implies this; an
228	 * interface is specified by the broadcast address of an interface,
229	 * or the destination address of a ptp interface.
230	 */
231	if (flags & IP_SENDONES) {
232		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
233		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
234			IPSTAT_INC(ips_noroute);
235			error = ENETUNREACH;
236			goto bad;
237		}
238		ip->ip_dst.s_addr = INADDR_BROADCAST;
239		dst->sin_addr = ip->ip_dst;
240		ifp = ia->ia_ifp;
241		ip->ip_ttl = 1;
242		isbroadcast = 1;
243	} else if (flags & IP_ROUTETOIF) {
244		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
245		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
246			IPSTAT_INC(ips_noroute);
247			error = ENETUNREACH;
248			goto bad;
249		}
250		ifp = ia->ia_ifp;
251		ip->ip_ttl = 1;
252		isbroadcast = in_broadcast(dst->sin_addr, ifp);
253	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
254	    imo != NULL && imo->imo_multicast_ifp != NULL) {
255		/*
256		 * Bypass the normal routing lookup for multicast
257		 * packets if the interface is specified.
258		 */
259		ifp = imo->imo_multicast_ifp;
260		IFP_TO_IA(ifp, ia);
261		isbroadcast = 0;	/* fool gcc */
262	} else {
263		/*
264		 * We want to do any cloning requested by the link layer,
265		 * as this is probably required in all cases for correct
266		 * operation (as it is for ARP).
267		 */
268		if (rte == NULL) {
269#ifdef RADIX_MPATH
270			rtalloc_mpath_fib(ro,
271			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
272			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
273#else
274			in_rtalloc_ign(ro, 0,
275			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
276#endif
277			rte = ro->ro_rt;
278		}
279		if (rte == NULL ||
280		    rte->rt_ifp == NULL ||
281		    !RT_LINK_IS_UP(rte->rt_ifp)) {
282#ifdef IPSEC
283			/*
284			 * There is no route for this packet, but it is
285			 * possible that a matching SPD entry exists.
286			 */
287			no_route_but_check_spd = 1;
288			mtu = 0; /* Silence GCC warning. */
289			goto sendit;
290#endif
291			IPSTAT_INC(ips_noroute);
292			error = EHOSTUNREACH;
293			goto bad;
294		}
295		ia = ifatoia(rte->rt_ifa);
296		ifa_ref(&ia->ia_ifa);
297		ifp = rte->rt_ifp;
298		rte->rt_rmx.rmx_pksent++;
299		if (rte->rt_flags & RTF_GATEWAY)
300			dst = (struct sockaddr_in *)rte->rt_gateway;
301		if (rte->rt_flags & RTF_HOST)
302			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
303		else
304			isbroadcast = in_broadcast(dst->sin_addr, ifp);
305	}
306	/*
307	 * Calculate MTU.  If we have a route that is up, use that,
308	 * otherwise use the interface's MTU.
309	 */
310	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
311		/*
312		 * This case can happen if the user changed the MTU
313		 * of an interface after enabling IP on it.  Because
314		 * most netifs don't keep track of routes pointing to
315		 * them, there is no way for one to update all its
316		 * routes when the MTU is changed.
317		 */
318		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
319			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
320		mtu = rte->rt_rmx.rmx_mtu;
321	} else {
322		mtu = ifp->if_mtu;
323	}
324	/* Catch a possible divide by zero later. */
325	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
326	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
327	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
328		m->m_flags |= M_MCAST;
329		/*
330		 * IP destination address is multicast.  Make sure "dst"
331		 * still points to the address in "ro".  (It may have been
332		 * changed to point to a gateway address, above.)
333		 */
334		dst = (struct sockaddr_in *)&ro->ro_dst;
335		/*
336		 * See if the caller provided any multicast options
337		 */
338		if (imo != NULL) {
339			ip->ip_ttl = imo->imo_multicast_ttl;
340			if (imo->imo_multicast_vif != -1)
341				ip->ip_src.s_addr =
342				    ip_mcast_src ?
343				    ip_mcast_src(imo->imo_multicast_vif) :
344				    INADDR_ANY;
345		} else
346			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
347		/*
348		 * Confirm that the outgoing interface supports multicast.
349		 */
350		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
351			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
352				IPSTAT_INC(ips_noroute);
353				error = ENETUNREACH;
354				goto bad;
355			}
356		}
357		/*
358		 * If source address not specified yet, use address
359		 * of outgoing interface.
360		 */
361		if (ip->ip_src.s_addr == INADDR_ANY) {
362			/* Interface may have no addresses. */
363			if (ia != NULL)
364				ip->ip_src = IA_SIN(ia)->sin_addr;
365		}
366
367		if ((imo == NULL && in_mcast_loop) ||
368		    (imo && imo->imo_multicast_loop)) {
369			/*
370			 * Loop back multicast datagram if not expressly
371			 * forbidden to do so, even if we are not a member
372			 * of the group; ip_input() will filter it later,
373			 * thus deferring a hash lookup and mutex acquisition
374			 * at the expense of a cheap copy using m_copym().
375			 */
376			ip_mloopback(ifp, m, dst, hlen);
377		} else {
378			/*
379			 * If we are acting as a multicast router, perform
380			 * multicast forwarding as if the packet had just
381			 * arrived on the interface to which we are about
382			 * to send.  The multicast forwarding function
383			 * recursively calls this function, using the
384			 * IP_FORWARDING flag to prevent infinite recursion.
385			 *
386			 * Multicasts that are looped back by ip_mloopback(),
387			 * above, will be forwarded by the ip_input() routine,
388			 * if necessary.
389			 */
390			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
391				/*
392				 * If rsvp daemon is not running, do not
393				 * set ip_moptions. This ensures that the packet
394				 * is multicast and not just sent down one link
395				 * as prescribed by rsvpd.
396				 */
397				if (!V_rsvp_on)
398					imo = NULL;
399				if (ip_mforward &&
400				    ip_mforward(ip, ifp, m, imo) != 0) {
401					m_freem(m);
402					goto done;
403				}
404			}
405		}
406
407		/*
408		 * Multicasts with a time-to-live of zero may be looped-
409		 * back, above, but must not be transmitted on a network.
410		 * Also, multicasts addressed to the loopback interface
411		 * are not sent -- the above call to ip_mloopback() will
412		 * loop back a copy. ip_input() will drop the copy if
413		 * this host does not belong to the destination group on
414		 * the loopback interface.
415		 */
416		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
417			m_freem(m);
418			goto done;
419		}
420
421		goto sendit;
422	}
423
424	/*
425	 * If the source address is not specified yet, use the address
426	 * of the outoing interface.
427	 */
428	if (ip->ip_src.s_addr == INADDR_ANY) {
429		/* Interface may have no addresses. */
430		if (ia != NULL) {
431			ip->ip_src = IA_SIN(ia)->sin_addr;
432		}
433	}
434
435	/*
436	 * Verify that we have any chance at all of being able to queue the
437	 * packet or packet fragments, unless ALTQ is enabled on the given
438	 * interface in which case packetdrop should be done by queueing.
439	 */
440	n = ip_len / mtu + 1; /* how many fragments ? */
441	if (
442#ifdef ALTQ
443	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
444#endif /* ALTQ */
445	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
446		error = ENOBUFS;
447		IPSTAT_INC(ips_odropped);
448		ifp->if_snd.ifq_drops += n;
449		goto bad;
450	}
451
452	/*
453	 * Look for broadcast address and
454	 * verify user is allowed to send
455	 * such a packet.
456	 */
457	if (isbroadcast) {
458		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
459			error = EADDRNOTAVAIL;
460			goto bad;
461		}
462		if ((flags & IP_ALLOWBROADCAST) == 0) {
463			error = EACCES;
464			goto bad;
465		}
466		/* don't allow broadcast messages to be fragmented */
467		if (ip_len > mtu) {
468			error = EMSGSIZE;
469			goto bad;
470		}
471		m->m_flags |= M_BCAST;
472	} else {
473		m->m_flags &= ~M_BCAST;
474	}
475
476sendit:
477#ifdef IPSEC
478	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
479	case 1:
480		goto bad;
481	case -1:
482		goto done;
483	case 0:
484	default:
485		break;	/* Continue with packet processing. */
486	}
487	/*
488	 * Check if there was a route for this packet; return error if not.
489	 */
490	if (no_route_but_check_spd) {
491		IPSTAT_INC(ips_noroute);
492		error = EHOSTUNREACH;
493		goto bad;
494	}
495	/* Update variables that are affected by ipsec4_output(). */
496	ip = mtod(m, struct ip *);
497	hlen = ip->ip_hl << 2;
498#endif /* IPSEC */
499
500	/* Jump over all PFIL processing if hooks are not active. */
501	if (!PFIL_HOOKED(&V_inet_pfil_hook))
502		goto passout;
503
504	/* Run through list of hooks for output packets. */
505	odst.s_addr = ip->ip_dst.s_addr;
506	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
507	if (error != 0 || m == NULL)
508		goto done;
509
510	ip = mtod(m, struct ip *);
511
512	/* See if destination IP address was changed by packet filter. */
513	if (odst.s_addr != ip->ip_dst.s_addr) {
514		m->m_flags |= M_SKIP_FIREWALL;
515		/* If destination is now ourself drop to ip_input(). */
516		if (in_localip(ip->ip_dst)) {
517			m->m_flags |= M_FASTFWD_OURS;
518			if (m->m_pkthdr.rcvif == NULL)
519				m->m_pkthdr.rcvif = V_loif;
520			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
521				m->m_pkthdr.csum_flags |=
522				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
523				m->m_pkthdr.csum_data = 0xffff;
524			}
525			m->m_pkthdr.csum_flags |=
526			    CSUM_IP_CHECKED | CSUM_IP_VALID;
527#ifdef SCTP
528			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
529				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
530#endif
531			error = netisr_queue(NETISR_IP, m);
532			goto done;
533		} else {
534			if (ia != NULL)
535				ifa_free(&ia->ia_ifa);
536			goto again;	/* Redo the routing table lookup. */
537		}
538	}
539
540	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
541	if (m->m_flags & M_FASTFWD_OURS) {
542		if (m->m_pkthdr.rcvif == NULL)
543			m->m_pkthdr.rcvif = V_loif;
544		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
545			m->m_pkthdr.csum_flags |=
546			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
547			m->m_pkthdr.csum_data = 0xffff;
548		}
549#ifdef SCTP
550		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
551			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
552#endif
553		m->m_pkthdr.csum_flags |=
554			    CSUM_IP_CHECKED | CSUM_IP_VALID;
555
556		error = netisr_queue(NETISR_IP, m);
557		goto done;
558	}
559	/* Or forward to some other address? */
560	if ((m->m_flags & M_IP_NEXTHOP) &&
561	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
562		dst = (struct sockaddr_in *)&ro->ro_dst;
563		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
564		m->m_flags |= M_SKIP_FIREWALL;
565		m->m_flags &= ~M_IP_NEXTHOP;
566		m_tag_delete(m, fwd_tag);
567		if (ia != NULL)
568			ifa_free(&ia->ia_ifa);
569		goto again;
570	}
571
572passout:
573	/* 127/8 must not appear on wire - RFC1122. */
574	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
575	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
576		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
577			IPSTAT_INC(ips_badaddr);
578			error = EADDRNOTAVAIL;
579			goto bad;
580		}
581	}
582
583	m->m_pkthdr.csum_flags |= CSUM_IP;
584	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
585		in_delayed_cksum(m);
586		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
587	}
588#ifdef SCTP
589	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
590		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
591		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
592	}
593#endif
594
595	/*
596	 * If small enough for interface, or the interface will take
597	 * care of the fragmentation for us, we can just send directly.
598	 */
599	if (ip_len <= mtu ||
600	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
601	    ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
602		ip->ip_sum = 0;
603		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
604			ip->ip_sum = in_cksum(m, hlen);
605			m->m_pkthdr.csum_flags &= ~CSUM_IP;
606		}
607
608		/*
609		 * Record statistics for this interface address.
610		 * With CSUM_TSO the byte/packet count will be slightly
611		 * incorrect because we count the IP+TCP headers only
612		 * once instead of for every generated packet.
613		 */
614		if (!(flags & IP_FORWARDING) && ia) {
615			if (m->m_pkthdr.csum_flags & CSUM_TSO)
616				ia->ia_ifa.if_opackets +=
617				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
618			else
619				ia->ia_ifa.if_opackets++;
620			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
621		}
622#ifdef MBUF_STRESS_TEST
623		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
624			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
625#endif
626		/*
627		 * Reset layer specific mbuf flags
628		 * to avoid confusing lower layers.
629		 */
630		m->m_flags &= ~(M_PROTOFLAGS);
631		error = (*ifp->if_output)(ifp, m,
632		    		(struct sockaddr *)dst, ro);
633		goto done;
634	}
635
636	/* Balk when DF bit is set or the interface didn't support TSO. */
637	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
638		error = EMSGSIZE;
639		IPSTAT_INC(ips_cantfrag);
640		goto bad;
641	}
642
643	/*
644	 * Too large for interface; fragment if possible. If successful,
645	 * on return, m will point to a list of packets to be sent.
646	 */
647	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
648	if (error)
649		goto bad;
650	for (; m; m = m0) {
651		m0 = m->m_nextpkt;
652		m->m_nextpkt = 0;
653		if (error == 0) {
654			/* Record statistics for this interface address. */
655			if (ia != NULL) {
656				ia->ia_ifa.if_opackets++;
657				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
658			}
659			/*
660			 * Reset layer specific mbuf flags
661			 * to avoid confusing upper layers.
662			 */
663			m->m_flags &= ~(M_PROTOFLAGS);
664
665			error = (*ifp->if_output)(ifp, m,
666			    (struct sockaddr *)dst, ro);
667		} else
668			m_freem(m);
669	}
670
671	if (error == 0)
672		IPSTAT_INC(ips_fragmented);
673
674done:
675	if (ro == &iproute)
676		RO_RTFREE(ro);
677	if (ia != NULL)
678		ifa_free(&ia->ia_ifa);
679	return (error);
680bad:
681	m_freem(m);
682	goto done;
683}
684
685/*
686 * Create a chain of fragments which fit the given mtu. m_frag points to the
687 * mbuf to be fragmented; on return it points to the chain with the fragments.
688 * Return 0 if no error. If error, m_frag may contain a partially built
689 * chain of fragments that should be freed by the caller.
690 *
691 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
692 */
693int
694ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
695    u_long if_hwassist_flags)
696{
697	int error = 0;
698	int hlen = ip->ip_hl << 2;
699	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
700	int off;
701	struct mbuf *m0 = *m_frag;	/* the original packet		*/
702	int firstlen;
703	struct mbuf **mnext;
704	int nfrags;
705	uint16_t ip_len, ip_off;
706
707	ip_len = ntohs(ip->ip_len);
708	ip_off = ntohs(ip->ip_off);
709
710	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
711		IPSTAT_INC(ips_cantfrag);
712		return EMSGSIZE;
713	}
714
715	/*
716	 * Must be able to put at least 8 bytes per fragment.
717	 */
718	if (len < 8)
719		return EMSGSIZE;
720
721	/*
722	 * If the interface will not calculate checksums on
723	 * fragmented packets, then do it here.
724	 */
725	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
726		in_delayed_cksum(m0);
727		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
728	}
729#ifdef SCTP
730	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
731		sctp_delayed_cksum(m0, hlen);
732		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
733	}
734#endif
735	if (len > PAGE_SIZE) {
736		/*
737		 * Fragment large datagrams such that each segment
738		 * contains a multiple of PAGE_SIZE amount of data,
739		 * plus headers. This enables a receiver to perform
740		 * page-flipping zero-copy optimizations.
741		 *
742		 * XXX When does this help given that sender and receiver
743		 * could have different page sizes, and also mtu could
744		 * be less than the receiver's page size ?
745		 */
746		int newlen;
747		struct mbuf *m;
748
749		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
750			off += m->m_len;
751
752		/*
753		 * firstlen (off - hlen) must be aligned on an
754		 * 8-byte boundary
755		 */
756		if (off < hlen)
757			goto smart_frag_failure;
758		off = ((off - hlen) & ~7) + hlen;
759		newlen = (~PAGE_MASK) & mtu;
760		if ((newlen + sizeof (struct ip)) > mtu) {
761			/* we failed, go back the default */
762smart_frag_failure:
763			newlen = len;
764			off = hlen + len;
765		}
766		len = newlen;
767
768	} else {
769		off = hlen + len;
770	}
771
772	firstlen = off - hlen;
773	mnext = &m0->m_nextpkt;		/* pointer to next packet */
774
775	/*
776	 * Loop through length of segment after first fragment,
777	 * make new header and copy data of each part and link onto chain.
778	 * Here, m0 is the original packet, m is the fragment being created.
779	 * The fragments are linked off the m_nextpkt of the original
780	 * packet, which after processing serves as the first fragment.
781	 */
782	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
783		struct ip *mhip;	/* ip header on the fragment */
784		struct mbuf *m;
785		int mhlen = sizeof (struct ip);
786
787		MGETHDR(m, M_DONTWAIT, MT_DATA);
788		if (m == NULL) {
789			error = ENOBUFS;
790			IPSTAT_INC(ips_odropped);
791			goto done;
792		}
793		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
794		/*
795		 * In the first mbuf, leave room for the link header, then
796		 * copy the original IP header including options. The payload
797		 * goes into an additional mbuf chain returned by m_copym().
798		 */
799		m->m_data += max_linkhdr;
800		mhip = mtod(m, struct ip *);
801		*mhip = *ip;
802		if (hlen > sizeof (struct ip)) {
803			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
804			mhip->ip_v = IPVERSION;
805			mhip->ip_hl = mhlen >> 2;
806		}
807		m->m_len = mhlen;
808		/* XXX do we need to add ip_off below ? */
809		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
810		if (off + len >= ip_len) {	/* last fragment */
811			len = ip_len - off;
812			m->m_flags |= M_LASTFRAG;
813		} else
814			mhip->ip_off |= IP_MF;
815		mhip->ip_len = htons((u_short)(len + mhlen));
816		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
817		if (m->m_next == NULL) {	/* copy failed */
818			m_free(m);
819			error = ENOBUFS;	/* ??? */
820			IPSTAT_INC(ips_odropped);
821			goto done;
822		}
823		m->m_pkthdr.len = mhlen + len;
824		m->m_pkthdr.rcvif = NULL;
825#ifdef MAC
826		mac_netinet_fragment(m0, m);
827#endif
828		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
829		mhip->ip_off = htons(mhip->ip_off);
830		mhip->ip_sum = 0;
831		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
832			mhip->ip_sum = in_cksum(m, mhlen);
833			m->m_pkthdr.csum_flags &= ~CSUM_IP;
834		}
835		*mnext = m;
836		mnext = &m->m_nextpkt;
837	}
838	IPSTAT_ADD(ips_ofragments, nfrags);
839
840	/* set first marker for fragment chain */
841	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
842	m0->m_pkthdr.csum_data = nfrags;
843
844	/*
845	 * Update first fragment by trimming what's been copied out
846	 * and updating header.
847	 */
848	m_adj(m0, hlen + firstlen - ip_len);
849	m0->m_pkthdr.len = hlen + firstlen;
850	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
851	ip->ip_off = htons(ip_off | IP_MF);
852	ip->ip_sum = 0;
853	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
854		ip->ip_sum = in_cksum(m0, hlen);
855		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
856	}
857
858done:
859	*m_frag = m0;
860	return error;
861}
862
863void
864in_delayed_cksum(struct mbuf *m)
865{
866	struct ip *ip;
867	uint16_t csum, offset, ip_len;
868
869	ip = mtod(m, struct ip *);
870	offset = ip->ip_hl << 2 ;
871	ip_len = ntohs(ip->ip_len);
872	csum = in_cksum_skip(m, ip_len, offset);
873	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
874		csum = 0xffff;
875	offset += m->m_pkthdr.csum_data;	/* checksum offset */
876
877	if (offset + sizeof(u_short) > m->m_len) {
878		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
879		    m->m_len, offset, ip->ip_p);
880		/*
881		 * XXX
882		 * this shouldn't happen, but if it does, the
883		 * correct behavior may be to insert the checksum
884		 * in the appropriate next mbuf in the chain.
885		 */
886		return;
887	}
888	*(u_short *)(m->m_data + offset) = csum;
889}
890
891/*
892 * IP socket option processing.
893 */
894int
895ip_ctloutput(struct socket *so, struct sockopt *sopt)
896{
897	struct	inpcb *inp = sotoinpcb(so);
898	int	error, optval;
899
900	error = optval = 0;
901	if (sopt->sopt_level != IPPROTO_IP) {
902		error = EINVAL;
903
904		if (sopt->sopt_level == SOL_SOCKET &&
905		    sopt->sopt_dir == SOPT_SET) {
906			switch (sopt->sopt_name) {
907			case SO_REUSEADDR:
908				INP_WLOCK(inp);
909				if (IN_MULTICAST(ntohl(inp->inp_laddr.s_addr))) {
910					if ((so->so_options &
911					    (SO_REUSEADDR | SO_REUSEPORT)) != 0)
912						inp->inp_flags2 |= INP_REUSEPORT;
913					else
914						inp->inp_flags2 &= ~INP_REUSEPORT;
915				}
916				INP_WUNLOCK(inp);
917				error = 0;
918				break;
919			case SO_REUSEPORT:
920				INP_WLOCK(inp);
921				if ((so->so_options & SO_REUSEPORT) != 0)
922					inp->inp_flags2 |= INP_REUSEPORT;
923				else
924					inp->inp_flags2 &= ~INP_REUSEPORT;
925				INP_WUNLOCK(inp);
926				error = 0;
927				break;
928			case SO_SETFIB:
929				INP_WLOCK(inp);
930				inp->inp_inc.inc_fibnum = so->so_fibnum;
931				INP_WUNLOCK(inp);
932				error = 0;
933				break;
934			default:
935				break;
936			}
937		}
938		return (error);
939	}
940
941	switch (sopt->sopt_dir) {
942	case SOPT_SET:
943		switch (sopt->sopt_name) {
944		case IP_OPTIONS:
945#ifdef notyet
946		case IP_RETOPTS:
947#endif
948		{
949			struct mbuf *m;
950			if (sopt->sopt_valsize > MLEN) {
951				error = EMSGSIZE;
952				break;
953			}
954			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
955			if (m == NULL) {
956				error = ENOBUFS;
957				break;
958			}
959			m->m_len = sopt->sopt_valsize;
960			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
961					    m->m_len);
962			if (error) {
963				m_free(m);
964				break;
965			}
966			INP_WLOCK(inp);
967			error = ip_pcbopts(inp, sopt->sopt_name, m);
968			INP_WUNLOCK(inp);
969			return (error);
970		}
971
972		case IP_BINDANY:
973			if (sopt->sopt_td != NULL) {
974				error = priv_check(sopt->sopt_td,
975				    PRIV_NETINET_BINDANY);
976				if (error)
977					break;
978			}
979			/* FALLTHROUGH */
980		case IP_TOS:
981		case IP_TTL:
982		case IP_MINTTL:
983		case IP_RECVOPTS:
984		case IP_RECVRETOPTS:
985		case IP_RECVDSTADDR:
986		case IP_RECVTTL:
987		case IP_RECVIF:
988		case IP_FAITH:
989		case IP_ONESBCAST:
990		case IP_DONTFRAG:
991		case IP_RECVTOS:
992			error = sooptcopyin(sopt, &optval, sizeof optval,
993					    sizeof optval);
994			if (error)
995				break;
996
997			switch (sopt->sopt_name) {
998			case IP_TOS:
999				inp->inp_ip_tos = optval;
1000				break;
1001
1002			case IP_TTL:
1003				inp->inp_ip_ttl = optval;
1004				break;
1005
1006			case IP_MINTTL:
1007				if (optval >= 0 && optval <= MAXTTL)
1008					inp->inp_ip_minttl = optval;
1009				else
1010					error = EINVAL;
1011				break;
1012
1013#define	OPTSET(bit) do {						\
1014	INP_WLOCK(inp);							\
1015	if (optval)							\
1016		inp->inp_flags |= bit;					\
1017	else								\
1018		inp->inp_flags &= ~bit;					\
1019	INP_WUNLOCK(inp);						\
1020} while (0)
1021
1022			case IP_RECVOPTS:
1023				OPTSET(INP_RECVOPTS);
1024				break;
1025
1026			case IP_RECVRETOPTS:
1027				OPTSET(INP_RECVRETOPTS);
1028				break;
1029
1030			case IP_RECVDSTADDR:
1031				OPTSET(INP_RECVDSTADDR);
1032				break;
1033
1034			case IP_RECVTTL:
1035				OPTSET(INP_RECVTTL);
1036				break;
1037
1038			case IP_RECVIF:
1039				OPTSET(INP_RECVIF);
1040				break;
1041
1042			case IP_FAITH:
1043				OPTSET(INP_FAITH);
1044				break;
1045
1046			case IP_ONESBCAST:
1047				OPTSET(INP_ONESBCAST);
1048				break;
1049			case IP_DONTFRAG:
1050				OPTSET(INP_DONTFRAG);
1051				break;
1052			case IP_BINDANY:
1053				OPTSET(INP_BINDANY);
1054				break;
1055			case IP_RECVTOS:
1056				OPTSET(INP_RECVTOS);
1057				break;
1058			}
1059			break;
1060#undef OPTSET
1061
1062		/*
1063		 * Multicast socket options are processed by the in_mcast
1064		 * module.
1065		 */
1066		case IP_MULTICAST_IF:
1067		case IP_MULTICAST_VIF:
1068		case IP_MULTICAST_TTL:
1069		case IP_MULTICAST_LOOP:
1070		case IP_ADD_MEMBERSHIP:
1071		case IP_DROP_MEMBERSHIP:
1072		case IP_ADD_SOURCE_MEMBERSHIP:
1073		case IP_DROP_SOURCE_MEMBERSHIP:
1074		case IP_BLOCK_SOURCE:
1075		case IP_UNBLOCK_SOURCE:
1076		case IP_MSFILTER:
1077		case MCAST_JOIN_GROUP:
1078		case MCAST_LEAVE_GROUP:
1079		case MCAST_JOIN_SOURCE_GROUP:
1080		case MCAST_LEAVE_SOURCE_GROUP:
1081		case MCAST_BLOCK_SOURCE:
1082		case MCAST_UNBLOCK_SOURCE:
1083			error = inp_setmoptions(inp, sopt);
1084			break;
1085
1086		case IP_PORTRANGE:
1087			error = sooptcopyin(sopt, &optval, sizeof optval,
1088					    sizeof optval);
1089			if (error)
1090				break;
1091
1092			INP_WLOCK(inp);
1093			switch (optval) {
1094			case IP_PORTRANGE_DEFAULT:
1095				inp->inp_flags &= ~(INP_LOWPORT);
1096				inp->inp_flags &= ~(INP_HIGHPORT);
1097				break;
1098
1099			case IP_PORTRANGE_HIGH:
1100				inp->inp_flags &= ~(INP_LOWPORT);
1101				inp->inp_flags |= INP_HIGHPORT;
1102				break;
1103
1104			case IP_PORTRANGE_LOW:
1105				inp->inp_flags &= ~(INP_HIGHPORT);
1106				inp->inp_flags |= INP_LOWPORT;
1107				break;
1108
1109			default:
1110				error = EINVAL;
1111				break;
1112			}
1113			INP_WUNLOCK(inp);
1114			break;
1115
1116#ifdef IPSEC
1117		case IP_IPSEC_POLICY:
1118		{
1119			caddr_t req;
1120			struct mbuf *m;
1121
1122			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1123				break;
1124			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1125				break;
1126			req = mtod(m, caddr_t);
1127			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1128			    m->m_len, (sopt->sopt_td != NULL) ?
1129			    sopt->sopt_td->td_ucred : NULL);
1130			m_freem(m);
1131			break;
1132		}
1133#endif /* IPSEC */
1134
1135		default:
1136			error = ENOPROTOOPT;
1137			break;
1138		}
1139		break;
1140
1141	case SOPT_GET:
1142		switch (sopt->sopt_name) {
1143		case IP_OPTIONS:
1144		case IP_RETOPTS:
1145			if (inp->inp_options)
1146				error = sooptcopyout(sopt,
1147						     mtod(inp->inp_options,
1148							  char *),
1149						     inp->inp_options->m_len);
1150			else
1151				sopt->sopt_valsize = 0;
1152			break;
1153
1154		case IP_TOS:
1155		case IP_TTL:
1156		case IP_MINTTL:
1157		case IP_RECVOPTS:
1158		case IP_RECVRETOPTS:
1159		case IP_RECVDSTADDR:
1160		case IP_RECVTTL:
1161		case IP_RECVIF:
1162		case IP_PORTRANGE:
1163		case IP_FAITH:
1164		case IP_ONESBCAST:
1165		case IP_DONTFRAG:
1166		case IP_BINDANY:
1167		case IP_RECVTOS:
1168			switch (sopt->sopt_name) {
1169
1170			case IP_TOS:
1171				optval = inp->inp_ip_tos;
1172				break;
1173
1174			case IP_TTL:
1175				optval = inp->inp_ip_ttl;
1176				break;
1177
1178			case IP_MINTTL:
1179				optval = inp->inp_ip_minttl;
1180				break;
1181
1182#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1183
1184			case IP_RECVOPTS:
1185				optval = OPTBIT(INP_RECVOPTS);
1186				break;
1187
1188			case IP_RECVRETOPTS:
1189				optval = OPTBIT(INP_RECVRETOPTS);
1190				break;
1191
1192			case IP_RECVDSTADDR:
1193				optval = OPTBIT(INP_RECVDSTADDR);
1194				break;
1195
1196			case IP_RECVTTL:
1197				optval = OPTBIT(INP_RECVTTL);
1198				break;
1199
1200			case IP_RECVIF:
1201				optval = OPTBIT(INP_RECVIF);
1202				break;
1203
1204			case IP_PORTRANGE:
1205				if (inp->inp_flags & INP_HIGHPORT)
1206					optval = IP_PORTRANGE_HIGH;
1207				else if (inp->inp_flags & INP_LOWPORT)
1208					optval = IP_PORTRANGE_LOW;
1209				else
1210					optval = 0;
1211				break;
1212
1213			case IP_FAITH:
1214				optval = OPTBIT(INP_FAITH);
1215				break;
1216
1217			case IP_ONESBCAST:
1218				optval = OPTBIT(INP_ONESBCAST);
1219				break;
1220			case IP_DONTFRAG:
1221				optval = OPTBIT(INP_DONTFRAG);
1222				break;
1223			case IP_BINDANY:
1224				optval = OPTBIT(INP_BINDANY);
1225				break;
1226			case IP_RECVTOS:
1227				optval = OPTBIT(INP_RECVTOS);
1228				break;
1229			}
1230			error = sooptcopyout(sopt, &optval, sizeof optval);
1231			break;
1232
1233		/*
1234		 * Multicast socket options are processed by the in_mcast
1235		 * module.
1236		 */
1237		case IP_MULTICAST_IF:
1238		case IP_MULTICAST_VIF:
1239		case IP_MULTICAST_TTL:
1240		case IP_MULTICAST_LOOP:
1241		case IP_MSFILTER:
1242			error = inp_getmoptions(inp, sopt);
1243			break;
1244
1245#ifdef IPSEC
1246		case IP_IPSEC_POLICY:
1247		{
1248			struct mbuf *m = NULL;
1249			caddr_t req = NULL;
1250			size_t len = 0;
1251
1252			if (m != 0) {
1253				req = mtod(m, caddr_t);
1254				len = m->m_len;
1255			}
1256			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1257			if (error == 0)
1258				error = soopt_mcopyout(sopt, m); /* XXX */
1259			if (error == 0)
1260				m_freem(m);
1261			break;
1262		}
1263#endif /* IPSEC */
1264
1265		default:
1266			error = ENOPROTOOPT;
1267			break;
1268		}
1269		break;
1270	}
1271	return (error);
1272}
1273
1274/*
1275 * Routine called from ip_output() to loop back a copy of an IP multicast
1276 * packet to the input queue of a specified interface.  Note that this
1277 * calls the output routine of the loopback "driver", but with an interface
1278 * pointer that might NOT be a loopback interface -- evil, but easier than
1279 * replicating that code here.
1280 */
1281static void
1282ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1283    int hlen)
1284{
1285	register struct ip *ip;
1286	struct mbuf *copym;
1287
1288	/*
1289	 * Make a deep copy of the packet because we're going to
1290	 * modify the pack in order to generate checksums.
1291	 */
1292	copym = m_dup(m, M_DONTWAIT);
1293	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1294		copym = m_pullup(copym, hlen);
1295	if (copym != NULL) {
1296		/* If needed, compute the checksum and mark it as valid. */
1297		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1298			in_delayed_cksum(copym);
1299			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1300			copym->m_pkthdr.csum_flags |=
1301			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1302			copym->m_pkthdr.csum_data = 0xffff;
1303		}
1304		/*
1305		 * We don't bother to fragment if the IP length is greater
1306		 * than the interface's MTU.  Can this possibly matter?
1307		 */
1308		ip = mtod(copym, struct ip *);
1309		ip->ip_sum = 0;
1310		ip->ip_sum = in_cksum(copym, hlen);
1311#if 1 /* XXX */
1312		if (dst->sin_family != AF_INET) {
1313			printf("ip_mloopback: bad address family %d\n",
1314						dst->sin_family);
1315			dst->sin_family = AF_INET;
1316		}
1317#endif
1318		if_simloop(ifp, copym, dst->sin_family, 0);
1319	}
1320}
1321