ip_output.c revision 107020
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 * $FreeBSD: head/sys/netinet/ip_output.c 107020 2002-11-17 16:30:44Z luigi $
35 */
36
37#include "opt_ipfw.h"
38#include "opt_ipdn.h"
39#include "opt_ipdivert.h"
40#include "opt_ipfilter.h"
41#include "opt_ipsec.h"
42#include "opt_mac.h"
43#include "opt_pfil_hooks.h"
44#include "opt_random_ip_id.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/kernel.h>
49#include <sys/mac.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#include <sys/protosw.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55
56#include <net/if.h>
57#include <net/route.h>
58
59#include <netinet/in.h>
60#include <netinet/in_systm.h>
61#include <netinet/ip.h>
62#include <netinet/in_pcb.h>
63#include <netinet/in_var.h>
64#include <netinet/ip_var.h>
65
66#include <machine/in_cksum.h>
67
68static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
69
70#ifdef IPSEC
71#include <netinet6/ipsec.h>
72#include <netkey/key.h>
73#ifdef IPSEC_DEBUG
74#include <netkey/key_debug.h>
75#else
76#define	KEYDEBUG(lev,arg)
77#endif
78#endif /*IPSEC*/
79
80#ifdef FAST_IPSEC
81#include <netipsec/ipsec.h>
82#include <netipsec/xform.h>
83#include <netipsec/key.h>
84#endif /*FAST_IPSEC*/
85
86#include <netinet/ip_fw.h>
87#include <netinet/ip_dummynet.h>
88
89#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
90				x, (ntohl(a.s_addr)>>24)&0xFF,\
91				  (ntohl(a.s_addr)>>16)&0xFF,\
92				  (ntohl(a.s_addr)>>8)&0xFF,\
93				  (ntohl(a.s_addr))&0xFF, y);
94
95u_short ip_id;
96
97static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
98static struct ifnet *ip_multicast_if(struct in_addr *, int *);
99static void	ip_mloopback
100	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
101static int	ip_getmoptions
102	(struct sockopt *, struct ip_moptions *);
103static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
104static int	ip_setmoptions
105	(struct sockopt *, struct ip_moptions **);
106
107int	ip_optcopy(struct ip *, struct ip *);
108
109
110extern	struct protosw inetsw[];
111
112/*
113 * IP output.  The packet in mbuf chain m contains a skeletal IP
114 * header (with len, off, ttl, proto, tos, src, dst).
115 * The mbuf chain containing the packet will be freed.
116 * The mbuf opt, if present, will not be freed.
117 */
118int
119ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
120	int flags, struct ip_moptions *imo, struct inpcb *inp)
121{
122	struct ip *ip;
123	struct ifnet *ifp = NULL;	/* keep compiler happy */
124	struct mbuf *m;
125	int hlen = sizeof (struct ip);
126	int len, off, error = 0;
127	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
128	struct in_ifaddr *ia = NULL;
129	int isbroadcast, sw_csum;
130	struct in_addr pkt_dst;
131#ifdef IPSEC
132	struct route iproute;
133	struct secpolicy *sp = NULL;
134	struct socket *so = inp ? inp->inp_socket : NULL;
135#endif
136#ifdef FAST_IPSEC
137	struct route iproute;
138	struct m_tag *mtag;
139	struct secpolicy *sp = NULL;
140	struct tdb_ident *tdbi;
141	int s;
142#endif /* FAST_IPSEC */
143	struct ip_fw_args args;
144	int src_was_INADDR_ANY = 0;	/* as the name says... */
145#ifdef PFIL_HOOKS
146	struct packet_filter_hook *pfh;
147	struct mbuf *m1;
148	int rv;
149#endif /* PFIL_HOOKS */
150
151	args.eh = NULL;
152	args.rule = NULL;
153	args.next_hop = NULL;
154	args.divert_rule = 0;			/* divert cookie */
155
156	/* Grab info from MT_TAG mbufs prepended to the chain. */
157	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
158		switch(m0->_m_tag_id) {
159		default:
160			printf("ip_output: unrecognised MT_TAG tag %d\n",
161			    m0->_m_tag_id);
162			break;
163
164		case PACKET_TAG_DUMMYNET:
165			/*
166			 * the packet was already tagged, so part of the
167			 * processing was already done, and we need to go down.
168			 * Get parameters from the header.
169			 */
170			args.rule = ((struct dn_pkt *)m0)->rule;
171			opt = NULL ;
172			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
173			imo = NULL ;
174			dst = ((struct dn_pkt *)m0)->dn_dst ;
175			ifp = ((struct dn_pkt *)m0)->ifp ;
176			flags = ((struct dn_pkt *)m0)->flags ;
177			break;
178
179		case PACKET_TAG_DIVERT:
180			args.divert_rule = (intptr_t)m0->m_data & 0xffff;
181			break;
182
183		case PACKET_TAG_IPFORWARD:
184			args.next_hop = (struct sockaddr_in *)m0->m_data;
185			break;
186		}
187	}
188	m = m0;
189
190	KASSERT(!m || (m->m_flags & M_PKTHDR) != 0, ("ip_output: no HDR"));
191#ifndef FAST_IPSEC
192	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
193	    mtod(m, struct ip *)->ip_p));
194#endif
195
196	if (args.rule != NULL) {	/* dummynet already saw us */
197		ip = mtod(m, struct ip *);
198		hlen = ip->ip_hl << 2 ;
199		if (ro->ro_rt)
200			ia = ifatoia(ro->ro_rt->rt_ifa);
201		goto sendit;
202	}
203
204	if (opt) {
205		len = 0;
206		m = ip_insertoptions(m, opt, &len);
207		if (len != 0)
208			hlen = len;
209	}
210	ip = mtod(m, struct ip *);
211	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
212
213	/*
214	 * Fill in IP header.
215	 */
216	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
217		ip->ip_v = IPVERSION;
218		ip->ip_hl = hlen >> 2;
219		ip->ip_off &= IP_DF;
220#ifdef RANDOM_IP_ID
221		ip->ip_id = ip_randomid();
222#else
223		ip->ip_id = htons(ip_id++);
224#endif
225		ipstat.ips_localout++;
226	} else {
227		hlen = ip->ip_hl << 2;
228	}
229
230#ifdef FAST_IPSEC
231	if (ro == NULL) {
232		ro = &iproute;
233		bzero(ro, sizeof (*ro));
234	}
235#endif /* FAST_IPSEC */
236	dst = (struct sockaddr_in *)&ro->ro_dst;
237	/*
238	 * If there is a cached route,
239	 * check that it is to the same destination
240	 * and is still up.  If not, free it and try again.
241	 * The address family should also be checked in case of sharing the
242	 * cache with IPv6.
243	 */
244	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
245			  dst->sin_family != AF_INET ||
246			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
247		RTFREE(ro->ro_rt);
248		ro->ro_rt = (struct rtentry *)0;
249	}
250	if (ro->ro_rt == 0) {
251		bzero(dst, sizeof(*dst));
252		dst->sin_family = AF_INET;
253		dst->sin_len = sizeof(*dst);
254		dst->sin_addr = pkt_dst;
255	}
256	/*
257	 * If routing to interface only,
258	 * short circuit routing lookup.
259	 */
260	if (flags & IP_ROUTETOIF) {
261		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
262		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
263			ipstat.ips_noroute++;
264			error = ENETUNREACH;
265			goto bad;
266		}
267		ifp = ia->ia_ifp;
268		ip->ip_ttl = 1;
269		isbroadcast = in_broadcast(dst->sin_addr, ifp);
270	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
271	    imo != NULL && imo->imo_multicast_ifp != NULL) {
272		/*
273		 * Bypass the normal routing lookup for multicast
274		 * packets if the interface is specified.
275		 */
276		ifp = imo->imo_multicast_ifp;
277		IFP_TO_IA(ifp, ia);
278		isbroadcast = 0;	/* fool gcc */
279	} else {
280		/*
281		 * If this is the case, we probably don't want to allocate
282		 * a protocol-cloned route since we didn't get one from the
283		 * ULP.  This lets TCP do its thing, while not burdening
284		 * forwarding or ICMP with the overhead of cloning a route.
285		 * Of course, we still want to do any cloning requested by
286		 * the link layer, as this is probably required in all cases
287		 * for correct operation (as it is for ARP).
288		 */
289		if (ro->ro_rt == 0)
290			rtalloc_ign(ro, RTF_PRCLONING);
291		if (ro->ro_rt == 0) {
292			ipstat.ips_noroute++;
293			error = EHOSTUNREACH;
294			goto bad;
295		}
296		ia = ifatoia(ro->ro_rt->rt_ifa);
297		ifp = ro->ro_rt->rt_ifp;
298		ro->ro_rt->rt_use++;
299		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
300			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
301		if (ro->ro_rt->rt_flags & RTF_HOST)
302			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
303		else
304			isbroadcast = in_broadcast(dst->sin_addr, ifp);
305	}
306	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
307		struct in_multi *inm;
308
309		m->m_flags |= M_MCAST;
310		/*
311		 * IP destination address is multicast.  Make sure "dst"
312		 * still points to the address in "ro".  (It may have been
313		 * changed to point to a gateway address, above.)
314		 */
315		dst = (struct sockaddr_in *)&ro->ro_dst;
316		/*
317		 * See if the caller provided any multicast options
318		 */
319		if (imo != NULL) {
320			ip->ip_ttl = imo->imo_multicast_ttl;
321			if (imo->imo_multicast_vif != -1)
322				ip->ip_src.s_addr =
323				    ip_mcast_src ?
324				    ip_mcast_src(imo->imo_multicast_vif) :
325				    INADDR_ANY;
326		} else
327			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
328		/*
329		 * Confirm that the outgoing interface supports multicast.
330		 */
331		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
332			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
333				ipstat.ips_noroute++;
334				error = ENETUNREACH;
335				goto bad;
336			}
337		}
338		/*
339		 * If source address not specified yet, use address
340		 * of outgoing interface.
341		 */
342		if (ip->ip_src.s_addr == INADDR_ANY) {
343			/* Interface may have no addresses. */
344			if (ia != NULL)
345				ip->ip_src = IA_SIN(ia)->sin_addr;
346		}
347
348		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
349			/*
350			 * XXX
351			 * delayed checksums are not currently
352			 * compatible with IP multicast routing
353			 */
354			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
355				in_delayed_cksum(m);
356				m->m_pkthdr.csum_flags &=
357					~CSUM_DELAY_DATA;
358			}
359		}
360		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
361		if (inm != NULL &&
362		   (imo == NULL || imo->imo_multicast_loop)) {
363			/*
364			 * If we belong to the destination multicast group
365			 * on the outgoing interface, and the caller did not
366			 * forbid loopback, loop back a copy.
367			 */
368			ip_mloopback(ifp, m, dst, hlen);
369		}
370		else {
371			/*
372			 * If we are acting as a multicast router, perform
373			 * multicast forwarding as if the packet had just
374			 * arrived on the interface to which we are about
375			 * to send.  The multicast forwarding function
376			 * recursively calls this function, using the
377			 * IP_FORWARDING flag to prevent infinite recursion.
378			 *
379			 * Multicasts that are looped back by ip_mloopback(),
380			 * above, will be forwarded by the ip_input() routine,
381			 * if necessary.
382			 */
383			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
384				/*
385				 * If rsvp daemon is not running, do not
386				 * set ip_moptions. This ensures that the packet
387				 * is multicast and not just sent down one link
388				 * as prescribed by rsvpd.
389				 */
390				if (!rsvp_on)
391					imo = NULL;
392				if (ip_mforward &&
393				    ip_mforward(ip, ifp, m, imo) != 0) {
394					m_freem(m);
395					goto done;
396				}
397			}
398		}
399
400		/*
401		 * Multicasts with a time-to-live of zero may be looped-
402		 * back, above, but must not be transmitted on a network.
403		 * Also, multicasts addressed to the loopback interface
404		 * are not sent -- the above call to ip_mloopback() will
405		 * loop back a copy if this host actually belongs to the
406		 * destination group on the loopback interface.
407		 */
408		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
409			m_freem(m);
410			goto done;
411		}
412
413		goto sendit;
414	}
415#ifndef notdef
416	/*
417	 * If the source address is not specified yet, use the address
418	 * of the outoing interface. In case, keep note we did that, so
419	 * if the the firewall changes the next-hop causing the output
420	 * interface to change, we can fix that.
421	 */
422	if (ip->ip_src.s_addr == INADDR_ANY) {
423		/* Interface may have no addresses. */
424		if (ia != NULL) {
425			ip->ip_src = IA_SIN(ia)->sin_addr;
426			src_was_INADDR_ANY = 1;
427		}
428	}
429#endif /* notdef */
430	/*
431	 * Verify that we have any chance at all of being able to queue
432	 *      the packet or packet fragments
433	 */
434	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
435		ifp->if_snd.ifq_maxlen) {
436			error = ENOBUFS;
437			ipstat.ips_odropped++;
438			goto bad;
439	}
440
441	/*
442	 * Look for broadcast address and
443	 * verify user is allowed to send
444	 * such a packet.
445	 */
446	if (isbroadcast) {
447		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
448			error = EADDRNOTAVAIL;
449			goto bad;
450		}
451		if ((flags & IP_ALLOWBROADCAST) == 0) {
452			error = EACCES;
453			goto bad;
454		}
455		/* don't allow broadcast messages to be fragmented */
456		if (ip->ip_len > ifp->if_mtu) {
457			error = EMSGSIZE;
458			goto bad;
459		}
460		m->m_flags |= M_BCAST;
461	} else {
462		m->m_flags &= ~M_BCAST;
463	}
464
465sendit:
466#ifdef IPSEC
467	/* get SP for this packet */
468	if (so == NULL)
469		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
470	else
471		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
472
473	if (sp == NULL) {
474		ipsecstat.out_inval++;
475		goto bad;
476	}
477
478	error = 0;
479
480	/* check policy */
481	switch (sp->policy) {
482	case IPSEC_POLICY_DISCARD:
483		/*
484		 * This packet is just discarded.
485		 */
486		ipsecstat.out_polvio++;
487		goto bad;
488
489	case IPSEC_POLICY_BYPASS:
490	case IPSEC_POLICY_NONE:
491		/* no need to do IPsec. */
492		goto skip_ipsec;
493
494	case IPSEC_POLICY_IPSEC:
495		if (sp->req == NULL) {
496			/* acquire a policy */
497			error = key_spdacquire(sp);
498			goto bad;
499		}
500		break;
501
502	case IPSEC_POLICY_ENTRUST:
503	default:
504		printf("ip_output: Invalid policy found. %d\n", sp->policy);
505	}
506    {
507	struct ipsec_output_state state;
508	bzero(&state, sizeof(state));
509	state.m = m;
510	if (flags & IP_ROUTETOIF) {
511		state.ro = &iproute;
512		bzero(&iproute, sizeof(iproute));
513	} else
514		state.ro = ro;
515	state.dst = (struct sockaddr *)dst;
516
517	ip->ip_sum = 0;
518
519	/*
520	 * XXX
521	 * delayed checksums are not currently compatible with IPsec
522	 */
523	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
524		in_delayed_cksum(m);
525		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
526	}
527
528	ip->ip_len = htons(ip->ip_len);
529	ip->ip_off = htons(ip->ip_off);
530
531	error = ipsec4_output(&state, sp, flags);
532
533	m = state.m;
534	if (flags & IP_ROUTETOIF) {
535		/*
536		 * if we have tunnel mode SA, we may need to ignore
537		 * IP_ROUTETOIF.
538		 */
539		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
540			flags &= ~IP_ROUTETOIF;
541			ro = state.ro;
542		}
543	} else
544		ro = state.ro;
545	dst = (struct sockaddr_in *)state.dst;
546	if (error) {
547		/* mbuf is already reclaimed in ipsec4_output. */
548		m0 = NULL;
549		switch (error) {
550		case EHOSTUNREACH:
551		case ENETUNREACH:
552		case EMSGSIZE:
553		case ENOBUFS:
554		case ENOMEM:
555			break;
556		default:
557			printf("ip4_output (ipsec): error code %d\n", error);
558			/*fall through*/
559		case ENOENT:
560			/* don't show these error codes to the user */
561			error = 0;
562			break;
563		}
564		goto bad;
565	}
566    }
567
568	/* be sure to update variables that are affected by ipsec4_output() */
569	ip = mtod(m, struct ip *);
570	hlen = ip->ip_hl << 2;
571	if (ro->ro_rt == NULL) {
572		if ((flags & IP_ROUTETOIF) == 0) {
573			printf("ip_output: "
574				"can't update route after IPsec processing\n");
575			error = EHOSTUNREACH;	/*XXX*/
576			goto bad;
577		}
578	} else {
579		ia = ifatoia(ro->ro_rt->rt_ifa);
580		ifp = ro->ro_rt->rt_ifp;
581	}
582
583	/* make it flipped, again. */
584	ip->ip_len = ntohs(ip->ip_len);
585	ip->ip_off = ntohs(ip->ip_off);
586skip_ipsec:
587#endif /*IPSEC*/
588#ifdef FAST_IPSEC
589	/*
590	 * Check the security policy (SP) for the packet and, if
591	 * required, do IPsec-related processing.  There are two
592	 * cases here; the first time a packet is sent through
593	 * it will be untagged and handled by ipsec4_checkpolicy.
594	 * If the packet is resubmitted to ip_output (e.g. after
595	 * AH, ESP, etc. processing), there will be a tag to bypass
596	 * the lookup and related policy checking.
597	 */
598	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
599	s = splnet();
600	if (mtag != NULL) {
601		tdbi = (struct tdb_ident *)(mtag + 1);
602		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
603		if (sp == NULL)
604			error = -EINVAL;	/* force silent drop */
605		m_tag_delete(m, mtag);
606	} else {
607		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
608					&error, inp);
609	}
610	/*
611	 * There are four return cases:
612	 *    sp != NULL	 	    apply IPsec policy
613	 *    sp == NULL, error == 0	    no IPsec handling needed
614	 *    sp == NULL, error == -EINVAL  discard packet w/o error
615	 *    sp == NULL, error != 0	    discard packet, report error
616	 */
617	if (sp != NULL) {
618		/* Loop detection, check if ipsec processing already done */
619		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
620		for (mtag = m_tag_first(m); mtag != NULL;
621		     mtag = m_tag_next(m, mtag)) {
622			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
623				continue;
624			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
625			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
626				continue;
627			/*
628			 * Check if policy has an SA associated with it.
629			 * This can happen when an SP has yet to acquire
630			 * an SA; e.g. on first reference.  If it occurs,
631			 * then we let ipsec4_process_packet do its thing.
632			 */
633			if (sp->req->sav == NULL)
634				break;
635			tdbi = (struct tdb_ident *)(mtag + 1);
636			if (tdbi->spi == sp->req->sav->spi &&
637			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
638			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
639				 sizeof (union sockaddr_union)) == 0) {
640				/*
641				 * No IPsec processing is needed, free
642				 * reference to SP.
643				 *
644				 * NB: null pointer to avoid free at
645				 *     done: below.
646				 */
647				KEY_FREESP(&sp), sp = NULL;
648				splx(s);
649				goto spd_done;
650			}
651		}
652
653		/*
654		 * Do delayed checksums now because we send before
655		 * this is done in the normal processing path.
656		 */
657		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
658			in_delayed_cksum(m);
659			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
660		}
661
662		ip->ip_len = htons(ip->ip_len);
663		ip->ip_off = htons(ip->ip_off);
664
665		/* NB: callee frees mbuf */
666		error = ipsec4_process_packet(m, sp->req, flags, 0);
667		splx(s);
668		goto done;
669	} else {
670		splx(s);
671
672		if (error != 0) {
673			/*
674			 * Hack: -EINVAL is used to signal that a packet
675			 * should be silently discarded.  This is typically
676			 * because we asked key management for an SA and
677			 * it was delayed (e.g. kicked up to IKE).
678			 */
679			if (error == -EINVAL)
680				error = 0;
681			goto bad;
682		} else {
683			/* No IPsec processing for this packet. */
684		}
685#ifdef notyet
686		/*
687		 * If deferred crypto processing is needed, check that
688		 * the interface supports it.
689		 */
690		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
691		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
692			/* notify IPsec to do its own crypto */
693			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
694			error = EHOSTUNREACH;
695			goto bad;
696		}
697#endif
698	}
699spd_done:
700#endif /* FAST_IPSEC */
701
702	/*
703	 * IpHack's section.
704	 * - Xlate: translate packet's addr/port (NAT).
705	 * - Firewall: deny/allow/etc.
706	 * - Wrap: fake packet's addr/port <unimpl.>
707	 * - Encapsulate: put it in another IP and send out. <unimp.>
708	 */
709#ifdef PFIL_HOOKS
710	/*
711	 * Run through list of hooks for output packets.
712	 */
713	m1 = m;
714	pfh = pfil_hook_get(PFIL_OUT, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
715	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
716		if (pfh->pfil_func) {
717			rv = pfh->pfil_func(ip, hlen, ifp, 1, &m1);
718			if (rv) {
719				error = EHOSTUNREACH;
720				goto done;
721			}
722			m = m1;
723			if (m == NULL)
724				goto done;
725			ip = mtod(m, struct ip *);
726		}
727#endif /* PFIL_HOOKS */
728
729	/*
730	 * Check with the firewall...
731	 * but not if we are already being fwd'd from a firewall.
732	 */
733	if (fw_enable && IPFW_LOADED && !args.next_hop) {
734		struct sockaddr_in *old = dst;
735
736		args.m = m;
737		args.next_hop = dst;
738		args.oif = ifp;
739		off = ip_fw_chk_ptr(&args);
740		m = args.m;
741		dst = args.next_hop;
742
743                /*
744		 * On return we must do the following:
745		 * m == NULL	-> drop the pkt (old interface, deprecated)
746		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
747		 * 1<=off<= 0xffff		-> DIVERT
748		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
749		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
750		 * dst != old			-> IPFIREWALL_FORWARD
751		 * off==0, dst==old		-> accept
752		 * If some of the above modules are not compiled in, then
753		 * we should't have to check the corresponding condition
754		 * (because the ipfw control socket should not accept
755		 * unsupported rules), but better play safe and drop
756		 * packets in case of doubt.
757		 */
758		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
759			if (m)
760				m_freem(m);
761			error = EACCES;
762			goto done;
763		}
764		ip = mtod(m, struct ip *);
765		if (off == 0 && dst == old)		/* common case */
766			goto pass;
767                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
768			/*
769			 * pass the pkt to dummynet. Need to include
770			 * pipe number, m, ifp, ro, dst because these are
771			 * not recomputed in the next pass.
772			 * All other parameters have been already used and
773			 * so they are not needed anymore.
774			 * XXX note: if the ifp or ro entry are deleted
775			 * while a pkt is in dummynet, we are in trouble!
776			 */
777			args.ro = ro;
778			args.dst = dst;
779			args.flags = flags;
780
781			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
782				&args);
783			goto done;
784		}
785#ifdef IPDIVERT
786		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
787			struct mbuf *clone = NULL;
788
789			/* Clone packet if we're doing a 'tee' */
790			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
791				clone = m_dup(m, M_DONTWAIT);
792
793			/*
794			 * XXX
795			 * delayed checksums are not currently compatible
796			 * with divert sockets.
797			 */
798			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
799				in_delayed_cksum(m);
800				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
801			}
802
803			/* Restore packet header fields to original values */
804			ip->ip_len = htons(ip->ip_len);
805			ip->ip_off = htons(ip->ip_off);
806
807			/* Deliver packet to divert input routine */
808			divert_packet(m, 0, off & 0xffff, args.divert_rule);
809
810			/* If 'tee', continue with original packet */
811			if (clone != NULL) {
812				m = clone;
813				ip = mtod(m, struct ip *);
814				goto pass;
815			}
816			goto done;
817		}
818#endif
819
820		/* IPFIREWALL_FORWARD */
821		/*
822		 * Check dst to make sure it is directly reachable on the
823		 * interface we previously thought it was.
824		 * If it isn't (which may be likely in some situations) we have
825		 * to re-route it (ie, find a route for the next-hop and the
826		 * associated interface) and set them here. This is nested
827		 * forwarding which in most cases is undesirable, except where
828		 * such control is nigh impossible. So we do it here.
829		 * And I'm babbling.
830		 */
831		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
832#if 0
833			/*
834			 * XXX To improve readability, this block should be
835			 * changed into a function call as below:
836			 */
837			error = ip_ipforward(&m, &dst, &ifp);
838			if (error)
839				goto bad;
840			if (m == NULL) /* ip_input consumed the mbuf */
841				goto done;
842#else
843			struct in_ifaddr *ia;
844
845			/*
846			 * XXX sro_fwd below is static, and a pointer
847			 * to it gets passed to routines downstream.
848			 * This could have surprisingly bad results in
849			 * practice, because its content is overwritten
850			 * by subsequent packets.
851			 */
852			/* There must be a better way to do this next line... */
853			static struct route sro_fwd;
854			struct route *ro_fwd = &sro_fwd;
855
856#if 0
857			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
858			    dst->sin_addr, "\n");
859#endif
860
861			/*
862			 * We need to figure out if we have been forwarded
863			 * to a local socket. If so, then we should somehow
864			 * "loop back" to ip_input, and get directed to the
865			 * PCB as if we had received this packet. This is
866			 * because it may be dificult to identify the packets
867			 * you want to forward until they are being output
868			 * and have selected an interface. (e.g. locally
869			 * initiated packets) If we used the loopback inteface,
870			 * we would not be able to control what happens
871			 * as the packet runs through ip_input() as
872			 * it is done through a ISR.
873			 */
874			LIST_FOREACH(ia,
875			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
876				/*
877				 * If the addr to forward to is one
878				 * of ours, we pretend to
879				 * be the destination for this packet.
880				 */
881				if (IA_SIN(ia)->sin_addr.s_addr ==
882						 dst->sin_addr.s_addr)
883					break;
884			}
885			if (ia) {	/* tell ip_input "dont filter" */
886				struct m_hdr tag;
887
888				tag.mh_type = MT_TAG;
889				tag.mh_flags = PACKET_TAG_IPFORWARD;
890				tag.mh_data = (caddr_t)args.next_hop;
891				tag.mh_next = m;
892
893				if (m->m_pkthdr.rcvif == NULL)
894					m->m_pkthdr.rcvif = ifunit("lo0");
895				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
896					m->m_pkthdr.csum_flags |=
897					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
898					m0->m_pkthdr.csum_data = 0xffff;
899				}
900				m->m_pkthdr.csum_flags |=
901				    CSUM_IP_CHECKED | CSUM_IP_VALID;
902				ip->ip_len = htons(ip->ip_len);
903				ip->ip_off = htons(ip->ip_off);
904				ip_input((struct mbuf *)&tag);
905				goto done;
906			}
907			/* Some of the logic for this was
908			 * nicked from above.
909			 *
910			 * This rewrites the cached route in a local PCB.
911			 * Is this what we want to do?
912			 */
913			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
914
915			ro_fwd->ro_rt = 0;
916			rtalloc_ign(ro_fwd, RTF_PRCLONING);
917
918			if (ro_fwd->ro_rt == 0) {
919				ipstat.ips_noroute++;
920				error = EHOSTUNREACH;
921				goto bad;
922			}
923
924			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
925			ifp = ro_fwd->ro_rt->rt_ifp;
926			ro_fwd->ro_rt->rt_use++;
927			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
928				dst = (struct sockaddr_in *)
929					ro_fwd->ro_rt->rt_gateway;
930			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
931				isbroadcast =
932				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
933			else
934				isbroadcast = in_broadcast(dst->sin_addr, ifp);
935			if (ro->ro_rt)
936				RTFREE(ro->ro_rt);
937			ro->ro_rt = ro_fwd->ro_rt;
938			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
939
940#endif	/* ... block to be put into a function */
941			/*
942			 * If we added a default src ip earlier,
943			 * which would have been gotten from the-then
944			 * interface, do it again, from the new one.
945			 */
946			if (src_was_INADDR_ANY)
947				ip->ip_src = IA_SIN(ia)->sin_addr;
948			goto pass ;
949		}
950
951                /*
952                 * if we get here, none of the above matches, and
953                 * we have to drop the pkt
954                 */
955		m_freem(m);
956                error = EACCES; /* not sure this is the right error msg */
957                goto done;
958	}
959
960pass:
961	/* 127/8 must not appear on wire - RFC1122. */
962	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
963	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
964		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
965			ipstat.ips_badaddr++;
966			error = EADDRNOTAVAIL;
967			goto bad;
968		}
969	}
970
971	m->m_pkthdr.csum_flags |= CSUM_IP;
972	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
973	if (sw_csum & CSUM_DELAY_DATA) {
974		in_delayed_cksum(m);
975		sw_csum &= ~CSUM_DELAY_DATA;
976	}
977	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
978
979	/*
980	 * If small enough for interface, or the interface will take
981	 * care of the fragmentation for us, can just send directly.
982	 */
983	if (ip->ip_len <= ifp->if_mtu || ifp->if_hwassist & CSUM_FRAGMENT) {
984		ip->ip_len = htons(ip->ip_len);
985		ip->ip_off = htons(ip->ip_off);
986		ip->ip_sum = 0;
987		if (sw_csum & CSUM_DELAY_IP)
988			ip->ip_sum = in_cksum(m, hlen);
989
990		/* Record statistics for this interface address. */
991		if (!(flags & IP_FORWARDING) && ia) {
992			ia->ia_ifa.if_opackets++;
993			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
994		}
995
996#ifdef IPSEC
997		/* clean ipsec history once it goes out of the node */
998		ipsec_delaux(m);
999#endif
1000
1001		error = (*ifp->if_output)(ifp, m,
1002				(struct sockaddr *)dst, ro->ro_rt);
1003		goto done;
1004	}
1005	if (ip->ip_off & IP_DF) {
1006		error = EMSGSIZE;
1007		/*
1008		 * This case can happen if the user changed the MTU
1009		 * of an interface after enabling IP on it.  Because
1010		 * most netifs don't keep track of routes pointing to
1011		 * them, there is no way for one to update all its
1012		 * routes when the MTU is changed.
1013		 */
1014		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST))
1015		    && !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU)
1016		    && (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1017			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1018		}
1019		ipstat.ips_cantfrag++;
1020		goto bad;
1021	}
1022	/*
1023	 * Too large for interface; fragment if possible. If successful,
1024	 * on return m will point to a list of packets to be sent.
1025	 */
1026	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1027	if (error)
1028		goto bad;
1029	for (; m; m = m0) {
1030		m0 = m->m_nextpkt;
1031		m->m_nextpkt = NULL;
1032#ifdef IPSEC
1033		/* clean ipsec history once it goes out of the node */
1034		ipsec_delaux(m);
1035#endif
1036		if (error == 0) {
1037			/* Record statistics for this interface address. */
1038			if (ia != NULL) {
1039				ia->ia_ifa.if_opackets++;
1040				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1041			}
1042
1043			error = (*ifp->if_output)(ifp, m,
1044			    (struct sockaddr *)dst, ro->ro_rt);
1045		} else
1046			m_freem(m);
1047	}
1048
1049	if (error == 0)
1050		ipstat.ips_fragmented++;
1051
1052done:
1053#ifdef IPSEC
1054	if (ro == &iproute && ro->ro_rt) {
1055		RTFREE(ro->ro_rt);
1056		ro->ro_rt = NULL;
1057	}
1058	if (sp != NULL) {
1059		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1060			printf("DP ip_output call free SP:%p\n", sp));
1061		key_freesp(sp);
1062	}
1063#endif /* IPSEC */
1064#ifdef FAST_IPSEC
1065	if (ro == &iproute && ro->ro_rt) {
1066		RTFREE(ro->ro_rt);
1067		ro->ro_rt = NULL;
1068	}
1069	if (sp != NULL)
1070		KEY_FREESP(&sp);
1071#endif /* FAST_IPSEC */
1072	return (error);
1073bad:
1074	m_freem(m);
1075	goto done;
1076}
1077
1078/*
1079 * Create a chain of fragments which fit the given mtu. m_frag points to the
1080 * mbuf to be fragmented; on return it points to the chain with the fragments.
1081 * Return 0 if no error.
1082 *
1083 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1084 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1085 */
1086int
1087ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1088	u_long if_hwassist_flags, int sw_csum)
1089{
1090	int error = 0;
1091	int hlen = ip->ip_hl << 2;
1092	int len = (mtu - hlen) &~ 7;	/* size of payload in each fragment */
1093	int off;
1094	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1095	int firstlen;
1096	struct mbuf **mnext;
1097	int nfrags;
1098
1099	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1100		ipstat.ips_cantfrag++;
1101		return EMSGSIZE;
1102	}
1103
1104	/*
1105	 * Must be able to put at least 8 bytes per fragment.
1106	 */
1107	if (len < 8)
1108		return EMSGSIZE;
1109
1110	/*
1111	 * if the interface will not calculate checksums on
1112	 * fragmented packets, then do it here.
1113	 */
1114	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1115	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1116		in_delayed_cksum(m0);
1117		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1118	}
1119
1120	if (len > PAGE_SIZE) {
1121		/*
1122		 * Fragment large datagrams such that each segment
1123		 * contains a multiple of PAGE_SIZE amount of data,
1124		 * plus headers. This enables a receiver to perform
1125		 * page-flipping zero-copy optimizations.
1126		 *
1127		 * XXX When does this help given that sender and receiver
1128		 * could have different page sizes, and also mtu could
1129		 * be less than the receiver's page size ?
1130		 */
1131
1132		int newlen;
1133		struct mbuf *m;
1134
1135		for (m = m0, off = 0; m && ((off + m->m_len) <= mtu);
1136		     m = m->m_next)
1137			off += m->m_len;
1138		/*
1139		 * firstlen (off - hlen) must be aligned on an
1140		 * 8-byte boundary
1141		 */
1142		if (off < hlen)
1143			goto smart_frag_failure;
1144		off = ((off - hlen) & ~7) + hlen;
1145		newlen = (~PAGE_MASK) & mtu;
1146		if ((newlen + sizeof (struct ip)) > mtu) {
1147			/* we failed, go back the default */
1148smart_frag_failure:
1149			newlen = len;
1150			off = hlen + len;
1151		}
1152		len = newlen;
1153
1154	} else {
1155		off = hlen + len;
1156	}
1157
1158	firstlen = off - hlen;
1159	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1160
1161	/*
1162	 * Loop through length of segment after first fragment,
1163	 * make new header and copy data of each part and link onto chain.
1164	 * Here, m0 is the original packet, m is the fragment being created.
1165	 * The fragments are linked off the m_nextpkt of the original
1166	 * packet, which after processing serves as the first fragment.
1167	 */
1168	for (nfrags=1; off < ip->ip_len; off += len, nfrags++) {
1169		struct ip *mhip;	/* ip header on the fragment */
1170		struct mbuf *m;
1171		int mhlen = sizeof (struct ip);
1172
1173		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1174		if (m == 0) {
1175			error = ENOBUFS;
1176			ipstat.ips_odropped++;
1177			goto done;
1178		}
1179		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1180		/*
1181		 * In the first mbuf, leave room for the link header, then
1182		 * copy the original IP header including options. The payload
1183		 * goes into an additional mbuf chain returned by m_copy().
1184		 */
1185		m->m_data += max_linkhdr;
1186		mhip = mtod(m, struct ip *);
1187		*mhip = *ip;
1188		if (hlen > sizeof (struct ip)) {
1189			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1190			mhip->ip_v = IPVERSION;
1191			mhip->ip_hl = mhlen >> 2;
1192		}
1193		m->m_len = mhlen;
1194		/* XXX do we need to add ip->ip_off below ? */
1195		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1196		if (off + len >= ip->ip_len) { /* last fragment */
1197			len = ip->ip_len - off;
1198			m->m_flags |= M_LASTFRAG;
1199		} else
1200			mhip->ip_off |= IP_MF;
1201		mhip->ip_len = htons((u_short)(len + mhlen));
1202		m->m_next = m_copy(m0, off, len);
1203		if (m->m_next == 0) {		/* copy failed */
1204			m_free(m);
1205			error = ENOBUFS;	/* ??? */
1206			ipstat.ips_odropped++;
1207			goto done;
1208		}
1209		m->m_pkthdr.len = mhlen + len;
1210		m->m_pkthdr.rcvif = (struct ifnet *)0;
1211#ifdef MAC
1212		mac_create_fragment(m0, m);
1213#endif
1214		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1215		mhip->ip_off = htons(mhip->ip_off);
1216		mhip->ip_sum = 0;
1217		if (sw_csum & CSUM_DELAY_IP)
1218			mhip->ip_sum = in_cksum(m, mhlen);
1219		*mnext = m;
1220		mnext = &m->m_nextpkt;
1221	}
1222	ipstat.ips_ofragments += nfrags;
1223
1224	/* set first markers for fragment chain */
1225	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1226	m0->m_pkthdr.csum_data = nfrags;
1227
1228	/*
1229	 * Update first fragment by trimming what has been copied out
1230	 * and updating header.
1231	 */
1232	m_adj(m0, hlen + firstlen - ip->ip_len);
1233	m0->m_pkthdr.len = hlen + firstlen;
1234	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1235	ip->ip_off |= IP_MF;
1236	ip->ip_off = htons(ip->ip_off);
1237	ip->ip_sum = 0;
1238	if (sw_csum & CSUM_DELAY_IP)
1239		ip->ip_sum = in_cksum(m0, hlen);
1240	*m_frag = m0;
1241
1242done:
1243	if (error) {
1244		struct mbuf *m;
1245
1246		for (m = m0; m; m = m0) {
1247			m0 = m->m_nextpkt;
1248			m->m_nextpkt = 0;
1249#ifdef IPSEC
1250			/* clean ipsec history */
1251			ipsec_delaux(m);
1252#endif
1253			m_freem(m);
1254		}
1255	}
1256	return error;
1257}
1258
1259void
1260in_delayed_cksum(struct mbuf *m)
1261{
1262	struct ip *ip;
1263	u_short csum, offset;
1264
1265	ip = mtod(m, struct ip *);
1266	offset = ip->ip_hl << 2 ;
1267	csum = in_cksum_skip(m, ip->ip_len, offset);
1268	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1269		csum = 0xffff;
1270	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1271
1272	if (offset + sizeof(u_short) > m->m_len) {
1273		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1274		    m->m_len, offset, ip->ip_p);
1275		/*
1276		 * XXX
1277		 * this shouldn't happen, but if it does, the
1278		 * correct behavior may be to insert the checksum
1279		 * in the existing chain instead of rearranging it.
1280		 */
1281		m = m_pullup(m, offset + sizeof(u_short));
1282	}
1283	*(u_short *)(m->m_data + offset) = csum;
1284}
1285
1286/*
1287 * Insert IP options into preformed packet.
1288 * Adjust IP destination as required for IP source routing,
1289 * as indicated by a non-zero in_addr at the start of the options.
1290 *
1291 * XXX This routine assumes that the packet has no options in place.
1292 */
1293static struct mbuf *
1294ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1295{
1296	struct ipoption *p = mtod(opt, struct ipoption *);
1297	struct mbuf *n;
1298	struct ip *ip = mtod(m, struct ip *);
1299	unsigned optlen;
1300
1301	optlen = opt->m_len - sizeof(p->ipopt_dst);
1302	if (optlen + ip->ip_len > IP_MAXPACKET) {
1303		*phlen = 0;
1304		return (m);		/* XXX should fail */
1305	}
1306	if (p->ipopt_dst.s_addr)
1307		ip->ip_dst = p->ipopt_dst;
1308	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1309		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1310		if (n == 0) {
1311			*phlen = 0;
1312			return (m);
1313		}
1314		n->m_pkthdr.rcvif = (struct ifnet *)0;
1315#ifdef MAC
1316		mac_create_mbuf_from_mbuf(m, n);
1317#endif
1318		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1319		m->m_len -= sizeof(struct ip);
1320		m->m_data += sizeof(struct ip);
1321		n->m_next = m;
1322		m = n;
1323		m->m_len = optlen + sizeof(struct ip);
1324		m->m_data += max_linkhdr;
1325		(void)memcpy(mtod(m, void *), ip, sizeof(struct ip));
1326	} else {
1327		m->m_data -= optlen;
1328		m->m_len += optlen;
1329		m->m_pkthdr.len += optlen;
1330		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1331	}
1332	ip = mtod(m, struct ip *);
1333	bcopy(p->ipopt_list, ip + 1, optlen);
1334	*phlen = sizeof(struct ip) + optlen;
1335	ip->ip_v = IPVERSION;
1336	ip->ip_hl = *phlen >> 2;
1337	ip->ip_len += optlen;
1338	return (m);
1339}
1340
1341/*
1342 * Copy options from ip to jp,
1343 * omitting those not copied during fragmentation.
1344 */
1345int
1346ip_optcopy(struct ip *ip, struct ip *jp)
1347{
1348	u_char *cp, *dp;
1349	int opt, optlen, cnt;
1350
1351	cp = (u_char *)(ip + 1);
1352	dp = (u_char *)(jp + 1);
1353	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1354	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1355		opt = cp[0];
1356		if (opt == IPOPT_EOL)
1357			break;
1358		if (opt == IPOPT_NOP) {
1359			/* Preserve for IP mcast tunnel's LSRR alignment. */
1360			*dp++ = IPOPT_NOP;
1361			optlen = 1;
1362			continue;
1363		}
1364
1365		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1366		    ("ip_optcopy: malformed ipv4 option"));
1367		optlen = cp[IPOPT_OLEN];
1368		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1369		    ("ip_optcopy: malformed ipv4 option"));
1370
1371		/* bogus lengths should have been caught by ip_dooptions */
1372		if (optlen > cnt)
1373			optlen = cnt;
1374		if (IPOPT_COPIED(opt)) {
1375			bcopy(cp, dp, optlen);
1376			dp += optlen;
1377		}
1378	}
1379	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1380		*dp++ = IPOPT_EOL;
1381	return (optlen);
1382}
1383
1384/*
1385 * IP socket option processing.
1386 */
1387int
1388ip_ctloutput(struct socket *so, struct sockopt *sopt)
1389{
1390	struct	inpcb *inp = sotoinpcb(so);
1391	int	error, optval;
1392
1393	error = optval = 0;
1394	if (sopt->sopt_level != IPPROTO_IP) {
1395		return (EINVAL);
1396	}
1397
1398	switch (sopt->sopt_dir) {
1399	case SOPT_SET:
1400		switch (sopt->sopt_name) {
1401		case IP_OPTIONS:
1402#ifdef notyet
1403		case IP_RETOPTS:
1404#endif
1405		{
1406			struct mbuf *m;
1407			if (sopt->sopt_valsize > MLEN) {
1408				error = EMSGSIZE;
1409				break;
1410			}
1411			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1412			if (m == 0) {
1413				error = ENOBUFS;
1414				break;
1415			}
1416			m->m_len = sopt->sopt_valsize;
1417			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1418					    m->m_len);
1419
1420			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1421					   m));
1422		}
1423
1424		case IP_TOS:
1425		case IP_TTL:
1426		case IP_RECVOPTS:
1427		case IP_RECVRETOPTS:
1428		case IP_RECVDSTADDR:
1429		case IP_RECVIF:
1430		case IP_FAITH:
1431			error = sooptcopyin(sopt, &optval, sizeof optval,
1432					    sizeof optval);
1433			if (error)
1434				break;
1435
1436			switch (sopt->sopt_name) {
1437			case IP_TOS:
1438				inp->inp_ip_tos = optval;
1439				break;
1440
1441			case IP_TTL:
1442				inp->inp_ip_ttl = optval;
1443				break;
1444#define	OPTSET(bit) \
1445	if (optval) \
1446		inp->inp_flags |= bit; \
1447	else \
1448		inp->inp_flags &= ~bit;
1449
1450			case IP_RECVOPTS:
1451				OPTSET(INP_RECVOPTS);
1452				break;
1453
1454			case IP_RECVRETOPTS:
1455				OPTSET(INP_RECVRETOPTS);
1456				break;
1457
1458			case IP_RECVDSTADDR:
1459				OPTSET(INP_RECVDSTADDR);
1460				break;
1461
1462			case IP_RECVIF:
1463				OPTSET(INP_RECVIF);
1464				break;
1465
1466			case IP_FAITH:
1467				OPTSET(INP_FAITH);
1468				break;
1469			}
1470			break;
1471#undef OPTSET
1472
1473		case IP_MULTICAST_IF:
1474		case IP_MULTICAST_VIF:
1475		case IP_MULTICAST_TTL:
1476		case IP_MULTICAST_LOOP:
1477		case IP_ADD_MEMBERSHIP:
1478		case IP_DROP_MEMBERSHIP:
1479			error = ip_setmoptions(sopt, &inp->inp_moptions);
1480			break;
1481
1482		case IP_PORTRANGE:
1483			error = sooptcopyin(sopt, &optval, sizeof optval,
1484					    sizeof optval);
1485			if (error)
1486				break;
1487
1488			switch (optval) {
1489			case IP_PORTRANGE_DEFAULT:
1490				inp->inp_flags &= ~(INP_LOWPORT);
1491				inp->inp_flags &= ~(INP_HIGHPORT);
1492				break;
1493
1494			case IP_PORTRANGE_HIGH:
1495				inp->inp_flags &= ~(INP_LOWPORT);
1496				inp->inp_flags |= INP_HIGHPORT;
1497				break;
1498
1499			case IP_PORTRANGE_LOW:
1500				inp->inp_flags &= ~(INP_HIGHPORT);
1501				inp->inp_flags |= INP_LOWPORT;
1502				break;
1503
1504			default:
1505				error = EINVAL;
1506				break;
1507			}
1508			break;
1509
1510#if defined(IPSEC) || defined(FAST_IPSEC)
1511		case IP_IPSEC_POLICY:
1512		{
1513			caddr_t req;
1514			size_t len = 0;
1515			int priv;
1516			struct mbuf *m;
1517			int optname;
1518
1519			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1520				break;
1521			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1522				break;
1523			priv = (sopt->sopt_td != NULL &&
1524				suser(sopt->sopt_td) != 0) ? 0 : 1;
1525			req = mtod(m, caddr_t);
1526			len = m->m_len;
1527			optname = sopt->sopt_name;
1528			error = ipsec4_set_policy(inp, optname, req, len, priv);
1529			m_freem(m);
1530			break;
1531		}
1532#endif /*IPSEC*/
1533
1534		default:
1535			error = ENOPROTOOPT;
1536			break;
1537		}
1538		break;
1539
1540	case SOPT_GET:
1541		switch (sopt->sopt_name) {
1542		case IP_OPTIONS:
1543		case IP_RETOPTS:
1544			if (inp->inp_options)
1545				error = sooptcopyout(sopt,
1546						     mtod(inp->inp_options,
1547							  char *),
1548						     inp->inp_options->m_len);
1549			else
1550				sopt->sopt_valsize = 0;
1551			break;
1552
1553		case IP_TOS:
1554		case IP_TTL:
1555		case IP_RECVOPTS:
1556		case IP_RECVRETOPTS:
1557		case IP_RECVDSTADDR:
1558		case IP_RECVIF:
1559		case IP_PORTRANGE:
1560		case IP_FAITH:
1561			switch (sopt->sopt_name) {
1562
1563			case IP_TOS:
1564				optval = inp->inp_ip_tos;
1565				break;
1566
1567			case IP_TTL:
1568				optval = inp->inp_ip_ttl;
1569				break;
1570
1571#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1572
1573			case IP_RECVOPTS:
1574				optval = OPTBIT(INP_RECVOPTS);
1575				break;
1576
1577			case IP_RECVRETOPTS:
1578				optval = OPTBIT(INP_RECVRETOPTS);
1579				break;
1580
1581			case IP_RECVDSTADDR:
1582				optval = OPTBIT(INP_RECVDSTADDR);
1583				break;
1584
1585			case IP_RECVIF:
1586				optval = OPTBIT(INP_RECVIF);
1587				break;
1588
1589			case IP_PORTRANGE:
1590				if (inp->inp_flags & INP_HIGHPORT)
1591					optval = IP_PORTRANGE_HIGH;
1592				else if (inp->inp_flags & INP_LOWPORT)
1593					optval = IP_PORTRANGE_LOW;
1594				else
1595					optval = 0;
1596				break;
1597
1598			case IP_FAITH:
1599				optval = OPTBIT(INP_FAITH);
1600				break;
1601			}
1602			error = sooptcopyout(sopt, &optval, sizeof optval);
1603			break;
1604
1605		case IP_MULTICAST_IF:
1606		case IP_MULTICAST_VIF:
1607		case IP_MULTICAST_TTL:
1608		case IP_MULTICAST_LOOP:
1609		case IP_ADD_MEMBERSHIP:
1610		case IP_DROP_MEMBERSHIP:
1611			error = ip_getmoptions(sopt, inp->inp_moptions);
1612			break;
1613
1614#if defined(IPSEC) || defined(FAST_IPSEC)
1615		case IP_IPSEC_POLICY:
1616		{
1617			struct mbuf *m = NULL;
1618			caddr_t req = NULL;
1619			size_t len = 0;
1620
1621			if (m != 0) {
1622				req = mtod(m, caddr_t);
1623				len = m->m_len;
1624			}
1625			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1626			if (error == 0)
1627				error = soopt_mcopyout(sopt, m); /* XXX */
1628			if (error == 0)
1629				m_freem(m);
1630			break;
1631		}
1632#endif /*IPSEC*/
1633
1634		default:
1635			error = ENOPROTOOPT;
1636			break;
1637		}
1638		break;
1639	}
1640	return (error);
1641}
1642
1643/*
1644 * Set up IP options in pcb for insertion in output packets.
1645 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1646 * with destination address if source routed.
1647 */
1648static int
1649ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1650{
1651	int cnt, optlen;
1652	u_char *cp;
1653	u_char opt;
1654
1655	/* turn off any old options */
1656	if (*pcbopt)
1657		(void)m_free(*pcbopt);
1658	*pcbopt = 0;
1659	if (m == (struct mbuf *)0 || m->m_len == 0) {
1660		/*
1661		 * Only turning off any previous options.
1662		 */
1663		if (m)
1664			(void)m_free(m);
1665		return (0);
1666	}
1667
1668	if (m->m_len % sizeof(int32_t))
1669		goto bad;
1670	/*
1671	 * IP first-hop destination address will be stored before
1672	 * actual options; move other options back
1673	 * and clear it when none present.
1674	 */
1675	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1676		goto bad;
1677	cnt = m->m_len;
1678	m->m_len += sizeof(struct in_addr);
1679	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1680	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
1681	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1682
1683	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1684		opt = cp[IPOPT_OPTVAL];
1685		if (opt == IPOPT_EOL)
1686			break;
1687		if (opt == IPOPT_NOP)
1688			optlen = 1;
1689		else {
1690			if (cnt < IPOPT_OLEN + sizeof(*cp))
1691				goto bad;
1692			optlen = cp[IPOPT_OLEN];
1693			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1694				goto bad;
1695		}
1696		switch (opt) {
1697
1698		default:
1699			break;
1700
1701		case IPOPT_LSRR:
1702		case IPOPT_SSRR:
1703			/*
1704			 * user process specifies route as:
1705			 *	->A->B->C->D
1706			 * D must be our final destination (but we can't
1707			 * check that since we may not have connected yet).
1708			 * A is first hop destination, which doesn't appear in
1709			 * actual IP option, but is stored before the options.
1710			 */
1711			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1712				goto bad;
1713			m->m_len -= sizeof(struct in_addr);
1714			cnt -= sizeof(struct in_addr);
1715			optlen -= sizeof(struct in_addr);
1716			cp[IPOPT_OLEN] = optlen;
1717			/*
1718			 * Move first hop before start of options.
1719			 */
1720			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1721			    sizeof(struct in_addr));
1722			/*
1723			 * Then copy rest of options back
1724			 * to close up the deleted entry.
1725			 */
1726			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
1727			    sizeof(struct in_addr)),
1728			    (caddr_t)&cp[IPOPT_OFFSET+1],
1729			    (unsigned)cnt + sizeof(struct in_addr));
1730			break;
1731		}
1732	}
1733	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1734		goto bad;
1735	*pcbopt = m;
1736	return (0);
1737
1738bad:
1739	(void)m_free(m);
1740	return (EINVAL);
1741}
1742
1743/*
1744 * XXX
1745 * The whole multicast option thing needs to be re-thought.
1746 * Several of these options are equally applicable to non-multicast
1747 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1748 * standard option (IP_TTL).
1749 */
1750
1751/*
1752 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1753 */
1754static struct ifnet *
1755ip_multicast_if(struct in_addr *a, int *ifindexp)
1756{
1757	int ifindex;
1758	struct ifnet *ifp;
1759
1760	if (ifindexp)
1761		*ifindexp = 0;
1762	if (ntohl(a->s_addr) >> 24 == 0) {
1763		ifindex = ntohl(a->s_addr) & 0xffffff;
1764		if (ifindex < 0 || if_index < ifindex)
1765			return NULL;
1766		ifp = ifnet_byindex(ifindex);
1767		if (ifindexp)
1768			*ifindexp = ifindex;
1769	} else {
1770		INADDR_TO_IFP(*a, ifp);
1771	}
1772	return ifp;
1773}
1774
1775/*
1776 * Set the IP multicast options in response to user setsockopt().
1777 */
1778static int
1779ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1780{
1781	int error = 0;
1782	int i;
1783	struct in_addr addr;
1784	struct ip_mreq mreq;
1785	struct ifnet *ifp;
1786	struct ip_moptions *imo = *imop;
1787	struct route ro;
1788	struct sockaddr_in *dst;
1789	int ifindex;
1790	int s;
1791
1792	if (imo == NULL) {
1793		/*
1794		 * No multicast option buffer attached to the pcb;
1795		 * allocate one and initialize to default values.
1796		 */
1797		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1798		    M_WAITOK);
1799
1800		if (imo == NULL)
1801			return (ENOBUFS);
1802		*imop = imo;
1803		imo->imo_multicast_ifp = NULL;
1804		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1805		imo->imo_multicast_vif = -1;
1806		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1807		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1808		imo->imo_num_memberships = 0;
1809	}
1810
1811	switch (sopt->sopt_name) {
1812	/* store an index number for the vif you wanna use in the send */
1813	case IP_MULTICAST_VIF:
1814		if (legal_vif_num == 0) {
1815			error = EOPNOTSUPP;
1816			break;
1817		}
1818		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1819		if (error)
1820			break;
1821		if (!legal_vif_num(i) && (i != -1)) {
1822			error = EINVAL;
1823			break;
1824		}
1825		imo->imo_multicast_vif = i;
1826		break;
1827
1828	case IP_MULTICAST_IF:
1829		/*
1830		 * Select the interface for outgoing multicast packets.
1831		 */
1832		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1833		if (error)
1834			break;
1835		/*
1836		 * INADDR_ANY is used to remove a previous selection.
1837		 * When no interface is selected, a default one is
1838		 * chosen every time a multicast packet is sent.
1839		 */
1840		if (addr.s_addr == INADDR_ANY) {
1841			imo->imo_multicast_ifp = NULL;
1842			break;
1843		}
1844		/*
1845		 * The selected interface is identified by its local
1846		 * IP address.  Find the interface and confirm that
1847		 * it supports multicasting.
1848		 */
1849		s = splimp();
1850		ifp = ip_multicast_if(&addr, &ifindex);
1851		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1852			splx(s);
1853			error = EADDRNOTAVAIL;
1854			break;
1855		}
1856		imo->imo_multicast_ifp = ifp;
1857		if (ifindex)
1858			imo->imo_multicast_addr = addr;
1859		else
1860			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1861		splx(s);
1862		break;
1863
1864	case IP_MULTICAST_TTL:
1865		/*
1866		 * Set the IP time-to-live for outgoing multicast packets.
1867		 * The original multicast API required a char argument,
1868		 * which is inconsistent with the rest of the socket API.
1869		 * We allow either a char or an int.
1870		 */
1871		if (sopt->sopt_valsize == 1) {
1872			u_char ttl;
1873			error = sooptcopyin(sopt, &ttl, 1, 1);
1874			if (error)
1875				break;
1876			imo->imo_multicast_ttl = ttl;
1877		} else {
1878			u_int ttl;
1879			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1880					    sizeof ttl);
1881			if (error)
1882				break;
1883			if (ttl > 255)
1884				error = EINVAL;
1885			else
1886				imo->imo_multicast_ttl = ttl;
1887		}
1888		break;
1889
1890	case IP_MULTICAST_LOOP:
1891		/*
1892		 * Set the loopback flag for outgoing multicast packets.
1893		 * Must be zero or one.  The original multicast API required a
1894		 * char argument, which is inconsistent with the rest
1895		 * of the socket API.  We allow either a char or an int.
1896		 */
1897		if (sopt->sopt_valsize == 1) {
1898			u_char loop;
1899			error = sooptcopyin(sopt, &loop, 1, 1);
1900			if (error)
1901				break;
1902			imo->imo_multicast_loop = !!loop;
1903		} else {
1904			u_int loop;
1905			error = sooptcopyin(sopt, &loop, sizeof loop,
1906					    sizeof loop);
1907			if (error)
1908				break;
1909			imo->imo_multicast_loop = !!loop;
1910		}
1911		break;
1912
1913	case IP_ADD_MEMBERSHIP:
1914		/*
1915		 * Add a multicast group membership.
1916		 * Group must be a valid IP multicast address.
1917		 */
1918		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1919		if (error)
1920			break;
1921
1922		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1923			error = EINVAL;
1924			break;
1925		}
1926		s = splimp();
1927		/*
1928		 * If no interface address was provided, use the interface of
1929		 * the route to the given multicast address.
1930		 */
1931		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1932			bzero((caddr_t)&ro, sizeof(ro));
1933			dst = (struct sockaddr_in *)&ro.ro_dst;
1934			dst->sin_len = sizeof(*dst);
1935			dst->sin_family = AF_INET;
1936			dst->sin_addr = mreq.imr_multiaddr;
1937			rtalloc(&ro);
1938			if (ro.ro_rt == NULL) {
1939				error = EADDRNOTAVAIL;
1940				splx(s);
1941				break;
1942			}
1943			ifp = ro.ro_rt->rt_ifp;
1944			rtfree(ro.ro_rt);
1945		}
1946		else {
1947			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1948		}
1949
1950		/*
1951		 * See if we found an interface, and confirm that it
1952		 * supports multicast.
1953		 */
1954		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1955			error = EADDRNOTAVAIL;
1956			splx(s);
1957			break;
1958		}
1959		/*
1960		 * See if the membership already exists or if all the
1961		 * membership slots are full.
1962		 */
1963		for (i = 0; i < imo->imo_num_memberships; ++i) {
1964			if (imo->imo_membership[i]->inm_ifp == ifp &&
1965			    imo->imo_membership[i]->inm_addr.s_addr
1966						== mreq.imr_multiaddr.s_addr)
1967				break;
1968		}
1969		if (i < imo->imo_num_memberships) {
1970			error = EADDRINUSE;
1971			splx(s);
1972			break;
1973		}
1974		if (i == IP_MAX_MEMBERSHIPS) {
1975			error = ETOOMANYREFS;
1976			splx(s);
1977			break;
1978		}
1979		/*
1980		 * Everything looks good; add a new record to the multicast
1981		 * address list for the given interface.
1982		 */
1983		if ((imo->imo_membership[i] =
1984		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1985			error = ENOBUFS;
1986			splx(s);
1987			break;
1988		}
1989		++imo->imo_num_memberships;
1990		splx(s);
1991		break;
1992
1993	case IP_DROP_MEMBERSHIP:
1994		/*
1995		 * Drop a multicast group membership.
1996		 * Group must be a valid IP multicast address.
1997		 */
1998		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1999		if (error)
2000			break;
2001
2002		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2003			error = EINVAL;
2004			break;
2005		}
2006
2007		s = splimp();
2008		/*
2009		 * If an interface address was specified, get a pointer
2010		 * to its ifnet structure.
2011		 */
2012		if (mreq.imr_interface.s_addr == INADDR_ANY)
2013			ifp = NULL;
2014		else {
2015			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2016			if (ifp == NULL) {
2017				error = EADDRNOTAVAIL;
2018				splx(s);
2019				break;
2020			}
2021		}
2022		/*
2023		 * Find the membership in the membership array.
2024		 */
2025		for (i = 0; i < imo->imo_num_memberships; ++i) {
2026			if ((ifp == NULL ||
2027			     imo->imo_membership[i]->inm_ifp == ifp) &&
2028			     imo->imo_membership[i]->inm_addr.s_addr ==
2029			     mreq.imr_multiaddr.s_addr)
2030				break;
2031		}
2032		if (i == imo->imo_num_memberships) {
2033			error = EADDRNOTAVAIL;
2034			splx(s);
2035			break;
2036		}
2037		/*
2038		 * Give up the multicast address record to which the
2039		 * membership points.
2040		 */
2041		in_delmulti(imo->imo_membership[i]);
2042		/*
2043		 * Remove the gap in the membership array.
2044		 */
2045		for (++i; i < imo->imo_num_memberships; ++i)
2046			imo->imo_membership[i-1] = imo->imo_membership[i];
2047		--imo->imo_num_memberships;
2048		splx(s);
2049		break;
2050
2051	default:
2052		error = EOPNOTSUPP;
2053		break;
2054	}
2055
2056	/*
2057	 * If all options have default values, no need to keep the mbuf.
2058	 */
2059	if (imo->imo_multicast_ifp == NULL &&
2060	    imo->imo_multicast_vif == -1 &&
2061	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2062	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2063	    imo->imo_num_memberships == 0) {
2064		free(*imop, M_IPMOPTS);
2065		*imop = NULL;
2066	}
2067
2068	return (error);
2069}
2070
2071/*
2072 * Return the IP multicast options in response to user getsockopt().
2073 */
2074static int
2075ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
2076{
2077	struct in_addr addr;
2078	struct in_ifaddr *ia;
2079	int error, optval;
2080	u_char coptval;
2081
2082	error = 0;
2083	switch (sopt->sopt_name) {
2084	case IP_MULTICAST_VIF:
2085		if (imo != NULL)
2086			optval = imo->imo_multicast_vif;
2087		else
2088			optval = -1;
2089		error = sooptcopyout(sopt, &optval, sizeof optval);
2090		break;
2091
2092	case IP_MULTICAST_IF:
2093		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2094			addr.s_addr = INADDR_ANY;
2095		else if (imo->imo_multicast_addr.s_addr) {
2096			/* return the value user has set */
2097			addr = imo->imo_multicast_addr;
2098		} else {
2099			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2100			addr.s_addr = (ia == NULL) ? INADDR_ANY
2101				: IA_SIN(ia)->sin_addr.s_addr;
2102		}
2103		error = sooptcopyout(sopt, &addr, sizeof addr);
2104		break;
2105
2106	case IP_MULTICAST_TTL:
2107		if (imo == 0)
2108			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2109		else
2110			optval = coptval = imo->imo_multicast_ttl;
2111		if (sopt->sopt_valsize == 1)
2112			error = sooptcopyout(sopt, &coptval, 1);
2113		else
2114			error = sooptcopyout(sopt, &optval, sizeof optval);
2115		break;
2116
2117	case IP_MULTICAST_LOOP:
2118		if (imo == 0)
2119			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2120		else
2121			optval = coptval = imo->imo_multicast_loop;
2122		if (sopt->sopt_valsize == 1)
2123			error = sooptcopyout(sopt, &coptval, 1);
2124		else
2125			error = sooptcopyout(sopt, &optval, sizeof optval);
2126		break;
2127
2128	default:
2129		error = ENOPROTOOPT;
2130		break;
2131	}
2132	return (error);
2133}
2134
2135/*
2136 * Discard the IP multicast options.
2137 */
2138void
2139ip_freemoptions(struct ip_moptions *imo)
2140{
2141	int i;
2142
2143	if (imo != NULL) {
2144		for (i = 0; i < imo->imo_num_memberships; ++i)
2145			in_delmulti(imo->imo_membership[i]);
2146		free(imo, M_IPMOPTS);
2147	}
2148}
2149
2150/*
2151 * Routine called from ip_output() to loop back a copy of an IP multicast
2152 * packet to the input queue of a specified interface.  Note that this
2153 * calls the output routine of the loopback "driver", but with an interface
2154 * pointer that might NOT be a loopback interface -- evil, but easier than
2155 * replicating that code here.
2156 */
2157static void
2158ip_mloopback(struct ifnet *ifp, struct mbuf *m,
2159	struct sockaddr_in *dst, int hlen)
2160{
2161	struct ip *ip;
2162	struct mbuf *copym;
2163
2164	copym = m_copypacket(m, M_DONTWAIT);
2165	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2166		copym = m_pullup(copym, hlen);
2167	if (copym != NULL) {
2168		/*
2169		 * We don't bother to fragment if the IP length is greater
2170		 * than the interface's MTU.  Can this possibly matter?
2171		 */
2172		ip = mtod(copym, struct ip *);
2173		ip->ip_len = htons(ip->ip_len);
2174		ip->ip_off = htons(ip->ip_off);
2175		ip->ip_sum = 0;
2176		ip->ip_sum = in_cksum(copym, hlen);
2177		/*
2178		 * NB:
2179		 * It's not clear whether there are any lingering
2180		 * reentrancy problems in other areas which might
2181		 * be exposed by using ip_input directly (in
2182		 * particular, everything which modifies the packet
2183		 * in-place).  Yet another option is using the
2184		 * protosw directly to deliver the looped back
2185		 * packet.  For the moment, we'll err on the side
2186		 * of safety by using if_simloop().
2187		 */
2188#if 1 /* XXX */
2189		if (dst->sin_family != AF_INET) {
2190			printf("ip_mloopback: bad address family %d\n",
2191						dst->sin_family);
2192			dst->sin_family = AF_INET;
2193		}
2194#endif
2195
2196#ifdef notdef
2197		copym->m_pkthdr.rcvif = ifp;
2198		ip_input(copym);
2199#else
2200		/* if the checksum hasn't been computed, mark it as valid */
2201		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2202			copym->m_pkthdr.csum_flags |=
2203			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2204			copym->m_pkthdr.csum_data = 0xffff;
2205		}
2206		if_simloop(ifp, copym, dst->sin_family, 0);
2207#endif
2208	}
2209}
2210